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The inverted pendulum is frequently used as a starting point for discussions of how human balance
is maintained during standing and locomotion. Here we examine three experimental paradigms of
time-delayed balance control: �1� mechanical inverted time-delayed pendulum, �2� stick balancing
at the fingertip, and �3� human postural sway during quiet standing. Measurements of the transfer
function �mechanical stick balancing� and the two-point correlation function �Hurst exponent� for
the movements of the fingertip �real stick balancing� and the fluctuations in the center of pressure
�postural sway� demonstrate that the upright fixed point is unstable in all three paradigms. These
observations imply that the balanced state represents a more complex and bounded time-dependent
state than a fixed-point attractor. Although mathematical models indicate that a sufficient condition
for instability is for the time delay to make a corrective movement, �n, be greater than a critical
delay �c that is proportional to the length of the pendulum, this condition is satisfied only in the case
of human stick balancing at the fingertip. Thus it is suggested that a common cause of instability in
all three paradigms stems from the difficulty of controlling both the angle of the inverted pendulum
and the position of the controller simultaneously using time-delayed feedback. Considerations of
the problematic nature of control in the presence of delay and random perturbations �“noise”�
suggest that neural control for the upright position likely resembles an adaptive-type controller in
which the displacement angle is allowed to drift for small displacements with active corrections
made only when � exceeds a threshold. This mechanism draws attention to an overlooked type of
passive control that arises from the interplay between retarded variables and noise. © 2009 Ameri-
can Institute of Physics. �DOI: 10.1063/1.3141429�

A high proportion of falls in the elderly occur while
walking.1 Although some of these falls can be attributed
to “slips and trips,” for many the immediate cause is un-
known. A first step toward the development of strategies
to minimize the risk of falling in the elderly is to under-
stand how balance is maintained during locomotion. The
question of how best to stabilize the upright position of
an inverted pendulum, an unstable fixed point, is a classic
problem in control theory2 with applications ranging
from the Segway3 to missile guidance systems4 to lifting
cranes.5 Typically overlooked in biomechanical applica-
tions of the inverted pendulum to human balance control
are the effects of time delays.6–11 These delays arise be-
cause there is a significant time interval between when a
variable is measured and when corrective forces are ap-
plied. Here we review issues that arise in determining the
stability of the time-delayed inverted pendulum and com-

pare the observations to three paradigms of balance con-
trol: (1) mechanical inverted time-delayed pendulum,12–16

(2) stick balancing at the fingertip,17–25 and (3) postural
sway during quiet standing.26–32 It is argued that miscon-
ceptions about balance control arise when the effects of
time delay are ignored.33–35 We draw attention to a novel
“passive control” mechanism for maintaining balance
that arises from the interplay between random perturba-
tions (“noise”) and delay.35–38 Thus it is possible that in-
teractions between the sole of the foot and the walking
surface can, on the one hand, be the cause of the fall and,
on the other, be a stabilizing mechanism for minimizing
the risk of falling.

I. INTRODUCTION

Concepts derived from considerations of the inverted
pendulum arise frequently in discussions of the control of
human balance30,31,39 and walking.40–43 This approach has
been particularly successful in understanding the changes in
the kinetic and potential energies that occur during human
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locomotion.44,45 However, applications to the study of human
gait and balance stability are made difficult because the pre-
cise identity of the controller is not known, and hence the
full dynamical system cannot be written down. Consequently
the approach has been to use experimental observations to
try to determine the nature of the control strategies. Typically
these findings are interpreted in the context of models having
the general form of an inverted pendulum, such as

�̈�t� + ��̇�t� − ���t� = Fcontrol�t� , �1�

where � and � are positive constants chosen so that in the
absence of control the fixed point is unstable, � is the vertical
displacement angle ��=0 corresponds to the upright position,
hence the “�”�, and Fcontrol describes the proposed feedback
controller. Particular attention has been given to the fact that
neural feedback control mechanisms are time delayed �neural
latencies are �100–500 ms�.6–8,10,11,46 Consequently Eq. �1�
becomes

�̈�t� + ��̇�t� − ���t� = Fcontrol�t − �� , �2�

where � is the time delay. Moreover, it is increasingly being
recognized that uncontrolled perturbations �noise�, likely re-
lated to muscle activity,47,48 can play important roles in
maintaining balance.35–38 Although it is permissible to ignore
the effects of time delays when considering issues related to
the energetics of locomotion, considerations of the effects of
time delays and noise are essential for understanding the sta-
bility of balance and gait.6

To date there have been no attempts to directly compare
the dynamics of mechanical pendulums stabilized by delayed
feedback13,14,16 to those observed for well studied human
paradigms of balance control, namely, stick balancing at the
fingertip17–25 and postural control during quiet standing.26–32

Such comparisons are essential in order to identify those as-
pects of the control that are in common, and hence are un-
derstood, from those aspects of control that are different, and
hence require further attention. Here we explore whether the
balanced state represents a fixed-point attractor or a more
complex and bounded time-dependent state.

