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Abstract This paper proposes a fast ant colony system based solution method
to solve realistic instances of the time-dependent orienteering problem with time
windows within a few seconds of computation time. Orienteering problems occur in
logistic situations where an optimal combination of locations needs to be selected
and the routing between these selected locations needs to be optimized. For the
time-dependent problem, the travel time between two locations depends on the
departure time at the first location. The main contribution of this paper is the
design of a fast and effective algorithm for this problem. Numerous experiments
on realistic benchmark instances with varying size confirm the state-of-the-art
performance and practical relevance of the algorithm.

1 Introduction

The orienteering problem (OP) is defined on a graph in which the vertices repre-
sent geographical locations where a reward can be collected. An arc in the graph
represents a connection between two vertices and has a certain travel time. The
goal of the OP is to determine which subset of vertices to visit and in which order
so that the total collected reward is maximized and a given maximum total travel
time is not exceeded. In addition, a feasible OP solution should start and end
at a predetermined vertex. The OP integrates the knapsack problem (KP) and
the travelling salesperson problem (TSP). In contrast to the TSP, not all vertices
can be visited in an OP due to the limited travel time. However, determining the
shortest path for visiting the selected vertices might decrease the total travel time
and help to visit extra vertices.

The OP has many interesting applications in defence, tourism and logistics.
For example, a military application of the OP considers Unmanned Aerial Vehicle
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(UAV) mission planning to collect intelligence information about different loca-
tions in the area of operations (see for example (Royset and Reber, 2009; Mufalli
et al, 2012; Evers et al, 2012)). The aim of these missions is to acquire as much
information as possible during the flight, while the length of the flight is limited by
the available fuel capacity of the UAV. Another application of the OP is personal-
ized tourist trip planning. In this case, each vertex is a point of interest (POI) and
the reward of a POI indicates the personal interest that the tourist attaches to
it. In this problem, a tourist wants to visit several different sightseeing locations,
for each of which the tourist has a different preference level. The length of the
tourist tour is restricted by the total time the tourist can spend on sightseeing.
Research on this problem and similar applications was presented in (Vansteenwe-
gen and Van Oudheusden, 2007; Vansteenwegen et al, 2011b; Souffriau et al, 2008;
Schilde et al, 2009; Wang et al, 2008). Finally, OPs are used in logistic planning
tools where each vertex represents a customer and the reward reflects the profit
margin achieved by visiting this customer. The aim is to select the combination of
customers and sequence that maximizes the total profit (Tsiligirides, 1984; Golden
et al, 1987; Kantor and Rosenwein, 1992). For a longer list of practical and real-life
applications of the OP and its variants, we refer to the survey by Vansteenwegen
et al (2011a).

In optimisation problems such as the OP, the travel time required to traverse
a link between two vertices can be considered either time-independent or time-
dependent. If the time to traverse a link is not dependent on the hour of the day
(time-independent orienteering problem or the regular OP), it is considered to be
static and it is represented by a single value. If, on the other hand, this travel time
is time-dependent, this problem is called the time-dependent orienteering problem
(TD-OP). Then the travel time depends on the hour of the day the link is taken
and it can no longer be modelled by a single value. In this case, this is modelled
as a travel time function representing the travel time in function of the hour of
the day. As thoroughly discussed in (Verbeeck et al, 2014), the time-dependent
problem formulation allows to tackle congestion related issues in routing problems
and multi-modal applications for logistic or tourist trip planners.

Furthermore, in the problem we consider, each vertex has a time window (open-
ing time and closing time) and a service time. The addition of time windows to the
time-dependent orienteering problem makes the problem more realistic since both
tourist attractions and customers also have opening hours in real-life situations.
It is therefore an obvious step in the direction of modelling and solving realis-
tic routing problems (Aghezzaf et al, 2012). On the other hand, by incorporating
time windows, the resulting waiting times, which postpone the start of a service
and thus the departure time, directly affect the travel times in a time-dependent
problem context. This makes the problem more difficult than the TD-OP without
time windows. For example, departing earlier at a vertex, to avoid congestion,
might turn out to be less useful if you can not serve the subsequent vertex at the
scheduled arrival time because of the opening time.

This paper makes several contributions to the literature. Firstly, the TD-
OPTW is introduced and mathematically modelled. Secondly, an ant colony op-
timization algorithm is proven to be successful in solving realistic test problems
for the TD-OPTW. Thirdly, a set of problem instances based on a large and real
road network are made available together with an efficient pre-processing method.
This method also allows a fast execution of any solution method for the OP or
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related problems such as the TSP and the vehicle routing problem (VRP) with
time-dependent travel times. In general, this paper tries to show how a vehicle
routing problem with time-dependent disturbance can be tackled in a practical
way. The pre-processing method and solution method presented in this paper are
ready to be incorporated in vehicle route planners. Finally, the impact of account-
ing or not for time-dependent travel times for the OPTW is investigated. It shows
the importance of taking into account time-dependent travel times and leads to
some managerial insights.

Following a literature review in Section 2, the TD-OPTW is further described
in Section 3. Then, the pre-processing procedure and solution method are proposed
in Section 4. Afterwards, the creation of the datasets based on a realistic network
is discussed in Section 5. The solution methods are experimentally evaluated in
Section 6. Section 7 concludes this paper and discusses possible future work.

2 Literature Review

The name of the orienteering problem derives from the sport game of orienteering
(Tsiligirides, 1984; Chao et al, 1996). In this game, individual competitors start at
a specified control point and try to maximize their reward by visiting checkpoints
and returning to the control point within a given time frame. Each checkpoint has
a known reward and the objective is to maximize the total collected reward. A
survey on the OP and its extensions can be found in Vansteenwegen et al (2011a)
and Gunawan et al (2016).

The time-dependent variant of the OP is relatively new and has, to the best
of our knowledge, only been studied in (Fomin and Lingas, 2002; Abbaspour and
Samadzadegan, 2011; Garcia et al, 2013; Li et al, 2010; Li, 2011; Gavalas et al,
2014, 2015). Fomin and Lingas (2002) were the first authors to mention the TD-
OP and state that it is NP-hard because the OP is NP-hard. However, they do
not develop an algorithm for the TD-OP that can be used in practical situations.
Abbaspour and Samadzadegan (2011) introduce a solution procedure for the TD-
OPTW based on two adaptive genetic algorithms and multi-modal shortest path
finding modules. They are able to solve multi-modal routing problems in the city
of Tehran, although no absolute performance measure (gap) was reported. Li et al
(2010) propose a mixed integer programming model of the TD-OP combined with
an optimal pre-node labelling algorithm based on the idea of network planning
and dynamic programming. However, this algorithm is not tested on benchmark
instances and therefore no performance metrics are proposed. The same conclu-
sion holds for Li (2011) where a mixed integer programming model is proposed
and an optimal dynamic labelling algorithm is designed for the time-dependent
team orienteering problem (TD-TOP). Garcia et al (2013) develop an iterated local

search (ILS) heuristic for the time-dependent team orienteering problem with time
windows (TD-TOPTW) which allows them to illustrate, based on a case study in
the city of San Sebastian, that obtaining near-optimal routes in a few seconds is
feasible. However, only a special case of time-dependency is considered, which is
the result of using public transport in a city environment. For example, when a
traveller arrives at a bus stop before the bus arrives he needs to wait. Therefore
the travel time between two vertices consists of both the waiting time and the
driving time and depends on the departing time at the start vertex. They exploit
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the fixed frequency of bus services to come up with an efficient solution technique.
The most recent work is from Gavalas et al (2014) and Gavalas et al (2015). The
authors propose several cluster-based heuristics for the TD-TOP applied to tourist
trip planning. Unlike Garcia et al (2013), they do not make the assumption of pe-
riodic service schedules. The algorithms were tested on datasets compiled from the
metropolitan area of Athens.

