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The TimberWolf Placement and

Routing Package

CARL SECHEN AND ALBERTO SANGIOVANNI-VINCENTELLI, FELLOW, IEEE

Asfract —TlmberWolf is an integrated set of placement and routing

optimization programs. The general combinatorial optimization technique

known as simulated annealing is used by each program. Programs for

standard cell, macro/custom cell, and gate-array placement, as well as

standard cell global routing have been developed. Experimental results on

industrial circuits show that area savings over existing layout programs

ranging from 15 to 62 percent are possible.

I. INTRODUCTION

T
IMBERWOLF is an integrated set of placement and

routing optimization programs. Extensions and mod-

ifications of the general combinatorial optimization tech-

nique known as simulated annealing [1] are used by each

program. Four basic optimization programs of the

TimberWolf package have been developed.

1) A Standard-Cell Placement Program: This program

places standard cells into rows and/or columns in addition

to allowing user-specified macro blocks and pads. The

program was interfaced to the CIPAR standard cell place-

ment package developed by American Microsystems, Inc.

For the largest circuits tested (800 to 2700 cells), Timber-

Wolf reduced total estimated wire lengths by 45 to 66

percent in comparison with CIPAR alone. Furthermore,

final chip areas were reduced by 30 to 57 percent as a

result of the improved placement. For a circuit of 1000

cells, TimberWolf reduced the final chip area by 31 percent

in comparison to CIPAR and by 21 percent over another

commercially available standard cell placement program in

a benchmark performed at AMI.

2) A Standard Cell Global Router Program: The global

router reduced by 10 to 15 percent the number of wiring

tracks used by the CIPAR router. This translated to an

overall area savings for 6 to 8 percent. Vecchi and Kirk-

patrick [2] recently described the use of simulated anneal-

ing for global routing,

3) A Macro/Custom Cell Placement Program: This pro-

gram places cells of any rectilinear shape. Furthermore, the

cells may have fixed geometry including pin locations

(macro cells) or they may have fixed area with a given

aspect ratio range and with pins that need to be placed
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(custom cells). All rotations and reflections of each cell are

considered. TimberWolf also has the ability to place cells

among user-defined subregions of the chip. TimberWolf

allows multiple chips to be placed simultaneously. This

package can also be used to place circuits on one or more

printed circuit boards.

The macro/custom cell placement program is currently

under test on industrial circuits. However, the program has

been tested on a Honeywell Information Systems Italy

printed circuit board. The processor board required the

placement of 613 variable-sized circuits. TimberWolf re-

duced the total wire length by 10 percent over the manu-

ally placed board.

4) A Generalized Gate-Array Placement Program: This

program allows user-specified macros and prima~ termin-

als. This program found placement with a 6- to 27-per-

cent reduction in total estimated wire length for several

benchmark problems in comparison to the best published

results. This program optionally includes in the cost calcu-

lation a measure of the local routing congestion.

This paper presents the algorithms used by each of the

programs comprising the TimberWolf package and also

presents the results that have been obtained. In particular,

Section 11 describes the basic algorithm. In Section III, the

standard cell placement optimization algorithm and pro-

gram are described. Section IV presents details on the

standard cell global router. In Section V, the macro/custom

placement optimization algorithm and program are de-

scribed and in Section VI the gate-array placement al-

gorithm and implementation are presented. Finally, Sec-

tion VII is devoted to concluding remarks and future

research.

II. THE BASIC ALGORITHM

Simulated annealing has been proposed by Kirkpatrick

et al. [1] as an effective method for the determination of

global minima of combinatorial optimization problems in-

volving many degrees of freedom. Its basic feature is the

possibility of exploring the configuration space of the

optimization problem allowing hill climbing moves, i.e.,

the acceptance of new configurations of the problem which

increase the cost. These moves are controlled by a parame-

ter, in analogy with temperature in the annealing process,

and are less and less likely towards the end of the process.
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Given a combinatorial optimization problem specified

by a finite set of configurations or states S and by a cost

function c defined on all the states j in S, the simulated

annealing algorithm is characterized by a rule to generate

randomly a new state or configuration with a certain

probability, and by a random acceptance rule according to

which the new configuration is accepted or rejected. A

parameter T controls the acceptance rule.

The basic structure of the algorithm is presented in the

next subsection. Theoretical investigations of the simulated

annealing optimization technique have been reported by

our research group [3] and elsewhere [4], [5].

A. Algorithm Structure

The following function gives the general structure of the

class of algorithms called probabilistic hill-climbing al-

gorithms of which simi,ilated annealing is a special case.

This class has been proposed in [3] where a number of

different algorithms with the same structure have been

introduced.

Algorithm StiCtUre (.jo, To){

/“

* Given an initial state & and an

* initial value for the parameter T,

* To>

“/

T= To;

X= jo;

while(” stopping criterion” is not satisfied){

while(’’inner loop criterion” is not satisfied){

j = generate(X);

/*

* generate is a function which

* returns a new state J’ generated

* incrementally from the previous state

* X by a weighted random selection.

“/
J (accept(c( j), c(X), T){
X=j;

}

}

T= u~ate(T);

}

}
The acceptance of a new state j is determined by accept,

whose structure is shown below.

accept(c(j). c(i), T){

/“

* Returns 1 if the cost variation passes a test

* T is the control parameter

“/
Ac=c(j)– c(i);

y =f(Ac, T);

r = random(O, 1);

/“
* random is a function which returns a

“ pseudo-random number uniformly

* distributed on the interval [0,1]

“/

Y(r < Y){
return(l);

} else{

return (0);

}

}

}
The algorithms in the class described above are char-

acterized by 1) the generation function generate, 2) the

acceptance function accept, 3) the updating function up-

date, 4) the inner loop criterion, and 5) the stopping

criterion. In the original version of simulated annealing,

the acceptance function is governed by the function f

shown below

f(Ac, T) = min[l,exp(- At/T)].

It is possible to vary the shape of f by adjusting the

control parameter T, called temperature. The updating rule

for T is given below.

Tnew = ~ ( Told ) * ‘old ~
o<a<l.