We organize our discussion as follows. In Sec. II we
briefly review the feedback stabilization of a pendulum at-
tached to a cart at a pivot point and then, in Sec. III, we
include a time delay in the feedback. An important concept
in these mathematical studies is the relative magnitude of the
feedback delay �n versus a critical delay �c which is propor-
tional to one-half the length of the pendulum. Although �n

��c is sufficient to guarantee instability, �n��c does not
necessarily guarantee stability. In Secs. IV and V we exam-
ine three paradigms of balance control: mechanical inverted
pendulum with time-delayed feedback �Secs. IV A and V A�,
stick balancing at the fingertip �Secs. IV B and V B�, and
postural sway during quiet standing �Secs. IV C and V C�. In
each case we conclude that the upright fixed point is un-
stable; however, only in the case of human stick balancing is
�n��c. These observations strongly support previous sugges-
tions that the balanced position does not simply represent a
noisy fixed-point attractor but represents a rather more com-
plex and bounded behavior.20,26–30,32,49–54 Finally in Sec. VI

we argue that the presence of time delays and random per-
turbations �noise� place severe restrictions on the nature of
feasible control strategies. In this way we draw attention to a
number of fundamental problems for balance control with
time-delayed feedback that, up until this time, have been
overlooked by the neuroscience and biomechanics commu-
nities.

II. INSTANTANEOUS CONTROL „�=0…

The standard engineering approach to the problem of
stabilizing an inverted pendulum is depicted schematically in
Fig. 1�a�. The pendulum is attached to a cart by means of a
pivot, which allows the pendulum to rotate freely in the xy
plane. Neglecting friction in the pivot, the equations of mo-
tion for the full system are

�m + M�ẍ + Ffric + m��̈ cos � − m��̇2 sin � = Fcontrol,

�3�
m�ẍ cos � + 4

3m�2�̈ − mg� sin � = 0,

where M is the mass of the cart, � is half the length of the
pendulum, i.e., the distance from the pivot to the COM of the
pendulum, and Fcontrol represents the force that is applied to
the cart in the x direction for the purpose of keeping the
pendulum upright. The term Ffric represents friction between
the cart and the track and can be quite complicated for some

FIG. 1. �a� Schematic representation of an inverted pendulum stabilized by
the movements of a cart. M is the mass of the cart and P is the pivot point
of the pendulum. See text for definition of other parameters. �b� Implemen-
tation of delayed feedback control of an inverted pendulum that utilizes the
carriage mechanism of a dc-motor-operated plotter �Ref. 14� �see Sec. IV for
details�.
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experimental setups.13,16 In the following we will take Ffric

=	ẋ, i.e., simple viscous friction, for concreteness.
When Fcontrol is chosen based on the current values of the

system variables, it can be shown that one can always find a
linear feedback law which depends on all four degrees of
freedom that will stabilize the pendulum in the inverted
position.2 This can be seen as follows. Let

Fcontrol = k1x + k2� + k3ẋ + k4�̇ , �4�

where the kj are to be determined. Then the characteristic
equation of the linearization of the equations of motion �3�
about the equilibrium point corresponding to the upright po-
sition of the pendulum is


��� = ��m + 4M��4 + �3k4 − 4�k3 + 4�	��3

+ �3k2 − 4�k1 − 3�m + M�g��2 + 3�k3 − 	�g�

+ 3k1g . �5�

The Routh–Hurwitz criterion states that a necessary con-
dition for all the roots of the above polynomial to be in the
left half-plane is that all the coefficients of � be nonzero and
have the same sign.2 The coefficient of the fourth-order term
of characteristic equation �5� is positive. Therefore stability
of the upright position requires that the coefficients of all the
lower terms also be positive. This observation leads to
the following constraints on the state-feedback gain
parameters:7,10

k1 � 0, k3 � 	 , �6�

and k2 and k4 are bounded by k1 and k3:

k2 �
4�

3
k1 + �m + M�g, k4 �

4�

3
�k3 − 	� . �7�

A variety of methods have been developed to determine the
“optimal” choices of the kj which satisfy these criteria �see,
e.g., Ref. 2�. Note that for this model, when the feedback
control stabilizes the pendulum in the upright position ��
=0� the position of the cart is fixed at x=0. It is not possible
to stabilize the pendulum at �=0 with the cart in an arbitrary
position. In the terminology of control theory, the system �3�
with feedback control equation �4� is stabilizable but not
controllable.

Two approaches can be taken to simplify the analysis for
stabilization of the upright position of the inverted pendu-
lum. First, we can neglect the dynamics of the cart. This
corresponds to taking k1=0 and k3=	 in the feedback law
and assuming that the mass of the cart is much less than that
of the pendulum, M +m�m, and produces the model7

�4 – 3 cos2 ���̈ +
3

2
sin 2��̇2 −

3g

�
sin � = −

3

m�
cos �Fcontrol,

�8�

with feedback force

Fcontrol = k2� + k4�̇ .

The constraints �7� for stabilizing the pendulum in the in-
verted position become

k2 � mg, k4 � 0. �9�

which agree with those derived in Ref. 11. For the discussion
that follows �see Sec. V� we note that the equation for the
cart becomes

ẍ = g tan � − 4
3� sec ��̈ .

Thus when the pendulum is at the inverted position, �=0 and

�̇= �̈=0, the cart is not at a fixed position but moves with
some constant speed.

