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The analysis of musical signals to extract audio descriptors that can potentially characterize their
timbre has been disparate and often too focused on a particular small set of sounds. The Timbre
Toolbox provides a comprehensive set of descriptors that can be useful in perceptual research, as
well as in music information retrieval and machine-learning approaches to content-based retrieval
in large sound databases. Sound events are first analyzed in terms of various input representations
(short-term Fourier transform, harmonic sinusoidal components, an auditory model based on the
equivalent rectangular bandwidth concept, the energy envelope). A large number of audio descrip-
tors are then derived from each of these representations to capture temporal, spectral, spectrotempo-
ral, and energetic properties of the sound events. Some descriptors are global, providing a single
value for the whole sound event, whereas others are time-varying. Robust descriptive statistics are
used to characterize the time-varying descriptors. To examine the information redundancy across
audio descriptors, correlational analysis followed by hierarchical clustering is performed. This anal-
ysis suggests ten classes of relatively independent audio descriptors, showing that the Timbre Tool-
box is a multidimensional instrument for the measurement of the acoustical structure of complex

sound signals. © 2011 Acoustical Society of America. [DOI: 10.1121/1.3642604]

PACS number(s): 43.66.Jh, 43.75.Yy, 43.64.Bt, 43.60.Cg [DD]

. INTRODUCTION

There is a growing interest within several domains of
research and technology in establishing the acoustical basis
of musical timbre perception. The term “timbre” encom-
passes a set of auditory attributes of sound events in addition
to pitch, loudness, duration, and spatial position. Psycho-
acoustic research has modeled timbre as a multidimensional
phenomenon and represents its perceptual structure in terms
of “timbre spaces.” It is important to be able to derive reli-
able acoustical parameters from the audio signal that can
serve as potential physical correlates (or audio descriptors)
of these dimensions. Composers and computer musicians
need control over these acoustical parameters for sound syn-
thesis and computer-aided orchestration. In the field of music
information retrieval, perceptually relevant timbre parame-
ters are needed as indices for content-based search of tar-
geted timbres in very large sound databases, as well as for
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automatic categorization, recognition, and identification
schemes for musical instrument and environmental sounds
(McAdams, 1993). Having a systematic approach to sound
analysis that is oriented towards human perception is thus a
crucial step in applying musical acoustic research to these
problem areas. This article describes a set of audio analysis
tools that have been developed to achieve this goal, using a
number of different input representations of the audio signal
and numerous audio descriptors derived from those represen-
tations. It also conducts an analysis of the redundancy of in-
formation across the set of audio descriptors so that
researchers can systematically select independent descriptors
for their analyses. As such, the Timbre Toolbox, written in
the MATLAB programming language, aims to provide a
unique tool for the audio research and musical acoustics
communities.

One of the most fruitful approaches to timbre perception
has used multidimensional scaling analysis of dissimilarity
ratings on pairs of musical instrument sounds differing pri-
marily in their timbres (Plomp, 1970; Wedin and Goude,
1972; Wessel, 1973; Miller and Carterette, 1975; Grey,
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1977; Wessel, 1979; Krumhansl, 1989; Iverson and Krum-
hansl, 1993; McAdams et al., 1995; Kendall et al., 1999;
Lakatos, 2000; Marozeau et al., 2003). In most of these stud-
ies, qualitative interpretations of the perceptual dimensions
involved examining various acoustic representations of the
signals and using them in a descriptive fashion to “explain”
the perceptual results. Grey and Gordon (1978) were among
the first to try to establish quantitative correlations between
the position along a perceptual dimension and a value along
an acoustic dimension derived from the sound signal, spec-
tral centroid in their case. We will call such parameters
“audio descriptors.”’ Subsequent work by Iverson and
Krumhansl (1993), Krimphoff et al. (1994), McAdams et al.
(1995), and Lakatos (2000) made a more systematic attempt
at explaining all perceptual dimensions of a given timbre
space by correlating acoustic parameters with perceptual
dimensions. This approach led (1) to models of timbral dis-
tance based on audio descriptors (Misdariis et al., 1998; Pee-
ters et al., 2000), some of which were included in MPEG-7
(ISO/TEC, 2002); (2) to the development of a large set of
descriptors for use in music information retrieval and music
content analysis (Fujinaga, 1998; Martin et al., 1998; Fuji-
naga and MacMillan, 2000; Herrera et al., 2000; Rioux et
al., 2002; Peeters, 2004; Tindale et al., 2004); and (3) to con-
firmatory studies in which sounds were synthesized with spe-
cific acoustic properties to see if they could be recovered
perceptually (Caclin et al., 2005; Marozeau and de
Cheveigné, 2007). Thus the development of audio descrip-
tors has furthered research on musical timbre from several
vantage points.