Existing solution methods for the related time-dependent vehicle routing prob-
lem (TD-VRP) (Ichoua et al, 2003; Haghani and Jung, 2005; Lecluyse et al, 2009;
Van Woensel et al, 2008; Kok et al, 2012) and the time-dependent vehicle rout-
ing problem with time windows (TD-VRPTW) (Potvin et al, 2006; Chen et al,
2006; Donati et al, 2008; Kritzinger et al, 2011; Hashimoto et al, 2008; Soler et al,
2009; Balseiro et al, 2011) provide inspiration on how to efficiently deal with time-
dependency and time windows. The work of Lecluyse et al (2009) even incorporates
stochastic time-dependent travel times. Soler et al (2009) transform TD-VRPTW
into an Asymmetric Capacitated Vehicle Routing Problem in order to solve it
with a state-of-the-art exact and heuristic solution method. The algorithms that
have been developed for the TD-VRP(TW) include tabu search (Ichoua et al,
2003; Van Woensel et al, 2008; Lecluyse et al, 2009), a genetic algorithm (Haghani
and Jung, 2005), a heuristic combining route construction and route improvement
(Potvin et al, 2006; Chen et al, 2006), two ant colony system approaches (Donati
et al, 2008; Balseiro et al, 2011), a variable neighborhood search (Kritzinger et al,
2011) and iterated local search (Hashimoto et al, 2008). Kok et al (2012) use a
time-dependent shortest path algorithm together with a restricted dynamic pro-
gramming heuristic to solve real-life TD-VRP test instances. In (Verbeeck et al,
2014) we developed a solution procedure for the TD-OP and tested it on modified
OP instances. However, these instances were based on a simplistic speed-model
adopted from the TD-VRP literature. This algorithm was tested on modified OP
instances that consist of a complete graph where all arcs between vertices needed
to be assigned to a road category which defined their travel time profile. In this
paper we extend the TD-OP solution procedure to incorporate time windows and
we add the swap and replace local search procedures. More importantly, we ver-
ify that realistic problem instances that originate from a large road network with
available travel time profile measurements can be solved effectively and efficiently
by our heuristic solution procedure.

3 Problem description

In this section, the time-dependent orienteering problem is described and modelled
as a Mixed Integer Programming (MIP) formulation.

Formally, the TD-OPTW can be described by defining a set Vc = {1, ..., v}
of vertices. In this set vertex 1 represents the start depot and vertex v the end
depot. We assume there is an arc (i, j) between all i and j in Vc. Associated with
each vertex i ∈ Vc is a non-negative reward ri. This reward is earned by visiting
the vertex for a duration of si time units between its opening time oi and closing
time ci+si. The vertex can not be visited at any other moment in time. Note also
that the time window is defined for the start of the service and not the end. The
reward of the start and end depot is equal to 0.
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We assume that a day is divided in κ time slots. Furthermore, let us assume that
tst and tst represent the moment at which time slot t starts and ends respectively.
Subsequently, based on these time slots and their corresponding travel times for
each arc (tti,j,tst

), the linear travel time coefficients for each arc µi,j,t and νi,j,t
can be calculated as follows:

µi,j,t =
tti,j,tst

− tti,j,ts
t

tst − tst
(1a)

νi,j,t = tti,j,ts
t
− µi,j,t ∗ tst (1b)

These linear regression coefficients allow the travel time from i to j, when departing
at time wi,j,t in time slot t (tst < wi,j,t < tst), to be calculated as follows:

tti,j,wi,j,t
= µi,j,t · wi,j,t + νi,j,t (2)

During this process the linear piecewise travel times are guaranteed to be FIFO if
|µi,j,t| is smaller than or equal to 1.5. A visual example of a piecewise linear travel
time for an arc i, j can be seen in Figure 1. In this example, there are 24 timeslots
(κ) with a length of 1 hour. For t = 7, µi,j,7 equals 0.25 and νi,j,7 equals −0.75
which results in tti,j,wi,j,7

= 0.25 ∗ wi,j,7 − 0.75.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0
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,
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Fig. 1 Example of a piecewise linear travel time on an arc i, j with κ = 24

The decision variables and other parameters used in the MIP model are listed
below:

Decision variables

xi,j,t =1 if a vehicle traverses the arc (i, j) with a departure time in time slot t, 0
otherwise
wi,j,t=departure time at vertex i when travelling from i to j in time slot t, 0
otherwise

Parameters

µi,j,t: slope coefficient of the linear time-dependent travel time as defined in Equa-
tion (1a)
νi,j,t: intercept coefficient of the linear time-dependent travel time as defined in
Equation (1b)
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tst: start of time slot t
κ: number of time slots
ri: reward of vertex i

oi: opening time of vertex i

ci: closing time of vertex i

si: service time of vertex i

tmax: time budget

Max
v−1∑

i=2

v∑

j=2

κ∑

t=1

ri · xi,j,t (3a)

v∑

j=2

x1,j,1 =
v−1∑

i=1

κ∑

t=1

xi,v,t = 1 (3b)

v−1∑

i=1

κ∑

t=1

xi,h,t =
v∑

j=2

κ∑

t=1

xh,j,t ≤ 1 ∀h = 2, ..., v − 1 (3c)

xi,j,t · tsi,j,t ≤ wi,j,t i = 1, ..., v − 1, j = 2, ...v, ∀t (3d)

wi,j,t ≤ xi,j,t · tsi,j,t i = 1, ..., v − 1, j = 2, ...v, ∀t (3e)

v−1∑

i=1

κ∑

t=1

[wi,h,t + µi,h,t · wi,h,t + (νi,h,t + sh) · xi,h,t] ≤
v∑

j=2

κ∑

t=1

wh,j,t

∀h = 2, ..., v − 1

(3f)

v−1∑

i=1

κ∑

t=1

[wi,v,t + µi,v,t · wi,v,t + νi,v,t · xi,v,t] ≤ t
max (3g)

v−1∑

i=1

κ∑

t=1

(oh + sh) · xi,h,t ≤
v∑

j=2

κ∑

t=1

wh,j,t ∀h = 2, ..., v − 1 (3h)

v∑

i=2

κ∑

t=1

wh,i,t ≤
v−1∑

i=1

κ∑

t=1

(ch + sh) · xi,h,t ∀h = 2, ..., v − 1 (3i)

w1,i,1 = 0 ∀i = 1, ..., v (3j)

xi,j,t ∈ (0, 1) i, j = 1, ..., v ∀t (3k)

wi,j,t ∈ [0, tmax] i, j = 1, ..., v ∀t (3l)

The continuous decision variable wi,j,t contains the departure time at vertex i

when travelling to vertex j in time slot t. This departure time at vertex i equals
the sum of the arrival time at vertex i, the waiting time at vertex i and the service
time si. Note that both decision variables, xi,j,t and wi,j,t, are equal to zero when
there is no route from i to j in time slot t in the solution. In short, wi,j,t becomes a
proxy for xi,j,t when checking if a route is scheduled between two vertices in time
slot t. This is a useful property to avoid the multiplication of decision variables in
Constraints (3f) and (3g).

