

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Aug 25, 2022

The time constrained multi-commodity network flow problem and its application to
liner shipping network design

Karsten, Christian Vad; Pisinger, David; Røpke, Stefan; Brouer, Berit Dangaard

Published in:
Transportation Research. Part E: Logistics and Transportation Review

Link to article, DOI:
10.1016/j.tre.2015.01.005

Publication date:
2015

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Karsten, C. V., Pisinger, D., Røpke, S., & Brouer, B. D. (2015). The time constrained multi-commodity network
flow problem and its application to liner shipping network design. Transportation Research. Part E: Logistics and
Transportation Review, 76, 122–138. https://doi.org/10.1016/j.tre.2015.01.005

https://doi.org/10.1016/j.tre.2015.01.005
https://orbit.dtu.dk/en/publications/2172683f-7e5d-47d2-83f3-3af29859e6eb
https://doi.org/10.1016/j.tre.2015.01.005

The time constrained multi-commodity network

�ow problem and its application to liner

shipping network design

Christian Vad Karsten, David Pisinger,

Stefan Ropke and Berit Dangaard Brouer

Department of Management Engineering,

The Technical University of Denmark

January 13, 2015

Abstract

The multi-commodity network �ow problem is an important sub-problem

in several heuristics and exact methods for designing route networks for

container ships. The sub-problem decides how cargoes should be trans-

ported through the network provided by shipping routes. This paper

studies the multi-commodity network �ow problem with transit time con-

straints which puts limits on the duration of the transit of the commodities

through the network. It is shown that for the particular application it does

not increase the solution time to include the transit time constraints and

that including the transit time is essential to o�er customers a competitive

product.

1 Introduction

According to IMO (2014) 90% of global trade is carried out via the sea, and ships
flying EU flags emit more than 20 million tons of CO2 (MaritimeCO2, 2014).
Container Shipping involves the transportation of a major share of the worlds
goods and has been steadily growing (with a small decrease around 2009 due to
the economic crisis). Reliance on container shipping to transport goods interna-
tionally is only expected to increase due to its economic advantages compared
to other transportation modes. Additionally, the CO2 emissions per ton cargo
transported using maritime transport is significantly lower than road and rail
transport. Hence, even small improvements in the underlying network of a liner
shipping company can have a significant impact, both economically and environ-
mentally. Despite this, the Liner Shipping Network Design (LSND) problem has
not received a lot of attention in the Operations Research literature and it is far
from being a well-solved problem (Meng et al., 2014). Christiansen et al. (2004)
and Christiansen et al. (2013) provide comprehensive reviews of the literature
published within the field of maritime optimization and liner shipping.

A liner shipping network consists of a number of rotations, which are round
trips. It is common to have weekly departures at each port, hence a sufficient

1

number of vessels are deployed to each rotation, to ensure the requested fre-
quency. Figure 1 shows an example of a real-world rotation. Different vessels
have varying capacity and speed, and the transport of a commodity through
the network may include the use of several rotations to connect between the
origin and destination port. The switch from one rotation to another is referred
to as transshipment and there is a cost associated with this since the container
must be handled by the quay-cranes at the transshipment ports and possibly
stored temporarily at the container yard. On top of this, the container will ex-
perience a wait time during the transfer process. Because of the associated cost
and transit time and the risk of goods being damaged containers are at most
subject to a few transshipments, when traveling from their origin to destina-
tion. The transit time is the time it takes a commodity to travel from origin to
destination. Transit time is counted in days and allowed transit times may vary
from one day to several months Brouer et al. (2014). Liner shipping networks
that are optimized only with respect to cost get an unrealistically high network
utilization as containers are allowed on detours that offer unused capacity but
in practice they will violate transit time restrictions.

Given a candidate network a multi-commodity network flow (MCF) problem
is solved in order to decide, which of the available cargoes should be shipped
on which routes. An extensive treatment of the MCF problem can be found
in e.g., Ahuja et al. (1993). The MCF problem can be formulated as a linear
programming problem which can be solved in polynomial time and there are
many algorithms for solving it. One of these methods is by delayed column
generation, see Desaulniers et al. (2005) and Ahuja et al. (1993). In order to
include the transit time constraint one has to solve an extended version of the
problem, the time constrained MCF problem, which is NP-hard. This is easily
shown by reduction from the shortest weight constrained path problem, (Garey
and Johnson, 1979).(We transform this problem into a time constrained MCF by
having only one commodity with source and destination as given by the shortest
path problem.) This paper presents an algorithm for the time constrained MCF
problem and given the LSND application several possible improvements are
presented.

To the best of our knowledge, most algorithms for the LSND problem do not
include transit time restrictions for shipped commodities. This paper studies
the consequence of neglecting the transit time restrictions in existing networks.
This is done by taking the networks produced by a LSND heuristic and com-
paring the estimated revenue with and without including the time constraint in
the cargo flow calculations. The results show a substantial difference, and we
therefore recommend that future LSND algorithms should include the transit
time constraint if possible.

The remainder of the paper is organized as follows. In Section 2 we discuss
the level of service in liner shipping and review relevant literature. In Section
3 we introduce the multi-commodity flow problem with time constraints and
describe a delayed column generation procedure for solving it. Furthermore, we
discuss a way to tailor the resource constrained shortest path problem, which
arise as the sub-problem in the column generation process, in order to solve it
efficiently. Section 4 describes a contraction scheme for the graph, which re-
duces the number of edges in certain instances of the graph to speed up the
sub-problem computations. Section 5 introduces novel ways of modeling the

2

Figure 1: An example of a sailing route (rotation) in the Maersk Line network,
from Maersk (2014).

transshipments to accommodate different network design model scopes. Fi-
nally, we conduct computational experiments in Section 6 and investigate the
sensitivity of the travel time restrictions.

2 The Level of Service in Liner Shipping

Several factors such as price, transit time, transshipments, port coverage, fre-
quency, reliability, administration, equipment, environmental friendliness and
schedules can be relevant and important for a shipper when considering different
carriers, (Brouer et al., 2014). Hence it is important to meet these constraints
when constructing and evaluating liner shipping networks. The cost and tran-
sit time are often identified as the most important factors, (Meng et al., 2014;
Brouer et al., 2014; Gelareh et al., 2010; Notteboom and Vernimmen, 2009;
Notteboom, 2006), however, most previous work within LSND neglects transit
time and mainly considers cost.

Designing networks with focus only on cost has the apparently attractive
benefit that reducing cost goes hand in hand with reducing CO2 emissions as
fuel is the largest cost component. Reducing CO2 emissions is an important
goal of several governments, and it is generally attractive for carriers as well
as shippers to have a green profile. Slow steaming is one common way of both
reducing cost and emissions, but this requires a broader introduction of the level
of service requirements in the network design models. There is an inherent trade
off between reducing bunker consumption and thereby emissions through speed
reduction and offering competitive transit times for commodities.

On the other hand, by offering a time competitive mode of transport more
cargo will be transported this way, reducing the global CO2 emissions. By intro-
ducing a maximum transit time for each commodity in the network, the number
of allowed paths will be limited significantly for the individual commodities and
introduces new limits on the feasible solutions in the network design process.
However, it requires adding a time dimension to all edges in a network and
especially the service time at ports and the time spent transshipping between
rotations need careful analysis to obtain both competitive network cost and
transit times. In order for a network to be competitive it must offer low transit
times and few transshipments.