Quantitative studies of musical timbre have relied on dif-
ferent methods for extracting descriptors of the sound signals.
As a result, the literature in this field lacks an exhaustive
standard for the acoustical characterization of the signals. One
of the main consequences of this fact is a decrease in the com-
parability of results from different studies. In human percep-
tion studies, for example, it is not possible to firmly conclude
whether diverging results from psychoacoustic studies of mu-
sical timbre are due to the effect of variability in the sound
stimuli or in the algorithm used to extract the audio descrip-
tors. Further, in the machine-learning literature, it is not easy
to establish whether differences across studies in classification
performance are caused by a change in the sound-descriptor
system or by differences in the mathematics of the classifica-
tion algorithms. A second consequence of the variety of
approaches to acoustical characterization is that no single
study adopts a truly exhaustive system for characterizing
acoustical signals: different studies are indeed likely to focus
on aspects of the acoustical information that seem most rele-
vant to their concerns. As a result, it is not possible to assess
whether our knowledge of the human processing of complex
sounds truly captures the entire gamut of perceptually relevant
sound parameters. Similarly, music information retrieval stud-
ies might not exploit the full information potential of the
sound signals, and hence may not attain the best possible per-
formance allowed by the chosen classification strategy.

The Timbre Toolbox implements several different classes
of audio descriptors related to the spectral, temporal, spectro-
temporal, and intensive properties of the signals. The majority
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of the implemented audio descriptors have proven useful in
various timbre-related tasks, such as explaining perceptual
dimensions, performing acoustic content-based search in sound
databases, and performing automatic musical instrument classi-
fication. In this article, we use the Timbre Toolbox to analyze a
large database of musical sounds, the McGill University Master
Samples library (Opolko and Wapnick, 2006). We also assess
the informational redundancy of the Timbre Toolbox descrip-
tors within the analyzed corpus of musical signals based on
their intercorrelations. The goal of this analysis is to quantify
the similarity of the various descriptors, to estimate approxi-
mately the number of groups of statistically independent
descriptors, to assess the extent to which between-descriptor
similarities are affected by a change in two important parame-
ters of the analysis pipeline (input representation and the de-
scriptive  statistic used to summarize the time-varying
descriptors over the duration of a sound event), and to provide
recommendations that future studies can follow to select among
the implemented descriptors.

Il. STRUCTURE OF THE AUDIO DESCRIPTOR
ANALYSIS SYSTEM

A. Global organization

A system for the extraction of audio descriptors is usu-
ally organized according to the properties of the descriptors.
We can distinguish three main properties of an audio
descriptor: (1) the temporal extent over which the descriptor
is computed (a specific region in time, such as the sustain, or
the whole duration of a sound file), (2) the signal representa-
tion used to compute it (e.g., the waveform, the energy enve-
lope or the short-term Fourier transform), and (3) the
descriptor concept described by it (e.g., the description of
the spectral envelope or the energy envelope over time). We
discuss these three properties below.

The temporal extent denotes the segment duration over
which the descriptor is derived. A descriptor can either directly
represent the whole sound event (e.g., the Log-Attack-Time
descriptor, because there is only one attack in a sound sample)
or represent a short-duration segment inside the event (e.g., the
time-varying spectral centroid, which is derived from a spectral
analysis of consecutive short-duration segments of a sound,
usually of 60 ms duration). Descriptors of the first group are
called “global descriptors,” and those of the second group are
called “time-varying descriptors.” Time-varying descriptors are
extracted within each time frame of the sound and therefore
form a sequence of values. In order to summarize the sequence
in terms of a single value, we use descriptive statistics, such as
minimum or maximum values, the mean or median, and the
standard deviation or interquartile range (i.e., the difference
between the 75th and 25th percentiles of the sequence of
values). As such, the structure of an audio descriptor system
usually separates the extraction of global descriptors (which are
directly considered as the final results) from the extraction of
time-varying descriptors (which are subsequently processed to
derive the descriptive statistics).