An alternate approach is to assume that the inverted pen-
dulum is stabilized not by the application of forces at the
base but by the direct application of torque at the pivot. In
this case the model is very simple,

4
3m�2�̈ − mg� sin��� = Tcontrol, �10�

where the linear feedback control torque is

Tcontrol = q2� + q4�̇ .

The linearization of Eq. �10� about �=0 is very similar to
that of Eq. �8�. Thus the analysis of Refs. 6 and 11 may be
easily restated for this equation. In particular, the pendulum
will be stabilized in the upright position for any choice of
feedback, satisfying

q2 � − mg�, q4 � 0.

It is important to note that in all of these approaches the
criteria are derived using linearization, and hence the control
is applied locally. Thus for stabilization of the inverted posi-
tion to be possible it is necessary to first bring the pendulum
close to the upright position �� is small�. If a perturbation
pushes the pendulum sufficiently far from the upright posi-
tion the feedback control will fail. This is also true when the
feedback is time delayed.

III. STABILIZATION WITH DELAYED FEEDBACK

From the point of view of the human body, the only way
to implement the feedback control Fcontrol instantaneously is
to assume that it is due to the biomechanical properties of the
joints, connective tissues, etc. Indeed, historically it was
thought that balance control could be entirely due to these
biomechanical properties.30,31,55 However, subsequent mea-
surements demonstrated that these forces alone were not suf-
ficient to effectively maintain balance.56,57 Neural feedback
control mechanisms for balance are time delayed. In other
words there is a significant time interval between when the
variables are measured and when the forces are applied.
Consequently the force applied to the cart becomes

Fcontrol = k1x�t − �� + k2��t − �� + k3ẋ�t − �� + k4�̇�t − �� ,

�11�

where it is assumed that the measurements all occur at the
same time. The approaches taken to choose the kj to stabilize
the pendulum depend on the magnitude of �.
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A. Small delay

If the delay � is small, then one may anticipate that it
will have little effect on the system. In this situation, the
following approach is commonly used in engineering/control
theory:

�1� Choose the kj as if there was no delay using standard
control theory techniques.

�2� With the chosen kj, determine the minimum delay �d

which causes instability.
�3� Check that ���d.

This is the approach taken in Refs. 13 and 16. We will refer
to �d as the destabilizing delay.

B. Large delay

The time delays involved in the control of human bal-
ance are long.28,29,46 In this case it is necessary to design the
control by taking the delay into account. One way to do this
is by analyzing the characteristic equation of the lineariza-
tion of the model with the delayed feedback. For the full
cart-pendulum model �3� with the feedback equation �11�
this is


��� = ��m + 4M��4 + 4�	�3 − 3�m + M�g�2 − 3	g�

+ e−����3k4 − 4�k3��3 + �3k2 − 4�k1��2

+ 3k3g� + 3k1g� . �12�

This equation has the same form as Eq. �5�; however, some
terms are modified because of the presence of the time delay.
Thus the stability problem becomes that of determining, for a
given set of the physical parameters M, m, 	, �, and g, how
to choose the kj so as to maximize the delay for which the
upright position becomes unstable. To do this, one needs to
determine how the stability of the upright equilibrium point
depends on the choice of kj as well as the time delay �. Since
this is a five parameter problem, a full analysis is difficult. A
more tractable problem is to reduce the number of param-
eters to 3 �two of the kj and the delay�. This will give a
characteristic equation that can be analyzed, but the result
will not be optimal. One way of making this reduction is to
decouple the dynamics of the cart from the pendulum by
neglecting friction between the cart and the pendulum and
taking k1=k3=0 and M +m�m. An alternative is to choose
two of the kj so that two of the necessary conditions for
stability with zero delay are satisfied. The problem then be-
comes to determine the region of stability in terms of the
other two kj and the delay. The former approach was taken
by Refs. 6 and 11 and the latter by Ref. 12. Both analyses
yielded similar results, which we now describe. For fixed
values of the physical parameters, there exists a critical delay
�c such that we have the following:

�1� If ���c there are no control parameters that stabilize the
pendulum in the upright position.

�2� If ���c there are always values of the control param-
eters that stabilize the pendulum in the upright position.
The size of the set of control parameters that stabilize
the pendulum decreases as the delay increases.

To illustrate these results consider the characteristic equation
�12�. Choosing

k2 =
4�

3
k3 + 5�m + M�g, k4 =

4�

3
k3 �13�

ensures that those conditions �7� are satisfied. Thus stability
for �=0 is guaranteed for any choice of k1 and k3 satisfying
Eq. �6�. By analyzing Eq. �12� with ��0 one can determine,
for any � sufficiently small, a region in the k1 and k3 plane
where the upright position is stable. As � increases the region
shrinks, until for �=�c it disappears entirely. These results
are illustrated for the parameter values corresponding to the
experimental setup of Ref. 13 in Fig. 2�a�. A similar illustra-
tion for Eq. �8� with delayed feedback given by Eq. �11� can
be found in Ref. 11. Stépán also showed analytically6,11 that
the critical delay for Eq. �8� is given by �c=�2� /3g. Restat-
ing the analysis of Refs. 6 and 11 for Eq. �10� shows that the
critical delay for the torque control model is �c=�8� /3g.
These results show mathematically that the critical delay in-
creases as the length increases, which is consistent with the
experimental observation that long sticks are easier to bal-
ance at the fingertip than short ones. The corresponding

FIG. 2. Stability of the upright fixed point for the model �3� with parameters
corresponding to the experimental setup in Ref. 13 and k2 and k4 chosen
according to Eq. �13�. �a� The stability region is terms of k1 and k3 for �
=0.01 �dashed�, �=0.05 �dotted�, and �=0.1 �solid�. �b� Effect of changing
the length � on the critical delay �c.
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analysis of Eq. �3� is more difficult, but a numerical investi-
gation shows that �c increases as � increases12 �Fig. 2�b��.