Implications of travel time restrictions is not well-studied in connection with
LSND, but recently it has been studied in connection with related problems.

3

Agarwal and Ergun (2008) present a time-space graph to introduce a rough
schedule of weekdays in the network design process, but they do not introduce
travel time restrictions and do not account for the cost of transshipping goods.
Gelareh et al. (2010) study a hub-and-spoke network design problem for two
liner shipping companies in a competitive environment. The market share is
determined by transit time and transportation cost. Wang and Meng (2011)
study schedule design and container-routing for a given network with prede-
fined paths. They minimize the transshipment cost, add a penalty cost for
longer transit times and a bonus for shorter transit times. Wang and Meng
(2012) give a tactical model for schedule design, where they minimize the cost,
while maintaining a required transit time taking time uncertainty into account.
Meng and Wang (2012) study the fleet deployment problem in conjunction with
transit time levels in a space–time network. Wang et al. (2013) study an inte-
ger program for generating a container path for a single OD-pair taking transit
time and cabotage rules into account. A case study considering a single path is
presented. No computational run time is reported. Plum et al. (2014) consider
transit time for the design of a single rotation with up to 25 ports. Finally,
Wang and Meng (2014) present a non-linear mixed integer model for the net-
work design problem taking transit time into account and formulate a column
generation based heuristic for solving it for a Europe Asia network with 12
ports. Álvarez (2011) gives mathematical expressions for the transit time of
goods, which is composed of time at sea, time at ports and dwell time, and
derive a bi-linear cost expression for the inventory holding.

Neither exact nor heuristic solution methods are yet able to solve LSND
instances with the size of a global carrier to (near) optimality, but a promising
approach is to rely on a two-tier structure as in Álvarez (2011); Brouer and De-
saulniers (2012); Brouer et al. (2014), where route planing, fleet deployment and
sailing speed is determined in the upper tier corresponding to determining the
cost of the network, while the lower tier determines the revenue of the network
by flowing the available cargo. In the following, we consider the cargo flow sub-
problem, which is one of the main challenges in LSND. In Brouer et al. (2011) a
specialized MCF considering liner shipping cargo flow with empty repositioning
is presented along with a computational study of solving the LP arc-flow model
versus solving a path-flow model using column generation. Holmberg and Yuan
(2003) discuss general MCF problems with side constraints and propose a col-
umn generation procedure for solving them, the solution method in this paper
is similar to that of Holmberg and Yuan (2003), but specialized to the LSND
application.

It is worth mentioning that graph representations and commodity flows
within the maritime area are studied outside the core Operations Research com-
munity. Examples are Kaluza et al. (2010), Ducruet and Notteboom (2012) and
Ducruet (2013) who create aggregate graphs representing vessel movements by
combining the historic trajectories of individual vessels. The papers analyse the
aggregate graphs, for example with respect to change over time (Ducruet and
Notteboom, 2012) or with respect to the importance of diversification of port
activities (Ducruet, 2013).

4

3 Time-constrained Multi-commodity Flows

As mentioned above, a promising approach for solving the LSND problem heuris-
tically is to use a two phase approach. The first phase builds a network consist-
ing of a number of rotations and the second phase decides, how cargo should be
transported in this network to evaluate the cost/revenue of the network. In this
paper we do not consider network design, instead we focus solely on determining
how cargo should flow through the network.

Figure 2a) illustrates a basic network that is the output of Phase 1. In
this example the network is composed of two rotations R1 and R2. In general
the graph contains the node set N as consisting of P and C, ports and calls
respectively. Goods can be transshipped between rotations at the port, where
rotations meet. I.e. goods can be transshipped between rotation R1 and R2 in
node B. The flow of goods through the network is decided in the second phase.
This is illustrated in Figures 2b) and 2c). In this example we only have three
commodities. Ten units of commodity K1 is based in node A and destined for
node C, ten units of K2 is based in A and destined for B, and ten units of K3
is based in B and destined for C. Transporting one unit of commodity K1, K2,
and K3 results in an income of 10, 4, and 4, respectively. The capacities of
the edges in the network is determined by the capacities of the vessel class used
and the frequency of the rotation. In this example we assume that all the edges
have a capacity of 10. When solving the cargo flow problem no cost is associated
with traversing the voyage edges, as we assume the sailing cost to be roughly
identical whether or not the ship is fully loaded, an assumption that is not
completely true in practice 1. The cost of operating the ships will be accounted
for in Phase 1. In the cargo flow phase we do pay for each transshipment action
and loading and unloading. In this example, we assume, that the cost is one
per unit transshipped and neglect load/unload costs.

Figure 2b) shows the optimal solution to the cargo flow problem in our ex-
ample. We can only transport a total of 10 units through the two rotations R1
and R2 and hence, transporting 10 units of commodity K1 gives the highest
revenue (90). Now consider that the traversal of each edge and each transship-
ment action takes one time unit and consider that all commodities must reach
their destination within 2 time units. Therefore, the solution found without
transit time restrictions, is no longer feasible. The optimal solution given the
time restriction is shown in Figure 2c). Here it is possible to ship commodity
K2 and K3. The resulting revenue is 80 since we do not have to pay for the
transshipment operation.

In the following we first review the MCF problem and later show how a
time-constrained MCF can be modeled and solved.

The arc flow formulation MCF problem can be stated as follows. We redefine
G = (N,A) to be a generic, directed graph with nodes N and edges A. Let K be
the set of commodities to transport and bk be the amount of commodity k ∈ K
that is available for transport. We assume that each commodity has a single
origin node and a single destination node denoted o(k) and d(k), respectively.
Let uij be the capacity of edge (i, j). For each node i ∈ N and commodity

1In reality a typical container ship uses more fuel when traveling fully loaded compared to
sailing empty.

5

BA Ca)

BA C A B Cb) c)

10 units of K1 10 units of K1 10 units of K2 10 units of K3

Figure 2: a) A simple example network with two rotations R1 (solid edges) and
R2 (dashed edges). b) and c) show two possible flows in the network. The paths
for commodities K1, K2, and K3 are marked by dotted edges.

k ∈ K we define

b(i, k) =

bk if i = o(k)

−bk if i = d(k)

0 otherwise

and for each node i ∈ N we define the sets δ+(i) = {(j, j′) ∈ A : j = i} and
δ−(i) = {(j, j′) ∈ A : j′ = i}, that is, the set of edges with tail and head in node
i, respectively. The model uses decision variables xkij that specify the amount of
commodity k ∈ K that flows through edge (i, j). We do not impose integrality
conditions on the flow as in practice several thousand containers are moved on
a single vessel and hence fractional containers are negligible. Additionally the
demand is often a forecast so the variation in this will exceed rounding errors.
Brouer et al. (2011) investigate the effect of integrality for the version of the
problem without time-constraints and find that most solutions are integral in
practice and that the gap in terms of objective value for the considered real-life
instances never exceeds 0.01% if a fractional solution is just rounded. For each
unit of commodity k that flows through edge (i, j) the cost is ckij . With this
notation the MCF problem can be stated as a linear programming problem as
follows

min
∑

(i,j)∈A

∑
k∈K

ckijx
k
ij (1)

subject to ∑
(j,j′)∈δ+(i)

xkjj′ −
∑

(j,j′)∈δ−(i)

xkjj′ = b(i, k) ∀i ∈ N, k ∈ K (2)

∑
k∈K

xkij ≤ uij ∀(i, j) ∈ A (3)

xkij ≥ 0 ∀(i, j) ∈ A, k ∈ K (4)

The objective function (1) minimizes the cost of the chosen flow, constraint
(2) ensures flow conservation and ensures that commodities originates and ter-
minates in the right nodes. Constraint (3) ensures that the capacity of each
edge is respected. This formulation has |K||A| variables and |A|+ |K||N | con-
straints. The number of variables is hence polynomially bounded, but for large
graphs like the ones seen in global liner shipping networks this formulation re-
quires excessive computation time and may even be too large for standard linear
programming solvers (see e.g. Brouer et al. (2011)).