Most work on audio descriptors uses similar algorithms
but with variations in the extraction process. Indeed
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descriptors such as the spectral centroid can be extracted
from various input signal representations. In our case, we
consider the following input representations: Fourier spec-
trum (magnitude and power scales), harmonic sinusoidal
components, and the output of a model of auditory process-
ing—the Equivalent Rectangular Bandwidth (ERB) model.
Such systems are thus usually organized as a set of mathe-
matical operators (e.g., the formula for spectral centroid),
which are applied to an input signal representation. To the
contrary, some descriptor concepts can only be applied to
specific signal representations. An example of this is the
inharmonicity coefficient, which can only be derived from a
harmonic signal representation.

Finally, one can attempt to distinguish descriptors
according to the concept described. For example the autocor-
relation coefficients, spectral centroid, spectral spread, spec-
tral Kkurtosis, spectral skewness, spectral flatness, and
spectral crest are all related to the shape of the spectrum,
although they use different signal representations for their
computation. We did not attempt to organize the descriptors
according to these shared concepts, because this is subject to
controversy: is the spectral flatness more related to an energy
description than to a harmonicity description?

Below we first explain the input representations used
and then explain the various operators applied to them to
derive the audio descriptors. In Table I, we summarize the
audio descriptors, their dimensionalities, the abbreviation we
use to refer to them in Sec. IV, and the input representation
used to compute them.

B. Input representations

The input of the audio descriptor analysis system is an
audio signal. In the following, we denote it by s(n) where n
€ N is the sample number, or by s(t,) where t, = n/sr is the
time expressed in seconds corresponding to n and to a sam-
pling rate sr. The duration of the audio signal is denoted by
L, when expressed in samples and by L; when expressed in
seconds. For the extraction of the audio descriptors we con-
sidered the four following representations of the audio signal
s(t,): (1) the temporal energy envelope, (2) the short-term
Fourier transform, (3) the output of an auditory model, and
(4) sinusoidal harmonic partials.

1. Temporal Energy Envelope

The temporal envelope e(z,) of the audio signal s(z,) is
derived from the amplitude of the analytic signal s,(z,) given
by the Hilbert transform of s(#,). This amplitude signal is
then low-pass filtered using a third-order Butterworth filter
with a cutoff frequency of 5 Hz. e(#,) has the same sampling
rate and duration as that of s(z,,).

2. Short-term Fourier Transform (STFT amplitude and
STFT power)

The STFT representation is obtained using a sliding-
window analysis over the audio signal s(¢,). We use a
Hamming analysis window of 23.2 ms duration with a hop
size of 5.8 ms. In the following we denote the center of one
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analysis window by m when expressed in samples and by ¢,
when expressed in seconds. The amplitude spectrum of the
STFT is then used as one of the representations in order to
derive the audio descriptors. Two types of scales are tested
for the amplitude: a linear scale (called “magnitude” here-
after) and squared amplitude (called “power” hereafter). In
the following, we denote the frequency and amplitude of the
bin k € N obtained at frame t,, by fi(t,,) and a(t,,), respec-
tively. In the case of the STFT, because the hop size is equal
to 5.8 ms, the sampling rate is lower than that of the tempo-
ral envelope e(?,). It is 172.26 Hz independently of the audio
signal sampling rate.

3. Auditory model (ERB gam and ERB fft)

One can model the way sounds are analyzed in the pe-
ripheral auditory system with a bank of bandpass filters
whose bandwidths depend on the center frequency, a notion
related to the concept of “critical band” (CB), based partly
on the results of masking experiments. The Bark scale was
proposed by Zwicker (1961) to provide an estimation of the
CB. Another concept, the Equivalent Rectangular Bandwidth
(ERB) has been proposed by Moore and Glasberg (1983) for
modeling auditory filters based on more recent findings. The
ERB of a given filter is equal to the bandwidth of a perfect
rectangular filter with similar area and height. Moore and
Glasberg proposed an equation describing the value of the
ERB as a function of center frequency. Consequently, the
frequency spectrum of a sound is assumed to be partitioned
into B adjacent ERB filters used for calculating the audio
descriptors based on a peripheral auditory system representa-
tion. In the implementation used in the Timbre Toolbox, the
number of bands B depends on the sampling rate of the audio
signal: B="77 for sr =96 kHz, 77 for 44.1 kHz, 69 for 22
kHz, and 56 for 11 kHz. One version uses a bank of gamma-
tone filters (Patterson ef al., 1992) followed by temporal
smoothing. Because of the differences in duration of the
impulse response, the total temporal smoothing depends on
frequency. The other version uses an FFT that gives an iden-
tical temporal response for all channels (which is useful for
computing the time-varying spectral descriptors, for exam-
ple). Both have approximately the same frequency resolu-
tion. As for the STFT, we used a hop size of 5.8 ms for the
computation of the ERB using FFT.

