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ABSTRACT

Accurate and precise measurement of the masses of galaxy clusters is key to deriving robust constraints on cosmological parameters.
However, increasing evidence from observations confirms that X-ray masses obtained under the assumption of hydrostatic equilibrium
might be underestimated, as previously predicted by cosmological simulations. We analyze more than 300 simulated massive clusters
from the Three Hundred Project, and investigate the connection between mass bias and several diagnostics extracted from synthetic
X-ray images of these simulated clusters. We find that the azimuthal scatter measured in 12 sectors of the X-ray flux maps is a
statistically significant indication of the presence of an intrinsic (i.e., 3D) clumpy gas distribution. We verify that a robust correction
to the hydrostatic mass bias can be inferred when estimates of the gas inhomogeneity from X-ray maps (such as the azimuthal scatter
or the gas ellipticity) are combined with the asymptotic external slope of the gas density or pressure profiles, which can be respectively
derived from X-ray and millimeter (Sunyaev-Zeldovich effect) observations. We also obtain that mass measurements based on either
gas density and temperature or gas density and pressure result in similar distributions of the mass bias. In both cases, we provide
corrections that help reduce both the dispersion and skewness of the mass bias distribution. These are effective even when irregular
clusters are included leading to interesting implications for the modeling and correction of hydrostatic mass bias in cosmological
analyses of current and future X-ray and SZ cluster surveys.

Key words. galaxies: clusters: general – galaxies: clusters: intracluster medium – X-rays: galaxies: clusters –
large-scale structure of Universe – methods: numerical

1. Introduction

Clusters of galaxies are the endpoint of the process of cosmic
structure formation. As such, they are optimal tracers of the
growth of structures and useful tools for estimating cosmolog-
ical parameters, such as those measuring the amount of matter,
ΩM, and dark energy, ΩΛ, and the normalization of the power
spectrum of density fluctuations, σ8 (see reviews by Voit 2005;
Allen et al. 2011; Kravtsov & Borgani 2012). Cosmological
studies based on galaxy clusters rely on the measurement of (i)
the baryon fraction (Allen et al. 2008; Ettori et al. 2009; Mantz
et al. 2014), and (ii) the evolution of the cluster mass function, or
the number density of clusters per unit mass and redshift interval
(Vikhlinin et al. 2009; Planck Collaboration XX 2014; Costanzi

et al. 2019; Bocquet et al. 2019). The key quantity entering into
both these techniques is the cluster mass. It is therefore cru-
cial to refine the estimate of the total gravitating mass in clus-
ters of galaxies as precisely as possible by constraining in great
detail the sources of bias or by providing reliable corrections (see
review by Pratt et al. 2019).

Indeed, when the Planck collaboration pointed out that σ8

derived from the cosmic microwave background anisotropies
was inconsistent with the σ8 obtained from cluster number
counts (Planck Collaboration XX 2014), the so-called mass bias,
defined as an underestimation of the total mass, was immedi-
ately suspected to be the root of the problem. Even though in
the Planck-specific comparison other systematic errors might
have played a role in increasing the discrepancy between the
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two σ8 values, there is recent observational evidence that the
masses estimated under the assumption of hydrostatic equilib-
rium (HE), such as those derived from the X-ray analysis used
in the Planck analysis, are actually underestimated with respect
to masses measured using other methods (see reviews by Ettori
et al. 2013; Pratt et al. 2019, and references therein).

In this context, cosmological hydrodynamical simulations
have been insightful tools for understanding the nature and ori-
gin of HE mass bias (Evrard 1990). Advanced numerical mod-
els providing realistic populations of simulated clusters allow the
precise quantification of the underestimation of the total mass.
Such bias can be connected to the intrinsic properties of the sim-
ulated objects, such as their dynamical state, or to other quanti-
ties mimicking those derived from X-ray, optical, or millimeter
observations. Since the earliest simulation studies, numerical res-
olution has largely increased, and progressively refined descrip-
tions of star formation, feedback in metals, and energy from stars
and from active galactic nuclei (AGNs) have vastly improved the
level of realism and reliability of such simulations. At the same
time, the techniques used to analyze the simulations and compare
them to observational data, including mock images, have further
enhanced their predictive power. Still, the level of the above mass
bias for simulated clusters considered “dynamically relaxed” has
always been consistently found to be around 10–20% (Rasia et al.
2006, 2012; Nagai et al. 2007a; Jeltema et al. 2008; Piffaretti &
Valdarnini 2008; Lau et al. 2009; Meneghetti et al. 2010; Nelson
et al. 2012; Battaglia et al. 2012; Shi et al. 2015; Biffi et al. 2016;
Vazza et al. 2016, 2018; Henson et al. 2017; Barnes et al. 2017a;
Cialone et al. 2018; Angelinelli et al. 2019). Thanks to simula-
tions, we understand that the main sources of the HE bias are the
residual, nonthermalized gas velocities in the form of both bulk
motion and turbulence, and intra-cluster medium (ICM) inhomo-
geneities.

The existence of gas velocities compromises the assump-
tion of HE: the gravitational force is not completely in
equilibrium with the hydrodynamical pressure force as some
nonthermal pressure support in the form of residual gas motions
is still present in the gas (Rasia et al. 2004; Lau et al. 2009; Vazza
et al. 2009; Fang et al. 2009; Suto et al. 2013; Shi et al. 2015;
Biffi et al. 2016). Residual gas motions are expected because
clusters are recently assembled systems and lie at the intersec-
tion of cosmic filaments that define the preferential directions
along which there is continuous mass accretion in the form of
both diffuse gas and over-dense clumps (Vazza et al. 2013; Zinger
et al. 2018). Moreover, indirect hints of the presence of residual
kinetic energy associated with random gas motions in the ICM
comes from the observational evidence of diffuse radio emission
connected with clusters undergoing mergers (and likely powered
by the dissipation of turbulent motions via Fermi-like mech-
anisms; see van Weeren et al. 2019 for a recent review) and
from the observed correlation between X-ray surface brightness
fluctuations and radio power Eckert et al. 2017) which suggests
a dynamical link between perturbed X-ray morphologies and
residual gas motions. Unfortunately, for the direct ICM velocity
measurements we need to wait for next-generation X-ray spec-
trometers (Biffi et al. 2013; Roncarelli et al. 2018; ZuHone et al.
2018; Simionescu et al. 2019; Cucchetti et al. 2019; Clerc et al.
2019) which might obtain such measurements in the external
regions of (a few) clusters, such as those obtained by Hitomi for
the core of the Perseus cluster (Hitomi Collaboration 2016).

In addition, in the presence of unresolved small, cold, and
dense clumps, the gas density can be boosted towards higher val-
ues with respect to the smoother ICM distribution (Nagai & Lau
2011; Vazza et al. 2013; Zhuravleva et al. 2013; Roncarelli et al.

2013; Planelles et al. 2017; Walker et al. 2019). If the clumps
are not in pressure equilibrium with the ambient medium, the
pressure signal as derived from the Compton parameter mea-
sured by SZ is either boosted or hampered depending on whether
the structures are at a hyperbaric or a hypobaric level (Battaglia
et al. 2015; Khatri & Gaspari 2016; Planelles et al. 2017;
Ruppin et al. 2018). Since clumps are more prominent in the
outskirts of clusters, they lead to an apparent decrease in the
slope of the gas profiles and, as a consequence, to an under-
estimate of the derived HE mass (which is proportional to the
derivative of the gas density or pressure profile). Moreover, inho-
mogeneities in the temperature structure might cause an addi-
tional bias if the multi-temperature nature of the ICM is not rec-
ognized from the residuals of the spectroscopic fitting analysis.
Indeed, X-ray CCD detectors onboard Chandra, XMM-Newton,
and Suzaku have responses that tend to emphasize colder gas
components in a thermally complex medium (Gardini et al.
2004; Mazzotta et al. 2004; Vikhlinin et al. 2006). A bias in the
temperature measurement at a fixed radius automatically trans-
lates into a mass bias at the same radius. Simulations show that
thermal inhomogeneities in the ICM increase with radius (Rasia
et al. 2014), and so does the corresponding mass bias. How-
ever, measuring the temperature fluctuations from observations
is extremely challenging (Frank et al. 2013). At the same time,
direct measurement of clumpiness from observations requires a
spatial resolution allowing to discern appropriately the X-ray or
SZ signal on kiloparsec scales associated with exquisite spectral-
imaging capabilities. These two requirements are not met by
existing SZ telescopes, while with current X-ray instruments this
level of clumpiness can be at least indirectly estimated (Walker
et al. 2012, 2019; Morandi et al. 2013, 2017; Urban et al. 2014;
Morandi & Cui 2014; Eckert et al. 2015; Ghirardini et al. 2018)
and positively compares with results from simulations (Eckert
et al. 2015).

Since quantifying the level of gas inhomogeneities is fea-
sible with current X-ray instruments, in this paper we investi-
gate how these estimates can be used to statistically correct the
mass bias at R500. We also investigate an approach proposed
almost a decade ago (e.g., Ameglio et al. 2009), and recently
adopted in observational samples (e.g., Ettori et al. 2019), to
directly include the pressure, which can be derived from SZ
observations out to large radii, within the HE mass equation
under the assumption that clump pressure is close to the iso-
baric level of the ICM. These goals are pursued with a detailed
investigation of the simulated clusters of the Three Hundred
Project (Cui et al. 2018), analyzed at z= 0. The sample employed
includes a large number of massive clusters (more than three
hundred), comparable only to the MACSIS project (Barnes et al.
2017b). The large sample size allows us to adopt a conservative
approach and discard all objects that have significant interac-
tions and/or have an extremely complex morphology. The meth-
ods employed to extract the quantities of interest are simplified
with respect to earlier work where mock Chandra or XMM-
Newton event files were produced (Rasia et al. 2006, 2012; Nagai
et al. 2007b; Meneghetti et al. 2010). In fact, previous analyses
already demonstrated that gas density and temperature profiles
can be recovered relatively accurately from mock event files (a
more detailed discussion of this will be presented in Sect. 4).
In this paper we simply build X-ray surface-brightness maps
that are not convolved with any instrument response. We remark
that the quantities considered have already been derived in X-ray
studies from observations with a modest exposure time.

This paper is structured as follows: we present the simula-
tions in Sect. 2. The subsamples based on the morphological
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classification are introduced in Sect. 3, and in Sect. 4 we describe
in detail how we derive all quantities from the simulated clus-
ters, through either the 2D analysis of the X-ray maps or the
3D intrinsic analysis. We discuss the results on the gas inho-
mogeneities from the maps and cluster clumpiness factor in
Sects. 5 and 6, where we also highlight their mutual relation. The
mass bias profiles and mass bias distribution at R500 are investi-
gated in Sect. 7, where we also consider the dependence of the
mass bias on all quantities linked to the gas inhomogeneities and
on the asymptotic external slope of the gas density and pressure
profiles. Finally, conclusions are drawn in Sect. 8.

2. Simulations

The hydrodynamical simulated clusters used in this work are part
of the Three Hundred Project1 introduced in Cui et al. (2018)
and analyzed in Wang et al. (2018), Mostoghiu et al. (2019), and
Arthur et al. (2019) to respectively study galaxy properties in a
rich environment, the evolution of the density profile, and the
effect of ram pressure stripping on the gas content of halos and
substructures.

These simulations are based on a set of 324 Lagrangian
regions centered on as many galaxy clusters, which have been
previously selected as the most massive within the parent
MultiDark simulation (Klypin et al. 2016)2 and precisely the
MultiDarkPlanck2 box. This dark-matter(DM)-only simulation
consists of a periodic cube of 1.5 Gpc in comoving length con-
taining 38403 DM particles. As the name suggests, this simula-
tion assumes the best-fitting cosmological parameters from the
Planck Collaboration XIII (2016): h = 0.6777 for the reduced
Hubble parameter, n = 0.96 for the primordial spectral index,
σ8 = 0.8228 for the amplitude of the mass density fluctuations
in a sphere of 8 h−1 Mpc comoving radius, and ΩΛ = 0.692885,
Ωm = 0.307115, and Ωb = 0.048206 for the density parameters
of dark energy, matter, and baryonic matter respectively.

The Lagrangian regions to be re-simulated at higher reso-
lution are identified at z = 0 as the volume centered on the
selected massive clusters (all with virial masses3 greater than
1.2×1015 M⊙) and extending for a radius of 22 Mpc. With respect
to the MACSIS sample (Barnes et al. 2017b), the Three Hundred
Project set has the advantage of being a volume-limited mass-
complete sample for all objects with M500 > 6.5 × 1014 M⊙.
Nevertheless, in this paper we extend the sample to smaller
mass objects to study a possible mass dependence of the results
(Appendix A).