C. Two delays

For any real system it is possible to obtain instantaneous
estimates of the force and displacement but not the velocity.
Approximating speed requires that measurements be made at
two distinct points in time, i.e.,

�̇�t� �
��t� − ��t − �1�

�1
, �14�

where �1�0 is the time interval, or delay, between the two
measurements. Atay9 pursued this point in the context of a
pendulum model similar to Eq. �10� where

Tcontrol = T���t − ��, �̇�t − �2�� ,

where �2=�+�1. Controllers of this form depend on the state
at two different times and are sometimes referred to as pro-
portional minus delay control.58 When �2=2� Atay derived a
result similar to those discussed above: for Eq. �10� there is a
critical delay, �c=�4� /3g, such that if ���c, then it is al-
ways possible to choose the parameters to stabilize the pen-
dulum in the upright position.

D. Overdamping

A starting point for investigating the effects of the inter-
play between noise and delay is to reduce Eq. �1� to a first-
order delay differential equation and assume that the effects
of noise are additive, i.e., the effects of noise are independent
of the state variable. Since postural sway mechanisms are
likely to be overdamped in healthy individuals,29,59 we have

��̇m�2�̈, and hence, for small �, we have

�̇ − �� + �2��t� = f���t − ��� , �15�

where the additive Gaussian white noise term ��t� satisfies

���t�	 = 0,

���t����t�	 = �2	�t − t�� ,

where �2 is the variance and 	 is the Dirac-delta function.
Furthermore by taking into account the switchlike properties
of the sensory and motor neurons involved in postural
control29,32 we have

f���t − ��� = 
0 if ��� � � ,

− K otherwise.
� �16�

This reduces the analysis of Eq. �15� to considerations of a
first-passage time problem for an unstable fixed point �left-
hand side of Eq. �15�� with reinjection into the interval −�
���−� wherever the threshold � is crossed.

Current interest has focused on the possibility that the
left-hand side of Eq. �15� also contains a time delay. This
gives rise to a unstable delayed random walk.32,35,38 As is

shown in Fig. 3, the interplay between noise and delay can
transiently stabilize the unstable fixed point, i.e., prolong the
first-passage time. These effects are interesting in light of
measurements of the reaction time and response time when
posture is perturbed.46 In this study it was observed that the
neural time delay, i.e., the time interval between the onset of
a 3 cm postural displacement and the initiation of elec-
tromyographic activity, is �116 ms �range of 93–137 ms
depending on which muscle is recorded�. However, the la-
tency to reverse the perturbed movement is much longer,
�320 ms �range of 177–492 ms�. Thus a passive control
mechanism that “fills in the gap” between the time the neural
signal arrives at the neuromuscular junction and the time to
make a corrective movement would be useful for maintain-
ing balance. This implies that passive control of this form
can be part of the control of balance and, by implication, gait
stability.

IV. METHODS

A. Delayed controller for inverted pendulum

We used a low friction time-delayed inverted pendulum
controller that takes advantage of the properties of the car-
riage mechanism of dc-motor-operated plotters �Fig. 1�b��.
Previous implementations employing a mechanical cart are
described in Refs. 13 and 16. Our system was designed to be
capable of controlling both the vertical angle and x position
of the pendulum using separate proportional-integral-
derivative �PID� controllers �see below� �Fig. 4�. The stick
length was 0.39 m and the track length was 0.29 m. A po-
tentiometer placed at the fulcrum of the pendulum detects the
vertical displacement angle. A dc servomotor drives the
slider on the rail using a timing belt, and the position of the
slider is detected by a multirotational potentiometer. The tim-
ing belt compliance is very small and does not introduce
unwanted poles within the bandwidth of the servomecha-

FIG. 3. The result of simulations of the first-passage time distribution for a
discretized equation x�t+1�=x�t�+dt��x�t−��+�� where � is a Gaussian
white noise with variance �2. We have set the threshold at X=5.0. The
parameters are dt=1.0, �=0.1, and �2=0.3 The statistics are averaged from
5000 realizations.
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nism. The error output signals of the PID controllers are
added to produce the input signal for the motor driver. The
dc motor is driven by a power amplifier similar to that used
as an audio amplifier. The signal delay was introduced by
first analog to digital converting it and writing it to a static
random access memory �RAM� �Fig. 4�b��. The contents of
the RAM were read out after a specified time � and then
digital to analog converted to produce an output signal. The
delay time � was controlled by an outside personal computer
using the Ethernet. The current sampling period is 1 ms, the
maximum signal delay is approximately 4 s, and the granu-
larity of the control is 1 ms.