4. Sinusoidal harmonic partials (Harmonic)

An audio signal can be represented as a sum of sinusoi-
dal components (or partials) [cf. McAulay and Quatieri
(1986) or Serra and Smith (1990)] with slowly varying fre-
quency and amplitude:

H
8(tn) ~ Zah(tn> cos (27fy (t,) + ¢h,0(tn))v e))

h=1

where a,(t,), f(t,), and ¢, o(t,) are the amplitude, frequency,
and initial phase of partial / at time #,. Given the assumption
of slowly varying amplitude and frequency, a,(t,) and f(¢,)
are lowpass signals that can therefore be estimated using
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TABLE I. Audio descriptors, corresponding number of dimensions, unit, abbreviation used as the variable name in the MATLAB code and input signal repre-
sentation. Units symbols: - =no unit (when the descriptor is "normalized"); @ =amplitude of audio signal; F =Hz for the Harmonic, STFTmag and
STFTpower representations, and ERB-rate units for the ERBfft and ERBgam representations; / = a for the STFTmag representation and a” for the STFTpow,

ERBfft and ERBgam representations.

Audio descriptor Units  Abbreviation  Input representation
w  Attack s Att
5] Decay s Dec
2 | Release 8 Rel
‘S | Log-Attack Time log(s) LAT
g | Attack Slope a/s AttSlope (T, I E Envel
© Y Decrease Slope log(a)/s DecSlope SEIpOTas, LROEEy TaveoRe
‘s | Temporal Centroid 5 TempCent
= | Effective Duration s
) Frequency of Energy Modulation Hz FreqMod
\ Amplitude of Energy Modulation a AmpMod J
< Autocorrelation (12 coefficients) - AutoCorr e
Zero Crossing Rate s ZcrRate } Audio Signal
RMS-Energy Envelope RMSEnv } Temporal Energy Envelope
gpectra{ (:_Djentrgid g %pecgent 4
spectral Sprea SpecSprea ; 4
% Spectral Skewness - SpecSkew ST:FTmagmtude (STFTmag)
2, | Spectral Kurtosis - SpecKurt STFTpower (STFTpow)
B gpcctrél% %lope F! gpcc%lopc ERBfft (ERBfft)
@ pectral Decrease - pecDecr ERBeammat ERBuo:
< Spectral Rolloff F SpecRollOff Harmgg;riléna L gam)
a0/ Spectro-temporal variation - ]S:{)ecVar
2 ame Energy I FrameErg
g Spectral Flatness B SpecFlat
g pectra p : -
& | spectral Crest ) SpecCrest | STFTmag, STFTpow, ERBfft, ERBgam
= Harmonic Energy a’ HarmErg
Noise Energy a’ NoiseErg
Noisiness . Noisiness
Fundamental Frequency Hz FO H ;
Inharmonicity - InHarm Armonic.
Tristimulus (3 coefficients) B TriStim
\ Harmonic Spectral Deviation a HarmDev
Odd to even harmonic ratio - OddEveRatio

frame analysis: a,(t,,) and f;(t,,). For this, we use a Black-
man window of 100 ms duration and a hop size of 25 ms. It
should be noted that this window duration is larger than that
used for the computation of the STFT. The reason for this is
to obtain a better spectral resolution (separation between ad-
jacent spectral peaks), which is required in order to be able
to describe harmonics individually and to compute the
related harmonic descriptors. In line with Krimphoff et al.
(1994) and Misdariis et al. (1998), the number of partials H
is set to 20. This value represents a trade-off, because for a
50 Hz fundamental frequency it covers the range from 20 to
1000 Hz and for a 1000 Hz signal it covers the range from
1000 to 20000 Hz. This parameter can easily be changed in
the Timbre Toolbox.