Initial conditions are generated at the initial redshift z = 120
with the Ginnungagap4 code by refining the mass resolution in
the central region and degrading it in the outer part with multiple
levels of mass refinement. This step allows us to keep the infor-
mation on the large-scale tidal fields without raising the com-
putational cost. The high-resolution dark-matter particle mass is
equal to mDM = 1.9× 109 M⊙, while the initial gas mass is equal
to 3.5 × 108 M⊙. The gas softening of the simulations is fixed to
be 15 kpc in comoving units for z > 0.6 and 9.6 kpc in physi-
cal units afterwards. The minimum value of the SPH smoothing

1 https://the300-project.org
2 The MultiDark simulations are publicly available at the https://
www.cosmosim.org database.
3 We refer to the mass M∆ as the mass of the sphere of radius R∆ with
density ∆ times the critical density of the universe at that redshift. Virial
masses are defined for ∆ = 98 following Bryan & Norman (1998). In
the rest of the paper we mostly consider ∆ = 500.
4 https://github.com/ginnungagapgroup/ginnungagap

length allowed is one-thousandth of the gas softening, but it is
de facto around 1 kpc.

Since the Three Hundred Project was born as a compari-
son project, the 324 regions are re-simulated with three hydro-
dynamical codes: gadget-x (Rasia et al. 2015), gadgetmu-
sic (Sembolini et al. 2013), and gizmo-simba (Davé et al.
2019). It is beyond the scope of this paper to compare differ-
ent codes; therefore in this work we refer only to the gadget-x
sample.

The Tree–Particle–Mesh gravity solver of gadget-x cor-
responds to that of the gadget3 code, which is an updated
and more efficient version of the gadget2 code (Springel
2005). gadget-x includes an improved SPH scheme with arti-
ficial thermal diffusion, time-dependent artificial viscosity, high-
order Wendland C4 interpolating kernel and wake-up scheme as
described in Beck et al. (2016). Radiative gas-cooling depends
on the metallicity as in Wiersma et al. (2009). The star formation
and thermal feedback from supernovae closely follow the orig-
inal prescription by Springel & Hernquist (2003) and are con-
nected to a detailed chemical evolution and enrichment model as
in Tornatore et al. (2007). More details on the chemical enrich-
ment model are presented in Biffi et al. (2017, 2018) and Truong
et al. (2019). Finally, the gas accretion onto super-massive black
holes powers AGN feedback following the model by Steinborn
et al. (2015), which considers both hot and cold accretion (see
also, Churazov et al. 2005; Gaspari et al. 2018). The impact of
these physical processes on the ICM properties has been dis-
cussed in relation to observed quantities in several papers. Rel-
evant for this work, it is worth mentioning that previous simu-
lated samples carried out with this code were shown to broadly
agree with observed gas density and entropy profiles (Rasia et al.
2015), pressure profiles and ICM clumpiness (Planelles et al.
2017), and global ICM quantities (Truong et al. 2018). Li et al.
(in prep.) find that the gas density and temperature profiles of the
Three Hundred sample are in good agreement with the observa-
tional results of Ghirardini et al. (2019) at around R500.

2.1. Generation of maps

For the current analysis, in each Lagrangian region we consider
the most-massive clusters at z = 0 without any low-resolution
particles5 within R100, which is close to the virial radius for
our cosmology. Whenever the main object had at least one low-
resolution particle within R100 we considered the second most
massive cluster. Seven regions have no available objects with
M500 > 3 × 1013 M⊙, which is the mass limit that we impose.
For each cluster, we produced with the code Smac6 (Dolag et al.
2005) three X-ray surface brightness maps in the soft-energy
band, [0.5–2] keV, along three orthogonal lines of sight. The map
is created by summing over the contributions of the gas par-
ticles that are in the hot phase – meaning with density lower
than the density threshold for star formation7 – and emit in the
X-ray band – meaning with temperature above 106 K. Each parti-
cle emissivity is weighted by a spline kernel of width equal to the
gas particle smoothing length. The center of each map coincides
with our definition of the system theoretical center: the position
of the minimum of the potential well. From this position, all

5 There are multiple levels of low-resolution dark-matter particles,
each level having its particle mass ∼10 times more massive than its
inner level. For our purpose, we consider all low-resolution particles as
contaminant.
6 https://wwwmpa.mpa-garching.mpg.de/~kdolag/Smac/
7 The density of star formation is approximately equal to 1.95 ×
10−25 g cm−3 or 2.88 × 106 kpc−3 M⊙.
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objects have their R500 radii inscribed in the map8, the side of
which is fixed equal to 4 Mpc and is divided into 1024 pixels
on a side, leading to a physical resolution of 3.9 kpc per pixel.
The integration length along the line of sight is equal to 10 Mpc
(5 Mpc from each side with respect to the center, corresponding
to about three to four times R500). As an example, three maps
are shown in Fig. 1, one for each of the first three morphological
classes (very regular, regular, intermediate/irregular) described
in Sect. 3.

2.2. Center definitions and ICM ellipticity

As anticipated, our reference theoretical center for the analysis
on the simulated clusters is the position of the minimum of the
potential well. This center is used to compute the gas profiles.
However, we consider two additional centers identified from the
X-ray surface brightness maps: the emission peak and the center
of the iso-flux contours. Both are commonly adopted in X-ray
analysis since the former can be easily identified and the latter is
generally considered to be close to the center of mass.

The first center corresponds to the pixel of maximum flux
and is therefore dubbed “MF”. At first, its identification is per-
formed automatically. However, whenever its distance from the
minimum of the potential, DMF, exceeds 0.4 × R500, we proceed
to visually inspect the individual map. During this process, we
verify whether the X-ray peak is associated with a denser com-
panion rather than to the main cluster. In this case, we mask
the secondary object by excluding the pixels associated with
it, and recompute the maximum. In the large majority of the
other cases, MF is located at a distance of a few pixels from
the map center. For this, we express DMF in pixels rather than
in units of R500 which could be misleading because one single
pixel corresponds to a different fraction of the cluster radii. Con-
sidering all the maps, the median value of this distance is equal
to 18 kpc. Rossetti et al. (2016) looked at a similar estimator
in a large sample of massive clusters selected from the Planck
catalogue. They found that the observed distance between the
X-ray peak (i.e., MF) and the center of the brightest cluster
galaxy (most of the time coincident with the minimum of the
potential well; see Cui et al. 2016) was equal to 21.5 kpc, which
is very close to the median value found in our sample.

The second center is the center of the ellipse that best
describes the iso-flux contours of the images drawn at around
0.8 R500 and it is dubbed “CE”. In practice, we follow this pro-
cedure: we compute the mean of the flux of all pixels at that
distance from the map center; then, we use the mean flux value
as a threshold to separate two regions with pixels below and
above this limit; finally, we recognize as a contour the border
between the two regions. Whenever multiple contours are iden-
tified within the maps, we consider the longest one. We expect
that the ellipse center better approximates the center of the mass
distribution on large scales. Since the distance from the mini-
mum of the potential well, DCE, has a broader distribution than
for DMF, we measure it in units of R500.

In addition to CE and DCE, we also save the value of the
ellipticity of the best-fitting ellipse, which is defined as ε = (a −
b)/a, where a is the major axis and b the minor one.

In this preparatory phase, we discarded 29 clusters (and their
associated 87 maps) because we encountered difficulties in the
determination of their best-fitting ellipse. Visual inspection of
these maps confirms that these objects are indeed associated with

8 With the exception of the three most massive clusters, which in any
case are classified as very irregular in Sect. 3.1 and are therefore not
part of the sample analyzed in the main paper.

systems that are either interacting with other massive clusters
or have extremely irregular flux maps. Their peculiar morphol-
ogy prevents any rigorous identification of either centers. More-
over, for a large number of them we recognize that the minimum
of the potential is associated with neither object but is located
in between the interacting systems. In these cases, no profiles,
either 2D or 3D, are informative; rather they will most likely
introduce an uncontrollable bias in the results9.

All the other images (precisely, 864 maps corresponding to
288 clusters) and their measured DMF, DCE, and ε are used to
build the cluster subsamples as outlined below. Observational
works in the literature have used different morphological param-
eters to classify the regularity of the X-ray appearance of clus-
ters (e.g., Rasia et al. 2013; Mantz et al. 2015; Lovisari et al.
2017) and their connection with mass bias has already been stud-
ied (e.g., Jeltema et al. 2008; Piffaretti & Valdarnini 2008; Rasia
et al. 2012; Cialone et al. 2018). Here we focus on a more easily
derived quantity, the ICM ellipticity, which has been shown to
correlate well with the mass-accretion history (Chen et al. 2019)
and the overall dynamical state of the clusters (Laganá et al.
2019). Furthermore, Mantz et al. (2015), studying 350 clusters
observed in X-ray, showed that the ellipticity is a good proxy
to select either very relaxed or, alternatively, very dynamically
active clusters.

3. Cluster classification

The main goal of the paper is to connect measurements derived
from X-ray or SZ observations to the intrinsic estimate of the
mass bias. Therefore, the primary classification of the paper is
based on the 2D analysis of the X-ray surface brightness maps
and uses the parameters introduced before. Since we produced
three images for each cluster, a system can be part of more than
one 2D subsample. Our study also involves quantities that are
measured directly from the simulated clusters in 3D, such as the
intrinsic clumpiness, gas density, temperature, and pressure pro-
files, and the bias of the hydrostatic-equilibrium mass. For this
reason, we also introduce a 3D classification.

3.1. Two-dimensional classification

We use the computed values of DCE, DMF, and ε from each image
to sort the cluster maps and broadly divide them into five classes:
very regular (VR), regular (R), intermediate/irregular (IR), very
irregular (VI), and extremely irregular (EI). We stress that the
classification aims at distinguishing the regular systems and very
irregular systems from the bulk of the cluster population.

The division is based on the two parameters linked to the
best-fitting ellipse of the external iso-flux contour, because after
looking at some images we recognize that both DCE and ε are
sensitive to even minor mergers (in agreement with similar indi-
cations from observational analyses; see, e.g., Lopes et al. 2018).
The parameters are shown in Fig. 2, color-coded with the classes
presented below. In contrast, the third parameter, DMF, does not
always reflect the irregular morphology or the disturbed state of
the ICM, especially if only the cluster outskirts clearly manifest
a nonrelaxed status. In other words, for the purpose of the classi-
fication, the parameter DMF is not effective at separating regular

9 We note that, in a similar way, objects with a very perturbed X-ray
morphology (e.g., with ongoing disruptive mergers and/or with large
deviations from spherical symmetries) are also discarded from obser-
vational analysis of the hydrostatic mass bias in galaxy clusters, or are
subject to ad-hoc analysis procedures (e.g. Ghirardini et al. 2018).
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Fig. 1. X-ray maps of three clusters, which are representative of the first three classes described in Sect. 3.1: Very Regular (left panel), Regular
(central panel), and Intermediate/Irregular (right panel). The three objects have a similar mass, M500 ≈ 1×1015 M⊙, corresponding to R500 of about
1.5 Mpc (shown as a white circle in the images). The black lines are the log-spaced iso-flux contours smoothed over 4 pixels.
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Fig. 2. Distribution of DCE (in units of R500) and ε for all maps in the
categories: VR (blue triangles), R (red pentagons), IR (green squares),
and VI (magenta circles). Top and right panels: abundance of DCE and
ε of each class.

from intermediate/irregular objects. Nonetheless, it remains very
useful for immediately identifying very/extremely irregular sys-
tems. In the following, we therefore impose limits on DMF as a
secondary condition.

After a first automatic classification made on the basis of the
parameters as detailed below, we visually inspect all 864 maps
to derive the final classification:

Very Regular (VR). 25 maps. We pre-select as part of this
class all objects with DCE ≤ 0.052 R500 and ε ≤ 0.1. These
threshold values correspond to about the 20th percentiles of the
corresponding distributions. In addition, we further impose that
DMF ≤ 5 pixels (less than 20 kpc), even though DMF is within
1 or 2 pixels for most of the pre-selected objects. We visu-
ally check all maps and keep in this class only those with reg-
ular shapes and without substructures. We also add one map
to this class even if its DCE is larger than the imposed limit

because it has the roundest iso-flux contours (ε = 0.012). We
also include three other maps that appear very regular despite
having a slightly larger ellipticity (ε > 0.1) with respect to the
rest. One cluster has all three projections classified as VR, and
four objects have two projections in the VR class and the third in
the (adjacent) regular class. Indeed, imposing tight limits on DCE

and ε leads us to select objects that are regular in more than one
projection and therefore likely to be in a truly relaxed dynamical
state. In this class, the median values of the ellipse-center dis-
tance and of the ellipticity are: DCE = 0.035 R500 and ε = 0.073.