We used PID controller to regulate the angle of the stick
and the position of the cart.60 A PID controller is a three-term
feedback controller: the P component is proportional to the
error, i.e., the difference between the current angle and the
target angle of the stick or the current and target positions of
the cart, the I component is proportional to the integral of the
error over some time interval, and the D component is pro-
portional to the derivative of the error. In our case the P
component greatly reduced the error; however, because of
inertial effects the error could not be reduced to zero. There-
fore we included an I component to make the error zero: by
summing over a long enough time interval even a small error
can produce a big enough drive signal to reduce the error.
Finally the D component, which does not effect the error,
was adjusted to minimize overshot. Figure 5 shows the open-
loop transfer function of the delayed pendulum controller
with and without delay. A time delay is not expected to affect
the gain of the transfer function but adds a contribution −f�
to the phase, where f is the frequency. When �=0, the am-
plitude of the transfer function has a peak of about 3 db at
�9.5 Hz which is related to the damping ratio of the
second-order transfer function. When ��0 this peak in-
creased in magnitude and was shifted to a lower frequency,
suggesting that the response of the PID controller is limited
by its slew rate �proportional to frequency times the gain�.
However, over the range of delay between 1 and 10 ms the
slew rate was approximately constant and did not itself affect
the stability of the delayed pendulum controller.

B. Stick balancing at the fingertip

Stick balancing was performed while the subject was
seated comfortably in a chair as described previously.20,21

The subjects, ages 18–58 years, were required to keep their
back in contact with the chair at all times with their arm
extended in front of them. In this position the subject could
not see both the position of the tip of the stick and that of the
fingertip at the same time in their field of view. Sticks were
wooden dowels with diameter of 6.35 mm and length of
�0.55 m �i.e., �=0.275 m�. Reflective markers were at-
tached to each end of the stick and three specialized motion
cameras �Qualisys Oqus, model 300� detected infrared light
reflected from these markers. The image detected by each
camera determines two of the spatial coordinates: the third
coordinate is determined by triangulation methods involving
at least two of the cameras. Subjects reported in this com-
munication that had moderate skill levels had increased their
stick balancing skill with practice by about twofold �typi-
cally from a mean survival time of 8–12 to 17–25 s for 25
consecutive trials�.

We calculated the change in speed of the fingertip, 
Vf,
using the bottom marker attached to the stick as follows:21

The change in the position of the marker, 
r��t�, in one time
step 
t is 
r��t�=r��t+
t�−r��t�, where the notation r� denotes
the position vector. All vectors were measured from a com-
mon reference point provided by the Qualisys measurement
system. The magnitude of the mean speed V is

V�t� = 
r��t�

t

 ,

where the notation � · � denotes the norm, and hence


Vf�t� = V�t + 
t� − V�t� . �17�

FIG. 4. Block diagrams for �a� PID control and �b� the delay control. For
more details see Ref. 14.

FIG. 5. The effects of changing the time delay on the transfer function of
the PID controller: �a� gain and �b� phase.
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C. Human postural sway

Measurements of the center of pressure �COP� were ob-
tained by having subjects stand in stocking feet on a pressure
platform �Accusway, AMTI�. Subjects were asked to look
straight away with eyes closed while remaining as still as
possible. The sampling frequency was 200 Hz and the data
were resampled at 100 Hz.

We analyzed the fluctuations in COP in the context of a
correlated random walk.26,27,32 The two-point correlation
function K�s� was calculated as32

K�s� =
1

N − n
�
i=1

N−n

��x�ti� − x�ti + s��2 + �y�ti� − y�ti + s��2� .

�18�

For each s= �t1− t2�, the two-point correlations are calculated
from N data points spanning N−n data intervals of length ns
and where x indicates the displacements of the fluctuations in
the AP direction and y the displacements in the ML direction.
For a correlated random walk,26,27

K�s� � s2H,

where H is a scaling factor such that H�0.5 indicates posi-
tive correlation �persistence� and H�0.5 indicates negative
correlation �antipersistence�. For stick balancing we calcu-
lated K�s� for the movements of the fingertip in the same
way except the fluctuations in the vertical direction z were
also included.

All of the experiments involving human subjects were
performed according to the principles of the Declaration of
Helsinki and informed consent was obtained. Experimental
protocols for human postural sway and stick balancing at the
fingertip received separate approvals by the institutional re-
view board at Claremont McKenna College.

V. RESULTS

A. Mechanical stick balancing

We first examined the behavior when the PID controller
related to the x position was omitted. Since the transfer func-
tion is known �Fig. 5�, we can determine the dynamics by
simply injecting sinusoidal inputs. From this perspective, sta-
bility of the upright fixed point means that the input and
response frequencies are the same, and instability means that
the frequencies are different. Figure 6 shows that the delayed
inverted pendulum controller exhibits two behaviors depend-
ing on the choice of the delay and frequency of the input.
Instability of the upright position was characterized by a dif-
ference between the input and response frequencies. For ex-
ample, when f =2 Hz we have stability when �=5 ms �Fig.
6�a�� and closed-loop instability, i.e., “hunting,” when �
=15 ms �Fig. 6�b��. However, for �=15 ms we observed
that stability could be achieved by increasing the input fre-
quency to 4–10 Hz. If we take �c=�2� /3g�115 ms, then
for these delays the upright fixed point can be stable. How-
ever, we observed that even in the hunting regime the stick
remained upright albeit with oscillatory dynamics.