In the function accept, note that new states characterized

by Acs O always satisfy the acceptance criterion. However,

for the new states characterized by Ac >0, the parameter T

plays a fundamental role. If T is very large, then r is likely

to be less than y and a new state is almost always accepted

irrespective of Ac. If T is small, close to O, then only new

states that are characterized by very small Ac >0 have any

chance of being accepted. In general, all states with Ac >0

have smaller chances of satisfying the test for smaller

values of T.

The properties of this class of algorithms can be studied

using Markov chains as the theoretical models. Theoretical

analysis [3] shows that this class generates with probability

1.0 the global optimum of the optimization problem, pro-

vided that certain conditions on the number of iterations at

each T or a certain updating rule for T is followed. These

results are unfortunately asymptotic and provide little in-

formation on how to choose the various parameters for the

implementation of the algorithm. However, they serve to

give confidence in the well posedness of the algorithm and

to provide some insight on the reasons why simulated

annealing has performed well in practical cases. In the

remainder of the paper, attention will be given to the

actual implementation of the various functions, the inner

loop criterion, and the stopping criterion.

The best results with simulated annealing have been

obtained in our experiments by starting with a large value

of the parameter T, whereby virtually all proposed new

states are accepted. Further, the best results have been

obtained when the system is allowed to achieve “equi-

librium” at each stage (or value of T) of the annealing

process. That is, a sufficient number of iterations are

performed in the inner loop such that the probability
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distribution of the configuration is “close” to the sta-

tionary probability distribution of the Markov chains asso-

ciated with the algorithm (see [3] for more details on the

theory of simulated annealing). This is implemented by the

“inner loop criterion” in the simulated annealing al-

gorithm. The” stopping criterion” is satisfied when the cost

function’s value remains the same after several stages of

the annealing process.

In simulated annealing, the best results have been ob-

tained when the parameter T is slowly reduced when the

cost function’s value begins to decrease significantly. For

each successive step of the annealing process, T is lowered

exponentially. The TimberWolf programs currently allow

the value of a to be specified for each value of T. The

value of a is usually in the range of 0.8–0.95.

B. The Timber Wo~ Implementation of the Simulated An-

nealing Algorithm

For the applications of interest here, little difference was

noted when using different functionszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf in the acceptance

function accept. Hence the standard form for f as pro-

posed by [1] was used. This section presents the Timber-

Wolf implementations of the other functions.

1) Generating New States: The TimberWolf programs

begin with a random initial placement or wiring configura-

tion. A new state is generated by either exchanging two

fundamental units or moving a unit to another location.

For the gate array placement program, the new state is

generated by the interchange of two modules, where a

module refers to a fundamental unit specified in the net

list. The standard cell placement program also generates

new states by the interchange of cells. However, because

standard cells typically vary in width, the interchange of

two cells often results in a non-feasible solution because

overlaps are not allowed. This is solved by a penalty

function approach, first described by Kirkpatrick, Gelatt,

and Vecchi [1]. The TimberWolf implementation of this

approach will be described in the next section. The penalty

function approach is also employed by the macro/custom

cell placement program because the cells typically vary in

both height and width.

For the standard cell and macro/custom cell problems,

new states are also generated by the movement of a cell to

a new location. Experimental investigation has revealed

that the use of both methods of generating new states is

necessary to achieve the best results. Furthermore, orienta-

tion changes of standard and macro/custom cells are

performed which result in new states. If allowed by the

user, new states are also generated for custom cells by

assigning a new location to a pin or group of pins and by

changing the aspect ratio of the cell.

For the standard cell global router program, new states

are generated by assigning a portion of a net to a different

channel.

2) Cost Function: The cost function for the placement

programs is based on total estimated wire length. The

standard cell and macro/custom cell programs also include

a penalty function term which penalizes overlaps of the

cells. The cost function for the standard cell global router

is based on the estimated wiring area which is approxi-

mated by the total channel density, that is, the sum over all

channels of the channel density.

3) Generating New Values of T: In the current implemen-

tation of TimberWolf, the parameter a is user-specified as

a versus T data. The best results have been obtained when

a is the largest (approximately 0.95) during the stages of

the algorithm when the cost function is decreasing rapidly.

Furthermore, the value of a is given its lowest values at the

initial and latter stages of the algorithm (usually 0.80). The

value of a is gradually increased from its lowest value to its

highest value, and then gradually decreased back to its

lowest value.

4) The Inner Loop Criterion: The inner loop criterion is

implemented by the specification of the number of new

states generated for each stage of the annealing process.

This number is specified as a multiple of the number of

fundamental units for the placement or routing problem.

For the gate array placement and standard cell global

router programs, 20 new states per unit are generated at

each stage. The standard cell and macro/custom cell place-

ment problems have many more degrees of freedom (orien-

tation changes, pin location changes, etc.) and hence 100 or

more new states are generated per cell at each stage.

5) The Stopping Criterion: The stopping criterion is

implemented by recording the cost function’s value at the

end of each stage of the annealing process. The stopping

criterion is satisfied when the cost function’s value has not

changed for 3 consecutive stages.

III. STANDARD CELL PLACEMENT OPTIMIZATION

PROGRAM

A. Introduction

TimberWolf is applicable to standard cell placement

problems of the complexity shown in Fig. 1. TimberWolf

optimizes the placement of standard cells into row and/or

column blocks. Furthermore, the various blocks may have

differing heights. The program also optimizes the place-

ment of pads or buffer circuitry, as well as macro blocks.

The macro blocks may be positioned anywhere on the chip.

The estimation of the wire length for a single net is

determined by computing the half-perimeter of the bound-

ing box of the net. The bounding box is defined by the

smallest rectangle which encloses all of the pins comprising

the net. For the case of a two-pin net, this is the Manhat-

tan distance. Because exact pin locations are used in the

wire length calculations, TimberWolf considers all possible

orientations for a cell, pad, or macro block. A group of

pins which are internally connected within a cell must be

given to TimberWolf as a single pin with a location which

is the average of the locations of its constituent pins.

The program employs the exchange class mechanism for

blocks as well as cells, pads and macros. If two blocks have
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the end of a row or column block. This is treated as a case

of overlap with an imaginary cell being located at the ends

of each column and row block. This feature increases the

:lii;;’lll~

number of states in the state space S. Experimental investi-

‘ 1’ El

gation has shown that this results in better placements.