Regular (R). 102 maps. The second class again includes reg-
ular images, but the iso-flux contours are allowed to have a small
mis-centering (DCE ≤ 0.12 R500) and to be more elliptical (ε ≤
0.15, with three exceptions at ε ∼ 0.22 but DCE ≤ 0.05 R500).
In addition, small substructures can be present within R500 and
the condition on DMF is more relaxed (DMF < 15 pixels – about
60 kpc – even though DMF is within 5 pixels for the majority of
the clusters). The following values correspond to the median CE
distance and ellipticity: DCE = 0.057 R500 and ε = 0.116.

Intermediate/Irregular (IR). 424 maps. Their CE center can
have a non-negligible offset with respect to the minimum of the
potential well (but still DCE < 0.2 R500) and the axes of the
best-fitting ellipse are characterized by a ratio that more strongly
departs from spherical symmetry (ǫ < 0.4 for 95% of the IR clus-
ters and ǫ < 0.5 for 98.5% of them). Some maps with parameters
within the limits of the previous two classes are classified as IR
for their asymmetric emission or the presence of some larger
substructures. No limits on DMF are imposed. Another 13 maps
were originally assigned to this class but then removed from the
analysis because their 2D profiles centered either in CE or MF do
not reach R500. We recall that in this class there might be objects
that other authors could classify as “intermediate regular”. For
example, the rightmost map in Fig. 1 still shows almost regular
iso-flux contours at about R500 without major substructures. The
median values of distance and ellipticity for the irregular class
are: DCE = 0.107 R500, and ε = 0.211.

Very Irregular (VI). 118 maps. All these maps have DCE

between 0.2 and 0.5 R500, implying that either the gas distribu-
tion is extremely disturbed at larger distances or they have sig-
nificant substructures that impact the ellipse fitting at about R500.
Also in this case, we do not consider any threshold on DMF.
The median value of the ellipse center distance is significantly
larger, DCE = 0.257, while the median value of the elliptic-
ity is ε = 0.268 (95% of the VI objects have ǫ < 0.5). The
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matching between the 2D quantities extracted from the surface
brightness maps and the 3D cluster profiles needs extra care
because of possible mis-centering between the two sets of infor-
mation. We therefore exclude this class from the main paper.

Extremely Irregular (EI). 195 maps. These appear extremely
disturbed and to strongly interact either with another cluster of
similar mass or with multiple groups. The distance between the
maximum of the X-ray flux and the minimum of the potential
well can be significant. Identifying the center, and thus extracting
the profiles in both 2D and 3D, is challenging for most of these
objects. Since these features are recognizable in more than one
projection, we discard the three maps of all the 65 EI objects
from the analysis.

We note that in the paper by Mantz et al. (2015) ellipticity
values around 0.2 ± 0.1 are linked to clusters with a mixture of
dynamical states, while clusters with ε < 0.12 or with ε > 0.3
are almost exclusively relaxed or unrelaxed. These limits closely
match with the ε thresholds used in our classifications.

The rest of the analysis is focused on the approximately
550 maps of the first three classes. One-quarter of them show
regular morphology, which means that the images are classified
as either VR or R. The analysis on the VI clusters is excluded
from the main text but their results are reported in Appendix B
since they might be useful for comparisons with observational
samples which include very disturbed systems.

3.2. Three-dimensional classification

In Sects. 6 and 7, we show results from the 3D analysis of the
simulated clusters. In these sections, whenever we compare a 3D
quantity with a 2D measurement we use the 2D classification.
However, when we compare 3D quantities amongst themselves,
such as clumpiness factor and mass bias, the classification based
on the maps is less appropriate because the same cluster might
belong to different 2D classes depending on projection. There-
fore, whenever we rely on 3D properties, we refer to two sim-
plified classes: the 3D regular, R3D, and the 3D irregular, IR3D,
clusters. In the former class we include all objects that have at
least two projected images classified as R or VR; in the latter, we
instead require that at least two projected images are in the IR
class. We do not consider any cluster that has two projections in
the VI or in the EI classes. The classes R3D and IR3D contain 30
and 150 clusters, respectively.

Basic properties of the cluster subsamples corresponding to
the studied 2D and 3D classes are summarized in Table 1. For
completeness, we report that the mass range of the 29 objects
for which the ellipse fitting cannot be performed is [0.5−14.2] ×
1014 M⊙ , while this is [0.4−26.0] × 1014 M⊙ for the EI sam-
ple, where the second most massive clusters has M500 = 1.6 ×
1015 M⊙. The mass coverage is therefore very similar to the
other subsamples whose mass distribution is shown in Fig. 3.
The top panel refers to the 2D classification, the bottom to the
3D classification. Each histogram is normalized by the num-
ber of objects of each class. Ninety percent of the mass distri-
butions in the IR and (VR+R) classes have values in the range
7 × 1013 M⊙ < M500 < 1.4 × 1015 M⊙. These clusters are the
main objects in their respective Lagrangian regions. Those with
M500 < 3×1014 M⊙ are instead the second most massive clusters
of their Lagrangian regions, introduced in the sample because of
contaminated particles within the primary object. We conclude
that the minimum, median, and maximum mass values of the
samples (Table 1) and the overall distribution of masses (Fig. 3)
are similar, or in other words there is no particular selection mass
bias.

Table 1. Basic properties of the subsamples for the 2D analysis (upper
part) and the 3D analysis (lower part).

2D M500 M500[min–max] DCE ε

VR [25] 8.0 0.9−14.3 0.035 0.073
R [102] 7.9 0.5−16.3 0.056 0.117
IR [424] 8.1 0.3−16.3 0.107 0.212
VI [118] 7.5 0.3−14.0 0.200 0.268

3D M500 M500[min–max] ❈

R3D [30] 7.6 0.9−15.5 1.074
IR3D [150] 8.9 0.4−16.3 1.181

Notes. For each class, we report median, minimum, and maximum val-
ues of the mass range in units of 1014 M⊙. In addition, we list the median
values of DCE in units of R500 and ε for the 2D classes, and the median
value of the clumping factor measured at about R500 for the 3D classes,
obtained as an average of the clumpiness factor measured in four bins
from 0.9 to 1.1 R500 (see text for more details).
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Fig. 3. Distribution of M500 for the 2D classification (top panel) and the
3D classification (bottom panel).

4. Methods

This section describes how we derive all the ICM quantities. It
is important to note that all of them are obtained as radial pro-
files (either in 2D in Sect. 4.1 or 3D in Sects. 4.2 and 4.3). The
profiles are also used to evaluate a particular quantity at R500.
Indeed, we prefer to consider the quantity mean value computed
by averaging it over the radial bins from 0.9 to 1.1 R500, instead
of using the interpolation. This procedure limits the dependence
of our results on the precise radial binning adopted.

4.1. Two-dimensional gas inhomogeneity

Starting from the X-ray flux maps, we extract different indicators
of the gas inhomogeneities:
ε: the ellipticity of the best-fitting ellipse to the external iso-

flux contour (Sect. 2.2);
σA: the azimuthal scatter of the X-ray surface brightness

profiles (various ways of calculating this quantity are described
below);

MM: the ratio between the mean and median of the X-ray
surface brightness profiles (this is a byproduct of the σA mea-
surements) minus one.

We note that we use the information from the entire map
without removing any substructures before the analysis and we
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Fig. 4. Upper panels: surface brightness profiles (gray lines) extracted
from the 12 sectors centered on MF of the three images of Fig. 1, repre-
sentative of the classes: VR (left panel), R (central panel), and IR (right
panel). The thick solid lines show the mean profile. The median pro-
file is not shown for clarity. Lower panels: azimuthal scatter profiles
derived as in Eq. (2) and computed with respect to the median profile

and centered on MF, σmedian,MF

A
, for clarity simply referred to as σA in

the plot.

never apply any extrapolation to extract the profiles. For this
reason, 15 maps (1 in the R class and 14 in the IR class) are
not considered when discussing the properties of the quantities
evaluated at R500. Indeed, in these few cases the projected annu-
lus around R500 computed from the X-ray center (not coincident
with the center of the map) is not entirely contained in the map.
To measure MM and σA we center on the X-ray peak, MF, and
divide the image into 12 sectors. We then derive the correspond-
ing 12 surface brightness profiles in radial bins spanning from
0.4 R500 to 1.2 R500 and linearly equally spaced with a distance
equal to 5% of R500 (see, e.g., the top panels of Fig. 4 for each
of the maps shown in Fig. 1). From the 12 surface brightness
profiles, we compute the median and mean (solid thick line in
Fig. 4) surface brightness profiles and extract: the ratio between
the median and the mean value of the surface brightness com-
puted in each radial bin, similarly to Eckert et al. (2015):

MM(r) =

∣

∣

∣

∣

∣

mean(r)

median(r)
− 1

∣

∣

∣

∣

∣

; (1)

and the azimuthal scatter, defined in Vazza et al. (2011) and
Roncarelli et al. (2013):

σA(r) =

√

√

1

N

∑

i

(

Xi(r) − 〈X(r)〉

〈X(r)〉

)2

, (2)

where the reference profile in the formula, 〈X(r)〉, is either the
mean or the median.

We then repeat the entire procedure by centering the sectors
on CE (Sect. 2.2) rather than on MF.

In conclusion, for each map we have two values of the dif-
ference between the mean and median, MMCE and MMMF, and
four different versions of the azimuthal scatter profile, σmean,CE

A
,

σ
median,CE
A

, σmean,MF
A

, and σmedian,MF
A

(examples of the latter are
shown in the bottom panels of Fig. 4). We compare their ability
to capture gas inhomogeneities in Sect. 5; we investigate their

reliability as a proxy for the intrinsic 3D clumpiness level in
Sect. 6; and finally we relate them to the HE mass bias at R500

in Sect. 7. For the latter-mentioned study, we include ε as well
as another variation of the azimuthal scatter: σA,R. This quantity
is defined as the mean value of the azimuthal scatter averaged
over the entire radial range (from 0.4 to 1.2 R500). We consider it
in relation to the HE mass bias at R500 because the equilibrium
assumption at that radius can be broken by a clump that already
moved away by generating motion in the ICM.

4.2. Clumpiness factor

As stated in the introduction, the level of clumpiness can only
be indirectly estimated from X-ray observations, whereas the
clumpiness factor can be precisely measured in simulations by
adopting its definition:

❈ =
〈ρ2〉

〈ρ〉2
, (3)

where ρ is the gas density and the brackets, 〈〉, indicate the aver-
age taken over the region of interest (Mathiesen et al. 1999).
More precisely in our analysis, based on SPH simulated clus-
ters, we compute the clumpiness factor by adopting the follow-
ing formula discussed in Battaglia et al. (2015) and Planelles
et al. (2017):

❈ =
Σi(mi × ρi) × Σi(mi/ρi)

(Σmi)2
, (4)

where mi and ρi are the mass and density of the ith gas par-
ticle. The sum is extended over all the gas particles used for
the observational-oriented quantities, in other words not star-
forming and with temperature above 106 K in order to consider
only X-ray-emitting gas. We extract the clumpiness profiles by
adopting the same radial range and binning as for the azimuthal
scatter even though the shells are now spherical and centered on
the minimum of the potential well.

Past studies have stressed the importance of additionally
computing the residual clumpiness (Roncarelli et al. 2013; Vazza
et al. 2013; Zhuravleva et al. 2013; Khedekar et al. 2013). For
example, in Roncarelli et al. (2013) the residual clumpiness is
derived after excluding in Eq. (4) the densest particles of the
radial shell, defined as the particles that account for 1% of the
total volume of the shell. This work emphasizes how the residual
clumpiness rather than the clumpiness factor is a more appropri-
ate proxy for large-scale inhomogeneities.