In our system, the sinusoidal model is used for the esti-
mation of harmonic descriptors such as the tristimulus (Pol-
lard and Jansson, 1982) or the odd-to-even harmonic ratio
(Caclin et al., 2005). These descriptors require that an order
and a number be assigned to the partials (e.g., we need to
know which partials are the three first harmonics and which
are odd- or even-numbered harmonics). We thus need to
define a reference partial, as well as the relation between the
partials & and the reference partial. Because of this con-
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straint, we cannot use a blind sinusoidal model such as one
that will only estimate partials using partial tracking.

We use a harmonic sinusoidal model extended to the
slightly inharmonic case (such as for piano sounds), i.e., partials
Jfu(t,) are considered as multiples of a fundamental frequency
fo(t,,) or as an inharmonic deformation of a harmonic series.
For this, we define an inharmonicity coefficient o« > 0. The
content of the spectrum is now explained by partials at frequen-
cies fi(tm) = fo(tm)hV'1 + oh?. In order to estimate the model,
we first estimate the fundamental frequency at each frame z,,.
In the Timbre Toolbox implementation, we use the algorithm
proposed by Camacho and Harris (2008). Given that f(#,,) is an
estimate, we allow a departure from the estimated value,
denoted f(tn) = (fo(tm) +0(tm))hV/1+ ah?. For a given
frame t,,,, we then look for the best values of (z,,) and o (o is
presumed to be constant over frames) such that the energy of
the spectrum is best explained. We therefore search for values
of o(t,,) and o in order to maximize e,,(0, «) defined as

e, (6,2) = 3%, ((foltn) + () 1+ a?), @
h

where X,,,,(f) is the amplitude of the DFT at frequency f and
time t,,,.
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5. Comments on relationship between sampling rate,
pitch, and representation

It should be noted that, in our system, all window durations
and hop sizes are defined in seconds and then converted to sam-
ples according to the sampling rate of the input audio signal.
This guarantees that the same spectral resolution will be
obtained whatever the sampling rate of the signal. However,
the content of the representation itself will differ according to
the sampling rate. This is because the upper frequency of the
STFT depends on the sampling rate (it is equal to f;,.x = s1/2).
The same is true for the number of harmonic partials that one
can observe given a sampling rate or the number of ERB bands.
According to the fundamental frequency of the audio signal,
some representations may also coincide in the output. For
example, if the signal is purely harmonic (without any noise),
the STFT and sinusoidal harmonic partial representations will
give similar audio descriptors. Also for very high fundamental
frequencies, only a few partials may exist below the Nyquist
frequency, and the ERB output may be limited to a few bands.
It is also possible that too few harmonics exist to compute the
audio descriptors based on the sinusoidal harmonic model.
Therefore, when using the Timbre Toolbox, one should always
keep in mind the meaning of each representation and descriptor
when interpreting the descriptor values.

lll. DEFINITION OF AUDIO DESCRIPTORS

In this section, we define the audio descriptors as
operators applied to the four representations presented
above. This formulation corresponds to the MATLAB code
provided in the Timbre Toolbox (available for download
at http://recherche.ircam.fr/pub/timbretoolbox or http://www.
cirmmt.mcgill.ca/research/tools/timbretoolbox). In Table I, we
provide the list of all audio descriptors, their respective dimen-
sionalities, the units in which they are expressed, and the
applicability of a given signal representation to compute them.

A. Temporal parameters
1. Computations on the audio signal s(t,,)

The autocorrelation coefficients and zero-crossing rate
are time-varying descriptors computed directly from s(z,).
The computation is performed using a sliding-window analy-
sis with a window duration of 23.2 ms with a hop size of 2.9
ms. Its sampling rate is therefore 344.53 Hz independently
of the audio signal sampling rate.

a. Autocorrelation coefficients. The autocorrelation
coefficients (Brown, 1998) represent the spectral distribution
of the signal s(#,) in the time domain (the autocorrelation of
a signal is the inverse Fourier Transform of the spectral
energy distribution of the signal). It has been proven to pro-
vide a good description for classification (Brown et al.,
2001). From the autocorrelation, we keep only the first 12
coefficients (c € {1,..., 12}), expressed as

L,—c—1
xcorr(c) = ! s(n)s(n+c), (3)

xcorr(0) 4
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where L, is the window length expressed in samples and c is
the time lag of the autocorrelation expressed in samples. It
should be noted that, by its mathematical definition, the auto-
correlation coefficients depend on the sampling rate, because
the distance between two successive n is equal to 1/sr. It is
the only descriptor of the toolbox that depends on the
sampling rate.

b. Zero-crossing rate. The zero-crossing rate is a mea-
sure of the number of times the value of the signal s(z,)
crosses the zero axis. This value tends to be small for peri-
odic sounds and large for noisy sounds. In order to compute
this descriptor, the local DC offset of each frame of the
signal is first subtracted. The zero-crossing rate value at each
frame is then normalized by the window length L, in
seconds.