The objective function and the first three constraints are similar to the TD-OP.
The objective function (3a) maximizes the total collected reward. Constraint (3b)
guarantees that the route starts in vertex 1 and ends in vertex v. Constraints (3c)
make sure that every arc is only travelled once and ensure the connectivity of the
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route. Constraints (3d) and (3e) determine the departure time in the right time
slot which is necessary to multiply the departure time with its corresponding µ

and ν in Constraints (3f) and (3g).

The difference with the TD-OP’s MIP is found in Constraints (3f), (3g), (3h)
and (3i). Constraints (3f) guarantee that the departure time of the next vertex
in the route is equal to the sum of the departure time of the previous vertex
together with the travel time and service time. The travel time is calculated as a
linear function. In this function the departure time is multiplied with a parameter
µi,j,t, whereafter parameter νi,j,t is added. Constraint (3g) ensures the limited time
budget. Constraints (3h) ensure that the departure time at each vertex except from
the start and end depot is greater than or equal to the opening time. Constraints
(3i) in turn, ensure that the departure time is less than or equal to the sum of the
closing time and the service time of the vertex under consideration.

Moreover, Constraint (3j) states that a route must start at time zero and
therefore allows no waiting at the start depot. This assumption can be made
without loss of generality.

4 A fast ant colony system based solution method

4.1 General outline

Since high-quality solutions are required and the computation time should be
limited to only a few seconds, the literature on vehicle routing suggests the im-
plementation of a local search based metaheuristic (Sörensen et al, 2008). The
fast execution time enables interesting business applications where it is necessary
to update routes when new traffic information becomes available and to provide
proper guidance to drivers/tourists on the road. In this paper, a metaheuristic,
based on the principles of an ant colony system (ACS), is implemented to tackle
the TD-OPTW. This solution framework is based on our ACS for the TD-OP
(Verbeeck et al, 2014) but all procedures have been altered and significantly im-
proved to deal with the specifics of time window constraints and a new and crucial
time-dependent local search procedure called replace has been added. The original
ACS was based on the ant colony optimization algorithm (ACO) of Ke et al (2008)
and Schilde et al (2009) for the time-independent OP and on the ACS of Donati
et al (2008) for the TD-VRP.

We present an overview of our algorithm first and in the remainder of this sec-
tion, the different procedures are discussed in detail. The ACS is based on the be-
haviour of a foraging ant colony. It is a constructive metaheuristic that constructs
several solutions independently (each construction procedure is represented by an
agent commonly called an “ant”) and uses memory structures called “pheromone
trails” to mark travelled arcs and allow communication between the different ants.
The ACS framework is displayed in Algorithm 1, together with the corresponding
input parameters (α, β, max ants, ρ,Nmax

ni ) and variables (η, τ,Nni, max shift),
which will be discussed in the following subsections. The best solution found in
iteration i is defined as solib, solgb represents the best solution found during the
entire optimization procedure and F (solx) refers to the objective function (total
reward) of solution solx.
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The ACS starts by sequentially creating a predefined number of initial solu-
tions. The construction process starts from the first vertex and iteratively adds the
next vertex to the solution based on greedy information and pheromone trails of
the arcs leading to that vertex. The greedy information is based on the ratio of the
reward of a vertex and the extra time-independent travel time needed to reach it.
After the creation of a complete solution, its included arcs are made less attractive
for the following solution construction procedures, in order to increase diversifica-
tion. This is done by depreciating the pheromone values. Once all solutions of one
iteration are created, they are improved, using the swap, insert and replace local
search moves. The latter two local search moves make use of a local evaluation
metric called max shift which is described in Section 4.5. The solution with the
highest reward is stored. Finally, the arcs that are used in this solution are made
more attractive in the solution construction procedure of succeeding iterations,
by increasing their corresponding pheromone value. These steps are repeated Nc

times. To prevent that only a couple of arcs dominate in the solution construction
procedure, the pheromone values are reset when no improvement is found during
a certain number of iterations (Nmax

ni ).

Algorithm 1 Ant colony system - input parameters: α, β, ρ, max ants, τinit, N
max
ni

solib ← 0, solgb ← 0, Nni ← 0, iteration← 0
while iteration < Nc do

Initialize parameters: τ , η (τinit)
for i← 1 to max ants do

Construct solution & local pheromone update (τ , η, α, β, ρ)
Calculate max shift (max shift)
Swap (max shift)
Insert (max shift)
Replace (max shift)

end for

solib ← argmax(F (sol1), F (sol2), ..., F (solmax ants))
if F (solib) > F (solgb) then

solgb ← solib
Nni ← 0

else

Nni ← Nni + 1
end if

Global pheromone update (τ , solib, Nni, N
max
ni )

iteration← iteration+ 1
end while

4.2 Pre-processing

In order to maintain acceptable computation times on larger instances, our solution
approach needs to be scalable. Therefore, a set of neighbours is defined for each
vertex i ∈ Vc. This set, NBi, is computed before the start of the ACS and consists
of the closest vertices in the sense of spatial-temporal closeness. A vertex j is
considered a neighbour of vertex i if the following equation holds:

oi + si + tti,j ≤ cj (4)

In this equation tti,j represents the time-independent free-flow travel time on arc
i, j. This concept will be explained more in detail in Section 5. It means that it
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is possible to reach vertex j before the closing time when leaving at the earliest
possible departing time at vertex i. Subsequently, these neighbours are first stored
in a list, sorted according to the ratio of the reward over the sum of its service
time and the time-independent free flow time between vertices i and j.

rj

sj + tti,j
(5)

If the number of neighbours in this list is greater than NBmax, only the first
NBmax neighbours are stored as the set of neighbours for the vertex under con-
sideration. These neighbour sets are used in the construction method and the local
search moves. In the remainder of this text, a vertex j is called a neighbouring
vertex of vertex i if j is included in the neighbour set of i. Various values where
tested for NBmax and a value equal to 45 seemed a good trade-off between a
scalable computational time and solution quality.

4.3 Initialize parameters

The value of the greedy information, ηi,j for arc (i, j) is calculated as follows:

ηi,j =
rj

tti,j
(6)

The reasoning behind this formula is as follows: vertices with higher rewards and
lower time-independent travel time from the last visited vertex are more likely
to be interesting vertices to visit next. This way of working turns out to be less
computationally expensive in comparison to using the time-dependent travel time
as part of the ratio.

The pheromone value (τi,j) of all arcs is initially set at a value τinit.

τi,j = τinit (7)

The actual value of τinit is of no importance as it is the relative difference be-
tween the τ -values that determines the likelihood to be selected in the construction
method.

4.4 Construct solution & local pheromone update

This method creates max ants solutions independently and sequentially. Each con-
struction starts from an empty solution and adds vertices at the end of the solution
until no more vertices can be inserted due to the travel time restriction. At that
point, the end vertex is added to finalize the solution, and the algorithm moves
on to the next solution, until max ants solutions are created.