However, in the set of simulations analyzed here the dif-
ference between clumpiness and residual clumpiness is not as
evident as in previous analyses. To reach this conclusion, we
computed the residual clumpiness following Roncarelli et al.
(2013): we ordered all particles by their density, ρi, and removed
the densest ones until Σimi/ρi = Σi(Vi) = 0.01 × Vshell, where Vi

and Vshell are the volumes associated with the i-th particle and
the shell, respectively. For the three representative cases already
shown in Fig. 4, we plot both the clumpiness and the residual
clumpiness10 in Fig. 5. The small offset between the two sets
of curves should be compared with Fig. 4 of Roncarelli et al.
(2013), which shows that clumpiness and residual clumpiness
can differ by one order of magnitude within R500. Among the

10 Here we opt to show the clumpiness (a 3D quantity) for the clusters
shown in Figs. 1 and 4, chosen to represent the 2D classifications of
VR, R, and IR systems. According to the 3D classification, the first two
objects are part of the R3D class, while the latter is part of the IR3D class.
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Fig. 5. Upper panels: clumpiness (solid line) and residual clumpiness
(dashed line). Lower panels: profiles of the hydrostatic-equilibrium
mass bias as in Eq. (12). The quantities (see footnote 8) are measured
in 3D for the clusters whose maps are representative of the 2D classifi-
cation of Fig. 1.

irregular (IR3D) sample, where we expect the largest difference
between the two clumpiness profiles, we find that 95% of the
objects have a maximum difference lower than a factor of 1.5.
The artificial conduction introduced in our code indeed leads to
better mixing of the medium and consequently to a net reduc-
tion in the number of clumps (Biffi & Valdarnini 2015; Planelles
et al. 2017). In addition, the cores of the main halos and of the
substructures are smoother. The difference in the clumping level
of SPH clusters and adaptive-mesh-refinement (AMR) objects
shown in Rasia et al. (2014) are now almost completely erased
for nonradiative runs, and cosmological simulations that include
AGN feedback such as the one investigated here. In the rest of
this paper we therefore focus on correlations with respect to the
clumpiness measurement to emphasize the signal of inhomo-
geneities on all scales.

4.3. Hydrostatic-equilibrium mass bias

From the 3D distributions of the gas particles we compute the
gas density, temperature, and pressure radial profiles. The pro-
files are computed by centering on the minimum of the potential
using radial bins that are logarithmically equally spaced, with the
external radius of each shell fixed to be 1.1 times the inner radius.
The binned gas profiles are not directly used in the hydrostatic
mass equation. Instead, we search for best-fitting analytic formu-
lae that could appropriately reproduce each profile. The formulae
adopted are taken from observational work. In this way, we fol-
low the X-ray procedure more closely and, at the same time, we
prevent singularities in the derivatives of the gas profiles, which
can emerge near to negative or positive spikes in the gas density
(see e.g., the noisy profiles of Biffi et al. 2016 or Cialone et al.
2018 who directly use the intrinsic numerical gas profiles in the
HE mass equation). The data points are always fitted over the
radial range between 0.4 R500 and 1.2 R500 to search for the best
constraints on the profiles around R500.

4.3.1. Gas density

Rasia et al. (2006) and Nagai et al. (2007b) proved the reli-
ability of the X-ray reconstruction of the gas density profiles.

Both works analyzed simulated clusters and produced mock X-
ray images including Chandra ACIS-S and ACIS-I responses.
The quantities obtained from the X-ray analysis, such as the sur-
face brightness profiles and the projected and de-projected gas
density profiles, were found to agree with the input simulated
data set (see also Meneghetti et al. 2010 who tested different
X-ray procedures and Avestruz et al. 2014 who extended the
X-ray comparison to large radii). In light of these previous tests,
which were also based on different exposure times, we decided
to pursue a straightforward analysis of the gas density profiles of
the simulated objects rather than a more complicated analysis of
mock images (albeit, see Henson et al. 2017).

The gas density, ρ, is computed as the total gas mass in the
spherical shell divided by the shell volume, ρ = Σmi/Vshell. Each
gas density profile is fitted by the (simplified) parametric formula
by Vikhlinin et al. (2006):

ρ(r) =
ρ0

[(1 + (r/r0)2]3β/2

1

[1 + (r/rs)γ]ǫ/2γ
, (5)

where ρ0, r0, rs, β, and ǫ are free parameters. With respect to
the original formula proposed by Vikhlinin et al. (2006), we
impose, as often done, that the parameter γ be equal to 3, and
we avoid the second beta model that describes the inner core
because we are only interested in obtaining a precise analytic fit
of the gas density slope around R500 and the radial range investi-
gated excludes the central 40% of R500.

In Sect. 7, we refer also to the asymptotic external slope (for
r ≫ r0 and r ≫ rs) of the analytic density profile to correct for
the HE mass bias. Accordingly to the adopted formula, this is
given by ❉ = 3β + ǫ/2. More rigorously, when the formula was
introduced, the second term was included to improve the descrip-
tion of the external slope which observations suggested could not
always be represented by the simple beta model (the first term in
the formula). Therefore the scaling radius of the second term,
rs, should be larger than the core radius of the beta-model, r0.
However, since we did not impose any particular condition on
the relative values of the two scale radii the second term of the
expression does not necessarily represent the trend of the den-
sity profile in the outskirts. To confirm that ❉ is a good repre-
sentation of the external density slope, we consider the density
profiles obtained from the best analytic fits and calculate their
derivative at a large distance, precisely at 100 times their maxi-
mum scale radius (either r0 or rm). We find that on average there
is no difference between the resulting derivative and ❉ and that
the maximum deviation between the two is of the order of a few
thousand. This quick test validates the use of ❉ as a reference
for the asymptotic external density slope.

4.3.2. Temperature

It is significantly more complicated to test whether the tempera-
ture computed in simulated clusters reflects the X-ray temper-
ature from spectroscopic analysis. From a numerical point of
view, the temperature is measured as a weighted average over an
ensemble of gas elements. It is now well established that using
the X-ray emission to weight the temperature leads to biased
results (Gardini et al. 2004) and that another definition should be
used to reproduce Chandra or XMM-Newton measurements: the
spectroscopic-like temperature (Mazzotta et al. 2004). Nonethe-
less, the spectroscopic-like temperature reproduces the projected
temperature obtained directly from the spectra, which is not the
temperature that enters the equation of hydrostatic equilibrium
used to derive the X-ray mass. Instead, X-ray observers deproject
the projected temperature profile using the gas density obtained
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from the imaging as input for the spectroscopic-like weighting.
The final X-ray deprojected temperature profile, already decon-
volved from the instrumental response, can then be considered as
the “true” (un-weighted) temperature profile (e.g., see the review
by Ettori et al. 2013). The accuracy and precision of this proce-
dure depend on the ability to correctly treat the background and
on the exposure times, since at least 1000 counts should be col-
lected to measure the temperature. Having a large exposure time
allows reconstruction of the profiles in finer radial bins. This
improves the deprojection technique and reduces possible biases
due to the co-existence of multi-temperature gas components.
Another source of complication is that the temperature distribu-
tion in simulated clusters depends not only on the ICM physics
included in the simulations, such as thermal conduction, viscos-
ity, and sources of feedback, but also on details of the hydrody-
namical methods employed (Vazza et al. 2011; Rasia et al. 2014;
Sembolini et al. 2016; Richardson et al. 2016; Cui et al. 2018;
Power et al. 2019; Huang et al. 2019).

Owing to all these problems, we decided to follow a theo-
retical approach and thus to use the mass-weighted temperature:
T = Σ(mi×Ti)/Σmi, where the i - th gas particle has a temperature
greater than the lowest energy band of current X-ray telescopes,
0.3 keV (≈3.5 × 106 K). Indeed, the mass-weighted temperature
is the one to be considered for the derivation of the cluster mass
under the assumption of hydrostatic equilibrium11. Furthermore,
in some observational analyses (e.g., Vikhlinin et al. 2006) the
masses are similarly derived by weighting the temperatures by
the gas mass.

The temperature profiles are fitted by the functional form

T (r) =
T0

(1 + (r/r0)αT )βT
, (6)

where T0, r0, αrmT , and βT are free parameters. With respect to
the original formula, introduced by Vikhlinin et al. (2006), we
neglect the extra term describing the temperature drop in the
core region for the same reasons listed at the end of the previ-
ous section.

4.3.3. Pressure

The pressure profile is measured starting from the pressure of the
individual gas particles. These profiles are very similar to those
obtained by multiplying the gas density and mass-weighted tem-
perature profiles.

The pressure profile is described by a generalized Navarro-
Frenk-White model (Nagai et al. 2007a; Arnaud et al. 2010):

P =
P0

(r/rp)γp

1

[1 + (r/rp)αp ](βp−γp)/αp
, (7)

where P0, rp, αp, and βp are free parameters, and the internal
slope, γp, is fixed equal to 0.31 as in Planelles et al. (2017).
The asymptotic external slope (for r ≫ rp) of the analytic
pressure profile is given by βp and, similarly to ❉ , it is used
in Sect. 7.

11 To ease the comparison with other numerical works that use the
spectroscopic-like temperature in the HE mass derivation rather than
the mass-weighted temperature, we computed the ratio of these two
temperatures at R500. On average an offset of 10% is found leading to
a HE mass bias of 20%. The mismatch between the two temperatures
and its impact on the HE mass bias confirms previous results, starting
from Rasia et al. (2006), where it was discussed for the first time, to the
recent paper by Pearce et al. (2019).

4.3.4. Goodness of the fit

On top of the best-fitting parameters, we also save the normal-
ized root-mean-square (NRMS) value as a measure of the good-
ness of the fit:

NRMS =

[

∑

(

data

fit
− 1

)2
](1/2)

, (8)

where the sum is extended over all radial bins.
We opt for normalizing the residuals to obtain comparable

values of the three gas profiles (density, temperature, or pres-
sure) from the fitting procedures. We generate the three respec-
tive distributions of the NRMS to identify the clusters poorly
described by their best-fitting curves (Sect. 7). Namely, these are
the objects that belong to the highest quintile in any of the three
NRMS distributions.

4.3.5. Hydrostatic mass equations

For consistency with the measurements of gas inhomogeneities,
the analytic profiles are then computed adopting the same radial
binning as that in Sect. 4.1 and then folded into three versions of
the hydrostatic equilibrium equation to derive an estimate of the
total mass:

MHE,SZ(r) = −Ar
P(r)

ρ(r)

[

d log P(r)

d log r

]

· (9)

This expression has been used to exploit the advantages of both
SZ and X-ray signals in providing the pressure and the gas den-
sity, respectively, with good accuracy at large distances from the
center (see an early study by Ameglio et al. 2009 or the recent
works by Eckert et al. 2019; Ettori et al. 2019);

MHE,X(r) = −ArkbT (r)

[

d log T (r)

d log r
+

d log ρ(r)

d log r

]

· (10)

This latter equation is typically used in X-ray analyses where
the gas density is derived from the imaging and the temperature
from spectroscopy (see review by Pratt et al. 2019, and refer-
ences therein);

MHE,T(r) = −ArkbT (r)

[

d log P(r)

d log r

]

, (11)

this latest hybrid version helps to separate the influence on the
mass-bias calculation of the linear multiplicative factor and the
term with the derivatives sum.

In all equations, kb is the Boltzmann constant and A =

1/(Gµmp) = 3.7 × 1013 M⊙ keV−1, where G, mp, and µ are the
gravitational constant, the proton mass, and the mean molecular
weight, equal to 0.59 in our simulations. To consider the same
multiplicative factor, A, in all expressions, the pressure in Eq. (9)
is computed from the gas mass density rather than the electron
number density.

4.3.6. Hydrostatic mass bias

The hydrostatic-equilibrium mass is a locally defined quantity
because all gas profiles and their derivatives are measured or
computed at a precise radius. The bias between the HE mass
and the true mass can therefore be evaluated within each radial
bin. We define the bias parameter as

1 − bHE(r) =
MHE(r)

Mtrue(r)
, (12)
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Fig. 6. Ratio between the azimuthal scatters computed in Eq. (2) with

respect to the median, σmedian,MF

A
, and to the mean, σmean,MF

A
and centered

on MF. The solid lines represent the median of the ratios in each radial
bin over the VR (blue), R (red), and the IR (green) subsamples. The
shaded regions comprise the distribution between the 16th and the 84th
percentiles.

for each of the three versions of MHE. The bias, bHE, is zero when
the HE mass coincides with the true mass, while it is negative or
positive for overestimated or underestimated values of MHE.

For the representative clusters shown in Fig. 1, we show
the corresponding profiles of (1−bHE,X) in the bottom panels of
Fig. 5.

5. Results: 2D gas inhomogeneity

We begin the presentation of our results with a comparison
among the profiles obtained by the various estimators of the 2D
gas inhomogeneities presented in Sect. 4.1. We focus here on the
trend of these estimators over the entire radial range and there-
fore we do not consider the X-ray ellipticity, ε, which was com-
puted at a fixed distance.

5.1. Scatter with respect to the median or mean

The two estimates of the azimuthal scatter σA, computed with
respect to the mean or to the median surface brightness profiles,
centered on MF are compared in Fig. 6 as the ratio between the
two options. To prepare this plot, we first calculated the ratio
between each individual pair of σA and then, in each radial bin,
we computed the median of the ratio distribution. The median is
shown as a solid line and the distribution between the 16th and
the 84th percentiles as a shaded area.