When two standard cells overlap, a penalty is assessed

which is proportional to the square of the quantity of the

amount of linear overlap plus an offset parameter. The

offset parameter is chosen to ensure that when the parame-

ter T approaches zero, then the total amount of overlap

approaches zero. A larger value of the offset parameter

generally results in more uniform block lengths at the

expense of increased total wire length. On the other hand,

a smaller value generally results in the smaller values of

Fig. 1. Example of a general standard cell layout to which TimberWolf total wire length with less uniformity of block lengths.
is applicable. Experimentally it has been observed that setting the offset

value to 3 yields the best overall results.

the same exchange class, then cells from these blocks are The overlap penalty function has an additional term

interchangeable. Blocks with differing exchange classes may which controls block lengths. The sum of the lengths of the

not have their cells interchanged. Differing exchange classes cells in a particular block is compared to the actual block

for blocks are usually employed when blocks have different length. .4 penalty is assessed which is equal to the absolute

heights. Furthermore, two cells or two pads may be inter- value of the difference times a parameter value. As an

changed only if they belong to the same exchange class. example, consider the movement of a cell from a block
An additional feature is the net-weighting capability. For whose tot~ ceil length is greater than the actual length of

any given net, it is possible to weight the horizontal span of the block to another block whose total cell length is less

the net separately from the uertical span of the net. The than its actual length. The penalty term is reduced in this

horizontal span of a net is defined as the span of the case. On the other hand, moving a cell from a block whose
smallest rectangle which encloses all of the pins comprising total cell length is less than its actual length to a block

the net (bounding box) in the x direction of the X-Y whose total ceil Iengtfi is greater than its actual length

coordinate system. Similarly, the vertical spm of a net is increases the penalty term. lt has been experimentally

defined as the span of the bounding box in the -Ydirection obse~ed that a parameter value of 5 results in very uni-

of the x-~ coordinate system. For critical net% it is usual to form block lengths with no compromise in the final total

increase both the horizontal weight and the vertical weight, wire length.

hence ensuring that these nets are kept as short as possible. The alternative to the aforementioned overlap concept is
For double-metal circuits, it is often the case that there are of course to not allow overlaps. For example, when insert-

many uncommitted route throughs present in each cell. ing a cell into a row block, if insufficient space is available

Consequently, vertical net spans are in some sense cheaper then the cells to the right are all shifted farther to the right

than horizontal net spans (which require the allocation of as necessary. This has the obvious disadvantage of destroy-
horizontal channel tracks and their associated area). In this ing the relationships between the shifted cells and the cells

case, the best results have been obtained when the vertical on the neighboring rows. The overlap concept was em-

weights for the nets are made smaller in comparison to the ployed So as to not disturb the placement of the remaining

horizontal weights. cells when performing an interchange of cells or a displace-

ment of a single cell.

B. Algorithm Details The selection of new states is based on the following

considerations: 1) A random number between one and the

The cost function for the simulated annealing algorithm total number of cells, pads and macro blocks is generated.

consists of two independent portions. The first portion is The cells are numbered from one to the total number of

the total estimated wire length. The second portion is the cells, and the pads and macro blocks are numbered starting

penalty function which consists of a total sum of overlap from the number of cells plUS me. If the random number is

penalties. This penalty function was incorporated because less than or equal to the number of cells, then a cell is

of the usual difference in width of the standard cells. Often selected. Otherwise, a pad or macro block is selected. 2) A

two cells are selected for interchange which differ in width. second random number is selected between 1 and the total

Therefore, an exchange of location of these two cells often number of cells, pads, and macro blocks. 3) If the two

results in some overlap with one or more of the other cells. numbers selected both represent cells, then the pair of cells

Furthermore, the program often selects a single cell for a are interchanged to generate a new state. 4) Similarly, if

displacement to a new location. Once again, some overlap two pads or two macro blocks were selected, then an

may result. The exchange of cells or the displacement of a interchange constitutes the new state. 5) If the two num-

single cell may also result in a portion of a cell dangling off hers selected do not represent the same unit (that is, cell,
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pad, or macro block) then the first unit selected governs

the generation of a new state. If this first unit was a pad or

macro block, then an orientation change of the respective

unit is attempted. If the first unit was a cell, then this cell is

displaced to a new location. If this new state is rejected,

then the next state generated is an orientation change for

the cell.

The ratio of single cell displacements to cell interchanges

has a pronounced effect on the quality of the final place-

ment. Experimental investigation has revealed that a ratio

of about 5 to 1 yields the best results. Hence, if the first

unit selected was a cell, the generation of the second

random number is weighted to produce the desired ratio.

This is implemented by generating a random number be-

tween one and the number of cells multiplied by 5.

The displacement of a cell to a new location is controlled

by a range limiter, which limits the range of the displace-

ment of a cell. For example, in the latter stages of the

algorithm when the value of T approaches zero, the dis-

placement of a cell has very little chance of being accepted

unless the displacement is very local. By limiting the range

of the cell displacements in the latter stages of the al-

gorithm, the cells undergo many small displacements while

gradually eliminating overlaps and reducing wire length.

The implementation of the range limiter is as follows. A

rectangular window is centered at the center of the cell to

be displaced and this window has a particular horizontal

span and a particular vertical span. At the beginning of the

algorithm, when T is at its maximum value, the horizontal

span of the window is equal to twice the horizontal span of

the chip and similarly the vertical span of the window is

equal to twice the vertical span of the chip. The horizontal

and vertical window spans are proportional to the loga-

rithm of the value of T. Hence, when the value of T is

reduced, the size of the window is correspondingly re-

duced. When a cell is to be displaced, a randomly-selected

location within the window is chosen as the new location

for the cell. That is, a block (row or column) is randomly

selected which intersects the window and then a random

position is selected within that block and within the

window.

Pairwise interchanges of cells are also controlled by the

range limiter. An interchange of two cells is attempted only

if the window can be positioned such that it contains the

centers of both cells.