2. Energy envelope descriptors

The log-attack-time, attack-slope, decrease-slope,
temporal-centroid, effective-duration, and energy-modulation
are “global” descriptors computed using the energy envelope
e(t,). It should be noted that the log-attack-time and attack-
slope descriptors correspond closely to descriptors proposed
by Gordon (1987), Krimphoff (1993), Krimphoff et al.
(1994), and Wright (2008). In order to accurately estimate
them, one needs a robust estimation of the location of the
attack segment of a sound. Here we propose a new method to
estimate it.

a. Attack estimation. In order to estimate the start (z)
and end (7.,q) times of the attack, many algorithms rely on
fixed thresholds applied to the energy envelope e(t,) of the
signal [for example defining ¢, as the first value for which
e(t,) goes above 10% of the maximum of e(¢,) and 7.,q as the
moment of the maximum of e(z,)]. When applied to real
sounds, this method was found not to be robust.” In order to
address this problem, we use the “weakest-effort method”
proposed by Peeters (2004), in which the thresholds are not
fixed but are estimated according to the behavior of the sig-
nal during the attack. We first define a set of thresholds
0,=1{0.1,0.2,0.3,..., 1} as a proportion of the maximum of
the energy envelope. For each threshold 0;, we estimate the
time ¢; at which the energy envelope e(t,) reaches this thresh-
old for the first time: #; such that e(f;) = O;max(e(z,)). We
then define “effort” as the time interval between two succes-
sive t;, so named because it represents the effort taken by the
energy to go from one threshold to the next: w;; ;=111
— t;. This is illustrated in Fig. 1. The average value of the
“efforts” @ is then computed. The best threshold to be used
for the estimation of the start of the attack 0 is then defined
as the first 0; for which the effort , ;| goes below the value
o with o> 1. In other words, we are looking for the first
threshold for which the corresponding effort is “weak”: it is
w, 3 in Fig. 1. In a similar way, the best threshold to be used
for the estimation of the end of the attack 0,4 is defined as
the last 0; for which the effort w;;,; goes below the value
ow. It is w7 g in Fig. 1. After experimenting on 1500 sounds
from the Ircam Studio On Line instrument database, we have

Peeters et al.: The Timbre Toolbox

Downloaded 16 Nov 2011 to 132.206.14.230. Redistribution subject to ASA license or copyright; see http:/asadl.org/journals/doc/ASALIB-home/info/terms.jsp



set o = 3. Finally, the exact start time (fy) and end time (f.,q)
of the attack are estimated by taking the minimum and maxi-
mum values of e(#,) in the intervals w;,,, corresponding to
Os and Ocpq (0, 3 and ;g in Fig. 1).

b. Log-attack-time.
defined as

The log-attack-time is simply
LAT = log,o(fend — tst)- 4

c. Attack slope. The attack slope is defined as the aver-
age temporal slope of the energy during the attack segment.
We compute the local slopes of the energy corresponding to
each effort w;, We then compute a weighted average of the
slopes. The weights are chosen in order to emphasize slope
values in the middle of the attack (the weights are the values
of a Gaussian function centered around threshold = 50% and
with a standard-deviation of 0.5).

d. Decrease slope. The temporal decrease is a mea-
sure of the rate of decrease of the signal energy. It distin-
guishes non-sustained (e.g., percussive, pizzicato) sounds
from sustained sounds. Its calculation is based on a decreas-
ing exponential model of the energy envelope starting from
its maximum (Z,,,,,):

é(ty) = Ae~*n—tma) max, 5)

where « is estimated by linear regression on the logarithm of
the energy envelope.

e. Temporal centroid. The temporal centroid is the
center of gravity of the energy envelope. It distinguishes per-
cussive from sustained sounds. It has been proven to be a
perceptually important descriptor (Peeters et al., 2000):

n=np

> ta-e(t)

n=n;

e =", ©)

Z e(ty)

n

where n; and n, are the first and last values of n, respec-
tively, such that e(z,) is above 15% of its maximum value.
This is used in order to avoid including silent segments in
the computation of zc.