For the VR class, the σmedian
A

profiles are between a few and
five percent higher than the σmean

A
profiles over the entire radial

range; for the R class, they are ten percent higher. Three quarters
of the VR (R) objects have ratios smaller than 12 (18) percent
at R500. The two choices of the azimuthal scatter therefore pro-
vide similar results for the regular classes. We verify that this
result holds independently of the chosen center (MF or CE). In
the IR class, the scatter measured with respect to the median
surface brightness profile presents larger fluctuations than the
scatter measured with respect to the mean surface brightness pro-
files. Indeed, at all radii, there is a difference between the two σA

of about 20–30% using MF as center (green curve in Fig. 6) and
25–40% using CE as center.

The median surface brightness profile is always smaller than
the mean one because it is less affected by (and thus more

stable against) the presence of substructures (e.g., Zhuravleva
et al. 2013). The azimuthal scatter computed with respect to the
median will therefore enhance the effect of gas inhomogeneities,
including not only substructures but also overall large-scale irreg-
ularities. The qualitative results found in this section are in line
with what is presented in previous studies (Zhuravleva et al. 2013;
Khedekar et al. 2013) based on different simulations. Here, it
is important to stress the quantitative evaluation of this effect,
since the simulations analyzed are characterized by a higher level
of mixing with respect to several previous analyses: using an
azimuthal scatter computed with respect to the median enhances
the imprint of inhomogeneities at R500 by at least 30% for half of
the IR objects and 10% for half of the R clusters.

5.2. Azimuthal scatter and MM

The findings of the previous section are clearly connected to the
parameter MM (Eq. (1)). Indeed, the median profiles of the MM
parameters (not shown) have the same trends as the solid lines
of Fig. 6. In this figure, the small difference found between the
two scatter estimates in the regular classes (VR and R) essen-
tially reflects the similarity between the mean and median sur-
face brightness profiles. For these objects, MM always shows
little deviation from zero; for example, at R500 its median value
is about 0.05. This finding reflects the fact that the objects in
these classes are characterized by an homogeneous and symmet-
rical X-ray distribution around MF, which by the definition of
the VR and R classes is close to the minimum of the potential
well and to the center of the best-fitting ellipse.

The increase in the scatter in the IR class results from a
larger offset between the median and the mean of the surface-
brightness profiles over the 12 sectors. The latter is on average
15–20% higher than the former at all radii, but MM can reach a
value of 1 in about 10% of the IR objects at R500, implying that
the mean is twice as high as the median, with clear consequences
for the two derived azimuthal scatters. That said, at that radius
the median value of MM is much lower and equal to 0.22 and
80% of the objects have MM < 0.6.

5.3. Effects of centering

We proceed to assess the impact of the choice of center (MF vs.
CE) for the 12 sectors. Based on the results of Sect. 5.1, we con-
sider the azimuthal scatter computed with respect to the median
profile in order to be more sensitive to the presence of inhomo-
geneities. The median ratio σMF

A
/σCE

A
is computed following the

above procedure and is shown in Fig. 7.
The classes VR, R, and IR show similar behaviors at all radii.

The majority of the objects in each class have a smaller scat-
ter when the sectors are centered on MF. This result is expected
for the innermost region since the X–ray emission in the cen-
tral part is supposedly smoothly distributed around its maxi-
mum. Here, in fact, σMF

A
tends to be 20–30% smaller than the

scatter computed with the sectors centered on CE for all classes
and reaches a difference equal to or greater than a factor of two
for one-quarter of the IR systems. On the other hand, for radii
between 0.8 and 1.2 R500, the median of the ratios is almost con-
stant and approaches unity with a small deviation of about 5–8%.
Even though the overall difference between the two scatters at
R500 is very small, the large majority of the systems (70 and 60%
in the VR class and in the IR class) have a ratio below 1, while the
naive expectation was that the difference between the two centers
would disappear in the external regions. The highest discrepan-
cies (those with σMF

A
/σCE

A
< 0.7) seem to be caused by massive
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Fig. 7. Ratio between the azimuthal scatters centered on MF, σmedian,MF

A
,

and centered on CE, σmedian,CE

A
and computed in Eq. (2) with respect to

the median. The color code and meaning of the shaded area and solid
lines are the same as in Fig. 6.

and extended substructures that not only distort the ellipse (and
thus its CE centre), but also increase σCE

A
at about R500.

It is important to stress that while the three classes show sim-
ilar trends for the ratio in Fig. 7, the median azimuthal scatter of
the three classes is rather different. Indeed, σA of the IR class is
typically twice as high as that of the most relaxed objects (Fig. 8
and following section). As a consequence, 55% of the IR clus-
ters have |σMF

A
− σCE

A
| > 0.15 while only two objects satisfy this

condition in the VR class. More extremely, one-quarter of the IR
objects have |σMF

A
− σCE

A
| > 0.6.

Taking all of this into consideration as well as the uncer-
tainties associated with the automatic determination of the best-
fitting ellipse and especially for the vicinity of the MF center to
the minimum of the potential well, we chose MF as the cluster
center when measuring both σA and MM.

5.4. Azimuthal scatter for the VR, R, and IR classes

From the previous analysis, we establish that the best choice to
compute the azimuthal scatter is with respect to the median and
centered on MF. Hereafter, we use the symbol σA to refer to

σ
median,MF
A

. The median behavior of the azimuthal scatter profiles
is shown for the three classes in Fig. 8. The azimuthal scatter
grows from 0.2–0.3 to 0.5–0.7 from the VR–R classes to the IR
class, consistent with Vazza et al. (2011) and Roncarelli et al.
(2013).

For the regular systems (VR and R) not only are the profiles
of the median values in each radial bin flat but also the disper-
sion around these values is small, implying that the individual
σA profiles show little spread without significant bumps. Vice
versa, the IR class is characterized by a significant scatter which
increases with radius. Several profiles present spikes at different
radii making the distribution highly skewed in all radial bins.

A high percentage of images in the IR class at a certain point
have σA > 1. This extreme condition can be verified when
there is a flux significantly higher than the median behavior in
one or more sectors or when numerous sectors have simultane-
ously higher and lower emission than the median value. These
situations reflect the presence of one or more bright substruc-
tures or an asymmetric distribution of the ICM characterized
by a pronounced ellipticity. To investigate which has the great-
est impact on σA we studied the objects with high values of
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Fig. 8. Azimuthal scatter computed as in Eq. (2) with respect to the

median and centered in MF, σmedian,MF

A
. The color code and the meaning

of the shaded area and solid lines are the same as in Fig. 6.

ellipticity in more detail. We selected the two most elliptical
images in the VR class (with ε > 0.1) and the 20 most elliptical
images in the R class (with 0.14 < ε < 0.23). We inspected the
maps to make sure that there are no substructures (or even small
clumps) close to R500. The maximum value of σA at R500 for
all these maps is equal to only 0.6. We also searched among the
IR images and found one cluster selected with high ellipticity,
ε = 0.34, but without major substructures. Even in this case, the
azimuthal scatter at R500 is limited to σA = 0.73. We thus con-
clude that an azimuthal scatter higher than ≈0.8 is mostly caused
by the presence of substructures rather than by elongated X-ray
contours.

6. Results: 3D clumpiness factor

6.1. Clumpiness for the R3D and the IR3D classes

We reiterate that we opt to investigate the 3D clumpiness rather
than the residual clumpiness to enhance any signal from gas
inhomogeneities and/or small-scale irregularities, and that the
clumpiness profiles are always centered on the minimum of the
potential well and evaluated in 3D. The median values of the
clumpiness factor for each radial bin are shown in Fig. 9 as
a solid line. The shaded area includes the distribution between
the 16th and 84th percentiles. Since we are not considering any
2D quantity, we are presenting the clumpiness factor profile by
dividing the clusters according to the 3D classification into R3D

and IR3D.
Similar to the azimuthal scatter, the median values of the

clumpiness factor profiles within the regular class are flat and
have low values (❈ ≈ 1.05−1.08) and very low dispersion. On
the other hand, the irregular class shows proof of a slight
increase in the clumpiness factor profiles towards the largest
radii. In reality, not only does the median value of the distribution
grow from about 1.1 to about 1.2 over the considered radial
range but the overall distribution of IR3D objects also shifts to
higher clumpiness values at farther distances. This trend is con-
sistent with all other studies based on simulations (Planelles et al.
2017; Battaglia et al. 2015) and observations (Eckert et al. 2015),
which show how the clumpiness profile gently increases out to
R500 (Nagai & Lau 2011; Zhuravleva et al. 2013; Vazza et al.
2013; Roncarelli et al. 2013; Khedekar et al. 2013; Morandi et al.
2013).
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Fig. 9. Clumpiness profiles for the R3D class in red and for the IR3D

class in olive green. The solid line refers to the median profile and the
shaded area shows the values between the 16th and 84th percentiles of
the ❈ distribution.
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Fig. 10. Distribution of clumpiness vs. azimuthal scatter for the IR sys-
tems and for all radial bins. Only points with ❈ < 1.5 and σA < 2 are
considered. For clarity, the distribution is shown in small bins of the two
quantities. The colors indicate the number of points per bin. The color
scale is saturated at ten.

6.2. Clumpiness factor and azimuthal scatter

The relation between the clumpiness factor and the azimuthal
scatter is shown in Fig. 10 for the values of the two quantities
computed in each radial bin and for the IR systems. The figure
zooms into the part of the plane (❈ < 1.5 and σA < 2) where
most of the points are located; indeed the median values of the
two quantities are equal to ❈ = 1.14 and σ = 0.5. For the VR
and R classes not considered in the plot, three-quarters of their
points are in the bottom-left corner (❈ < 1.1 and σA < 0.4). If
more than a projection is part of the sample, the same objects are
counted multiple times with different values of σA(r) and a sin-
gle measurement of ❈ (r). This visualization highlights the link
between ❈ and σA. The Spearman correlation coefficient (calcu-
lated with the IDL routine R_CORRELATE ) is relatively strong
corr(❈ , σA) = 0.60 with null probability of consistency with
zero. The correlation is evaluated in about 9,000 points from all

maps and using the information in all radial bins. We have ver-
ified that this value does not vary when we refer to the residual
clumpiness instead of the clumpiness, or when we consider σA

computed with respect to the mean and/or centered in CE. Using
all points from all classes, we search for the best linear relation
between clumpiness factor and azimuthal scatter by employing
an outlier-resistant two-variable linear regression routine in IDL
(robust_linefit performed with the bisector method). The
best-fitting procedure returns the relation: ❈ = 1.01+0.22×σA.

Roncarelli et al. (2013) described the clumpiness factor as a
function of both the azimuthal scatter and the radius:

❈ = 1 +
r

r0

+
σA

σ0

, (13)

with σ0 and r0 approximately equal to 16 and 6×R200 when they
extract the σA values from the surface brightness maps produced
within the same energy band used in this paper ([0.5−2] keV).
We fit the same relation to our data sets but do not detect
any actual need to include the dependence on the radial dis-
tance. To confirm this result, we restrict the fitting procedure
to σA and ❈ computed in three different regions: the first with
R < 0.6 R500), the second with 0.6 < R/R500 < 0.8, and the third
with R > 0.8 R500. We retrieve the values of the intercepts and the
slopes and find that they are always consistent with each other.
This proves that in our simulations the explicit dependence of
clumping on the radius, as in Eq. (13), is not required; this most
likely depends on the radial range investigated because we focus
within R500, where the clumpiness factor is still reduced.

Before investigating the region around R500 in more detail,
which is the one we focus on when discussing the HE mass bias,
we briefly examine the possible origins of the scattering of the
points over the plane shown in Fig. 10. For simplicity, we con-
sider two classes of outliers deviating from the diagonal; each
includes 31 points. These are less than 0.5% of the total number
of points but they represent the most extreme situations. Outliers
in the bottom-right part of Fig. 10 with σA > 1.72 (90th per-
centile of the σA distribution) and ❈ < 1.07 (20th percentile
of the ❈ distribution) and those to the top-left with σA < 0.3
(20th percentile) and ❈ > 1.4 (90th percentile). Within the first
outlier class, with large σA but low ❈ , 22 of the points have
R > 0.8 × R500. Most of them are associated with images with
projected substructures. These increase σA, being present in the
2D map, but they lie outside the sphere used to compute the
clumpiness in 3D, and are therefore present only in one or two
projections. The other class of outliers, with low σA and high ❈ ,
is linked to the presence of inhomogeneities that cannot be easily
identified in the images because they are aligned with the cluster
core that dominates the emission. This situation is present at all
radii, near and far from the cluster center.

