The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms

DARRELL J. HENRY,^{1,*} CHARLES V. GUIDOTTI,² AND JENNIFER A. THOMSON³

¹Department of Geology and Geophysics, Louisiana State University, Baton Rouge, Lousianna 70803, U.S.A. ²Department of Geological Sciences, University Of Maine, Orono, Maine 04469, U.S.A.

³Department of Geology, Sci 130, Eastern Washington University, Cheney, Washington 99004, U.S.A.

ABSTRACT

The Ti content of biotite can serve as a geothermometer for graphitic, peraluminous metapelites that contain ilmenite or rutile and have equilibrated at roughly 4–6 kbar. The relationship between Ticontent, temperature, and Mg/(Mg + Fe) value was calibrated empirically using an extensive natural biotite data set (529 samples) from western Maine and south-central Massachusetts in combination with the petrogenetic grid of Spear et al. (1999). The calculated Ti-saturation surface is curved such that for a given Mg/(Mg + Fe) value, Ti concentration increases as a function of temperature in a nonlinear fashion, and for a given temperature Ti concentrations decrease with an increase in Mg/(Mg + Fe). The fit to the Ti-saturation surface can be reformulated as the geothermometric expression: T = $\{[\ln(Ti) - a - c(X_{Me})^3]/b\}^{0.333}$, in which T is temperature in degrees Celsius, Ti is the number of atoms per formula unit (apfu) normalized on the basis of 22 O atoms, X_{Mg} is Mg/(Mg + Fe), a = -2.3594, b = 4.6482×10^{-9} and c = -1.7283. The calibration range for this expression is $X_{Mg} = 0.275 - 1.000$, Ti = 0.04–0.60 apfu, and T = 480-800 °C. Precision of the Ti-in-biotite geothermometer is estimated to be ± 24 °C at the lower temperature range and improves to ± 12 °C at higher temperatures. Application of the Ti-in-biotite geothermometer to ilmenite- or rutile-bearing, graphitic, peraluminous metapelites equilibrated at 3-6 kbar is generally consistent with independent temperature determinations, but with some deviations that represent local reequilibration. Consequently, the Ti systematics in biotite can also serve as the basis of a very sensitive indicator of chemical equilibrium, or lack thereof. Application of the geothermometer to metapelites not containing the requisite mineral assemblages can lead to minor-to-significant errors in estimated temperatures.

Biotite Ti-substitution mechanisms are controlled by several factors. Based on the biotite calibration data set, magnesian biotites (X_{Mg} > 0.65) incorporate Ti in accordance with the exchange vector TiAl₂R₋₁Si₋₂, where R is the sum of the divalent cations Mg + Fe + Mn. This substitution mechanism is primarily a response to misfit of the octahedral and tetrahedral layers in magnesian biotites. Intermediate biotites (X_{Mg} <0.65), particularly at higher temperatures, exhibit enhanced Ti concentrations, most consistent with the Ti-deprotonation TiO₂R₋₁(OH)₋₂ exchange vector. Dominance of Ti-deprotonation substitution is largely a function of reduction of H₂O activity at higher metamorphic grades. Supplementary biotite data from metaluminous amphibolites and mafic granulites, metamorphosed isothermally with variable H₂O activities, reveal that low-Al biotite incorporates significantly higher concentrations of Ti relative to peraluminous biotite as a result of a combination of the exchange vectors TiO₂R₋₁(OH)₋₂ and RSiAl₋₂ substituting in roughly an 8:1 ratio.