Before adding a vertex following the already included vertex u, a list called
Vu of all neighbouring vertices eligible to include is created. This is done by first
calculating the time-dependent travel time between the last included vertex u and
a vertex under consideration i. Vertex i is not added to the list when the arrival
time at i departing from u (tai) is greater than its closing time or when there is
not enough time to reach the end vertex:

tai > ci (8)
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tai > t
max (9)

Afterwards, each vertex in the list has a probability li to be added to the solution.
This probability is at the beginning of the procedure initialized to 1 for every
feasible vertex. It is also possible to arrive before oi which results in a waiting
time equal to:

oi − tai (10)

Because waiting is not beneficial to obtain good solutions, li is decreased for the
vertices where waiting is necessary:

if tai < oi then li = 1−
oi − tai

tmax
(11)

Finally, when the list is ready, the final probability is updated as follows:

li =
li ∗ τ

α
u,i · η

β
u,i∑

w∈Vu

lw ∗ τ
α
u,w · η

β
u,w

∀i ∈ Vu (12)

In this equation, α determines how much weight is given to the pheromone value
and β defines how much weight is given to the greedy information. Then, a ran-
dom number is generated to determine, together with the probability li, which
vertex from the list is added to the solution by using a roulette wheel selection
method. Subsequently, the τ -value related to the newly added arc in the solution
is decreased. This local pheromone procedure which enhances diversification is
executed as follows:

τu,i = τu,i · (1− ρ) (13)

where ρ is the evaporation rate.
After the construction of max ants solutions, the local search moves explained

below and displayed in Figure 2 are executed on each constructed solution. For
these examples a service time equal to zero is assumed.

4.5 Calculation of the local evaluation metric

As in the ACS for the TD-OP, a local evaluation metric is used to prevent a global
and time-consuming evaluation of a solution after every insertion and replacement
attempt (Section 4.7 and 4.8). In short, the maximum amount of time that a visit
to any given vertex in the current solution can be postponed before the solution
becomes infeasible is stored. The calculation of this metric called max shift, is
now adapted to take into account the time window restrictions and is presented
in the pseudo code of Algorithm 2. Note that in this procedure, sz is the number
of vertices stored in solution sol. The max shift metric is calculated from the last
vertex to the first vertex. The arrival time at the end depot is set equal to the
latest feasible arrival time. Based on this arrival time the matching departure time
is calculated. Afterwards, it is checked if the departure time (after subtracting the
service time), which can only be shifted towards the end of the solution sequence,
is greater than the closing time of the departing vertex. If this is the case, the
departure time is set equal to the closing time. The max shift value is calculated
for every vertex of the solution except the start vertex.
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Algorithm 2 Calculation of max shift for TD-OPTW - input: sol
ta ← t0 + tmax

for i = 0 to sz − 2 do

y ← solsz−(i+1)

k ← get time slot index(ta)
td ← calculate departure time(ta)

td ← td − sy
if td > cy then

td = cy
end if

max shiftsz−(i+1) ← td − actual departure timesz−(i+1)

ta ← td
end for
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Fig. 2 Overview of the time-dependent local search moves

4.6 Swap local search move

The swap local search move tries to exchange two vertices in the solution se-
quence in order to save travel time. We define y and z as the vertices that will
be exchanged, k and l as the predecessor and successor of y and m and n as the
predecessor and successor of z. After checking that k and l are neighbours of z and
that m and n are neighbours of y, the vertices y and z are temporary exchanged.
Otherwise, this swap pair (y, z) is discarded before further evaluation. Afterwards,
the new arrival time for the vertices between k and n is calculated while account-
ing for time window restrictions. Next, the difference in travel time (calculated
from k to n) of the possible swap is calculated and if this difference (local gain in
travel time) is negative, the swap is executed. However, it is unsure that this exact
difference in travel time can be kept until the end of the solution sequence due
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to waiting times and the time-dependent nature of succeeding travel times after
vertex n (global gain in travel time). However, since our travel time is FIFO we
are sure that departing earlier at vertex n guarantees that our new arrival time at
the end vertex will be less than or equal to the previous one. Therefore this ap-
proach is chosen to avoid a complete evaluation of the solution. This significantly
speeds up the search for feasible swap partners. Afterwards, the new arrival times
are calculated and the max shift values for the vertices starting from n until the
end of the solution can be updated. The update of the max shift variable is not
recalculated from scratch but is rather based on the following formula:

max shifti = max shifti + (previous tdi − new tdi) (14)

Finally, the max shift variable needs to be recalculated for all vertices before y.
Since this local search move does not use the max shift local evaluation metric,

a lot of travel time calculations are needed and therefore the procedure is executed
in a first improvement manner. The procedure stops when no more improvements
can be found.

4.7 Insert local search move

The problem-specific insert local search move iteratively attempts to insert non-
included neighbouring vertices into an existing solution, thus improving its total
reward. The insert move tries to insert vertices into the current solution if the extra
travel time, required to visit this new vertex, is less than the value of max shift of
the succeeding vertex. For example, when the algorithm attempts to insert vertex
y between x and z, the extra time-dependent travel time equals:

∆tt = ttx,y,tdx
+ tty,z,tdy

− ttx,z,tdx
(15)

Note that the procedure first checks if vertex y is a neighbour of x and z, otherwise
this insertion combination is discarded. During the calculation, the required service
time and waiting time are added to the arrival time when:

tay < oy or taz < oz (16)

The insert move is cancelled when the arrival time at y from x is greater than the
closing time of y:

tay > cy (17)

Recall that this violation is still possible as the set of neighbours is constructed
based on time-independent travel times (Section 4.2). Vertex y can only be inserted
into the current solution when the extra travel time is less than or equal to the
maximum amount of time a visit to vertex z can be shifted towards the end of the
solution sequence or:

∆tt ≤ max shiftz (18)

When vertex y is actually included in the solution, the algorithm updates the
travel time from x to y, as well as the travel times between the vertices after
vertex y. This is necessary, because the insertion of vertex y has most likely caused
a change in waiting and/or travel time on the following arcs in the solution. The
max shift of the vertices after vertex y can easily be adjusted based on the previous
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max shift value, the previous travel time and the new travel time of the vertex
under consideration:

max shifti = max shifti + (previous tdi − new tdi). (19)

Secondly, for the vertices preceding vertex z only a recalculation of max shift is
required.

As a result of this procedure, the computation time needed to check if a vertex
can be included or not, and actually executing a feasible insertion is drastically
reduced. A visual overview on which travel times are calculated and which are
stored in memory is provided in Figure 2.

The insert move is executed in a best-improving manner and stops when no
more feasible improvements can be found. The best improving combination is
found using a ratio equal to the increase in reward divided by the increase in
travel time of a feasible insertion. If the travel time decreases or stays the same,
the ratio is set equal to:

(1−∆tt) ∗ ry. (20)

This means that as ∆tt becomes more and more negative, (1 − ∆tt) becomes
more and more positive, thus artificially increasing the reward.

4.8 Replace local search move

After the insert local search move, the replace move is executed. This move tries
to replace a vertex from the current solution with a non-included vertex with a
higher reward at the same position in the solution sequence. We define y as the
potential replacement vertex to include, z as the vertex in the current solution
that will be replaced and x and w respectively as the predecessor and successor
of z. The reward of z is compared with the reward of its neighbours. When the
reward of a non-included neighbour (y) is higher, it is checked if the potential
replacement is feasible. A replacement is possible when y is a neighbour of both x

and w and when the following inequality is valid:

∆tt ≤ max shiftw (21)

∆tt = (ttx,y,tdx
+ tty,w,tdy

)− (ttx,z,tdx
+ ttz,w,tdz

) (22)

During the calculation of these components, a waiting time is added to the travel
time when:

tay < oy or taw < ow (23)

The replace move is cancelled when the following inequality is valid:

tay > cy (24)

As soon as a feasible replacement option is found, it is performed (first improve-
ment manner). Afterwards, the travel time is recalculated for vertices after y while
the max shift variable is recalculated for vertices before y and updated for vertices
after y. The replace move is repeated for each vertex in the solution until no more
feasible improvements can be found.
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4.9 Update global best

After the construction and local search moves, the algorithm checks which solution
has the highest solution reward and stores it as the iteration best solution (solib).
If its reward is better than the best reward found during the previous iterations
(solgb), we update solgb. If not, variable Nni, that keeps track of the number of
iterations without improvement, is incremented. When solgb is updated, Nni is
reset to 0.