In Fig. 11 we show the relation between σA and ❈ at R500.
In the top panel, each map is represented by a single point, while
each cluster produces three points, all with the same clumpiness
value but different σA. In the bottom panel, the azimuthal scatter
is instead computed for each cluster as the mean value of the σA

of each projection: 〈σA〉.
The distribution of points in the top panel resembles that of

Fig. 10. The correlation coefficient is similar, being 0.56, and
the parameters of the linear fit are identical12. The scatter on the

12 We note that the correlation coefficient between clumpiness and
azimuthal scatter is not biased in a particular way from the mis-
centering between MF and CE. Nevertheless, we notice that when
we select objects with DMF < 2 pixels the relation becomes steeper:
❈ = 1.0 + 0.3 × σA.
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Fig. 11. Clumpiness vs. azimuthal scatter computed around R500. Top
panel: each σA refers to a separate map. The color code reflects the 2D
classification: VR in blue, R in red, and IR in green. Bottom panel: each
cluster is represented only once and the azimuthal scatter is averaged
over all its considered projections, 〈σA〉. The R3D objects are shown in
brown, and the IR3D clusters in olive green.

relation is still significant, but drastically reduces when we aver-
age the three scatters for each cluster, 〈σA〉. The bottom-right
outliers (high σA and low ❈ ) are now sparse. Indeed, the aver-
age scatter 〈σA〉 is reduced because in at least one line of sight
the substructure is correctly identified as being external to the
cluster and thus does not have an influence on the value of the
azimuthal scatter. The top-left outliers (low σA and high ❈ ) have
almost disappeared. These were related to objects with substruc-
tures aligned with the cluster center and therefore more likely
to have a low value of σA only in one projection (the one with
the perfect alignment). By reducing the effect of both classes of
outliers, the correlation between clumpiness and scatter in 3D is
even stronger: corr(❈ (R500), 〈σA(R500)〉) = 0.65

From our results we therefore conclude that an azimuthal
scatter with a value significantly greater than 1 is a strong indi-
cation of substructures either projected or in 3D. On the other
hand, substructures can also be masked by the core emission in
the case of close alignment along the line of sight. Since this
case is difficult to pick up, one might use statistical considera-
tions: among all objects with σA < 0.5 = median(σA), the inci-
dence of ❈ > 1.35 is around 5% and the incidence of ❈ > 1.2 is
around 10%.

To conclude, we checked the correlation between the clumpi-
ness factor at R500 with the other 2D estimators of the gas inho-
mogeneities: the MM parameter and the ellipticity, ε. In both
cases we find a weaker correlation: corr(❈ ,MM) = 0.47 and
corr(❈ , ε) = 0.37. This is not surprising because these estimators
are thought to describe the large-scale inhomogeneity rather than
the distribution of individual small clumps.

7. Results: hydrostatic mass bias

In Sect. 4 we presented different expressions to obtain the mass
under the assumption of hydrostatic equilibrium: (i) the X-ray
mass, MHE,X, (ii) the SZ/X-ray mass, MHE,SZ, and (iii) what
we called the hybrid estimator, MHE,T. The latter is useful for
understanding the relative weight of all the factors entering in
the HE mass equation, although this is inconvenient to derive

from an observational point of view because of the difficulties in
obtaining precise temperature measurements in small radial bins
in the cluster outskirts. These three estimators (Eqs. (9)–(11))
refer to physically equivalent quantities, but operationally they
might lead to dissimilar results because clumps affect the dis-
tinct thermo-dynamical quantities differently (pressure vs. gas
density vs. temperature; see e.g., Ruppin et al. 2018).

In Sect. 7.1, we compare the three estimates of (1−bHE) and
in Sect. 7.2 we relate the bias to the clumpiness level. For these
parts, we consider only the 3D analysis of the simulated sample,
therefore each cluster is counted only once and we use the 3D
classification. Further below, we attempt to correct for the mass
bias using information from the X-ray images and from the gas
fitting procedure (Sect. 7.3). It is worth stressing that a solution is
effective not only when the median of all corrected biases is close
to one (implying that the HE mass is identical to the true one)
but also when both scatter and skewness of the bias distribution
are reduced. Otherwise, any proposed solution is equivalent to
simply adding a constant equal to the median of the bias values
to all HE masses. We summarize all results related to the mass
bias measured at R500 in Table 2 for both the 3D (top panel) and
2D (bottom panel) subsamples. In Table 3, we instead report the
Spearman correlation coefficient between the mass bias and all
other investigated quantities.

7.1. The mass bias

We show in Fig. 12 the median HE mass bias profiles, (1−bHE),
as expressed in Eq. (12) for the regular (brown) and irregular
(olive green) subsamples defined in Sect. 3.2. From the left to
the right panel, MHE is given by Eq. (10) for bHE,X, Eq. (9) for
bHE,SZ and Eq. (11) for bHE,T. For all expressions and classes,
the median bias is increasingly departing from one as the radius
grows: we find that the total mass at 0.5 R500 (which is approx-
imately R2500) and at R500 is underestimated by 5–10% and
10–15% respectively. The irregular systems tend to have a higher
bias by between a few and 5% and they have a much wider
spread. Indeed, the area between the 16th and 84 percentiles of
the bias distribution of the IR3D subsample exceeds the respec-
tive percentiles of the R3D distribution. These findings are com-
mon to most studies based on the direct analysis of simulated
samples. At R500 the shaded area is above the value (1−b) = 0.80
in all panels. In the entire sample (R3D plus IR3D), we find that
only four clusters (less than 2.5%) have (1−bHE,X) < 0.70, in
conflict with the mass bias required to solve the discrepancy on
the cosmological parameters derived from cluster number counts
and cosmic-microwave-background power spectrum (see Salvati
et al. 2019, and their discussion).

From Fig. 12, we could conclude that the three bias mea-
surements are, to a first approximation, all very similar. Look-
ing more carefully however we notice subtle differences which
can help to better understand the contribution of each term in the
HE mass equation. Indeed, comparing bHE,X and bHE,T allows a
better understanding of the impact on the mass bias of the deriva-
tives and specifically of the pressure derivative versus the sum
of the gas density and temperature derivatives. The first thing to
notice from the figure is that the derivative of the pressure profiles
plays a decisive role in increasing the scatter of the distribution
especially at R500. A clump manifests its impact more strongly
on the derivative of the pressure profile rather than on the sum
of the derivatives of the gas density profile and the temperature
profile. Indeed, while for the entire sample bHE,X(R500) has the
lowest standard deviation, σ(bHE,X) = 0.09, the other two biases
have σ(bHE,SZ) = 0.11 and σ(bHE,T) = 0.12 (see the first row of
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Fig. 12. Median profile of the HE mass bias: (1−bHE,X), (1−bHE,SZ), and (1−bHE,T) from the left to the right panel. The color code and the meaning
of the shaded area and solid lines are the same as in Fig. 9.

Table 2. Summary of HE mass bias result at R500.

N (∗) (1−bHE,X) σbHE,X
SkbHE,X

(1−bHE,SZ) σbHE,SZ
SkbHE,SZ

3D sample All 175 0.90 0.09 0.20 0.90 0.11 0.73
Well-fitted 97 0.88 0.08 −0.30 0.90 0.09 0.35
❈ < 1.1 55 0.91 0.06 0.12 0.91 0.07 0.07
R3D 30 0.91 0.05 0.37 0.91 0.08 1.82
IR3D 145 0.90 0.10 0.26 0.90 0.12 0.68
Corrections:

Eq. (14)/(15) 175 1.00 0.09 −0.13 1.01 0.10 0.18

2D samples All 536 0.90 0.10 0.54 0.90 0.12 0.96
σA < 0.4 163 0.91 0.08 −0.19 0.91 0.09 0.41
VR 25 0.91 0.04 −0.26 0.91 0.05 −0.12
R 101 0.91 0.08 2.14 0.91 0.10 1.73
IR 410 0.89 0.11 +0.45 0.89 0.13 0.89
Corrections:

(i) Eq. (15)/(16) 536 1.01 0.09 0.41 1.01 0.11 0.34
(ii) Eq. (16)/(17) ε 536 1.00 0.09 0.48 0.99 0.11 0.35
(iii) Eq. (16)/(17) MM 536 1.01 0.09 0.47 1.00 0.11 0.42
(iv) Eq. (16)/(17) σA,R 536 1.02 0.010 0.64 1.01 0.11 0.56

Notes. The upper part refers to the 3D samples (each cluster appears only once) and the lower part refers to the 2D sample (each cluster can appear
up to three times). The second column names the subsamples or the equation used to correct the mass bias; the third column reports the number
of either clusters (first part) or maps (second part) included in the sample; the other columns report the parameters – median (1−b), dispersion
(σb), skewness (Skb) computed with the IDL routines MEDIAN, STDDEV, SKEWNESS – describing the distributions of bHE,X and bHE,SZ. (∗)We
consider only the maps whose projected R500, measured from MF, was entirely contained in the maps. The numbers are therefore reduced with
respect to Table 1.

Table 2 for the first two bias expressions). It also appears that the
distribution of (1−bHE,X) is quite symmetric with respect to the
median behavior in the entire radial range. Specifically, at R500,
bHE,X has a low value of skewness (0.20). Alternatively, the other
two biases, bHE,SZ and bHE,T, at the same radius have skewness
values respectively equal to 0.73 and 0.90, indicating a (small)
predominance of the tail towards and beyond the zero bias (or
(1−b) = 1) over the other tail. For completeness, we report that
the distributions of the three biases around R500 are all charac-
terized by a kurtosis parameter, measuring the ratio between the
peak and the tails, as expected in a normal distribution.

The differences between bHE,SZ and bHE,T highlight the influ-
ence of the multiplicative factor: temperature, rather than the
ratio between pressure and gas density. The SZ HE mass bias,
(1−bHE,SZ), shows a general shift towards the value of 1, which
is more evident for the IR3D systems and for the central regions.
This is consistent with the expectation that the temperature can
induce an extra bias in the mass determination in the presence
of gas of multiple temperatures. The excess of positive bias,

or overestimation of the true mass, for (1−bHE,SZ) is present
at all radii, including R500. There, the number of clusters with
(1−bHE,SZ) > 1 is 50% higher than those with (1−bHE,X) > 1. At
the same radius, but on the other side of the bias distribution, we
find that about 10% of the systems have (1−bHE,T) < 0.75 while
only 6% show the same amount of bias using the SZ formulation.

As a summary, we can conclude that the X-ray and the SZ
mass biases are substantially providing the same answer but the
derivative of the pressure in bHE,SZ can induce a higher scatter
and using P/ρ instead of T reduces the overall bias. Even though
the last characteristic is clearly desirable, the larger scatter and
the higher skewness value make MHE,SZ less appealing because
modeling its final distribution is more difficult.

7.2. Bias and 3D clumpiness factor

In Fig. 13 we relate the X-ray-mass and the SZ-mass bias to the
clumpiness factor. All quantities are computed in 3D and around
R500. In the plot we draw with empty circles the points associ-
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Fig. 13. Mass bias as a function of clumpiness. All quantities are con-
sidered at R500. Empty and filled circles refer to clusters whose ther-
modynamical profiles are either poorly or well fitted with the assumed
analytic function, respectively (Sect. 4.3.4). The R3D objects are show
in brown and the IR3D clusters in olive green.

ated with poor analytic fits of the gas profiles (see Sect. 4.3.4
for details). Hereafter, we refer to the remaining clusters (filled
circles) as “well-fitted” clusters.

The most interesting feature is that most of the clusters with
positive bias, (1−bHE,X) ≥ 1 or (1−bHE,SZ) ≥ 1, are associated
with poorly fitted systems and that the only well-fitted system
with high positive bias, (1−bHE,X) ≥ 1.10 and (1−bHE,SZ) > 1.20,
is characterized by a high clumpiness value, ❈ > 1.3. The poorly
fitted objects cover all values of the bias; indeed, their median
bias is similar to that of the well-fitted systems, even though the
former have a much higher dispersion, as we can see by compar-
ing the results of the well-fitted clusters with those of the entire
sample reported in Table 2.

If we divide the objects according to their clumpiness level,
we find that the median bias for less clumped systems is closer to
1 than the mass bias of the most clumped systems13. Specifically,
the median of both biases moves from −9% with a dispersion of
6% in the case of ❈ < 1.1 (third row in Table 2) to −15% with
a dispersion of 11–13% in the case of ❈ > 1.2. As expected
from Fig. 9, the objects that were classified regular in 3D present
a low clumpiness level and have a median bias value which is
approximately 10–15% lower than the irregular systems (fourth
and fifth row of Table 2). These results are oriented towards the
expected conclusions: most regular systems (and generically less
clumpy objects) are modestly biased and their distribution has a
20–25% lower dispersion. Most of the poorly fitted systems are
classified as irregular.