As T is reduced, eventually the size of the range-limiter

window has been reduced such that inter-block cell dis-

placements or interchanges are no longer attempted. At

this point, all residual cell overlaps are removed and the

blocks are compacted. The generation of new states then

takes on a different form as follows: 1) A standard cell is

randomly selected and its left and right neighbors (if any)

for the case of a row block or its bottom and top neighbors

(if any) in the case of a column block are noted. 2) An

interchange of the randomly selected cell is performed with

either its left (bottom) neighbor and/or its right (top)

neighbor for row (column) blocks. For example, in the case

of a cell belonging to a row block, if the cell has both left

and right neighbors, then one of the neighbors is randomly

selected and an interchange of the cell with the selected

neighbor is attempted. If the interchange is not accepted,

then an interchange is attempted with the neighbor not

previously selected. If the cell has only one neighbor, then

only that interchange is attempted. 3) An orientation

change of the selected cell is attempted if permitted by the

user.

The user may also request that TimberWolf is to insert

route-through cells as necessary if the standard cell circuit

contains only row blocks. A route-through cell has two

internally connected pins, one on the top and one on the

bottom. If a portion of a net must connect two cells which

are not on the same row and are not on neighboring rows,

then this net must be routed through the rows between

those containing the cells. A route-through cell must be

inserted to accomplish this for the case of two levels of

interconnect. Once the size of the range-limiter window has

been reduced such that inter-block cell displacements or

interchanges are no longer attempted, TimberWolf will

then insert route-through cells as necessary. The route-

through cells participate in the generation of new states as

described above. That is, they are positioned in their

respective rows such that the total wire length objective is

minimized.

For standard cell circuits comprised solely of row blocks

of cells and pads around the periphery of the blocks, the

user may request that TimberWolf is to configure the rows

in the most advantageous manner. The user inputs the

number of rows desired and the estimated row separation,

For example, in anticipation of the fact that most of the

route-through cells are concentrated toward the center-most

rows, TimberWolf will restrict the total cell length allow-

able in these rows. The user supplies an indentfactor which

is the ratio of the total cell length allowed in the center-most

row divided by the total cell length allowed in the outer-

most row. The total cell length allowed in the other rows

increases linearly from the center row toward each of the

top and bottom rows. TimberWolf also queries the user for

the expected number of route-through cells. This can either

be a guess or the user may try a short TimberWolf run

(that is, with relatively few new states generated at each T)

and note the number required. TimberWolf uses this infor-

mation to increase the actual row lengths. Note that when

the final placement is determined by TimberWolf and the

route-through cells have been added, the final row lengths

will tend to be close to the actual row lengths given to

TimberWolf. Having the actual row lengths greater than

the total allowable cell length for each row increases the

cardinality of the state space of the problem and has been

shown to yield the best results.

Of major concern to all implementations of the simu-

lated annealing algorithm is CPU time. The TimberWolf

standard cell program was designed to reduce computation

time while sacrificing storage. One of the features of the

program is that computation time per iteration is constant

(that is, it is invariant with the number of cells). The

iteration time is defined to be the time required to generate
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a new configuration, evaluate the new value of the cost

function, and then decide to accept or reject the new

configuration. Two key features make this possible. 1) The

cells in a block are hashed into bins that partition the

block’s coordinate system. Hence overlap calculations re-

quire a constant amount of time. 2) The possible orienta-

tions for a cell, including the pin locations for each orienta-

tion, are computed at the outset and are stored. Thus to

change a cell orientation, only a pointer change is required

rather than recomputing the cell boundaries and pin loca-

tions.

Additional reductions in CPU time were achieved by

employing a table look-up technique for the computation

of the exponential function [6]. This technique requires

only 3 table look-ups and 2 floating multiplies to achieve

excellent accpracy (it has been observed that the least

significant decimal digit is at most plus or minus one in

comparison to the exact value of the exponential function).

This technique reduced the time per call to the exponential

function from 107 to 44 ps on a VAX-780 system and from

75 to 2.5 ps on an IBM-3081/UTS system. Because on the

order of several hundred million calls to the exponential

function are made for a large standard cell problem, sub-

stantial CPU-time reductions were achieved.

Many current standard cell optimization programs at-

tempt to first perform an inter-row optimization and then

an intra-row optimization. That is, each cell is first as-

signed to a row and then in a second step, the cells are

placed within their respective row. Note that the method

employed by TimberWolf simultaneously considers both

optimizations and hence better results should be obtained.

C. Results

The program was interfaced to the CIPAR standard cell

placement package developed by American Microsystems,

Inc. For the larger circuits tested (800 to 2700 cells),

TimberWolf achieved total estimated wire length reduc-

tions ranging from 45 to 66 percent in comparison with

CIPAR. Furthermore, final chip area reductions ranged

from 15 to 57 percent. For a circuit of 1000 cells,

TimberWolf reduced the final chip area by 31 percent in

comparison to CIPAR and by 21 percent over another

commercially available standard cell placement and rout-

ing package in a benchmark performed at AMI.

For the largest circuit tested (2700 cells), 75 million

iterations were performed. The computation time was 300

ps per iteration (IBM 3081 running UTS), implying nearly

6.5 h of CPU time. TimberWolf runs 12.2 times faster on

the IBM/UTS system in comparison to the VAX-780/VMS

and VAX-780/UNIX systems.

The memory requirement is linearly related to the num-

ber of cells. For the 2700-cell circuit, the memory require-

ment was 4 Mbytes (32-bit integers are used). The results

are summarized in Table I.

The layout of CktAl using the TimberWolf placement

was also compared to the manual layout of the same

TABLE I

TIMBERWOLF STANDARD CELL PLACEMENT OPTIMIZATION PROGRAM

Total Final CPU Time

Wire Length Chip Area in Hours

Circuit # Cells Reduction Reduction VAX 780

CktF 2700 66% 57’% 84

CktG 1500 ** 40% 36

CktAl 1500 45% 30% 20

CktA2 1500 37% 25% 10

CktB 1000 57% 31% 8

CktC 200 41% 15%* 2

CktD 100 37% 15%* 0.5

*pad-limited**not recorded

circuit. A team of designers from AMI worked approxi-

mately 4 months on the layout after which time the “effort

was abandoned for two reasons. First, the projected man-

ual layout was 10-percent larger than the layout produced

by CIPAR with TimberWolf, and second, the tape-out

deadline had been reached. Manual layouts of circuits

CktF and CktG were not attempted by AMI because of the

rapid turnaround required by their customer.

CktF and CktG were double-metal circuits, Conse-

quently there were many uncommitted route throughs

present in each cell. By weighting the vertical net spans

approximately one half as much as the horizontal net

spans, almost 20-percent additional area reductions were

achieved over equal-weighting results.