4.10 Global Pheromone update

If Nni is less than a maximum threshold (Nmax
ni ), the pheromone values of the arcs,

used in solib, are augmented with the value of τinit. This makes it more likely that
these arcs will be used in a subsequent construction procedure (intensification):

τi−1,i ← τi−1,i + τinit ∀i ∈ solib|i > 1 (25)

If Nni equals N
max
ni , all the pheromone values are reset to τinit. This means that

all arcs have again an equal probability to be chosen during the next construction
procedure, allowing diversification.

5 Datasets

A set of realistic problem instances was developed based on the road network (G =
(V,A)) of the Benelux (Belgium, The Netherlands and Luxembourg) containing
425,479 vertices (V ) and 519,915 arcs (A). The historical travel time dataset,
consisting of accurately recorded travel time observations every 15 minutes for a
representative Tuesday, is used to calculate the travel time for each arc. The travel
time dataset is recorded for a road network that covers all highways and frequently
travelled roads using the floating car system developed by Be-Mobile (Be-Mobile,
2014). The system uses vehicle probes (e.g., taxi’s, commercial vehicles, private
cars, etc.) that communicate their position frequently to a central system. The
individual data samples are processed to generate a traffic state for each individual
road segment. The system is fully operational since October 2007.

More specifically, there are travel time estimates for 96 time periods k ∈ K

per day (with a duration of 15 minutes) for each arc and each arc has a time-
independent free-flow tti,j estimate, which is the smallest travel time needed to
traverse the arc.

A set of instances was created by randomly selecting respectively 20, 50 and
100 vertices (Vc ⊆ V ) out of this road network and providing them with a reward,
opening and closing time and a service time. The other vertices (V \ Vc) in the
graph can not be visited but might be traversed to reach the vertices in Vc. Two
vertices out of Vc are selected as start and end depot.

The reward for each regular vertex is generated by selecting a random number
from 1 to 30. The deterministic service time of each regular vertex is generated
using a random number from a normal distribution with a mean equal to 20
minutes and a standard deviation equal to 5 minutes. The reward of both depots
is set equal to 0. The opening time of the start and end depot (o1, ov) is set equal



The TD-OPTW: a fast Ant Colony System 15

to 6 am. Furthermore, for each set of vertices, 4 variations in tmax (8, 10, 12 and
14 h), resulting in 4 corresponding closing times of the depots (2, 4, 6 and 8pm),
and 3 random variations in time window widths (small, medium and large) were
created. In total 36 problem instances were created which can be found at the
following url: http://www.mech.kuleuven.be/en/cib/op/.

The time-independent and time-dependent travel times of the correspond-
ing graph are constructed before the start of the solution procedure. The time-
independent travel time (tt) between each pair of vertices Vc ⊆ V , is calculated
using Dijkstra’s shortest path algorithm (using binary heaps) and assuming that
arcs can be traversed at their free flow estimates.

The set of time-dependent travel times is calculated by repeatedly using an
adapted version of Dijkstra’s algorithm with a departure time equal to the start of
a time slot. The number of time slots κ is set equal to the number of time periods
K. To lower the execution time, the travel time profiles are only calculated from
each vertex i ∈ Vc to its set of neighbours (this set is defined in Section 4.2) for
all start times equal to the lower limit of all the time slots that are part of the
feasible time region. The lower bound of this feasible time region is equal to the
start time of the time slot corresponding to oi + si and the upper bound is equal
to the end time of the time slot corresponding to ci + si.

The resulting time-dependent travel times per time slot are stored for each
virtual arc. A virtual arc is a dummy arc that holds a concatenation of arcs con-
necting two vertices in Vc. The use of virtual arcs to handle complex road networks
was originally discussed by Donati et al (2008).

When calculating the travel time for a departure at time td with a shortest
path algorithm, the travel time obtained is the right one if td is equal to the lower
limit of a time slot. However, during the execution of the metaheuristic, these
travel time distributions are interpolated for moments in time between two such
lower limits. As this is an estimation of the travel time, the shortest path when
departing at the lower limit of time slot t in the virtual arc, might differ from the
actual shortest path for departure times td ∈]tst, tst[. In short, the concatenation
of arcs that forms the virtual arc might no longer be the shortest path when the
departure time is later than the start of the time slot. Apart from the fact that
initial experiments showed that this error was very small, no infeasible solutions
were encountered during any of our experiments. There is no guarantee in general
since the best route can change for every departure time. However when using a
large number of time slots, as it is done in this paper, this effect is mitigated.

After these steps, a new virtual network has been constructed. This network
corresponds to a complete graph which consists of vertices representing customer
locations to visit and virtual arcs with a fixed set of travel time estimates which
model the travel time behaviour on a concatenation of real arcs. For simplicity,
the term arc i, j is used in the remainder of this text for the virtual arc between i

and j.

As an indication of the performance of the preprocessing procedure: computa-
tional times of 2, 5 and 11 minutes are required on instances with respectively 20,
50 and 100 vertices.
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6 Results and Discussion

In this section the performance of the proposed algorithm will be discussed using
various tests. In Subsection 6.1 the results of the ACS are compared against known
optimal solutions. Since only a few instances could be solved to optimality, a set
of artificial benchmarks are devised in Subsection 6.2. In Subsection 6.3 the ACS
is compared against a state-of-the-art solution method for the TD-TOPTW. This
section is concluded with an overview of the parameter sensitivity in Subsection
6.4 and the (negative) impact of not accounting for time-dependent travel times
is shown in Subsection 6.5.

6.1 Comparison to optimal solutions of small instances

The first experiment consists of a straightforward comparison of the results of the
ACS and the optimal solution found by solving the MIP model for TD-OPTW
from Section 3. However, most of the time-dependent instances discussed in Sec-
tion 5 are too complex to be solved with the MIP using a commercial solver. Since
this is not the focus of our research, only a basic implementation of this MIP was
implemented using the commercial solver, CPLEX 12.6 (64-bit) using a high per-

formance computing (HPC) infrastructure which consists of 48 Intel Xeon X5675
3.07 GHz processors and a total of 384 GB of memory. The comparison between
the results of these optimal solutions and the ACS for five independent runs is
displayed in Table 1. The labels S, M, L stand for the span (closing time minus
opening time) of the time windows (small, medium, large).

As performance metrics, the CPU is used together with the percentage gap
between the total reward of the optimal solution and the total reward of the
heuristic solution:

% gap =
optimal reward− heuristic reward

optimal reward
∗ 100 (26)

The average, the best and the worst gap over all instances is recorded. The ACS
is executed until 10,000 trial solutions have been created. The exact number of
iterations Nc is therefore adjusted to the value of max ants. For example when 20
ants are used, 500 iterations were allowed in order to generate 10,000 trial solutions.
The results show the validity of our MIP model but also the excessive time needed
to solve these small instances using a commercial solver and a straightforward
MIP formulation. Apart from the number of vertices in the problem instance, the
required computation time depends first on the value of tmax and second on the
span of the time windows. This table shows that the ACS produces the optimal
solution for each run on each instance in very short computations times.

The reward of the ACS for the instances without known optimal solution are
also displayed in Table 10 to allow for future benchmarking.