6

It is not hard to see how the MCF can be used to find the optimal cargo
flow in the LSND given a set of rotations, but we would like to make a comment
on transshipments and rejected demands. The most straightforward approach
for modeling transshipments is to model each transshipment port by a node for
each rotation that visits the port. Edges between nodes from different rotations,
meeting at a transshipment ports, are used to model the actual transshipment.
The cost of such edges is equal to the cost of the transshipment. Section 5 dis-
cusses this and other modeling approaches. The standard MCF model written
above enforces that all demands are being met. We can let the model reject
demand by including dummy arcs between source and destination with an ap-
propriate penalty.

An alternative model for the MCF is the path-flow formulation where each
variable corresponds to a path through the graph for a certain commodity. To
define the model we need to define the following sets: let Ωk be the set of all
feasible paths for commodity k, Ωk(a) be the set of paths for commodity k that
uses edge a and Ω(a) = ∪k∈KΩk(a) is the set of all paths that use edge a. We
have a variable xj for each path j. The variable states, how many units of
a specific commodity that is routed through the given path, the cost of each
variable is given by the parameter cj . The model is

min
∑
k∈K

∑
j∈Ωk

cjxj (5)

s.t.
∑
j∈Ωk

xj = bk ∀k ∈ K (6)

∑
j∈Ω(a)

xj ≤ uij ∀(i, j) ∈ A (7)

xj ≥ 0 ∀k ∈ K, j ∈ Ωk (8)

Here constraint (6) ensures that the demand of each commodity is met and
constraint (7) ensures that the capacity limit of each edge is obeyed. The path-
flow model has |A|+|K| constraints, but the number of variables is, in general,
growing exponentially with the size of the graph. However, using delayed column
generation the necessary variables can be generated dynamically and in practice
the path-flow model can often be solved faster than the arc-flow model for large
scale instances of the LSND problem (see Brouer et al. (2011)).

Delayed column generation works with a reduced version of the LP (5)-
(8), which is called the master problem. The master problem is defined by a
reduced set of columns Ω̄k for each commodity k such that a feasible solution
to the LP (5)-(8) can be found using variables from ∪k∈KΩ̄k (if there is no
available connection a forfeited edge with a penalty cost is used.). Solving this
LP gives rise to dual variables πk and λij corresponding to constraint (6) and (7),
respectively. For a variable j ∈ ∪k∈KΩk we let κ(j) denote the commodity that
a variable serves and let p(j) represent the path corresponding to the variable
j, represented as the set of edges traversed by the path. Then we can calculate
the reduced cost c̄j of each variable j ∈ ∪k∈KΩk as follows

c̄j =
∑

(i,j)∈p(j)

(c
κ(j)
ij − λij)− πκ(j).

If we can find a variable j ∈ ∪k∈K(Ωk \ Ω̄k) such that c̄j < 0 then this variable

7

has the potential to improve the current LP solution and should be added to
the master problem, which is resolved to give new dual values. If, on the other
hand, we have that c̄j ≥ 0 for all j ∈ ∪k∈K(Ωk \ Ω̄k) then we know the master
problem defined by Ω̄k provides the optimal solution to the complete problem
(for more details see Alvarez (2009); Ahuja et al. (1993)). In order to find a
variable with negative reduced cost or prove that no such variable exists we solve
a sub-problem for each commodity. The sub-problem seeks the feasible path for
commodity k with minimum reduced cost given the current dual values. It is
not hard to see that solving this problem amounts to solving a shortest path
problem from source to destination of the commodity with edge costs given by
cij −λij and subtracting πk from this cost in order to get the reduced cost. We
note that λij ≤ 0, which means that the edge cost in the sub-problem will be
non-negative.

We add a constraint on the transit time of the voyage of each commodity to
accommodate the transit time restrictions. Adding this constraint to the arc-
flow model is non-trivial since the demand for each commodity can be fulfilled
using multiple paths. In this formulation multiple paths are bundled up in a
tree structure, where the time of each individual path cannot easily be tracked.
In the path-flow formulation the constraint can be handled in the definition
of Ωk, ensuring that the set only contains paths that are feasible with respect
to the transit time constraint. The formulation separates each of the paths
into a single variable, enabling us to track time of each individual commodity.
However, doing so complicates the delayed column generation algorithm since
the sub-problem has to ensure that the transit time of each generated path
is less than or equal to the maximum transit time for the given commodity.
This changes in this case the sub-problem from being an ordinary shortest path
problem solved e.g. using Dijkstra’s algorithm to a weakly NP-hard resource
constrained shortest path, RCSP, problem, (Hassin, 1992).

Detailed network description

We define the set of voyage edges, Av, as the set of edges connecting two nodes
in C on the same rotation, i.e. consecutive port calls on a rotation and Av =
{(i, j)|i, j ∈ C ∧ i, j ∈ r′}}. The time, ta, to traverse arc a ∈ Av is calculated
according to the distance sailed with the average speed of the rotation. An edge
connecting two calls in the same port is denoted a transshipment edge belonging
to the edge set At = {(i, j)|i, j ∈ C ∧ i ∈ r1, j ∈ r2}. ta for a ∈ At denotes the
transshipment time and ca for a ∈ At the transshipment cost. As we do not
have a schedule in the following we work with an average transshipment time
of three days, i.e., ta = 3 for a ∈ At. Every load and unload of a unit of cargo
is associated with a cargo handling cost. Hence, for the set of (un)load edges,
Al = {(i, j)|(i ∈ C ∧ j ∈ P) ∨ (j ∈ C ∧ i ∈ P)}, ta for a ∈ Al denotes the
handling time and ca for a ∈ Al denotes the load/unload cost. We set the load
and unload time to one day, i.e., ta = 1 ∀ a ∈ Al. Lastly, it is possible to omit
a cargo using the set of forfeited edges Af = {(i, j)|(i, j ∈ P) ∧ (∃k ∈ K, o(k) =
i ∧ d(k) = j)}. ta, for a ∈ Af denotes the maximum allowed transit time and
ca is a goodwill penalty for not transporting the cargo. We assume that the
loading and unloading as well as transshipment times in a port are independent
of the number of containers to be handled at the port. The edge set A is defined
as A = Av ∪At ∪Al ∪Af .