The CktC and CktD circuits could not have their areas

reduced more than 15 percent due to pad limitation. There

were two versions of the CktA circuit. The second version

had very many of its cells specified to occur in fixed

sequences. Hence the number of states in the state space S

is significantly reduced. It has been experimentally ob-

served that the wiring area reduction achieved by

TimberWolf is less if the cardinality of the state space is

reduced.

The effect of the TimberWolf placement optimization

can be further demonstrated by the number of route-

through cells which were required. For the CktD circuit,

the number of route-through cells was reduced from 50 to

14. Furthermore, the number of route throughs was re-

duced from 51 to zero for the CktC circuit. For the CktB

circuit, more than 1000 route-through cells were eliminated.

All of the approximately 300 route-through cells were

eliminated for the 1500-cell CktA circuit.

The TimberWolf standard cell program was also inter-

faced to the Zymos placement and routing package

(ZYPAR). For a 1000-cell circuit, TimberWolf reduced the

total estimated wire length by 44 percent in comparison to

ZYPAR. The chip area reduction was limited to 8 percent

as a result of using the TimberWolf placement. The

smaller-than-expected area reduction was a result of the

ZYPAR post-placement row-compaction routine which

greatly altered the TimberWolf placement. Modification of

the compaction algorithm is under way and much greater

area reductions are expected as a result of using Timber-

Wolf.
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An interface to TimberWolf was also developed by Intel

Corp. Two 1000-cell circuits were used for comparison to

their standard cell placement and routing package. The

first circuit was manually placed while the second circuit

was placed automatically. The result of the TimberWolf

placement was a 10-percent final chip area reduction for

the first (manually-placed) circuit with a 30-percent reduc-

tion in the number of route throughs required. The

TimberWolf placement resulted in a 25-percent final chip

area reduction for the second circuit.

Furthermore, Hughes Aircraft Company developed an

interface to TimberWolf. A 1000-cell circuit was chosen for

comparison with their manual placement methodology.

The result of the TimberWolf placement was a 6-percent

area reduction and a 26-percent reduction in the number of

route-through cells that were required for the 1000-cell

circuit.

IV. STANDARD CELL GLOBAL ROUTER PROGRAM

A. Introduction

The layout of a standard cell circuit often consists of

rows of cells bordered by pads and/or buffer circuitry. In

order to minimize the need for route-through cells (which

increase the area of a circuit), the cells are typically de-

signed with electrically equivalent (internally connected)

pins on both the top and bottom side. Thus a net from

above can be connected to the top pin while the same net

from below can be connected to the bottom pin. The

internally connected pins are referred to as a pin cluster. A

portion of a net which must connect two pin clusters is

referred to as a net segment.

It often arises that a pin cluster from one cell must be

connected to a pin cluster from another cell on the same

row. If each such cluster has a top pin and a bottom pin,

then this net segment is defined as being switchable. A

decision must be made as to whether to route the switch-

able net segment in the channel above or below the row.

The TimberWolf global router assigns switchable net seg-

ments to channels based on the minimization of the total

channel density. The total channel density is defined to be

the sum of the channel densities for all of the channels.

The TimberWolf global router is applicable to standard

cell circuits consisting of rows of cells bordered by pads

and/or buffer circuitry. The global router assumes that all

necessary route-through cells have been inserted into the

proper rows. The global router routes all nets and consid-

ers all pins except those nets and pins which route power

and ground. It is often the case (as with CIPAR) that

separate routines are used to route power and ground. The

global router takes into consideration pins on the outer

pads or buffer cells.

Some standard cell place and route systems (for exam-

ple, CIPAR) do not employ a global router. Instead, only a

channel router is used and it routes as many connections as

possible for each channel. Thus the order in which the

channels are routed can have a substantial effect on the

total number of wiring tracks required (and thus the area

of the circuit). In contrast, after using the TimberWolf

global router, specific pins have been identified for in-

terconnection. Thus the number of wiring tracks required

is independent of the order in which the channels are

routed.

B. Global Router Algorithm

The TimberWolf global router performs the optimization

in two stages. The first stage examines each net separately.

Two basic steps are applied to each net. 1) The first step

identifies which pairs of pin clusters are to be connected

based on the minimization of the Manhattan interconnec-

tion distance. This results in the identification of the net

segments. 2) The second step considers each net segment

and selects a pin from each cluster such that the Manhat-

tan length of the segment is minimized. Two pairs of pins

are selected for each switchable net segment.

The second stage results in the assignment of a channel

for each switchable net segment. The two stages are de-

tailed below.

1) First Stage of the Global Router Algorithm: The first

stage consists of applying the two steps detailed below to

each net separately.

Step 1

For a given net, the pin clusters that need to be con-

nected are determined. A graph is formed in which the

clusters are represented by the nodes and connections

between the nodes (the formation of potential net seg-

ments) are represented by edges. An edge connects two

nodes if a net segment could possibly connect the two

clusters. For example, two clusters can be connected only if

one of the following two conditions is true. 1) They lie on

the same row, with no intervening cluster occupying the

same row. This is the case of a potential switchable net

segment. The net segment is switchable if each cluster has a

pin on the top and on the bottom of the row. That is, the

net segment could be routed either in the channel above

the row or in the channel below the row. 2) They lie on

neighboring rows. Furthermore, there cannot be another

cluster lying between the two clusters which occupies either

of the rows occupied by the two clusters.

The result of conditions 1) and 2) above is that the

maximum degree of a node is 4. Further, this maximum

degree is achieved when a given cluster is to be connected

to two clusters in the row above (one to the left and one to

the right) and to two clusters in the row below (also one to

the left and one to the right).

The minimum spanning tree is generated for the graph

via Kruskal’s algorithm [7]. This portion of the algorithm

effectively generates a Steiner tree [8] for the interconnec-

tion of the clusters. When the minimum spanning tree has

been generated, pairs of pin clusters have been identified

which are to be connected by a net segment.

Step 2

In this step, each edge of the minimum spanning tree is

examined, and one pin from each cluster is selected to form
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the actual net segment. In the case of an edge connecting

two clusters on the same row, it is determined if this is a

switchable net segment. If the segment is switchable, then

two pairs of pins are selected. One pair is for the segment

routed in the channel above the row and another pair is for

the segment routed in the channel below the row.