6.2 Comparison to known optimal solutions of large instances

To evaluate the performance of our TD-OPTW metaheuristic, it would be useful
to have an optimal solution for each benchmark instance. However, the time-
dependent instances are too complex to be solved with a commercial solver and a
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Table 1 Comparison with optimal solutions of small instances

CPLEX ACS

|Vc| tmax TW optimal cpu worst avg best cpu
name h S,M,L reward s %gap %gap %gap s

20.1.1 20 8 S 159 500 0.0 0.0 0.0 0.1
20.1.2 20 8 M 173 343 0.0 0.0 0.0 0.1
20.1.3 20 8 L 183 761 0.0 0.0 0.0 0.1
20.2.1 20 10 S 188 4,308 0.0 0.0 0.0 0.1
20.2.2 20 10 M 201 5,394 0.0 0.0 0.0 0.1
20.2.3 20 10 L 195 2,545 0.0 0.0 0.0 0.1
20.3.1 20 12 S 277 130,118 0.0 0.0 0.0 0.2
20.3.2 20 12 M 245 9,692 0.0 0.0 0.0 0.1

max 0.0 0.0 0.0 0.2
avg 0.0 0.0 0.0 0.1

% optimal 100.0 100.0 100.0

straightforward MIP formulation. Therefore, a procedure is developed which allows
to test the proposed algorithm on larger instances with known optimal solutions.

Firstly, all instances were solved as time-independent OPTWs using the HPC
infrastructure with 48 Intel Xeon X5675 3.07 GHz processors and a total of 384 GB
of memory. The MIP formulation of the OPTW in Vansteenwegen et al (2011a)
was used to find these optimal solutions. The obtained solutions together with their
corresponding computation times is available at: http://www.mech.kuleuven.be/
en/cib/op/.

The excessive resources and CPU time needed to solve these time-independent
OP instances, illustrates that it would be pointless to solve the datasets as time-
dependent OPTWs. The found (near-)optimal solutions are displayed in Table 2
(column “optimal”). If the optimal solution could not be found, the best solution
after 72 hours of computation time is taken as the benchmark. These instances are
marked with a star in the column “name”. Following the optimization by CPLEX,
the optimal time-independent solutions (sequence of vertices) are used to modify
the original time-dependent instances in such a way that slightly modified time-
dependent instances with known (near-)optimal solutions are created using the
procedure described in (Verbeeck et al, 2014).

The creation of the benchmark instances in this way allows to compare the
performance of the developed solution methods with known optimal solutions for
larger instances. For five independent runs of the algorithm, these results are
displayed in Table 2. In Table 3 the % gap per dataset is displayed.

These results prove the high performance quality of the ACS, since the average
gap is very low, i.e. only 0.2%. Furthermore, the known optimal solution was
found for 32 out of 36 test instances. A second conclusion is that the average gap
increases as the test instances become more complex due to a longer travel time
limit and an increasing number of vertices. Studying the computation time leads
to the conclusion that the ACS is very fast, as on average only 0.4 seconds are
needed to obtain a solution. The maximum observed CPU time was 1.1 second,
which is more than fast enough for most application purposes. Therefore, it can be
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Table 2 Results for the TD-OPTW per problem instance

|Vc| tmax TW optimal worst avg best CPU(s)
name h S,M,L reward % % % s

20.1.1 20 8 S 177 0.0 0.0 0.0 0.1
20.1.2 20 8 M 193 0.0 0.0 0.0 0.1
20.1.3 20 8 L 201 0.0 0.0 0.0 0.1
20.2.1 20 10 S 213 0.0 0.0 0.0 0.1
20.2.2 20 10 M 219 0.0 0.0 0.0 0.1
20.2.3 20 10 L 211 0.0 0.0 0.0 0.1
20.3.1 20 12 S 306 0.0 0.0 0.0 0.2
20.3.2 20 12 M 262 0.0 0.0 0.0 0.1
20.3.3 20 12 L 286 0.0 0.0 0.0 0.1
20.4.1 20 14 S 293 0.0 0.0 0.0 0.2
20.4.2 20 14 M 299 0.0 0.0 0.0 0.2
20.4.3 20 14 L 283 0.0 0.0 0.0 0.2

50.1.1 50 8 S 314 0.0 0.0 0.0 0.3
50.1.2 50 8 M 290 0.0 0.0 0.0 0.3
50.1.3 50 8 L 316 0.0 0.0 0.0 0.3
50.2.1 50 10 S 322 0.0 0.0 0.0 0.3
50.2.2 50 10 M 347 0.0 0.0 0.0 0.4
50.2.3 50 10 L 346 0.0 0.0 0.0 0.4
50.3.1 50 12 S 380 0.0 0.0 0.0 0.3
50.3.2 50 12 M 444 0.0 0.0 0.0 0.5
50.3.3* 50 12 L 403 0.0 0.0 0.0 0.6
50.4.1 50 14 S 498 0.0 0.0 0.0 0.5
50.4.2* 50 14 M 463 0.0 0.0 0.0 0.7
50.4.3* 50 14 L 479 0.0 0.0 0.0 0.7

100.1.1 100 8 S 297 0.0 0.0 0.0 0.4
100.1.2 100 8 M 320 0.0 0.0 0.0 0.4
100.1.3 100 8 L 373 0.0 0.0 0.0 0.6
100.2.1 100 10 S 397 0.0 0.0 0.0 0.7
100.2.2* 100 10 M 393 0.0 0.0 0.0 0.7
100.2.3 100 10 L 394 0.0 0.0 0.0 0.7
100.3.1 100 12 S 490 0.0 0.0 0.0 0.9
100.3.2* 100 12 M 511 0.0 0.0 0.0 0.8
100.3.3 100 12 L 525 1.5 0.3 0.0 1.0
100.4.1* 100 14 S 505 4.2 3.1 1.0 1.0
100.4.2* 100 14 M 543 3.1 2.5 1.7 1.1
100.4.3* 100 14 L 590 3.4 1.4 0.0 1.1

max 4.2 3.1 1.7 1.1
avg 0.3 0.2 0.1 0.4

% optimal 88.9 88.9 94.4

Table 3 % gap (best, average, worst) and average CPU time per dataset

best avg worst CPU
|Vc| % gap % gap % gap s

20 0.0 0.0 0.0 0.1
50 0.0 0.0 0.0 0.4
100 1.0 0.6 0.2 0.8
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concluded that the ACS is able to deliver a high performance requiring a minimal
computational effort.

6.3 Comparison to a state-of-the-art solution procedure

The iterated local search method (ILS) of Garcia et al (2013) was developed for
the TD-TOPTW and is, apart from the complex algorithm of Abbaspour and
Samadzadegan (2011), the only practical algorithm that is capable to deal with
time-dependency. Since this ILS method exploits the fixed frequency of buses to
perform quick arrival and departure time updates, it is not capable to deal with
time-dependency originating from congestion on the arcs. Therefore, the ILS was
reimplemented with a few modifications. Firstly, the local evaluation metric and
solution update procedure described in Section 4.7 was used. Secondly, after the
shake procedure, the solution is completely evaluated since it turned out to be
too time expensive to verify which parts of the solution sequence needed to be
updated and to execute the partial updates afterwards. These issues, together
with other implementation details like not making use of parallel computing due
to the sequential structure of ILS, results in greater computational times for the
ILS method compared to the ACS. It should be noted that these issues contributed
to the choice of the ACS as the preferred solution framework in the first place.