From these results one expects that the bias and the clumpi-
ness values should be tightly related, but instead the two
quantities exhibit a low level of correlation (Table 3 for the
quantities measured at R500). The Spearman correlation coeffi-
cient is indeed corr(1−bHE,❈ ) . 0.20 for the entire sample and
corr(1−bHE,❈ ) . 0.30 for the well-fitted subsample. Indepen-
dent simulations have indeed shown that even after removing the
50% densest cells at all cluster radii, the ratio of non-thermal to
thermal pressure support is nearly unchanged, suggesting that
the HE bias is not simply related to high clumping factor val-

13 Both subsamples include about one third of the points of the entire
sample.

Table 3. Spearman rank correlation coefficient and the number of stan-
dard deviations from the null-hypothesis expected value (in parenthesis)
computed between the mass biases and different quantities listed in the
first column and obtained in the 2D and 3D analyses at R500.

Well-fitted bHE,X bHE,SZ

ε −0.28 (4.9σ) −0.18 (3.2σ)
MM −0.26 (4.5σ) −0.14 (2.5σ)
σA −0.29 (5.1σ) −0.19 (3.4σ)
σA,R −0.28 (4.9σ) −0.24 (4.1σ)
❈ −0.29 (5.0σ) −0.25 (4.4σ)
❈R −0.32 (5.5σ) −0.31 (5.4σ)
❉ ; βp +0.36 (6.2σ) +0.40 (6.9σ)

All bHE,X bHE,SZ

ε −0.22 (5.0σ) −0.15 (3.5σ)
MM −0.21 (4.8σ) −0.13 (3.0σ)
σA −0.17 (4.0σ) −0.11 (2.5σ)
σA,R −0.12 (2.8σ) −0.14 (3.2σ)
❈ −0.21 (4.8σ) −0.19 (4.4σ)
❈R −0.18 (4.1σ) −0.20 (4.6σ)
❉ ; βp +0.40 (9.2σ) +0.47 (+10σ)

Notes. The second column relates to bHE,X and the third to bHE,SZ. In the
first part of the table we restrict the computation of the correlation to
the maps corresponding to the well-fitted clusters.

ues (Angelinelli et al. 2019). It seems therefore difficult to cor-
rect the bias using information exclusively from the clumpiness.
Nevertheless, we still attempt to extract a correction to (1−bHE)
by looking for a linear relation between (1−bHE) and ❈ . By sub-
tracting the best-fitting line from the individual bias, we succeed
in obtaining a median value for the corrected bias very close to
one, but we do not find any gain in the standard deviation of the
distribution of the corrected biases. Since the bias has a weak
correlation with the clumpiness, we search for another parame-
ter among those investigated that could improve the result when
combined with the clumpiness.

The only promising parameter that we find is the asymp-
totic external slope of the gas profiles (see Table 3). Precisely,
in Fig. 14 we relate (1−bHE,SZ) to the value of βP (the asymp-
totic slope of the pressure profile as in Eq. (7)) and (1−bHE,X) to
the value of ❉ = 3β + ǫ/2 (asymptotic slope of the analytic gas
density profile of Eq. (5)). As in Fig. 13, we divide the clusters
into poorly and well-fitted objects (empty and filled circles) and
we further divide the last class into three bins of clumpiness: the
25% with the lowest clumpiness are shown in magenta, the 25%
with the highest clumpiness are in cyan, and those in between
are plotted in black. The vertical lines indicate the value of the
slopes that contain three-quarters of all well-fitted clusters and
are equal to 5.5 for the gas density and 6 for the pressure slopes.
The density and pressure asymptotic slopes are rarely below a
value of 2 and 3, respectively.

The large majority of clusters with slopes lower than these
values or higher than the 75th percentile (shown by the verti-
cal lines) are typically characterized either by high clumpiness
values (cyan points) or by high NRMS linked to the fit of the
gas profile (empty points). These outliers are also responsible
for increasing the dispersion of the bias distributions.

It is remarkable how the SZ bias for βP < 6 has a clear
separation between low (magenta) and high (cyan) clumped
objects, and overall, both biases have a medium level of cor-
relation with the asymptotic slopes (Table 3): corr(1−bHE,SZ, βP)
≈ corr(bHE,X,❉) ≈ 0.35−0.45. In light of these results, we try
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Fig. 14. Mass biases (1−bHE,X) and (1−bHE,SZ) are shown as a func-
tion of the slope of the gas density, ❉ , and of the pressure profile, βP.
Empty and filled circles have the same meaning as in Fig. 13. Magenta
points are well-fitted clusters with the lowest clumpiness values, the
cyan points show those with the highest clumpiness values. The vertical
lines represent the value ❉ = 5.5 and β = 6 which are approximately
the 75th percentiles of the values of the two slopes. All quantities are
measured in 3D so each cluster appears only once.

to correct the mass bias by using the best-fitting plane of bias,
slope, and clumpiness values. The fitting procedure to determine
the parameters of the plane was restricted only to the well-fitted
clusters. However, we find that correcting all data points (both
well and poorly fitted) following this expression for (1−bHE,SZ):

(1−bHEC,SZ) = (1−bHE,SZ)+0.09+0.07×❈ −0.07× (βP/5), (14)

and equivalently for (1−bHE,X):

(1−bHEC,X) = (1−bHE,X)+ 0.09+ 0.07×❈ − 0.07× (❉/5), (15)

decreases the standard deviations by about 10% (5% for bHE,X).
In addition, the skewness of the SZ bias drops from 0.73 to 0.18
indicating that both mass biases now have Gaussian distributions
(see fifth row in Table 2).

7.3. Bias and 2D gas inhomogeneities

In the previous section we studied the HE bias in 3D and
attempted to connect it to 3D properties of the ICM. In this
section, we follow a more observation-oriented approach by
relating the X-ray and SZ mass bias to all quantities defined from
the X-ray maps as listed at the beginning of Sect. 4.1. None of
these 2D quantities show a strong correlation with the two biases
(Table 3). Only mild correlations for the well-fitted clusters and
all 2D proxies (σA, σA,R, ε, and MM) are found with respect to
(1−bHE,X) with values in the range −0.26 < corr < −0.29. For
the entire sample, including poorly fitted objects, the correlation
is even weaker. The correlation values are also lower with respect
to (1−bHE,SZ), for which the only notable correlation value is
−0.24 in relation to σA,R and for the well-fitted clusters. These
numbers are similar to those reported in other studies that search
for a connection between morphological parameters and HE bias
(e.g. Jeltema et al. 2008; Rasia et al. 2012).

This lack of correlation is not surprising given that already
for the 3D clumpiness the correlation is rather weak. As a con-
sequence, any correction to either (1−bHE,X) or (1−bHE,SZ) based
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Fig. 15. Mass bias as a function of azimuthal scatter averaged over
the radial range explored, σA,R. Empty and filled circles have the same
meaning as in Fig. 13. Magenta and cyan points highlight the well-fitted
clusters with the lowest and highest asymptotic slopes, respectively, of
the gas density profile (top panels) and of the pressure (bottom panels).
Each point represents a map.

on a best linear fit between the bias and any of the 2D quantities
is not expected to substantially change the values of the disper-
sion of the bias distributions or their skewness values, similar to
the findings of the previous section. Nevertheless, also regarding
the 2D analysis, we notice that if we compare the mass-bias
statistics of the subsample with the lowest azimuthal scatter,
σA < 0.4, to that of the subsample with the highest scatter12,
σA > 1, we find a clear trend since the median biases move from
about −9% with a dispersion around 8% (second row in the sec-
ond panel of Table 2) to −13% with a dispersion of 12%. We
therefore expect that these estimators can provide some level of
improvement in the correction.

We then proceeded to include the information of the
azimuthal scatter and of the asymptotic slope of the gas density,
❉ , for the X-ray mass bias:

(1−bHEC,X) = (1−bHE,X)+0.16−0.05×❉/5+0.0075×σA. (16)

At the same time, we correct the SZ mass bias by invoking the
asymptotic slope of the pressure profile, βP:

(1−bHEC,SZ) = (1−bHE,SZ) + 0.17 − 0.075 × βP/5 + 0.0075 × σA. (17)

The impact of this correction on the mass bias distribution
is listed in the second panel of Table 2 where we also report
on the similar gains achieved by substituting the last term in
Eqs. (16) and (17) (i.e., 0.0075×σA) with factors that depend on
the other estimators of ICM gas inhomogeneity:

−0.04 + 0.20 × ε (for the ellipticity);

−0.02 + 0.12 × MM (for the MM value);
−0.01+0.025×σA,R (for the azimuthal scatter averaged over the
entire radial range).

In all cases, the largest correction for the bias comes from
the slopes of the gas profiles, ❉ and βP, that on average con-
tribute 5 and 9%, respectively. The azimuthal scatter, ellipticity,
MM, and the azimuthal scatter averaged over the entire radial
range account for an extra few percent. However, it is thanks
to their inclusion that we can efficiently correct the 2D samples
in their entirety, including irregular objects or, generically, those
with evidence of substructures (σA > 1). The (albeit small) con-
tribution of the 2D gas inhomogeneity estimators is therefore
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Fig. 16. Distribution of the mass biases, (1−bHE,X), on the left, and (1−bHE,SZ), on the right, before (top panels) and after (bottom panels) the
corrections expressed respectively in Eqs. (16) and (17). The empty histograms show the overall distribution of all the 175 clusters, the filled
histograms are restricted to the 97 well-fitted objects. The parameters characterizing the histograms are reported in Table 2.

essential to extend the mass determination to a mixed sample of
objects (see also Appendix B for the VI class).

The above equations reduce the X-ray and SZ bias scatter
by 10–15% and the skewness value of the SZ bias by almost a
factor of three, from 0.96 to 0.34 (Table 2). The changes to the
distributions can be appreciated in Fig. 16: the improvement on
the skewness values clearly changes the red histograms, making
them more closely resemble a Gaussian distribution.

8. Conclusions

This work characterizes the inhomogeneities present in the ICM
as measurable from X-ray observations, and links them to the
3D clumpiness level and to the bias of the total cluster mass
derived under the assumption of hydrostatic equilibrium. We
analyze an extended set of simulated galaxy clusters taken at
z = 0 from the Three Hundred Project (Cui et al. 2018). The
simulations were performed with the gadget-x code, which
includes an improved formulation of SPH, with respect to
gadget-2 (Springel 2005), and thus promotes the mixing of gas
phases with different entropy levels (Beck et al. 2016). The runs
incorporate stellar feedback in kinetic form and thermal AGN
feedback generated by gas accretion onto super-massive black
holes (see Rasia et al. 2015). X-ray images in the soft ([0.5–
2] keV) band are produced and processed to extract 2D measure-
ments of gas inhomogeneities. We consider two centers associ-
ated with each map: the maximum of the flux (MF) and the cen-
ter of the ellipse (CE) that best fits the iso-flux contour at around
0.8 R500. The distance of both centers from the theoretical center,

the minimum of the potential well, and the ellipticity of the best-
fit ellipse are used to provide a first separation of the clusters into
different morphological classes: very-regular, VR, regular, R, and
intermediate-irregular, IR, objects. From the surface-brightness
maps, we compute the azimuthal scatter, σA, over 12 sectors.
Two measurements of this scatter are carried out with respect to
the mean and the median of the surface brightness profiles. We
further consider the ratio between the mean and median, MM,
as another estimate of the gas inhomogeneities. Our findings can
be summarized as follows.

We compare four estimates of the azimuthal scatter that
combine (1) the two options for the sectors center and
(2) the two choices for the reference profile (mean or
median) used to compute the scatter as expressed in Eq. (2):

σ
median,MF
A

, σ
median,CE
A

, σ
mean,MF
A

and σmean,CE
A

. We conclude that

the most useful option is σmedian,MF
A

because the median boosts
the signal revealing the presence of gas inhomogeneities and MF
is closer to the theoretical center and is easily determined.