Pin selection proceeds as follows. 1) For the case of two

clusters on neighboring rows, the bottom pin of the top

cluster and the top pin of the bottom cluster are selected

based on the minimization of the Manhattan distance

between the two points. 2) For the case of two clusters on

the same row: a) If the edge is determined to be switchable,

the top pin from each cluster is selected based on the

minimization of the distance between the two points. Also,

the bottom pin from each cluster is similarly selected. b) If

the edge is not switchable, either the pair of top pins (if the

segment must be routed in the channel above the row) or

the pair of bottom pins (if the segment must be routed in

the channel below the row) are selected. The pin selection

is again based on the minimization of the segment length.

2) Second Stage of the Global Router Algorithm: This step

employs a simulated annealing algorithm. The net seg-

ments (for all of the nets) with their respective pins are

supplied as input. One half of the minimum contact-to-

contact spacing is added to each end of the horizontal span

of each segment. For each switchable segment, an arbitrary

initial selection (of above or below the row) is made. Each

channel is examined sequentially to determine its density.

The densities of the channels are summed, and this’ sum is

the initial value of the cost function. A new state of the

configuration is generated by the random selection of a

switchable segment and then routing it on the opposite side

of the row from its current position. As a result of the new

state, the cost function either increases by 1, decreases by

1, or remains the same. That is, the total channel density

changes by at most 1.

The case of no’ change in the cost is treated further. This

is the case in which the net segment switch has no effect on

the total channel density. A second cost function is in-

troduced in this case. This cost function is a measure of the

congestion in a channel between the two points defining

the span of a net segment. The cost function is evaluated

by taking the difference between the overall channel den-

sity and the density between the two points defining the

span. The cost function is first evaluated for the span of

the net segment in the original channel. Next, the cost

function is evaluated for the net segment span in the new

channel. The difference in cost ( Ac) is determined by

subtracting the second cost function value from the first. A

negative value of Ac indicates that switching the net seg-

ment to the new channel places the segment in a channel of

less congestion.

C. Results

The global router was also interfaced to the CIPAR

placement and routing package developed by AMI. The

global router reduced the number of wiring tracks used by

the CIPAR router by 10 to 20 percent. Because routing

TABLE II

TIMBERWOLF STANDARD CELL OPTIMIZATION PROGRAMS

Global CPU

Router Final Time

Area Chip Area VAX 780

Circuit g Cells Reduction Reduction in Hours

CktF 2700 8% 62% 1

CktG 1500 8% 45% 0.5
CktA 1500 6.1% 34% 0.5
CktB 1000 6% 35% 0.3

typically occupies one half of the chip area, this translated

to an overall area savings of 6 to 8 percent.

For the largest circuit (2700-cell CktF), the global router

reduced the area by an additional 8 percent. A total area

savings of 62 percent was achieved for CktF when both

TimberWolf placement optimization and the global router

were applied. The results are summarized in Table II,

showing the additional area reductions due to use of the

global router and also the overall area reductions as a

result of using both TimberWolf placement and global

routing.

Simulation results for CktG revealed that all intercon-

nections had capacitance values below the specifications,

and hence that the circuit should operate properly at the

specific clock rate. Simulation results for CktF were not

available at this time.

Fig. 2 depicts the layout of a 1500 cell circuit which was

produced by CIPAR. The layout as a result of using

.TimberWolf for placement and global routing is shown in

Fig. 3. Note that the TimberWolf layout was pad limited

and hence the area reduction achieved was limited to 11

percent. However, the core size (the area inside the pad

ring) was reduced by 22 percent in area.

V. MACRO/CUSTOM PLACEMENT OPTIMIZATION

PROGRAM

A. Introduction

This program optimizes the placement of macro cells

and custom cells, as well as pads. The term macro cell will

be used to refer to a cell contained in a cell library. That is,

the dimensions of the cell are known, as are the pin

locations. The term custom cell will be used to refer to a

block of circuitry known only to occupy an estimated area

and to possess a list of pins.

The program places circuits comprised solely of macro

cells as well as circuits comprised entirely of custom cells.

Furthermore, the program will place circuits consisting of a

combination of macro and custom cells. The macro cells

and custom cells may be of any rectilinear shape.

TimberWolf allows the specification of lower and upper

bounds for the aspect ratio of a custom cell. If a range of

aspect ratios is given for a custom cell, TimberWolf will try

to select the shape of the cell which minimizes chip area.

Wire length calculations are based on the exact pin

locations. Thus all possible orientations are considered for

each cell.
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Another feature of TimberWolf is the multiple region

capability. This feature incorporates either a division of the

chip into regions or the placement of multiple chips simul-

taneously. Interchanges of cells from different regions are

permitted only if the regions belong to the same exchange

class. The exchange class mechanism is extended to indi-

vidual cells as well.

Pins are specified in several possible ways. 1) A pin may

be given a particular fixed location. 2) A pin may be

assigned to a particular side or sides of the cell. 3) A group

of pins may be assigned to a particular side or sides of a

cell. 4) A group of pins may be assigned to a particular

sequence as well as a particular side or sides.

B. Macro/Custom Cell Placement Algorithm

For macro and custom cells, there are often pins on all

of the sides of the cells. Consequently, wiring space must

be allocated around each cell. If insufficient space is allo-

cated during TimberWolf placement, the global and de-

tailed routers will have to (perhaps substantially) alter the

placement. The strategy employed by TimberWolf to en-

sure routability with a minimum amount of placement

alteration during routing consists of the following:

TimberWolf (by default) computes the expected wiring

area required along each side of each cell based on the

number of pins on that side. Appropriate borders are then

appended around the enclosed area of the cell. This pre-

vents cells from abutting in the final placement and hence

allows approximately sufficient wiring space around each

cell. Furthermore, TimberWolf allows the user to override

the default border values.

The number of possible locations at which an uncom-

mitted pin could be placed on a custom cell can often

number into the thousands. Execution time considerations

(as in the standard cell program) require that the pin

locations be stored for each orientation of the cell. Clearly

the amount of storage required can become excessively

large. This potential problem is averted by defining a
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Fig. 3, CIPAR layout of 1500-cell circuit with TimberWolf placement

and glob at routing.

specified number of pin sites approximately evenly spaced

along the periphery of a cell. Furthermore, each site is

assigned a capacity. The capacity is a function of the

number of pin, locations encompassed by the site. During

the annealing stages, pins are assigned to sites. Upon

completion of the annealing algorithm, the pins for a given

site are assigned to locations within the scope of the site

based on the minimization of wire length. For accuracy

considerations, the number of pin sites that are declared

for a given placement problem is usually limited only by

memory capacity.