The performance of the ILS and ACS, both with 10,000 trial solutions is sim-
ilar when used to solve all the instances as time-independent OPTWs. The ILS
achieved an average gap of 0.22%, a maximum gap of 4% and an average cpu time
of 1.95 seconds. The performance of the ACO consists of an average gap of 0.10%,
a maximum gap of 3% and an average cpu time of 0.46 seconds. These results also
show the good performance of both heuristics when used as a solution method for
the regular OPTW.

The results of ILS and ACS when applied to time-dependent instances, both
with 10,000 trial solutions, are compared and can be found in Table 4. More de-
tailed results can be found at http://www.mech.kuleuven.be/en/cib/op/. The
first two columns display the average computational time of both solution proce-
dures and the third column displays the gap defined as:

gap =
ILSreward−ACSreward

ILSreward
(27)

On average the performance of the ACS is 6.2% better than that of the ILS.
Furthermore, the detailed results show that the ILS could not improve the reward
of the ACS solution method on a single instance. Finally, we also compared the
performance of the ILS after 50,000 solutions with the results of the ACS after
10,000 trial solutions and noticed the same performance gap of 6.2% which might
indicate that the ILS more easily gets stuck in local optima. Secondly, iteratively
removing vertices from a solution turns out to be impractical and time consuming.

6.4 Sensitivity Analysis

Table 5 provides an overview of the input parameters of ACS, including their
value used during all the discussed experiments. These values were determined
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Table 4 Comparison of ACS to a state-of-the-art technique after 10,000 solutions

ACS cpu ILS cpu gap
|Vc| s s %

20 0.1 0.1 -3.8%
50 0.4 0.6 -8.7%

100 0.8 2.4 -6.0%

Overall 0.4 1.1 -6.2%

Table 5 Overview of the input parameters TD-OPTW

Input parameter Description Value

τinit initial pheromone value 1
α importance of pheromone information 4
β importance of heuristic information 1
max ants number of solutions that is constructed and improved per iteration 50
ρ evaporation rate 0.05
Nmax

ni maximum number of iterations without improvement (% of Nc) 25%

Table 6 Effect of α, β, Nmax
ni , ρ, and max ants on the average gap

α % gap

1 2.9
3 1.1
6 1.1
9 1.5

Total 1.7

β % gap

1 0.7
3 0.8
6 1.6
9 3.4

Total 1.7

Nmax
ni % gap

0.25 1.5
0.50 1.6
0.75 1.7
1.00 1.8

Total 1.7

ρ % gap

0.01 2.6
0.05 1.2
0.10 1.2

Total 1.7

max ants % gap

10 2.8
25 1.8
50 1.2
75 1.2
100 1.2

Total 1.7

Table 7 Effect on the % gap and average CPU time (s) of different design components

Metric S I R - - - S - - - I - - - R - I R S I - S - R

max % gap 3.1 30.6 24.5 12.7 26.7 9.5 7.6 24.3
avg % gap 0.2 10.6 8.8 2.4 9.7 0.8 0.8 0.8
avg cpu 0.4 0.1 0.2 0.4 0.2 0.4 0.4 0.2

after preliminary tests. A sensitivity study is performed to measure the impact on
the performance for various combinations of input parameter values. The results
are displayed in Table 6. The significant input parameters that have an impact on
the performance, based on an ANOVA test, are α, β, ρ and max ants.

Table 7 provides insights into the performance of some design decisions. These
effects are measured by leaving out some or all of the 3 local search moves (S:
swap, I: insert, R: replace) and repeating the test procedure discussed in Section
6.2. The missing components in the ACS framework (Algorithm 1) are marked
with a ”-”. Mainly based on the average gap, we conclude that the strength of the
ACS lies in the interaction effect between the swap, insert and replace local search
moves.
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6.5 Impact of time-dependent travel times

In order to measure the impact of ignoring the time-dependency of travel times
when dealing with practical problems, the optimal OPTW solutions are evaluated
in a time-dependent context. This means that all travel times, arrival times and
departure times are updated. Two events can turn a solution infeasible: a violation
of the time window at a regular vertex and secondly, arriving too late at the end
vertex.

Two different repair algorithms are proposed that inspect the solution sequence
(starting from the start vertex to the end vertex) and implement different recourse
actions. The first algorithm is called heuristic repair and removes the first vertex
with a violated time window and inspects the solution again for further violations.
When a late arrival occurs at the end vertex, the vertex with the lowest reward
in the solution sequence is removed and the solution is again inspected for further
violations. Vertices are eligible for removal only if no waiting occurs at subsequent
vertices in the solution sequence. The reason for this is that removing a vertex
which is positioned before a vertex where waiting occurs, would not lead to a
decrease of the total travel time as it would only lead to an increase in waiting
time at the subsequent vertex. The second algorithm is called business logic repair

and also removes the first vertex with a violated time window and afterwards
inspects the solution again for further violations. For a late arrival at the end
vertex, however, the last regular vertex of the solution sequence is removed and
the solution is inspected for further violations. This last recourse action is chosen
because it might resemble the action of actual planners in logistics companies.
The last customers on a trip are more likely to be removed when it becomes clear
that the driver is falling behind schedule and wants to return to the end depot.
Finally, OPTW solutions, evaluated by both algorithms, are compared against the
TD-OPTW solutions generated by the ACS.

The results are displayed in Tables 8 and 9. The first four columns list re-
spectively the name, number of vertices, maximum allowed total travel time, time
window span of the problem instance and the total reward of the optimal OPTW
instance. The next two columns display respectively the reward of the evaluated
optimal OPTW solution by the heuristic repair (HR) and the business logic re-

pair (BL). In the 8th column the reward of the time-dependent OPTW solution
produced by the ACS is given. Finally, the last four columns display the % im-
provement (imphr and impbl) and the diversity in the solution sequences (divhr
and divbl) of the ACS as compared with HR and BL strategies. The diversity
between two solutions A and B is calculated as the sum of the number of ver-
tices in A not present in B and the number of vertices in B not present in A,
divided by the total number of vertices present in A and B (start and end vertex
not included). The results are road network specific but nonetheless stress the se-
vere impact of congestion on the quality and structure of the proposed solutions.
Apparently there seems to be no strong connection between the degree of improve-
ment and diversity, on the one hand, and the most important instance parameters
like the number of vertices, tmax and the time window span on the other hand.
However, instances with smaller time windows are more likely to become infeasible
and therefore the improvement of using the ACS is more important. A possible
explanation for the greater impact of congestion for the instances with 100 vertices
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is that the routes for these problems are more complex and are therefore also more
vulnerable to congestion.

An overall conclusion concerning the diversity of the routes proposed for both
problems is that a ”good” route for the TD-OPTW differs significantly from the
optimal route for the OPTW. This strengthens the claim that time-independent
route planning is not appropriate in a time-dependent business context. These
results also show that using a time-independent routing planner together with
some basic recourse actions, that are often used in practice in order to deal with
time-dependent disturbance, does not work out well. Time-independent routes
cannot be easily altered or transformed into robust routes that have some ”buffer”
against the negative effects of time-dependent disturbance since congestion is a
time-spatial phenomenon.