We next examined the behavior of the time-delayed in-
verted pendulum controller when both the PID controllers

for the angle and position were activated. The I loop of the
angle PID is absolutely necessary to balance the inverted
pendulum since the average error to the right and left is zero
only at the balanced angle. This occurs when the control
works to make the angle-PID integration error zero. How-
ever, the PID-distance controller �negative feedback� for the
position stabilizer of the slider functions like a positive feed-
back for the inverted pendulum and vice versa. In other
words, whenever we increase the slider position error so that
the position shift is effective in activating the PID-distance
controller, we necessarily destabilize the PID-angle control-
ler. On the basis of these experimental results we conclude
that we cannot control both the vertical angle and the posi-
tion of an inverted pendulum, at least when using PID con-
trollers restricted to the horizontal plane �see Sec. VI�.

B. Human stick balancing

For stick balancing at the fingertip, there are two ways
the stick can fall, and hence, as for mechanical stick balanc-
ing, two control problems: �1� the vertical displacement
angle � becomes too large and �2� the position of the hand
drifts out of reach of the arm. Our focus here is on the first
control problem and, in particular, on the nature of the con-
trol that occurs on time scales equal to or less than the neural
latency.20,25 Figure 7�a� compares the movements of the ver-
tical displacement angle �, calculated as 
z /�, to the
changes in speed, 
Vf, made by the fingertip. Clearly the
relationship between the controlled variable ��� and control-
ler �
Vf� is very different than seen for mechanical stick
balancing. Whereas for mechanical stick balancing the con-
trolling forces vary sinusoidally �Fig. 6�b��, those for stick
balancing occur intermittently �Fig. 7�b��. Indeed it has been
shown that the times between successive corrective �upward�
movements obey a �3/2 power law.20 Power laws with this
exponent can be accounted for by assuming that one of the
control parameters is stochastically forced back and forth
across a stability boundary.20 In other words the balance con-
trol system is tuned near or at the “edge of stability.” This

FIG. 6. Response of the delay controller �dashed line� to a 2 Hz input
frequency �solid line� for different time delays: �a� 5 ms and �b� 15 ms. See
Ref. 14 for more details.
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interpretation is consistent with the observation that �n��c

=�2� /3g�140 ms where �n is estimated using the cross
correlation between the movements of the fingertip and tip of
the stick �estimates of �n using different techniques yield
larger values.19,24� An alternate interpretation is that these
power laws arise because of a time-delayed optimal control
mechanism.61

Figure 8 shows the two-point correlation function for the
movements of the fingertip. For small displacements H
�0.5 �observed for nine subjects�, and hence there is persis-
tence. The simplest interpretation of this observation is that
the upright fixed point is unstable, and hence sufficiently
close to this fixed point the system is allowed to drift away.
Indeed it has been suggested that for a system at the edge of
stability, the fluctuations resemble a delayed random walk
whose mean displacement is approximately zero.20 For the
mechanical inverted pendulum, the upright fixed point in the

hunting regime is also unstable even though the stick re-
mains upright. However, in this case the dynamics of the
controller become clearly oscillatory. For stick balancing it is
clear that the behavior of 
Vf is more complex.

C. Human postural sway

Two concepts are important for understanding the con-
trol of human balance during quiet standing:30,31 �1� center of
mass �COM�, the net location of the COM in three dimen-
sional space, and �2� COP, the weighted average of the loca-
tion of all downward �action� forces acting on the standing
surface. Typically, COM is computed by making a weighted
average of the COMs of each body segment using a total
body model,30,31 whereas COP is measured using a force
platform.31 The COP represents the neuromuscular response
to imbalances of the body’s COM, i.e., when the COM is
displaced from the neutral axis of alignment, compensatory
changes must be made in COP to redirect the COM back
toward the neutral axis. These compensatory changes are re-
lated to neuromuscular forces. Previous studies have shown
that on slow time scales �digitization rate of 20 Hz� COP
regularly oscillates about COM in the AP direction �similar
to Fig. 6�b��; however, more complex behaviors are seen in
the ML direction.30,31

Figure 9�a� shows the fluctuations of the COP in the
�x ,y� plane for a single subject. For slightly less than one-
third of the subjects, K�s� could be described by three scaling
regions demarcated by the ↓ in Fig. 9�b� as described
previously.26,27 However, for other subjects K�s� could not be
represented by three scaling regions.28,32 Of these subjects,
two patterns could be distinguished, an oscillatory K�s� and a
nonoscillatory K�s� �Fig. 9�c��. In all cases, for small dis-
placements we observed that H�0.5 and for large displace-

FIG. 7. Dynamics of stick balancing at the fingertip: �a� compares the time
series of the cosine of the vertical displacement angle, equal to 
z /�, and
�b� shows the changes in speed, 
Vf, of the fingertip. The digitization rate
was 1000 Hz.

FIG. 8. The two-point correlation function, K�s�, for the movements of the
fingertip using Eq. �18�. Data was digitized at 1000 Hz. For this subject,
H�0.72.