8

3.1 Resource Constrained Shortest Path Calculations

The RCSP sub-problem can be solved using various methods. One method is
to use a label setting algorithm as proposed in Irnich and Desaulniers (2005).
Labeling algorithms are based on dynamic programming and use resource ex-
tension functions and dominance functions to efficiently calculate the shortest
path through a graph considering several resources, here (reduced) cost and
time. The resources must be of a form where they can be determined at the
vertices of a directed walk in a graph. We say that a resource is constrained
if there is at least one vertex in the graph where the resource is bounded from
above, otherwise the resource is unconstrained. We treat (reduced) cost as an
unconstrained resource, which we minimize, and time as a constrained resource,
as the limits on transit time, limits the time resource in the algorithm. When
solving the MCF problem using the labeling algorithm the accumulated con-
sumption of the resources is non-decreasing in each extension of a label. This is
a prerequisite for the algorithm to work. Labels are used to store the informa-
tion on the resource values for (incomplete) paths through the graph. Labels
are associated with the vertices in the graph and they are propagated via re-
source extension functions along the edges in the graph. An extension of a label
is feasible if the resulting label is feasible, i.e. the transit time did not exceed
the limit. A decisive feature of the algorithm is to keep the number of labels
as small as possible. This is done via a dominance function, which eliminates
unnecessary labels. The dominance function checks if all resources, i.e. cost
and time, for one label is less than or equal to the value of the resource in the
other label at each vertex, i.e., a label, la, is dominated by another label, lb,
if cost(la) ≤ cost(lb) and time(la) ≤ time(lb). This improves the running time
of the algorithm, since dominated labels need not to be extended and can be
deleted. Pseudo code is given in Figure 3.

At each iteration, the labeling algorithm selects a label from the set of un-
processed labels U and checks it for dominance and feasibility. If the label is
dominated it is deleted, whereas if it is undominated, it is extended along all
out-edges of the current vertex. If the new label is also feasible it is added to the
set of unprocessed labels and to the set of labels residing at the successor vertex.
If the new label is not feasible, it is deleted. The algorithm stops, when there
are no more unprocessed labels. Then it determines whether the destination
vertex can be reached and constructs all undominated (Pareto-optimal) paths.
Hence, tight limits on transit time in a large network will cause the algorithm
to terminate faster as fewer labels need to be extended.

Reducing the number of SPP calculations

In the column generation procedure of the MCF problem a RCSP problem must
be solved for each of the commodities with individual restrictions on travel time
for all commodities. However, the natural origin-destination (o-d) implemen-
tation for each commodity suggested by the MCF problem can be modified.
The RCSP algorithm is executed for the commodity with the maximum allowed
transit time from the set of commodities with identical origin. As a “by product”
the shortest paths for the remaining commodities with identical origin are also
found. This is due to the nature of the label setting algorithm, where labels
represent paths. All labels that are not dominated (reduced cost and time) and

9

Require: a graph, G, with corresponding node and edge descriptors
Require: a node descriptor, s(k), for the start node of a path
Require: a set of node descriptors, E, containing destinations of demands with
origin s(k)
Initialize Initialize the set of unprocessed label U = {s}
T=max(allowed transit time of all commodities leaving s)
while U 6= ∅ do current_label← min(U)

if current_label is not dominated then
node i = ResidentNode(current_label)
check dominance and delete dominated and processed labels
mark current_label as processed
for all outgoing edges, (i, j), of i do

new_label = resource_extension_function(current_label)
if new_label.time > T (i.e. not feasible) then delete new_label
else U ← new_label

else delete current_label
for all e ∈ E do add paths, pe, and resource consumption for e(k) to PE

for all pe ∈ PE do
if transit time violate allowance for pe then delete path
else add path to set of feasible paths, FE

Figure 3: Pseudo Code, Resource Constrained Shortest Path, o-all

do not violate the travel time restriction for the commodity with the longest
allowed are not deleted. Hence, we are guaranteed to find all optimal paths
for the commodities with origin o if such exist. At the end of the algorithm
all paths to a node are considered and a post processing procedure that erases
paths violating the allowed transit time for each commodity is implemented, see
the pseudo code in Figure 3. Hence, at most the number of ports |P | RCSP
calculations are needed to obtain o-d paths for all commodities, but still it is
possible to use the domination. If using the o-d implementation of the algorithm
we would need |K| calculations. For a global network the number of ports is
significantly less than the number of commodities |P | < |K|. In the WorldS-
mall instance provided in Brouer et al. (2014) there are |P | = 47 ports and
|K| = 1764 commodities and in the AsiaEurope instance there are |P | = 111
ports and |K| = 4000 commodities.
The algorithm is based on a variation of the The Boost Graph Library (BGL)
implementation. It uses a resource extension function to specify extensions of
labels, and a dominance function comparing cost and time for two labels.

4 Graph Contraction

The computational time increases with the size of the graph, but due to the
inherent structure of the networks in Liner Shipping it is possible to simplify
the corresponding graphs for each of the sub-problems. Figure 4a) shows a
graph representation of the voyage edges in a small instance with five rotations
(B → I → J), (C → Y → Z → X), etc. All edges have a cost of one. There
are four minor hubs B,C, F and N , where transshipments from one rotation

10

(a)

A

B C

D

EF

YX

Z

M O

N

S Q

R

I

J

(b)

A

A

B C

F

N

3
2

1

2 2

(c)

A

A

B C

F

X

N

R

3
2

1

2 2

2

3

U

L

Figure 4: A graph representation of the voyage edges in a small instance with
five rotations. All edges have a cost of one. There are four minor hubs B, C, F
and N, where transshipments from one rotation to another are possible. Load,
unload and transshipment edges have been excluded for simplicity.

to another are possible. We contract this graph to one where only hub nodes
are kept and edges represent voyage possibilities between hubs. This graph is
shown in Figure 4b). An edge in this graph is a contraction of one or more
edges from the original graph. The edge C → F for example represents the
path C → D → E → F in the original graph. The simplified graph does not
contain all nodes from the original graph so many of the needed shortest path
computations are not possible in the reduced graph. However, for each necessary
shortest path computation we extend the graph as necessary. This is illustrated
in Figure 4c). The figure shows the graph that is necessary to compute the
shortest path from R to X. Nodes R and X are added to the graph. Node R
connects to the contracted network through node N so an edge is added from R
to N with the appropriate cost (the cost of R→ S plus the cost of S → N) and
node X can only be reached through node C so an edge is added from C to X
with appropriate cost. Also a load edge, L, is included to account for loading
cost and time as well as an unload edge, U . Hence in contrast to Brouer and
Desaulniers (2012) the graph only includes relevant load/unload edges. Figure 5
shows the pseudo code for the contraction algorithm. After the contraction of
the graph, it is modified separately for each commodity or commodity group
such that edges connecting the load port and the destination port(s) with the
contracted network are added if these are not hubs. Likewise, load and unload
edges are added.

As mentioned in Section 3.1 we prefer to do shortest path calculations with
a single origin and many destinations. The multi-destination calculations are

11

Require: a graph, G, with edges and nodes corresponding to the transportation
network and a copy, G′, only containing the nodes
for all rotations, r, in G do

find degree of nodes in r to determine whether it is a transshipment node.
if # transshipment nodes > 1 then determine first_voyage_edge on r

while next node 6= first node do find next port and voyage edge on r
add current voyage edge info to update current_contracted_edge
if degree_destination_node ≤ 2 then continue
else add current_contracted_edge to G′

clear current_contracted_edge

Figure 5: Pseudo-code for contracting a graph

also possible in the contracted graphs by adding appropriate edges for each
destination in the same way as described for a single destination shortest path
calculation. The Reduced Graph decreases the number of extensions needed in
the label setting algorithm for the shortest path calculations and hence speed
up the computation. This approach is more tractable when only a few ports
are hubs (i.e. visited by more than one rotation). We use the network structure
presented in Brouer and Desaulniers (2012) as a reference, denoted the Full
Graph. Additionally to reduce the size of the reduced graph used during the
SPP calculations we only consider the load and unload edges which are relevant
to the considered set of commodities as well as the relevant forfeited edges in
contrast to Brouer and Desaulniers (2012).