Table 8 Impact of time-dependency per problem instance

name |Vc| tmax TW OPTW HR BL ACS imphr impbl divhr divbl
h S,M,L r r r r % % % %

20.1.1 20 8 S 177 151 118 159 5.3 34.7 33.3 33.3
20.1.2 20 8 M 193 166 166 173 4.2 4.2 16.7 16.7
20.1.3 20 8 L 201 163 137 184 12.9 34.3 33.3 50.0
20.2.1 20 10 S 213 172 152 188 9.3 23.7 38.5 53.8
20.2.2 20 10 M 219 168 181 201 19.6 11.0 33.3 42.9
20.2.3 20 10 L 211 153 148 195 27.5 31.8 50.0 38.5
20.3.1 20 12 S 306 246 236 277 12.6 17.4 15.8 15.8
20.3.2 20 12 M 262 228 221 246 7.9 11.3 17.6 17.6
20.3.3 20 12 L 286 225 231 259 15.1 12.1 33.3 36.8
20.4.1 20 14 S 293 221 223 274 24.0 22.9 47.4 23.8
20.4.2 20 14 M 299 241 220 275 14.1 25.0 26.3 10.0
20.4.3 20 14 L 283 241 224 268 11.2 19.6 40.0 33.3

50.1.1 50 8 S 314 236 259 288 22.0 11.2 37.5 15.8
50.1.2 50 8 M 290 261 261 274 5.0 5.0 22.2 22.2
50.1.3 50 8 L 316 287 287 289 0.7 0.7 26.3 26.3
50.2.1 50 10 S 322 252 274 298 18.3 8.8 11.1 15.8
50.2.2 50 10 M 347 280 280 310 10.7 10.7 55.6 55.6
50.2.3 50 10 L 346 300 317 340 13.3 7.3 9.1 13.0
50.3.1 50 12 S 380 328 328 339 3.4 3.4 71.4 71.4
50.3.2 50 12 M 444 383 380 404 5.5 6.3 13.0 21.7
50.3.3 50 12 L 403 301 281 366 21.6 30.2 52.4 52.4
50.4.1 50 14 S 498 423 430 478 13.0 11.2 40.7 42.9
50.4.2 50 14 M 463 406 389 441 8.6 13.4 23.1 23.1
50.4.3 50 14 L 479 413 413 450 9.0 9.0 40.7 40.7

100.1.1 100 8 S 297 241 229 275 14.1 20.1 66.7 77.8
100.1.2 100 8 M 320 223 210 276 23.8 31.4 50.0 50.0
100.1.3 100 8 L 373 331 323 343 3.6 6.2 20.0 20.0
100.2.1 100 10 S 397 334 332 351 5.1 5.7 73.9 68.0
100.2.2 100 10 M 393 290 289 367 26.6 27.0 71.4 81.8
100.2.3 100 10 L 394 338 338 370 9.5 9.5 44.0 44.0
100.3.1 100 12 S 490 421 415 437 3.8 5.3 20.0 26.7
100.3.2 100 12 M 511 426 441 447 4.9 1.4 25.9 3.4
100.3.3 100 12 L 525 458 447 470 2.6 5.1 9.1 15.2
100.4.1 100 14 S 491 415 395 483 16.4 22.3 53.3 53.3
100.4.2 100 14 M 534 476 464 491 3.2 5.8 9.1 15.2
100.4.3 100 14 L 590 510 489 528 3.5 8.0 48.6 48.6

avg 11.4 14.3 35.6 35.5
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Table 9 Impact of time-dependency (heuristic repair) versus problem characteristics

|Vc| %imphr %divhr tmax %imphr %divhr TW %imphr %divhr

20 14.5 32.1 8 12.7 34.0 S 16.3 42.5
50 12.8 33.6 10 17.2 43.0 M 11.7 30.4
100 11.5 41.0 12 9.3 28.7 L 10.9 33.9

14 12.6 36.6

7 Conclusion

This paper has discussed the orienteering problem, in particular the extension
where time windows are considered together with time-dependent travel times
leading to the time-dependent orienteering problem with time windows (TD-
OPTW). In the considered tourist and logistical applications, this modification
models multi-modal transport functionality, as well as vehicle routing planning
that takes congestion into account. Most of these applications require solutions
within a short amount of computation time.

In this paper, a mixed integer problem formulation and a metaheuristic based
on an ant colony system are proposed. The metaheuristic uses the following time-
dependent local search moves: insert, replace and swap. The evaluation of possible
improvement moves is speeded up by a local evaluation metric and by efficiently
limiting the number of vertices that are considered.

Moreover, realistic time-dependent test instances with known optimal solutions
are developed and made publicly available. A total of 36 test instances with a
number of vertices to visit ranging from 20 to 100 were extracted from a road
network containing 84,720 vertices and 116,683 arcs.

The TD-OPTW algorithm obtains very good results on these benchmark in-
stances, requiring small computation times due to the combination of a well per-
forming metaheuristic framework and the interaction effect between three efficient
local search procedures tailored to the problem characteristics. The average reward
gap with the known optimal solution on these test instances is only 0.2% with an
average computation time of 0.4 seconds. A comparison between the ACS and a
state-of-the-art technique showed that the performance of the latter is 6.2% worse.
The impact of not accounting for time-dependency on the proposed network is on
average 12.9%. Finally, there is a significant difference (35.6%) between the struc-
ture of the solution sequence of a time-dependent solution and a solution ignoring
time-dependency. These results also showed that some basic recourse actions which
are often used in practice to create a kind of ”buffer” for the time-dependent dis-
turbance do not pay off.

Further research could focus on the time-dependent variant of the team orien-
teering problem (TD-TOPTW). This rather interesting extension of the problem
allows to optimize the routing of a fleet of vehicles, instead of only one vehi-
cle. Secondly, in this paper, we have ignored the fact that customers (vertices)
not served today must be served in the near future. Including this consideration
would make for an interesting extension and could have a big impact on which
customers are selected on a given day. Thirdly, in general, congestion causes two
undesirable effects to the transportation users: on one hand it causes an increase
of expected travel time due to a reduction of the mean speed and queuing, and on
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the other hand it increases the variability of travel times. Therefore, in a realistic
road network, travel times are both time-dependent and stochastic. Therefore, an
interesting challenge would be to solve an orienteering problem variant in which
the travel time between two locations is a stochastic function that depends on the
departure time at the first location.
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A Detailed results TD-OPTW

Table 10 Detailed results TD-OPTW

ACS

|Vc| Tmax TW worst avg best cpu
name hour S,M,L avg reward avg reward avg reward s

20.3.3 20 12 L 259 259 259 0.1
20.4.1 20 14 S 274 274 274 0.1
20.4.2 20 14 M 275 275 275 0.2
20.4.3 20 14 L 268 268 268 0.2

50.1.1 50 8 S 288 288 288 0.3
50.1.2 50 8 M 274 274 274 0.3
50.1.3 50 8 L 289 289 289 0.3
50.2.1 50 10 S 298 298 298 0.3
50.2.2 50 10 M 310 310 310 0.4
50.2.3 50 10 L 340 340 340 0.4
50.3.1 50 12 S 339 339 339 0.3
50.3.2 50 12 M 404 404 404 0.5
50.3.3 50 12 L 366 366 366 0.6
50.4.1 50 14 S 471 476.6 478 0.5
50.4.2 50 14 M 435 439.8 441 0.7
50.4.3 50 14 L 450 450 450 0.7

100.1.1 100 8 S 275 275 275 0.5
100.1.2 100 8 M 278 278 278 0.5
100.1.3 100 8 L 343 343 343 0.6
100.2.1 100 10 S 351 351.2 352 0.7
100.2.2 100 10 M 366 366.6 367 0.6
100.2.3 100 10 L 370 370 370 0.7
100.3.1 100 12 S 435 436 437 0.8
100.3.2 100 12 M 444 446.6 454 0.9
100.3.3 100 12 L 466 467 468 1.0
100.4.1 100 14 S 478 480 484 1.0
100.4.2 100 14 M 491 494.6 497 1.0
100.4.3 100 14 L 519 526.8 538 1.1