FIG. 9. Dynamics of the fluctuations in the COP measured during quiet
standing with eyes closed using a force platform. �a� Trajectories of COP
projected onto the AP:ML plane. �b� Comparison of the project area of the
fluctuations in COP to the area of the base of support, i.e., the sum of the
area under and between the subject’s feet; �b� and �c� show different patterns
of K�s�, and �d� shows that the different patterns of K�s� can be generated
from Eqs. �15� and �16� by changing the noise intensity. The K�s� are ar-
ranged with the lowest noise intensity on the bottom and the highest on the
top. See text for discussion.
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ments H�0.5. The fact that the difference types of K�s�
could be observed in the subject, recorded at different times,
suggests that the variations in K�s� have a dynamic basis.
This interpretation is supported by the fact that all patterns
could be reproduced by a simple model for postural sway,
namely, Eqs. �15� and �16�, by varying the noise intensity29,32

�Fig. 9�d��. The observation that the upright fixed point for
postural sway is unstable is consistent with the measured
latencies. The COM for a standing human is located approxi-
mately at the level of the second sacral vertebrae, i.e.,
��1 m from the standing surface. This gives �c=�2� /3g
=260 ms. Thus �c is shorter that the neural time delay but
longer than the time delay to reverse the perturbed move-
ment �n �Sec III D�.

Typically the COP fluctuations are slightly biased in the
AP direction �as shown�; however, for some subjects the
COP fluctuations are not biased or slightly biased to the left
or right. There was no relationship between the bias in the
COP fluctuations and the type of K�s� pattern observed.

VI. DISCUSSION

Our observations demonstrate that for three paradigms
of human balance control, namely, mechanical stick balanc-
ing, human stick balancing at the fingertip, and postural sway
during quiet standing, the fixed point for the upright position
is unstable. This conclusion is supported by direct compari-
sons of the movements of the inverted pendulum and the
controller and, in the case of human balance control, the fact
that H�0.5 for small displacements. Mathematical studies
of time-delayed feedback control emphasize the importance
of measuring the relative magnitudes of �c and �n. However,
there are several problems associated with making decisions
about stability based solely on measurements of these delays.
First, although �n��c guarantees instability of the fixed
point, �n��c does not guarantee stability. Second, it is diffi-
cult to apply these criteria to human data since estimates of
�n vary depending on how you measure them �see Secs. V B
and V C�. Finally, and more importantly, focusing on �n and
�c overlooks the fact that instability can arise simply because
of the inherent difficulties of simultaneously controlling the
position of the inverted pendulum and the controller using
delayed feedbacks. In other words the balanced state is sta-
bilizable but not controllable �see Sec. II�. Several empirical
observations support this issue as a fundamental mechanism
for balance instability: our inability to control a mechanical
inverted pendulum with two PID controllers, published time
series of COM and COP for postural sway,30,31 and the ob-
served continual movements of the hand of even an expert
stick balancer.

Currently it is believed that a better way to view the
balanced state is as a state in which the vertical displacement
angle is confined, or bounded, in some manner within an
acceptable range about �=0.20,26,35,54 One way that this can
be accomplished is through the appearance of bounded, time-
dependent oscillatory types of attractors, e.g., limit cycle,
quasiperiodic, chaotic, and so on. It is well established that
feedback control with delay can readily generate these be-
haviors through both supercritical and subcritical Hopf

bifurcations.15,16,51 The hunting behavior observed for me-
chanical inverted pendulums and the COP oscillations about
COM recorded in the AP direction for human postural
sway30,31 suggests that oscillatory types of attractors may be
part of the solution. However, there are a number of reasons
to believe that the approach taken by the nervous system to
control human balance may be fundamentally different than
the approaches typically taken by engineers to stabilize a
mechanical inverted pendulum. We discuss our reasoning in
terms of four additional misconceptions that arise in biome-
chanical discussions of gait and postural stability when con-
siderations of time delays are omitted.

First, in the application of control engineering concepts
to the nervous system it is often implicitly assumed that neu-
ral feedback operates continuously. Putting aside consider-
ations of the high costs associated with implementing such
strategies, the main problem is that continuous feedback is
not desirable for stabilizing an unstable fixed point in the
presence of noise and delay.33–35 The problem is distinguish-
ing those fluctuations that need to be acted upon by the con-
troller from those that do not. This is because, by definition,
there is a finite probability that an initial deviation away
from the set point will be counterbalanced by one toward the
set point just by chance. Too quick a response by the con-
troller to a given deviation can lead to “overcontrol,” leading
to destabilization, particularly when time delays are appre-
ciable. On the other hand, waiting too long runs the risk that
the control may be applied too late to be effective. Thus
methods based on continuous feedback are not only antici-
pated to be very difficult to implement by the nervous system
but are also unlikely to be effective. One way to achieve
effective control in the presence of noise and delay is to use
an “act-and-wait” type of control strategy.33,34 An act-and-
wait control strategy is a type of adaptive control in which
when a corrective force is generated �“act”� it is necessary to
“wait” sometime before the next corrective force is gener-
ated. One possible way to implement an act-and-wait control
strategy is to use a switchlike controller, in which corrective
outputs are generated only when the dynamical variables
cross preset thresholds.32,35,54 Switchlike adaptive controllers
are well known to engineers and have the property that they
are optimal when the control is bounded.4 The intermittent
controlling movements observed for both stick balancing at
the fingertip �Fig. 7�b� and Ref. 20� are certainly consistent
with the notion of discontinuous control. In retrospect, mea-
surements of the two-point correlation function for human
postural sway were the first to draw attention to the possibil-
ity of an act-and-wait control strategy for balance
control.26,27 Finally the existence of an adaptive type of con-
troller for postural balance might explain the observation that
although balance instability increases in those elderly sub-
jects who have a prolonged �n, these subjects nonetheless
remain upright most of the time!62