5 Representation of Transshipments

There are several ways of handling transshipments in the graph. Each mod-
eling approach has different properties and benefits. An alternative modeling
approach to the ones presented in the following is given in Plum et al. (2013).

Figure 8-11 show different graph representations of a transshipment struc-
ture. In most cases a port node is augmented to contain internal port nodes
and edges such that the cost, capacity, and time of the port operation can be
correctly accounted for. We are going to analyse the structures in Figure 8-10
in further detail in the computational section while we just want to mention
some additional properties of the structures shown in Figure 6-11.

The structure in Figure 6 is the most basic representation of a transshipment
and it does not allow modeling of neither cost nor time related to transshipments
as commodities transfer directly between the rotations. No additional nodes or
edges are added and a commodity will transfer directly from one voyage edge
to another. Figure 7 shows a generalized version of this simple structure where
each port call is assigned a transshipment node and these are connected in a
“ring”. This requires r extra edges and r extra nodes, where r is the number
of rotations visiting a hub. This allows modeling of a schedule and the time
between two services (if ordered in terms of arrival) can be added to the edges.
It is however not possible to correctly account for transshipment costs and buffer
time.

The complete structure found in Figure 8 is used in e.g. Brouer and De-
saulniers (2012), and may be the most intuitive representation of a transship-

12

ment as all rotations visiting a port are directly connected to all other rotations
visiting the same port. This allows different costs and transit times between
different rotations, which can be calculated directly according to some given
schedule including buffer time. This comes at a cost of having a high number
of edges in larger hubs. It requires r(r − 1) edges and r nodes. Each edge has
an associated cost and time. The representations in Figure 9 and in Figure 10,
denoted star and ring respectively, mitigate these costs by introducing one or
several additional transshipment nodes. The number of edges only increases
linearly with the number of rotations visiting a hub.

The ring structure, like the complete structure, allows individual transit
times based on a given schedule, whereas the star structure does not. The star
structure, which is also used in Wang and Meng (2013), introduces one new
transshipment node, At, and has 2r edges and r + 1 nodes. All rotations are
connected to the transshipment node via an edge with an associated cost and
time. Edges out of the transshipment node have no associated cost or time. The
ring structure introduces a new transshipment node for each port, in the figure
At1, At2, At3, and At4 respectively, and new edges in a “ring” with an associated
time and cost. The edges leaving the transshipment nodes has no associated cost
or time in our experiments but as discussed below adding cost or time allows
modeling of additional properties. The structure has 3r edges and 2r nodes.
Both the complete and ring structure makes it possible to consider an actual
schedule with arrival and departure time specified, however it is not possible to
take buffer time between two rotations into account in the ring structure. The
star structure offers a simpler structure than the complete and ring structure
if average transit times are considered and not actual schedules. Both the ring
structure and the star structure can additionally handle operational capacities
in the port such as quay crane capacity, i.e. adding a capacity to the edges
between A and At will ensure that the number of containers loaded and unloaded
to/from all services in the port does not exceed that capacity of the quay or
the cranes assigned to a given vessel. This is not possible to model in the
complete structure. In the cases, where the total travel time is close to the
limit, it is sufficient to check the initial transshipment edge to cut off all possible
transfers in the star and ring structure. Hence for the purpose of evaluating the
algorithmic effects of considering cargo transit times we use the structures in
Figure 8 - 10 in the computational experiments.

Finally, the structure in Figure 11 is a generalization of the discussed mod-
els where it is possible to take both port productivity in terms or crane and
quay capacity as well as buffer time between two rotations into account. This
structure requires r(r − 1) + 2r edges and 2r nodes.

In practice, to reduce the number of edges further, we can combine the
structures such that for all physical ports if the number of visiting rotations >
3 (i.e. it is a hub with more than 3 visiting rotations) we change transshipment
layout to either the star or ring structure, whereas for hubs with ≤ 3 rotations
visiting we use the complete structure in all cases.

13

A

R1 R4

R3R2

Figure 6: Simple transshipment structure shown for a physical port, A, with
four rotations visiting the port. Voyage edges are dashed and cargo transship
directly from one voyage edge to another.

A1

A2

A3

A4

R1

R2

R3

R4

Figure 7: The transshipment structure shown for a physical port, A with four
rotations visiting the port. A1, A2, A3, and A4 are the corresponding port
calls and they are connected in a ring. Solid edges correspond to transshipment
edges and dashed to voyage edges.

At

A1

A4

A3

A2

R1

R4

R3

R2

Figure 8: The complete transshipment structure shown for a physical port, A
with four rotations visiting the port. A1, A2, A3, and A4 are the corresponding
port calls. Solid edges correspond to transshipment edges and dashed to voyage
edges for the four different rotations visiting port A.

14

At

A1

A4

A3

A2

R1

R4

R3

R2

Figure 9: The star transshipment structure shown for a physical port, A with
four rotations visiting the port. A1, A2, A3, and A4 are the corresponding
port calls and At is an extra transshipment node. Solid edges correspond to
transshipment edges and dashed to voyage edges for the four different rotations
visiting port A.

At1

At2

At3

At4

A1

A4

A3

A2

R1

R4

R3

R2

Figure 10: The ring transshipment structure shown for a physical port, A with
four rotations visiting the port. A1, A2, A3, and A4 are the corresponding
port calls. At1, At2, At3, and At4 are extra transshipment nodes. Solid edges
correspond to transshipment edges and dashed to voyage edges for the four
different rotations visiting port A.

15

At1

At2

At3

At4

A1

A4

A3

A2

R1

R4

R3

R2

Figure 11: A general transshipment structure shown for a physical port, A,
with four rotations visiting the port. A1, A2, A3, and A4 are the corresponding
port calls. At1, At2, At3, and At4 are extra transshipment nodes and edges
are added between all pairs of these. Solid edges correspond to transshipment
edges and dashed to voyage edges.

6 Computational Experiments

The algorithms are implemented in C++ and run on a normal laptop with an
Intel Core i5 2.60GHz and 16 GB Ram using one core. We use the Boost Graph
library to handle the networks and solve the LPs using the COIN-OR solver.
We investigate the influence of the transit time limits, the graph contraction
and different transshipment structures as well as sensitivity in the following.
The results can be seen in Table 4 - 8 and Figure 12-15.