The 2D azimuthal scatter grows from 0.2–0.3 for the regu-
lar systems to 0.5–0.7 for the intermediate/irregular clusters. On
average, the scatter profile does not vary over the radial range
investigated ([0.4−1.2] R500), although the IR class presents a
high dispersion and skewness, indicating that individual objects
at fixed radii can have high scatter values. In our sample of
about 540 maps, we found that a scatter higher than unity is a
strong indication of the presence of one or more substructures
and cannot be ascribed only to an elongated gas distribution.
Indeed, even the most elliptical cluster among the substructure-
free objects in our IR subsample has σA = 0.73.
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The 3D clumpiness is lower for regular objects, ❈ ≈

1.05−1.08, than for irregular ones, ❈ ≈ 1.1−1.2, which are
also characterized by a much higher scatter. The clumpiness is
closely linked to the azimuthal scatter with a correlation coef-
ficient of about 0.6. However, some outliers are present in the
overall distribution. We studied two most extreme cases which
include objects in which a clump is aligned with the cluster core
(leading to high values of clumpiness and low values of scatter)
and objects in which substructures have a small projected dis-
tance from the map center although they are external to the clus-
ter in 3D. The latter situation is not very frequent since among
all maps with σA < 0.5 only 5% have ❈ > 1.35.

We consider three expressions for the hydrostatic mass: two
used in X-ray and SZ observational works, MHE,X (Eq. (10)) and
MHE,SZ (Eq. (9)) respectively, and a third formulation, MHE,T

(Eq. (11)), which helps us to separately evaluate the impact of
each term of the expression. All three estimates introduce a
similar bias which spans from 5-10% around R2500 to 10–15%
around R500. Regular clusters (VR or R), less clumped clusters
(❈ < 1.1), objects with low azimuthal-scatter (σA < 0.4), and
systems with well-behaved gas profiles tend to have a slightly
lower mass bias and a reduced scatter. When using the SZ for-
mulation for the HE mass, we find a broadening of the bias dis-
tribution such that the tail corresponding to lowest bias reaches
the value of (1−b) = 1 and even greater values, (1−b) > 1. For
cosmological studies, using the pressure profile is less suitable
than using the combination of the gas density and temperature
profiles, because despite the lower average bias, the distribution
of (1−bHE,SZ) is broader and more skewed.

Even though the average mass bias of less clumped systems
or of the objects with smaller azimuthal scatter is lower than
the average over the entire sample, the mass bias is not strongly
correlated with either parameter. Therefore, they cannot be effi-
ciently used to reduce the dispersion of the mass bias of the
entire sample. Adding extra information such as the external
slope of either the gas density or the pressure profile diminishes
the dispersion by 10% and reduces the skewness of the bias dis-
tribution. This essentially improves the accuracy of a Gaussian
model to describe the distribution of the mass bias and possibly
correct for it. These corrections are suitable not only for regu-
lar objects but also for irregular systems and therefore should be
sought to exploit large sample sizes.

Modern state-of-the-art numerical models such as those ana-
lyzed here produce a realistic description of the gas properties
and of the clumpy structure of the ICM. The large number of
massive clusters analyzed in this paper allows us to robustly
determine that, although the X-ray images cannot provide a com-
pelling correction to the mass bias, it is still possible to use
information from X-ray and SZ data to obtain a mass bias dis-
tribution which can be appropriately modeled by a Gaussian
distribution. This result will be useful for measurements which
combine X-ray observations (such as those from XMM-Newton,
Chandra, or e-Rosita) and SZ measurements (such as those
from Planck, Bolocam, NIKA–2, MUSTANG–2,SPT, or ACT)
as recently investigated in Shitanishi et al. (2018) by com-
bining Chandra and Bolocam, in the X-COP collaboration
(Ghirardini et al. 2019) using XMM-Newton and Planck data,
and in Ruppin et al. (2017) with the combined analysis of NIKA,
Planck, and XMM-Newton data. In cases of deep data, more
sophisticated algorithms can be used to distinguish between
clumpy and linear inhomogeneities (Bourdin et al. 2015; Vafaei
Sadr et al. 2018) and to provide indications of inhomogeneities
present in SZ maps (Baldi et al. 2019). As a caveat, we note that
in this paper we estimate the mass bias by looking directly at the

3D profiles as derived from the simulated clusters since it has
been demonstrated that the deprojection of X-ray profiles works
in a satisfactory manner. It remains to be proven that the same
applies to the pressure profiles as derived from SZ observations,
which are typically characterized by a poorer spatial resolution
(especially concerning Planck’s observations). This remains to
be explored further in a future study.
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Appendix A: Dependence of the mass bias from the

cluster mass
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Fig. A.1. Hydrostatic mass bias vs. the cluster mass at R500. Top panel:
X-ray mass bias, (1−bHE,X). Bottom panel: SZ mass bias, (1−bHE,SZ).
Similarly to Fig. 14 of the main text, well-fitted clusters are represented
by filled points and poorly fitted objects by empty points.

The sample studied in the paper is mostly composed of massive
objects as suggested by the median value of M500 reported in
Table 1 for all the subsamples investigated. Restricting the distri-
bution of masses (shown in Fig. 3) to the VR, R, and IR subsam-
ples, we find that 85% of the systems have M500 > 6 × 1014 M⊙.
Half of the remaining clusters has a mass below 1014 M⊙ and the
others have a mass between 1 and 2 × 1014 M⊙. Owing to this
mass distribution, the overall sample is not particularly suited
to investigating the dependence of the mass bias on the cluster
mass, however we can still discuss here the general trend of our
clusters.

In Fig. A.1, we show the distribution of the X-ray and SZ
mass bias, (1−bHE), as function of the total mass of the clusters.
Since both measurements are derived in 3D, each point refers to
a single cluster rather than to a map. The correlation coefficients
of both biases are below 0.15 and are consistent with zero within
2σ. Considering only the well-fitted objects (filled points in the
plot) the correlation is reduced to values even lower than 0.10.
Looking at the median bias values computed in different mass
bins, we find that the bias shifts between 0.88 and 0.92 without
any special trend. We therefore conclude that in our sample we
do not find any dependence of the mass bias on the cluster mass.
This result might be surprising because the expectation is that
the least massive systems have a reduced bias because they are
typically formed earlier and have more time to relax. Our result
could be influenced by the poor representation of small groups in
our sample. That said, among the most massive objects (between
5 and 12 × 1014 M⊙), which are a complete sample and have a
mass range similar to the Planck clusters, we can robustly say
that there is no trend between (1−bHE) and M500, the correlation
being below 0.10 for both biases.

Appendix B: The “very irregular” class

In the analysis presented in the paper, we exclude both the very-
irregular (VI) and extremely-irregular (EI) objects. The former
class is excluded because the center of the X-ray analysis, used

Table B.1. Summary of results on the HE mass bias at R500.

bHE,X[%] σbHE,X
SkbHE,X

VI 0.85 0.15 0.50
corrections:

(i) Eq. (15)/(16) 0.10 0.13 0.10
(ii) Eq. (15)/(16) ε −0.03 0.13 0.00
(iii) Eq. (15)/(16) MM 1.00 0.13 0.13
(iv) Eq. (15)/(16) σA,R 1.02 0.10 −0.01

bHE,SZ[%] σbHE,SZ
SkbHE,SZ

VI 0.86 0.17 1.33
corrections:

(i) Eq. (15)/(16) 0.99 0.16 0.74
(ii) Eq. (15)/(16) ε 0.96 0.16 0.72
(iii) Eq. (15)/(16) MM 1.00 0.16 0.97
(iv) Eq. (15)/(16) σA,R 1.01 0.17 0.92

Notes. Columns are similar to Table 2 but they refer to the subsample
of the VI class. The top part refers to the X-ray mass bias, the bottom
part refers to the SZ mass bias.

Table B.2. Spearman rank correlation coefficient and the number of
standard deviations from the null-hypothesis expected value (in paren-
thesis) similarly to Table 3 but now including also the VI class.

R+VR+
IR+VI bHE,X bHE,SZ

ε −0.27 (6.8σ) −0.20 (5.1σ)
MM −0.26 (6.8σ) −0.21 (5.4σ)
σA −0.24 (6.1σ) −0.19 (5.0σ)
σA,R −0.17 (4.4σ) −0.18 (4.7σ)

❈ −0.24 (6.1σ) −0.22 (5.7σ)
❈R −0.21 (5.5σ) −0.23 (6.0σ)

❉ ; βp +0.39 (+10σ) +0.50 (+10σ)

Notes. All quantities are computed at R500.

to derive azimuthal scatter, ellipticity, and the MM parameter,
could be significantly different from the theoretical center used
to derive the quantities linked to the mass bias. The latter class
is even more complicated because not only could the theoreti-
cal center be at a large distance from the gas centroid, but also
because the respective X-ray emission is strongly asymmetric.
For these reasons, as mentioned in the main text, we consider
the extension of the analysis to the extremely-irregular objects
to be fruitless. However, it can be useful to have indications of
the mass bias of the VI class and on its correlation with the gas
inhomogeneity parameters studied in the paper. In this section,
all quantities are measured at R500.

In Table B.1, we report median value, standard deviation, and
skewness of the hydrostatic mass bias distribution of the very-
irregular clusters. The average and standard deviation are 50%
higher in this class with respect to the first three less-disturbed
classes (VR, R, and IR, see Table 2). Specifically, the mean of
the mass bias grows from 10 to 15% and the standard deviation
increases from about 0.10 to 0.15.

Including the very-irregular objects in the main sample, the
correlation between the parameters that describe the gas inho-
mogeneity and the mass bias are stronger, as we can see by
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comparing the values in Table B.2 with those in Table 3. By
applying the same corrections proposed in the paper, we reduce
the bias and generate a more symmetric distribution (meaning
that the skewness parameter strongly decreases). The gain on
the dispersion is limited to less than 10% and the resulting dis-
persion is always higher than the maximum dispersion found in
the other three classes (see Table 3). We therefore conclude that
there is no net gain in adding objects that clearly appear morpho-
logically disturbed, such as those with large distance between
the center of the brightest cluster galaxy and the X-ray peak,
because they are not in equilibrium. For completeness, we report
that among the VI clusters, 18 objects have (1−b) < 0.70, 3 of
which have the bias actually lower than 0.60. In the entire sam-
ple of VR, R, IR, VI only 3% of objects have an HE mass lower
than the true mass by more than 30%.

Appendix C: The HE mass bias at R2500

In the VR, R, and IR classes, the R2500 radius is on average equal
to 0.45 R500 and thus it is within the radial range investigated.
In this section, we proceed to compute the mass bias and the gas
inhomogeneity parameters, such as clumpiness, residual clumpi-
ness, azimuthal scatter, and MM at R2500, and we further link
the mass bias at the same radius with the ellipticity value of the
X-ray iso-flux contours drawn at 0.8 R500, the radial average
of the azimuthal scatter, and the asymptotic slope of the ana-
lytic profiles that best describe the gas density and pressure
profiles.

For this analysis, we discard all maps corresponding to
cluster whose R2500 radius is smaller than our innermost radial
bin, 0.4 R500. This sample reduction led to a total of 467 maps.

On average we find that (1−bHE,X,2500) ∼ (1−bHE,SZ,2500) =
0.92, with respective standard deviations of 0.10 and 0.13. These

Table C.1. Spearman rank correlation coefficient and the number of
standard deviations from the null-hypothesis expected value (in paren-
thesis) similarly to Table 3.

R+VR+IR bHE,X,2500 bHE,SZ,2500

ε −0.16 (3.7σ) −0.16 (3.8σ)
MM −0.19 (4.5σ) −0.19 (4.5σ)
σA −0.25 (5.7σ) −0.23 (5.3σ)
σA,R −0.20 (4.6σ) −0.19 (4.5σ)
❈ −0.20 (4.6σ) −0.22 (5.0σ)
❈R −0.19 (4.4σ) −0.23 (5.3σ)
❉ ; βp −0.16 (3.7σ) −0.24 (5.5σ)

Notes. All quantities are computed at R2500.

values should be compared with the first line of the 2D sample
(“all”) in the second panel of Table 2. The derived X-ray and
SZ mass are thus slightly closer to the true mass at R2500 than at
R500 as suggested also from Fig. 12 where we notice an increase
in the departure from the true mass at increasing radius. At R2500

both X-ray and SZ mass bias distribution have a reduced level of
skewness (equal to −0.06 and −0.50) indicating that the two dis-
tributions are already quite symmetric in contrast with the previ-
ous result Sk(bHE,SZ) = 0.96.

The correlation coefficients between mass bias and mea-
surements of the gas inhomogeneities at R2500 are reported in
Table C.1. The values listed here should be compared with those
in the second section of Table 3. The correlation is in general
weaker. The highest variation relates to the correlation between
the mass bias and the asymptotic slope. Previously, bHE,X(R500)
exhibits the strongest correlation with ❉ , while at R2500 the two
quantity are completely uncorrelated.
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