The second misconception that has arisen in biome-
chanical discussions of gait and posture stability as a conse-
quence of neglecting the importance of time delays is the
tendency to equate oscillations with the notion of passive
feedback, i.e., feedback that relies solely on the biomechani-
cal properties of joints and their associated connective tis-
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sues �see, for example, Refs. 30 and 31�. Indeed the afore-
mentioned oscillations of COP about COM in the AP
direction during postural sway were initially interpreted in
terms of a harmonic oscillator-type model.30 This interpreta-
tion led to two untenable additional assumptions, namely, �1�
damping was precisely zero �not true29,59� and �2� balance
control during quiet standing was entirely maintained by the
biomechanical stiffness of the ankle joint �also not com-
pletely true56,57�. In contrast, stable limit cycle oscillations
readily arise in models of delayed inverted pendulums even
when they are damped, either because the feedback is
switchlike29 or because the destabilizing delay is exceeded,
and hence the equilibrium point becomes unstable.13,15,16,51

Thus there is no reason to ignore the effect of damping to
account for the oscillations observed in balance control or
even to assume that the presence of oscillations eliminates
the possibility of active neural feedback control.

A third misconception concerns whether it is possible to
control simultaneously both the angle and the pivot point at
an arbitrary position of the pendulum using linear feedback.
The observations in Sec. II suggest that this is not possible
when �=0. Our observations suggest that this cannot be
achieved when ��0, at least by using PID-type controllers.
This is another reason why the dynamics of human balance
control are so complex �see, for example, Refs. 20, 30, and
52�. A closely related issue concerns how the nervous system
estimates the speed �derivative� of a moving object since
speed is included in the feedback controllers used by engi-
neers to stabilize the pendulum’s upright position. In order to
measure a speed it is necessary to obtain measurements at
two points in time. Equation �14� implies that there is likely
to be an intimate relationship between the fact that the ner-
vous system is constructed of delay lines and the estimation
of spatial and temporal derivatives. Certainly the visual sys-
tem has the ability to estimate speed of moving objects63 and
indeed it has been possible to construct a silicon retina that
measures speed by incorporating features that mimic those of
neurons in the retina.64,65 However, it is not known whether
this can also be accomplished by using the nonvisual nervous
system with sufficient accuracy to enable an inverted pendu-
lum to be stabilized. This observation may explain why it is
much easier to balance a light stick at the fingertip with eyes
open than with eyes closed. Along these lines we might
speculate that the continued movements of the hand �and
hence fingertip� in the horizontal plane of even a very expert
stick balancer arise because the nervous system has access
only to poor information regarding the velocity of hand
movements which are not normally located within the visual
field of the balancer during the performance of this task �see
Sec. IV�. Moreover it becomes less clear whether changes
observed in gait width are a stabilizing mechanism66–68 or
simply a reflection of the inability of the nervous system to
simultaneously control both gait width and vertical stability.

A final misconception is the belief that random perturba-
tions �noise� have only deleterious effects on balance control.
It is important for the physically oriented reader to note that
neuroscientists working on human balance control typically
use the term noise to refer to either the noiselike components
of muscle activity48 or to externally generated vibratory in-

puts applied to the body.69 It is becoming clear that these
types of noisy inputs can have beneficial effects on balance
control. For example, vibrations applied to the soles of the
feet can stabilize postural sway through the ability of sub-
threshold vibrations to enhance the sensitivity of relevant
sensory neurons via a mechanism known as “stochastic
resonance.”69 Recently attention has focused on the possibil-
ity that noise can directly confine an unstable dynamical sys-
tem close to the origin in the presence of retarded
variables.35–38 Thus the observation that postural sway in the
elderly is characterized by both increased muscle activity48

and the use of open-loop control for longer time intervals62

may be a consequence of an increased reliance on passive
control mechanisms that arise from the interplay between
noise and delay.

Evaluating control strategies for real dynamical systems
requires careful consideration as to whether it is feasible to
implement the strategy given the inherent limitations of the
resources at hand. Control strategies that involve measure-
ments of displacement and velocity are useful for mechanical
systems, e.g., feedback and feed-forward control, when the
time interval required for the estimation of the velocity can
be made sufficiently short; though even here problems
exist.7,8,10 Although these engineering concepts have heavily
invaded the neuroscience literature, it is completely unclear
whether the nervous system attempts the same types of con-
trol that engineers attempt to implement. The nervous system
may take advantage, in some way, of the long delays that are
present to use novel and perhaps more robust control strate-
gies �see also Ref. 70�. Near the edge of stability, stochastic
forms of control become possible that depend on the inter-
play between noise and delay.20,35,36 Perhaps the nervous sys-
tem uses adaptive act-and-wait control strategies simply be-
cause they are cheaper to implement and maintain. In any
case, until issues such as these are resolved, we suggest that
conclusions drawn from the application of control engineer-
ing concepts to the nervous system be interpreted cautiously.
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