6.1 Data

The data instances used are based on the benchmark instances in LINER-LIB
2012 (Brouer et al., 2013) published along with Brouer et al. (2014). We use
networks constructed based on six of these instances, see Table 1. The net-
works have been constructed using the mat-heuristic that does not consider
transit time described in Brouer and Desaulniers (2012). We report results for
networks from each instance. These networks are denoted Baltic, West Africa
(WAF), Mediterranean (MED) Pacific, WorldSmall (WS0), AsiaEurope (AE0).
Furthermore, we consider additional large networks of varying quality, denoted
WorldSmall1 (WS1), WorldSmall2 (WS2), WorldSmall3 (WS3), AsiaEurope1
(AE1), AsiaEurope2 (AE2), AsiaEurope3 (AE3). Table 2 shows the number
of transshipment edges for the considered instances. For the instance AE0 the
network consist of 308 voyage edges, 1530 transshipment edges, 616 load/unload
edges, and 4000 forfeited edges and 111 ports and 308 rotation vertices corre-

16

Instance Ports Demands
Single hub instances
Baltic 12 22
WAF 19 38
Multi hub instance
MED 39 369
Trade lane instances
Pacific 45 722
AE 111 4000
World instance
WS 47 1764

Table 1: The instances considered. Consult Brouer et al. (2014) for further
details.

transshipment structure
transshipment edges complete star ring
Baltic (13 voyage & 26 load edges) 22 12 17
WAF (43 voyage & 86 load edges) 166 64 98
MED (64 voyage & 128 load edges) 90 78 108
Pacific (153 voyage & 306 load edges) 734 278 410
WS0 (275 voyage & 550 load edges) 2076 534 797
AE0 (308 voyage & 616 load edges) 1530 526 773

Table 2: Number of transshipment edges for the different structures for the two
largest instances. The first column gives the number of transshipment edges
for the complete transshipment structure, the second column correspond to the
star structure, and the third column to the ring structure.

sponding to port calls, i.e., a total of 2454 edges (6454 including the forfeited
edges) and 422 nodes. WS0 correspondingly has 2901 edges (4665 including the
forfeited edges) and 322 nodes. Edge costs are calculated as described in Brouer
et al. (2014) using the data given in LINER-LIB 2014.

Table 3 shows the number of voyage edges in the graph for different in-
stances. For different commodities we get slightly different graphs and hence
the number of edges varies for the commodities by a few edges. The first col-
umn is the average number of contracted edges in the reduced graph for the o-d
implementation of the RCSP algorithm. The second column states the average
number of contracted voyage edges when using the o-all implementation of the
RCSP algorithm, while the last column gives the number of voyage edges in the
full graph used in Brouer and Desaulniers (2012).

As seen in Table 2 and 3, it has a significant effect to contract edges in smaller
instances, where the networks are less complex and only few of the ports are
visited by several rotations. However, for larger networks there are only very
few edges that can be contracted because the majority of the ports serve several
rotations. In all instances the number of load and unload edges is reduced as
discussed earlier. If it was possible to identify ports where transshipments are
not allowed or possible it would be possible to omit these nodes and reduce the
graph further. In the next sections we consider the effects of time limits, the

17

voyage edges reduced (o-d) reduced (o-all) full
Baltic 7 7 26
WAF 36 37 43
MED 49 51 64
Pacific 146 148 153
WS0 271 274 275
AE0 280 287 308

Table 3: The average number of voyage edges in the reduced graph for an o-d
and o-all representation compared to the number of voyage edges in the full
graph. Dijkstra and o-all RCSP uses the o-all representation for the reduced
graph, whereas the o-d RCSP uses the o-d representation for the reduced graph.
The full graph is the same for all algorithms.

implementation of the shortest path algorithm, the transshipment structure, the
graph reduction and finally the sensitivity of the time limits. For all instances we
report the computational run times in seconds to solve the full MCF-problem to
optimality, i.e., no more columns with reduced cost are found for any commodity.

6.1.1 Effect of Transit Time Limits and Implementation

Imposing realistic limits on the transit time for the individual commodities ac-
tually has a significant positive effect on the computational tractability. Even
though it requires the solution of a more complex RCSP evaluation as sub-
problem, the vastly reduced solution space yields faster computations in almost
all instances than when using Dijkstra’s algorithm for the unconstrained prob-
lem. See Table 4 and Table 5 for a comparison of the instances. It is clear that
the RSCP is only faster when implemented to take advantage of the problem
structure.

Table 6 compares the implementation of RCSP as an origin-destination (o-
d) implementation where the MCF problem is solved for all origin-destination
pairs and an origin-all (o-all) implementation where all commodities with same
origin is considered in one iteration of the RCSP-algorithm. In both cases
we solve the problem to optimality considering all demands. Clearly the o-all
implementation is advantageous with speed-ups in all larger instances and all
discussed transshipment structures up to a factor of 9. The average speed-
up for the considered instances using the full graph is 7 and 4 for the reduced
graph. For the setting used in (Brouer and Desaulniers, 2012) with the complete
transshipment structure and the full graph, the average speed-up is 2 when using
the o-all RCSP compared to Dijkstra’s algorithm, see Table 4 and Table 5 for
a comparison of the instances. For the o-d implementation, the vast majority
of the time is spent solving the sub-problem. For the o-all implementation for
most instances more than half of the time is spent adjusting and solving the LP.
Looking at Table 6 the o-all implementation with limits on transit time yields
on average a speed-up of 1.5 for the considered larger instances on the reduced
graph compared to the full graph.

Table 4 shows that the RSCP is only faster to solve when tight time limits
are indeed imposed. The left part of the table shows run times and number of
column generation iterations for instances where time limits are not imposed

18

RCSP No transit time limits With transit time limits RCSP
o-all Time (s) It Time (s) It Vol Time (s) It Time (s) It Vol Calls

star complete (%) star complete (%)
Full Graph

Baltic 0.002 / 0.001 2 0.002 / 0.001 2 92.1 0.001 / 0.001 2 0.001 / 0.001 2 92.1 19
WAF 0.017 / 0.012 6 0.023 / 0.016 6 94.9 0.005 / 0.003 3 0.007 / 0.004 3 65 19
MED 0.213 / 0.095 6 0.214 / 0.099 6 95.3 0.065 / 0.037 3 0.066 / 0.039 3 60.5 36
Pacific 1.97 / 0.722 12 2.14 / 0.905 12 91.1 0.262 / 0.170 3 0.339 / 0.232 3 51.5 45
WS0 15.7 / 3.99 17 16.8 / 5.19 16 91.3 2.69 / 1.54 9 3.85 / 2.50 9 67.4 47
AE0 63.6 / 16.3 15 69.1 / 19.8 16 91.2 19.0 / 8.96 11 20.8 / 10.9 12 75.3 111

Reduced Graph
Baltic 0.001 / 0.001 2 0.002 / 0.001 2 92.1 0.001 / 0.001 2 0.001 / 0.001 2 92.1 19
WAF 0.012 / 0.005 6 0.017 / 0.009 6 94.9 0.005 / 0.002 3 0.006 / 0.003 3 65 19
MED 0.151 / 0.023 7 0.151 / 0.025 7 95.3 0.047 / 0.014 4 0.048 / 0.016 4 60.5 36
Pacific 1.44 / 0.203 13 1.58 / 0.343 12 91.1 0.154 / 0.059 3 0.227 / 0.114 3 51.5 45
WS0 13.0 / 0.99 17 14.1 / 2.16 16 91.3 1.79 / 0.56 9 2.82 / 1.34 9 67.4 47
AE0 48.2 / 1.82 15 47.9 / 3.14 17 91.2 12.0 / 1.80 11 13.2 / 2.92 11 75.3 111

Table 4: Comparison of run times (overall solution time / time spent in sub-
problem) when imposing limits on travel times for the full and reduced (con-
tracted) graph with the star and complete transshipment structure. It indicates
the number of column generation iterations to reach optimality. Vol (%) gives
the volumes of cargo shipped. RCSP Calls gives the number of times the RCSP
algorithm is called in each column generation iteration.

and the right part of the graph shows run times and number of column genera-
tion iterations with the limits imposed. On average for the considered instances
of different size and structure the speed-up is 4 with the maximum being 9 when
the time limits are imposed. Table 7 reveals that the share of containers shipped
drops dramatically when transit times are imposed on networks designed with-
out considering these. For several of the instances the utilization drops more
than 30 percent point.