The location of the pins on a macro cell are taken

exactly. That is, their location is not approximated by the

pin-site mechanism. The same is true for fixed-location

pins on custom cells (if any are so specified). The capacity

for a site in the vicinity of a fixed-location pin is corre-

spondingly reduced.

The cost function consists of two independent parts. The

first part is the total estimated wire length which is based

on the sum over all nets of the -half-perimeter of a net’s

bounding box. The second is the penalty function. The

penalty function consists of two parts. 1) The first part is

the sum of the overlap penalties for the cells. This penalty

function was incorporated because of the usual difference

in the size and shape of the cells. Often two cells are

selected for interchange which differ in size and/or shape.

Therefore, an exchange of location of these two cells often

results in some overlap with one or more of the cells.

Furthermore, the program often selects a single cell for a

displacement to a new location or an aspect ratio change

(in the case of custom cells). Once again, some overlap may

result. The penalty assessed for an overlap of two cells is

equal to the square of the quantity of the area of overlap

(including cell borders) plus an offset value. The offset

parameter is selected to ensure that as the pararnete~-%

approaches zero, then the total overlap approaches zero. 2)

The second part is the sum of the penalties assessed for

the contents of a pin site exceeding its capacity. When a

pin is displaced from an original site to a new site, the

contents of the old site is reduced by 1 and the contents of

the new site is increased by 1. The penalty assessed for a

site is a product of the square of the amount by which the

contents exceed the capacity, times a factor inversely re-

lated to the capacity of the site. This factor reflects the fact

that exceeding the capacity by a given amount is a more

serious violation for the sites with smaller capacities.
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New states can be generated in several possible ways. 1)

A pair of cells (either could be a macro cell or a custom

cell) are selected for interchange. 2) A single cell is selected

for a displacement to a new location. 3) A single cell is

selected for an orientation change. 4) A custom cell is

selected for an aspect ratio change. 5) An uncommitted pin

(or sequence of pins) is assigned to a new site (or sites).

The ratio of single cell displacements to cell interchanges

has a significant effect on the quality of the final place-

ment. Initial experimental investigation has revealed that

the best results are obtained when the ratio is about 10

to 1.

The strategy for generating new states is based on the

following: 1) A random number between one and the

number of cells is generated. The cells are numbered

sequentially from one. 2) A second random number is

generated between 1 and the number of cells times 10. 3) If

the two numbers both represent cells, then the pair of cells

are interchanged to generate a new state. 4) If only the first

number represents a cell, then the new state is generated by

the displacement of the cell to a randomly selected loca-

tion. If this new state was rejected, the next state generated

is an orientation change for the cell. Similarly, if this new

state was rejected and if the cell is a custom cell, then the

next state is an aspect ratio change. Finally, if this new

state was rejected, then a new state is generated by the

selection of an uncommitted pin or group of uncommitted

pins for transfer to a new pin site or sites.

As in the case of standard cell placement, the displace-

ment of a cell to a new location is controlled by a range

limiter, which limits the range of the displacement of a cell.

For example, in the latter stages of the algorithm when the

value of T approaches zero, the displacement of a cell has

very little chance of being accepted unless the displacement

is very local. By limiting the range of the cell displacements

in the latter stages of the algorithm, the cells undergo many

small displacements while gradually eliminating overlaps

and reducing wire length.

The implementation of the range limiter is as follows. A

rectangular window is centered at the center of the cell to

be displaced and this window has a particular horizontal

span and a particular vertical span. At the beginning of the

algorithm, when T is at its maximum value, the horizontal

span of the window is equal to twice the horizontal span of

the chip and similarly the vertical span of the window is

equal to twice the vertical span of the chip. The horizontal

and vertical window spans are proportional to the loga-

rithm of the value of T. Hence, when the value of T is

reduced, the size of the window is correspondingly re-

duced. When a cell is to be displaced, a randomly selected

location within the window is chosen as the new location

for the cell. That is, a region is randomly selected which

intersects the window and then a random position is

selected within that region and within the window.

Pairwise interchanges of cells are also controlled by the

range limiter. An interchange of two cells is attempted only

if the window can be positioned such that it contains the

centers of both cells.

This program is also applicable to printed circuit ,board

placement problems. The circuits to be placed are handled

in the same manner as macro cells, that is, cells with fixed

geometry and fixed pin locations. In printed circuit board

layouts, total wire length and maximum wire length mini-

mization are important objectives per se in addition to

their correlation with ease of routing. In fact, signal cross-

talk due to long wires may cause signal degradation and

limit the speed of operation much more severely than in

integrated circuits.

C. Results

The TimberWolf macro/custom cell placement optimi-

zation program is currently being interfaced to CIPAR for

testing purposes. In addition, testing is in progress on some

macro cell circuits designed at UC Berkeley.

This program was applied to a Honeywell Information

Systems Italy printed circuit board problem in which the

circuits had variable size. The processor board required the

placement of 613 circuits, each of which had from 2 to 64

pins. The circuits had to be placed on a 14.4X 16 in printed

circuit board. The processor board had 900 nets, 4000 pins,

and contained 3 microprocessors.

TimberWolf used 18 h of CPU time on a VAX-

780/UNIX system to place the circuits. The placement

obtained was routed by the HONDA (Honeywell Design

Automation) printed circuit router and 96-percent routing

completion was achieved.

For comparison, the manual placement of the same

printed circuit board was considered. The total estimated

wire length of the TimberWolf placement was 21-percent

less than the manual placement. HONDA was also run on

the manual placement resulting in 99-percent routing com-

pletion. The TimberWolf placement resulted in a 10-per-

cent reduction in actual total wire length. Furthermore, the

manual placement required approximately 4 months of

effort on the part of the design team.

These results are preliminary since a few constraints

deriving from the automatic insertion of components on

the printed circuit board were neglected by TimberWolf.

Furthermore, the HONDA router is specifically tuned to a

particular layout style, and hence is not fully compatible

with an automatic layout program such as TimberWolf.