f. Effective duration. The effective duration is a mea-
sure intended to reflect the perceived duration of the signal.
It distinguishes percussive sounds from sustained sounds but
depends on the event duration. It is approximated by the time
the energy envelope e(t,) is above a given threshold. After
many empirical tests, we have set this threshold to 40%.

g. Energy modulation (tremolo). On the sustained part
of the sound (the part used for the computation of the
decrease slope), denoted by S, we represent the modulation
of the energy over time using a sinusoidal component. We
estimate the amplitude and frequency (in Hz) of the modula-
tion. This representation corresponds roughly to a tremolo
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FIG. 1. Estimation of the attack segment using Peeters’ (2004) weakest-
effort method.

model. For this, we first subtract from the time trajectory of
the energy e(z, € S), the model é(t, € S) used for the compu-
tation of the decrease slope. The resulting residual signal is
then analyzed using a DFT. The maximum peak of the DFT
in the range 1 to 10 Hz is then estimated and is used as an
estimate of the modulation amplitude and frequency. If no
peak is detected, the modulation amplitude is set to O.

B. Spectral parameters

All spectral parameters are time-varying descriptors com-
puted using either the magnitude STFT, the power STFT, the
harmonic sinusoidal partials or the ERB model output. In the
following, a,(t,,) represents the value at bin k of the magnitude
STFT, the power STFT, the k= h sinusoidal harmonic partial
or the k" ERB filter. We denote the frequency (in Hz) corre-
sponding to k by f;. We define the normalized form of a; by
Piltw) = [a(tn)] /o5, ax(t,). Therefore, py(t,) represents
the normalized value of the magnitude STFT, the power STFT,
sinusoidal harmonic partial or ERB filter at bin & and time ¢,
P may be considered as the probability of observing k.

1. Frame energy

The frame energy is computed as the sum of the squared
amplitudes ) (being STFT or harmonic partials coeffi-
cients) at time f,: Ex(t,)=> a;’(t,,). It should be noted
that the window used to perform the frame analysis is nor-
malized in amplitude such that its length or shape do not
influence the value obtained.

2. Statistical moments of the spectrum

The following set of audio descriptors are the first four
statistical moments of the spectrum.

Spectral centroid represents the spectral center of grav-
ity. It is defined as

K
,ul(tm) = Zf/» 'pk(tm)- (7)
k=1

Spectral spread or spectral standard-deviation represents the
spread of the spectrum around its mean value. It is defined as
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K 1/2
o (tm) = <Z(fk — (lm))z 'pk(tm)> . 3
k=1

Spectral skewness gives a measure of the asymmetry of the
spectrum around its mean value. p3 =0 indicates a symmetric
distribution, u; <0 more energy at frequencies lower than the
mean value, and u3 > 0 more energy at higher frequencies:

K
Hs(tm) = <Z(fk - ﬂl(tn1))3 'Pk(tm)> /.“g )
=1

Spectral kurtosis gives a measure of the flatness of the spec-
trum around its mean value. uy = 3 indicates a normal (Gaus-
sian) distribution, py <3 a flatter distribution, and p4 >3 a
peakier distribution

altn) = <Z(fk — ()’ ~pk<rm>> / @ a0
k=1

3. Description of the slope of the spectrum

The next set of descriptors is related to the slope of the
spectrum.

Spectral slope is computed using a linear regression over
the spectral amplitude values. It should be noted that the
spectral slope is linearly dependent on the spectral centroid:

1
slope(t) =———

E ak(tm)
=1
K

K K
K> fear(tn) =Y fi Y altn)
o k=

=l = . (1)
K K
K> f - (Zﬂ)
k=1 k=1

Spectral decrease was proposed by Krimphoff (1993) in
relation to perceptual studies. It averages the set of slopes
between frequency f; and f;. It therefore emphasizes the
slopes of the lowest frequencies:

decrease(t,,) =

K
k=

1 Zak(tmz:al(tM)- (12)

K 5 1

> a(tn)

k=2

Spectral roll-off was proposed by Scheirer and Slaney
(1997). It is defined as the frequency f.(¢,,) below which
95% of the signal energy is contained:

fe(tm) , sr/2 X
D @i (tn) =095 a(tn), (13)
f=0 f=0

where s7/2 is the Nyquist frequency. In the case of harmonic
sounds, it can be shown experimentally that spectral roll-off
is related to the harmonic/noise cutoff frequency.