Dijkstra, Time (s) Time (s) Vol
full graph star complete (%)
Baltic 0.001 0.001 92.1
WAF 0.006 0.006 94.9
MED 0.115 0.102 95.3
Pacific 1.23 1.36 91.1
WS0 11.0 13.9 91.3
AE0 46.0 42.0 91.2

Table 5: Benchmark results for Dijkstra’s algorithm, as in (Brouer and De-
saulniers, 2012), for instances varying in size with no limits on travel time.

19

Time (s) Time (s) Time (s) Time (s) Time (s) Time (s)
complete star ring complete star ring

RCSP o-d RCSP o-all
Full Graph

AE1 132 / 118 104 / 90 128 / 109 20 / 8 18 / 6 24 / 7
AE2 100 / 90 82 / 74 100 / 87 13 / 6 13 / 5 16 / 6
AE3 118 / 108 95 / 83 116 / 103 16 / 7 14 / 6 19 / 7
WS1 21 / 20 13 / 12 16 / 14 3 / 2 2 / 1 3 / 1
WS2 26 / 25 13 / 13 15 / 14 3 / 2 2 / 1 2 / 1
WS3 29 / 28 16 / 15 20 / 17 3 / 2 2 / 1 3 / 1

Reduced Graph
AE1 63 / 50 37 / 23 44 / 26 15 / 3 13 / 2 18 / 2
AE2 46 / 38 27 / 18 37 / 25 10 / 2 9 / 1 12 / 2
AE3 48 / 39 27 / 18 39 / 24 11 / 2 10 / 1 14 / 2
WS1 10 / 9 4 / 3 6 / 4 2 / 1 1 / 0.3 2 / 0.4
WS2 13 / 11 4 / 3 7 / 5 2 / 1 1 / 0.4 2 / 1
WS3 16 / 14 6 / 4 8 / 6 2 / 1 2 / 0.4 2 / 1

Table 6: Comparison of the different transshipment structures, graph construc-
tions and algorithms. The upper part of the table shows runtimes (overall
solution time to reach optimality for the column generation procedure / time
spent in sub-problem) for the full graph and the lower part shows results for
the reduced (contracted) graph. Complete, star and ring refer to the differ-
ent transshipment structures. The % volume shipped denotes the fraction of
demand that can be satisfied when imposing limits on travel time. For compar-
ison, the corresponding amounts without limits on travel time can be seen in
Table 7.

6.1.2 Effect of Transshipment Structure

The effect of the different transshipment structures can be studied from Tables 6
and 4. Comparing the star transshipment structure to the complete structure
reveals an average speed-up of less than 1.5. The ring structure only gives
slight speed-up. However, the speed-up is more significant, when comparing the
results for the reduced graph and the full graph adopted from (Brouer et al.,
2014).

6.1.3 Effect of Reducing the Graph

The effect of contracting and reducing the number of edges in the graph can
be observed from Tables 6 and 4. The main reduction comes from the reduced
solution time of the sub-problems. The effect is clearly more pronounced for the
larger instances, WS and AE, with an average overall speed-up above a factor
of 2. The maximum speed-up is 3, while the average speed-up for the mid-size
instances is only 1.3. The speed-up gained from reducing the graph is both a
product of contracting the edges and removing the forfeited commodity edges
included in (Brouer et al., 2014).

In general there are no unambiguous conclusion regarding the number of
iterations in the column generation, but the column generation takes longer time
for networks with a high percentage of volume shipped and for larger networks.

20

Vol (%)
with transit time limits no transit time limits

AE1 76.0 92.1
AE2 70.0 95.3
AE3 77.0 91.1
WS1 57.6 94.9
WS2 54.8 91.3
WS3 61.9 91.2

Table 7: The volumes shipped in the large instances when considering transit
time limits compared to the volumes when transit time limits are not imposed.

Additionally, disregarding the forfeited commodity edges used in (Brouer and
Desaulniers, 2012) in the RCSP implementation is important and for smaller
instances the graph contraction makes the problem easier to solve. However,
keeping the forfeited edges for the commodities in question aids bounding the
algorithm.

6.1.4 Sensitivity of Travel Time Restrictions

Clearly the limits on travel time affect the size of the solution space and hence
the amount of cargo that can flow through the network. Figure 12 shows how
varying the limits between 80% and 200% of the limits given in LINER-LIB
2014, affects the amount of cargo with feasible paths in the 6 large instances
described in Table 1. It is important to notice that the network optimization
is done without considering travel times. At the default allowed travel time (α
= 1.0) as little as 51% of the goods can be transported in one instance, while
up to around 90% of the goods can be transported when doubling the allowed
travel times, see Table 8 or Figure 12.
In an optimized network of the type WS (WS0) where around 91 % of the

goods can be transported when limits on travel times are not considered, the
implications of time constraints is investigated further. Figure 13 shows that a
slight increase of the volume of goods that can be transported can be obtained
through the network when adjusting the time limits by a factor of 2.5 to 10.
Figure 14 shows the revenue that can be obtained through the network, when
adjusting the limits by a factor of 0.9 to 2.0. At the default allowed travel time (α
= 1.0) only around 60% of the maximum revenue (obtained without restrictions
on travel time) can be obtained, while around 99% of the unconstrained revenue
for this network can be obtained when doubling the allowed travel times. Figure
15 shows that a slight increase in revenue can be obtained, when adjusting the
limits by a factor of 2.5 to 10. This clearly shows that some commodities will
take very long undesirable paths through the network if there are no limits on
travel time. A summary for the instances of different size can be seen in Table
8.

Note that the percentage of volume shipped as a function of allowed travel
time is not necessarily a monotonically increasing function, whereas the revenue
as a function of allowed travel time is. This is because more profitable cargo can
become available on alternative paths as the time limits are increased. Further-
more, note that the effect is more significant for larger instances than smaller

21

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2
0

10

20

30

40

50

60

70

80

90

Allowed travel time * α

%
of

V
ol

um
e

Sh
ip

pe
d

α

Figure 12: Sensitivity of limits on travel time based on the data given in
(Brouer et al., 2014). The three upper instances (circles) are AE1 (dotted),
AE2 (dashed), and AE3 (solid). The three lower instances (triangles) are WS1
(dotted), WS2 (dashed), and WS3 (solid).

22

0 2 4 6 8 10
90.5

91.0

91.5

Allowed travel time * α

%
of

V
ol

um
e

Sh
ip

pe
d

α

Figure 13: Sensitivity of limits on travel time based on the data for an instance
of WS (WS0) given in (Brouer et al., 2014).

instances.

7 Conclusion

The presented analysis clearly shows that it is relevant and necessary to consider
limits on travel times in the network design process. Omitting the transit time
constraint when designing routes lead to cargo being transported along intricate
routes that would not be accepted in practice. It could be feared that including
transit time constraints in the MCF problem would lead to much higher com-
putational times, but the present experiments show that this is not the case
for the instances under study. The proposed graph contractions and simpler
transshipment structures further help speeding up the solution time of the time
constrained multi-commodity network flow problem. The obvious next step is to
include the proposed algorithm for the time constrained multi-commodity net-
work flow problem into heuristics for solving the liner shipping network design
problem.

One should also take into account, that when designing a liner shipping net-
work, the actual departure times (the schedule) are not fixed yet, meaning that
transshipment times are only estimates. Hence, instead of using a very tight
constraint on the transshipment time, a soft punishment could be used for ex-
ceeding the maximum allowed transshipment time up to a given upper limit.
This could e.g. be a quadratic punishment also giving a reward for transship-
ment times below the limit. The punishment somehow indicates how difficult it
will be to subsequently design a schedule that meets the time constraints. This
is all easily handled by having a complete list of transit times and costs from
solving the shortest path problem using a dynamic programming algorithm.