Minor modifications to the router should produce improve-

ments in the final results.

VI. GATE-ARRAY PLACEMENT OPTIMIZATION

PROGRAM

A. Introduction

This section describes the generalized gate-array place-

ment program. Each fundamental unit in a gate array will

be referred to as a cell. Hence, a 50 by 50 gate array is said

to have 2500 cells. Some gate array designs allow ad-

ditional flexibility and hence greater gate utilization by

creating functionally independent units within a cell. For
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example, Tektronix gate arrays widely utilize functional

units which are half-cell sized. TimberWolf allows the

functional units to be half-cell sized or quarter-cell sized.

The term module will refer to a fundamental unit specified

in the net list. A module maybe the size of: 1) a full cell, 2)

a half cell, or 3) a quarter cell. Additionally, macro mod-

ules may be specified. A macro module consists of a

prewired, arbitrarily shaped collection of cells.

TimberWolf has other features which provide additional

flexibility. For example, a module (or macro module) may

be designated as unmovable (that is, preplaced) or as

belonging to an exchange class of modules. The modules in

such a class may only be interchanged among themselves.

This feature is often desirable when a group of modules on

the edge of the gate array are to be considered as primary

terminals. Often the exact location of a given primary

terminal is not important, only that it lie on a given edge.

It is often the case that gate arrays have wider channels

in the center of the array. This is in anticipation of the

greatest wiring congestion occurring in this region. Because

prewired macro modules usually have a fixed cell-to-cell

spacing, certain macros may not be placed in the center

regicln (or the outer regions). TimberWolf allows the desig-

naticm of cell locations as either suitable or unsuitable for a

particular set of macro modules.

B. Gate-Array Placement A lgorithm

The TimberWolf gate array placement program can be

used with either of two cost functions. The first cost

function is based on the computation of net crossing

histograms for each horizontal and vertical channel of the

placement region. The histograms are computed by consid-

ering the bounding box of each net and adding 1 to the

histogram for each channel intersecting the bounding box.

The sum of the histogram values for each horizontal and

vertical channel is equivalent to summing the half perime-

ters of the bounding boxes of each net. Further, a net-

crossing threshold value is assigned to each channel. If the

number of nets crossing a channel exceeds the specified

threshold value, a penalty is assessed proportional to the

square of the number of net crossings exceeding the

threshold. The threshold mechanism has the effect of even-

ing out the wiring congestion during the earlier stages of

the annealing. Thk has shown to result in a lower value of

the total wire length. A partitioning effect may be pro-

duced by setting the threshold of a particular channel to

zero or a negative value. In this case, nets crossing this

channel will be severely penalized. The formulation of the

cost function in terms of net-crossing histograms and

threshold values was first introduced by Kirkpatrick, Gelatt,

and Vecchi [1].

A ~,econd cost function for this program examines the

local :routing congestion more closely. For this cost func-

tion, each channel segment is assigned a threshold value. A

channel segment is a portion of a horizontal or vertical

channel with a length equal to the cell-center to cell-center

spacing in that region of the array. For example, if the

bounding box of a net encompasses 2 cells in the horizon-
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TABLE III

TIMBERWOLF GATE AmuY PLACEMENTPROGRAM

Goto CPU

Circuit and Time

(it modules) Stevens Kuh TimberWolf in Mins...

151 2181 2098 1731 15

108 untested 1242 909 10
67 700 618 580 5

tal direction and 3 cells in the vertical direction, then a

total of 17 segments are enclosed by the bounding box. The

congestion per channel segment introduced by this net is

approximated as the half perimeter of the bounding box 5

divided by the total number of segments enclosed 17.

The factor of 5/17 is the estimated probability of oc-

cupancy for the given net in each of the 17 segments. The

given net contributes zero to aIl other segments. The sum-

mation of the occupancy probabilities over all nets for a

given segment is an estimate of the number of wiring tracks

required. The cost function is then the sum of the expected

occupancy of each segment plus a penalty assessed for each

segment which has occupancy exceeding the corresponding

threshold. Specifying a threshold value for each channel

segment which reflects the actual fixed channel width

increases the likelihood that the final placement will be

routable. Furthermore, the total wire length

mized within the limits of these constraints.

C. Results

will be mini-

Experiments are currently being initiated on large gate

array problems. To test the program and compare it with

existing placement techniques, a set of standard bench-

marks have been considered. These benchmarks are the

ILLIAC IV computer boards reported by Stevens [9]. Note

that the printed circuit board problem as stated for these

examples is a particular case of the general gate array

placement problem described in the previous subsection.

Wire length for a net was estimated by computing one

half of the perimeter of the net’s bounding box. The figure

of merit is the sum of the estimated wire lengths for each

net.

Three of the ILLIAC IV computer boards were tested. 1)

The largest example required the placement of 151 mod-

ules on an 11 x 15 board. TimberWolf reduced the total

wire length by 21 percent over Stevens’ result and by 17

percent over the result published by Goto and Kuh [10]. 2)

The second example required the placement of 108 mod-

ules on an 8 x 15 board. TimberWolf reduced the total wire

length by 27 percent over the result published by Goto and

Kuh. 3) The third example required the placement of 67

modules on a 5 X 15 board. TimberWolf reduced the total

wire length by 17 percent over Stevens’ result and 6 percent

over the result published by Goto and Kuh.

The value of a remained at a constant value of 0.90 for

each of the examples. The results are summarized in Table

III. CPU times are for a VAX 11/780 running UNIX.
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VII. CONCLUSIONS

The TimberWolf placement and routing package has

been shown to provide substantial chip area savings in

comparison to existing standard cell layout programs. Sub-

stantial wire length reductions were also achieved for the

gate array placement program for some benchmark exam-

ples. The TimberWolf macro/custom program is applica-

ble to placement problems as complex as a multichip

design employing a combination of macro cells and custom

cells. The macro/custom program was applied to an in-

dustrial circuit board problem and improved the manual

placement by 10 percent in terms of total (exact) wire

length.

The TimberWolf placement and routing package is writ-

ten in the C programming language. The package currently

runs under both the VAX/UNIX and VAX/VMS operat-

ing systems as well as the IBM/UTS system. The package

is easily convertible to other systems supporting the C

language.
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