4. Description of the tonal/noise content of the
spectrum

Spectral-flatness measure (SFM) and spectral-crest
measures (SCM) have been proposed in the context of
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speech description (Johnston, 1988) and in the context of the
MPEG-7 Audio standard (ISO/IEC, 2002). Under the
assumption that a white noise produces a flat spectrum and
that a sinusoidal component produces a peak in the spec-
trum, the measure of the flatness of the spectrum roughly
discriminates noise from harmonic content.

The spectral flatness measure is obtained by comparing
the geometrical mean and the arithmetical mean of the spec-
trum. The original formulation first split the spectrum into
various frequency bands (Johnston, 1988). However, in the
context of timbre characterization, we use a single frequency
band covering the whole frequency range. For tonal signals,
SFM is close to O (peaky spectrum), whereas for noisy sig-
nals it is close to 1 (flat spectrum):

% 1/K
(o)

=Y a(ty)
K; g

In the same spirit, the spectral crest measure is obtained by
comparing the maximum value and arithmetical mean of the
spectrum:

max k(f,,)

SCM(tn) = —¢ .
E;Clk(tm)

15)

C. Parameters specific to the harmonic analysis

The following set of parameters are also time-varying
descriptors but can only be computed using a sinusoidal har-
monic partial representation. We denote by a,(t,,) and f,(¢,,)
the amplitude and frequency of partial % at time ¢,,. We esti-
mate H partials ranked by increasing frequency.

1. Parameters related to the energy content

Harmonic energy is the energy of the signal explained
by the harmonic partials. It is obtained by summing the
energy of the partials detected at a specific time ¢,

H
En(tn) = _ ap(tn)- (16)
h=1

Noise energy is the energy of the signal not explained by
harmonic partials. We approximate it by subtracting the har-
monic energy from the total energy:

EN(lm) = ET(lm) _EH(tm)' (17
Noisiness is the ratio of the noise energy to the total energy:
.. EN(tm)
tm) = . 18
noisiness () Er (i) (18)

High noisiness values indicate a signal that is mainly non-
harmonic.
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The tristimulus values were introduced by Pollard and
Jansson (1982) as a timbral equivalent to color attributes in
vision. The tristimulus comprises three different energy
ratios allowing a fine description of the first harmonics of the
spectrum:

T1() = -2
> an(tn)
=1
T2(1,) = a>(tm) +Ha3(tm) + ay(t,) |
> (i)
h=1
H
PACH
T3(tn) = 5 (19)

H
Z ap (tm)
h=1

where H is the total number of partials considered (by
default H =20 in the Timbre Toolbox).

2. Parameters related to the frequency content

The fundamental frequency, denoted by fy(t,,), can be
estimated using the algorithm of Maher and Beauchamp
(1994) or de Cheveigné and Kawahara (2002). In the Timbre
Toolbox, we use the algorithm of Camacho and Harris (2008).

Inharmonicity measures the departure of the frequencies
of the partials f;, from purely harmonic frequencies /&f;. It is
estimated as the weighted sum of deviation of each individ-
ual partial from harmonicity:

) Z(fh(tm) - hfo(tm))ai(trn)
h=1

H
fO(tn1) Za%([m)
h=1

Harmonic spectral deviation measures the deviation of the
amplitudes of the partials from a global (smoothed) spectral
envelope (Krimphoff et al., 1994):

inharmo(z,,) = (20)

H

HDEV([m) = %Z(ah (tm) - SE(fhv tm))), (21)

h=1

where SE(f;, t,,) denotes the value of the spectral envelope at
frequency f), and time ¢,,. The spectral envelope at frequency
[ can be roughly estimated by averaging the values of three
adjacent partials:

1
SE(fh7 tm) = g (ahfl(tm) + ah(tm)
+ ap1(tm)) for 1 < h < H.

(22)

The odd-to-even harmonic energy ratio distinguishes sounds
with predominant energy at odd harmonics (such as clarinet
sounds) from other sounds with smoother spectral envelopes
(such as the trumpet):
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HJ2

Zagh—l(IM)

OER (1) = ’21/27 (23)

Z (1)
7=

D. Spectro-temporal parameters

Spectral variation (also called spectral flux) is a time-
varying descriptor computed using either the magnitude
STFT, the power STFT, the harmonic sinusoidal partials or
the ERB model output. It represents the amount of variation
of the spectrum over time, defined as 1 minus the normalized
correlation between the successive a; 