23

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Allowed travel time * α

N
or

m
al

iz
ed

R
ev

en
ue

α

Figure 14: Sensitivity of limits on travel time based on the data for an instance
of WS (WS0) given in (Brouer et al., 2014).

0 2 4 6 8 10
0.985

0.99

1.00

Allowed travel time * α

N
or

m
al

iz
ed

R
ev

en
ue

α

Figure 15: Sensitivity of limits on travel time based on the data for an instance
of WS (WS0) given in (Brouer et al., 2014).

24

Instance 1 · time 2 · time 20 · time
Baltic (vol.) 1 (92%) 1 (92%) 1 (92%)
Baltic (rev.) 1 1 1
WAF (vol.) 0.67 (65%) 1.00 (95%) 1 (95%)
WAF (rev.) 0.42 0.99 1
MED (vol.) 0.63 (61%) 0.90 (86%) 1 (95%)
MED (rev.) -0.76 0.51 1
Pacific (vol.) 0.57 (51%) 0.97 (88%) 1 (91%)
Pacific (rev.) -0.30 0.92 1
WS (vol.) 0.74 (67%) 0.98 (89%) 1 (91%)
WS (rev.) 0.57 0.97 1
AE (vol.) 0.83 (75%) 0.96 (88%) 1 (91%)
AE (rev.) 0.76 0.96 1

Table 8: Normalized volumes transported (vol.) and normalized revenues (rev.)
for the different instances under different transit time limits and compared to
no transit time limits imposed. In column two, three and four, numbers in
parenthesis indicate the absolute amount of goods transported. The first column
shows the implication of the actual transit time limit, while we allow twice the
time in column two and 20 times the allowed time in column three. 20 times
the allowed time, in practice corresponds to no restrictions on travel time.

Acknowledgements

The authors wish to thank Christian Plum at Maersk Line and three anony-
mous referees for valuable comments. This project was supported in part by The
Danish Strategical Research Council and The Danish Energy Technology De-
velopment and Demonstration Program (EUDP) under the ENERPLAN and
GREENSHIP project and in part by The Danish Maritime Fund under the
Competitive Liner Shipping Network Design project.

References

Agarwal, R. and Ergun, Ö. (2008). Ship scheduling and network design for
cargo routing in liner shipping. Transportation Science, 42(2):175–196.

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network flows: theory,
algorithms, and applications. Prentice hall.

Alvarez, J. (2009). Joint routing and deployment of a fleet of container vessels.
Maritime Economics & Logistics, 11:186–208.

Álvarez, J. F. (2011). Mathematical expressions for the transit time of merchan-
dise through a liner shipping network. Journal of the Operational Research
Society, 63(6):709–714.

Brouer, B., Alvarez, J., Plum, C., Pisinger, D., and Sigurd, M. (2013). Liner-lib
2012.

25

Brouer, B., Alvarez, J., Plum, C., Pisinger, D., and Sigurd, M. (2014). A base
integer programming model and benchmark suite for liner shipping network
design. Transportation Science, 48(2):281–312.

Brouer, B. and Desaulniers, G. (2012). A matheuristic for the liner shipping
network design problem. In Liner Service Network Design (PhD thesis), chap-
ter 5. Technical University of Denmark, Department of Management Engi-
neering.

Brouer, B., Pisinger, D., and Spoorendonk, S. (2011). The cargo allocation
problem with empty repositioning (caper). INFOR, 49(2):109–124.

Christiansen, M., Fagerholt, K., Nygreen, B., and Ronen, D. (2013). Ship rout-
ing and scheduling in the new millennium. European Journal of Operational
Research, 228(3):467–483.

Christiansen, M., Fagerholt, K., and Ronen, D. (2004). Ship routing and
scheduling: Status and perspectives. Transportation Science, 38(1):1–18.

Desaulniers, G., Desrosiers, J., and Solomon, M. M. (2005). Column generation,
volume 5. Springer.

Ducruet, C. (2013). Network diversity and maritime flows. Journal of Transport
Geography, 30:77–88.

Ducruet, C. and Notteboom, T. (2012). The worldwide maritime network of
container shipping: spatial structure and regional dynamics. Global Networks,
12(3):395–423.

Garey, M. R. and Johnson, D. S. (1979). Computers and intractability: a guide
to the theory of np-completeness. WH Freeman & Co., San Francisco.

Gelareh, S., Nickel, S., and Pisinger, D. (2010). Liner shipping hub network de-
sign in a competitive environment. Transportation Research Part E: Logistics
and Transportation Review, 46(6):991–1004.

Hassin, R. (1992). Approximation schemes for the restricted shortest path prob-
lem. Mathematics of Operations Research, 17(1):36–42.

Holmberg, K. and Yuan, D. (2003). A multicommodity network-flow problem
with side constraints on paths solved by column generation. INFORMS Jour-
nal on Computing, 15(1):42–57.

IMO (2014). International maritime organization (imo).

Irnich, S. and Desaulniers, G. (2005). Shortest path problems with resource
constraints. Springer.

Kaluza, P., Kölzsch, A., Gastner, M. T., and Blasius, B. (2010). The com-
plex network of global cargo ship movements. Journal of the Royal Society
Interface, 7(48):1093–1103.

Maersk (2014). The maersk line service network.

MaritimeCO2 (2014). Impact assessment for the adoption of co2 emission trad-
ing for maritime transport.

26

Meng, Q. andWang, S. (2012). Liner ship fleet deployment with week-dependent
container shipment demand. European Journal of Operational Research,
222(2):241–252.

Meng, Q., Wang, S., Andersson, H., and Thun, K. (2014). Containership routing
and scheduling in liner shipping: overview and future research directions.
Transportation Science, 48(2):265–280.

Notteboom, T. E. (2006). The time factor in liner shipping services. Maritime
Economics & Logistics, 8(1):19–39.

Notteboom, T. E. and Vernimmen, B. (2009). The effect of high fuel costs
on liner service configuration in container shipping. Journal of Transport
Geography, 17(5):325–337.

Plum, C. E., Pisinger, D., Salazar-González, J.-J., and Sigurd, M. M. (2014).
Single liner shipping service design. Computers & Operations Research, 45:1–
6.

Plum, C. E., Pisinger, D., and Sigurd, M. M. (2013). A service flow model for
the liner shipping network design problem. European Journal of Operational
Research.

Wang, S. and Meng, Q. (2011). Schedule design and container routing in liner
shipping. Transportation Research Record: Journal of the Transportation
Research Board, 2222(1):25–33.

Wang, S. and Meng, Q. (2012). Liner ship route schedule design with sea
contingency time and port time uncertainty. Transportation Research Part
B: Methodological, 46(5):615–633.

Wang, S. and Meng, Q. (2013). Reversing port rotation directions in a con-
tainer liner shipping network. Transportation Research Part B: Methodologi-
cal, 50:61–73.

Wang, S. and Meng, Q. (2014). Liner shipping network design with deadlines.
Computers & Operations Research, 41:140–149.

Wang, S., Meng, Q., and Sun, Z. (2013). Container routing in liner ship-
ping. Transportation Research Part E: Logistics and Transportation Review,
49(1):1–7.

27

