The time-dependent pollution-routing problem

Citation for published version (APA):

Franceschetti, A., Honhon, D. B. L. P., Woensel, van, T., Bektas, T., \& Laporte, G. (2013). The time-dependent pollution-routing problem. (BETA publicatie : working papers; Vol. 409). Technische Universiteit Eindhoven.

Document status and date:

Published: 01/01/2013

Document Version:

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25 fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

The Time-Dependent Pollution-Routing Problem
 Anna Franceschetti, Dorothée Honhon, Tom van Woensel, Tolga Bektas, Gilbert Laporte

Beta Working Paper series 409

BETA publicatie	WP 409 (working paper)
ISBN	
ISSN	
NUR	804
Eindhoven	February 2013

The Time-Dependent Pollution-Routing Problem

Abstract

Anna Franceschetti, Dorothée Honhon, Tom Van Woensel School of Industrial Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands 5600MB, \{A.Franceschetti, D.B.L.P.Honhon, T.v.Woensel\}@tue.nl

Tolga Bektaş Southampton Management School and Centre for Operational Research, Management Science and Information Systems (CORMSIS), University of Southampton, Southampton, United Kingdom SO17 1BJ, T.Bektas@soton.ac.uk

\section*{Gilbert Laporte}

Canada Research Chair in Distribution Management, HEC Montréal, Montréal, Canada H3T 2A7, Gilbert.Laporte@cirrelt.ca

The Time-Dependent Pollution-Routing Problem (TDPRP) consists of routing a fleet of vehicles in order to serve a set of customers and determining the speeds on each leg of the routes. The cost function includes fuel, emission and driver costs, taking into account traffic congestion which, at peak periods, significantly restricts vehicle speeds and increases emissions. We describe an integer linear programming formulation of the TDPRP and provide illustrative examples to motivate the problem and give insights about the tradeoffs it involves. We also provide an analytical characterization of the optimal solutions for a single-arc version of the problem, identifying conditions under which it is optimal to wait idly at certain locations in order to avoid congestion and to reduce the cost of emissions. Building on these analytical results we describe a departure time and speed optimization algorithm on a fixed route. Finally, using benchmark instances, we present results on the computational performance of the proposed formulation and on the speed optimization procedure.

Key words: vehicle routing, fuel consumption; CO_{2} emissions; congestion; integer programming

1. Introduction

Traffic congestion occurs when the capacity of a particular transportation link is insufficient to accommodate an incoming flow at a particular point in time. Congestion has a number of adverse consequences, including longer travel times and variations in trip duration which result in decreased transport reliability, increased fuel consumption and more greenhouse gas (GHG) emissions. It is known that CO_{2} emissions are proportional to fuel consumption and depend on vehicle speed. Heavy congestion results in low speeds with fluctuations, often accompanied by frequent acceleration and deceleration, and greatly contributes to CO_{2} emissions (Barth and Boriboonsomsin, 2008). According to the International Road Transport Union (IRU), around 100 billion liters of wasted fuel, or 250 billion tonnes of CO_{2}, were attributed to traffic congestion in the United States in 2004 (IRU, 2012). Noise is another externality resulting from congestion. In particular, noise from a vehicle's power unit comprising the engine, air intake and exhaust becomes dominant at low
speeds of $15-20 \mathrm{mph}$ and at high acceleration rates of $2 \mathrm{~m} / \mathrm{s}^{2}$, as reported by the World Business Council for Sustainable Development (2004). Congestion is at its highest during rush hour, which typically lasts from 6 am or 7 am to 9 am or 10 am in the morning, although this varies from one city to another, e.g., 6am-9am in Sydney, Brisbane and Melbourne, and 4am-9am in New York City (Wikipedia, 2012).

Our aim is to study the effect of congestion and GHG emissions within the context of the Vehicle Routing Problem (VRP), defined as the problem of routing a fleet of vehicles to serve a set of customers subject to various constraints, such as vehicle capacities (see e.g., Cordeau et al., 2007). Previous VRP research assumes constant vehicle speed, which is not realistic for most practical applications. Van Woensel et al. (2001) show that solving the VRP under this assumption can lead to deviations of up to 20% in CO_{2} emissions for gasoline vehicles on an average day and up to 40% in congested traffic. Indeed, vehicle speed varies throughout the day (Van Woensel et al., 2008), which affects fuel consumption and CO_{2} emissions. Maden et al. (2010) present an approach for the time-dependent vehicle routing problem which allows for the planning of more reliable routes and schedules. It is based on a tabu search algorithm, which minimizes the total travel time and reduces emissions by avoiding congestion. The authors have applied this algorithm to a real-life case study and have obtained reductions of about 7% in CO_{2} emissions.

Accounting for emissions in the context of the VRP is relatively new. For a general introduction to the topic we refer the reader to Sbihi and Eglese (2007). Figliozzi (2010) presents the emission minimizing VRP (EVRP), a variant of the time-dependent VRP (TDVRP) with time windows, which takes into account congestion so as to minimize speed-dependent CO_{2} emissions, using a function described by Hickman et al. (1999). The EVRP is modeled on a partition of the working time, and a set of speeds on each $\operatorname{arc}(i, j)$ of the network is defined as a function of the departure time from node i. A model for the EVRP described by Figliozzi (2010) uses route and departure times as decision variables, but the model also optimizes speeds as a consequence of the objective function. Conrad and Figliozzi (2010) and Figliozzi (2011) present results related to a variant of the EVRP on a case study in Portland, Oregon, where scenarios with and without congestion are considered. These papers focus on finding approximate, rather than optimal, solutions to the problems, and hence heuristic algorithms are used to generate solutions. Jabali et al. (2012) take a similar approach by using the same emissions function in a formulation of the time-dependent VRP (without time windows), with speed as an additional decision variable. Travel times are modeled by partitioning the planning horizon into two parts, where one part corresponds to a peak period in which there is congestion and the vehicle speed is fixed, whereas the other part assumes freeflow speeds which can be optimized. Jabali et al. (2012) describe a tabu search heuristic for this problem.

Another contribution along these lines is due to Bektaş and Laporte (2011) who present the Pollution-Routing Problem (PRP) as an extension of the classical Vehicle Routing Problem with Time Windows (VRPTW). The PRP consists of routing a number of vehicles to serve a set of customers within preset time windows, and determining their speed on each route segment, so as to minimize a function comprising fuel, emission and driver costs. The emission function used within the PRP is based on a comprehensive emissions model for heavy-duty vehicles described by Barth et al. (2005), and differs from previous work in that it allows to optimize both load and speed. The PRP formulation described by Bektas and Laporte (2011) considers only free-flow speeds of $40 \mathrm{~km} / \mathrm{h}$ or higher. Demir et al. (2012) extend the PRP formulation to take into account lower speeds, but without looking at congestion per se, and describe a heuristic that can solve large-size instances.

A common assumption in the VRPTW is to allow arrival at a customer location before the opening of the time window, but service can only start within the time window. None of the work mentioned above has allowed for idle waiting after service completion as a strategy to avoid congestion. In this paper we incorporate, for the first time, congestion into the PRP framework so as to adequately account for the adverse effects of low speeds caused by congestion, and we make use of the "idle waiting" strategy.
In this paper we introduce the Time-Dependent Pollution-Routing Problem (TDPRP), which extends the PRP by explicitly taking into account traffic congestion, and we describe an integer linear programming formulation of the TDPRP which computationally improves upon the PRP formulation. We also provide an analytical characterization of the optimal solutions for a single-arc version of the problem and we describe a procedure for optimizing departure times and speeds when the route is fixed. Finally we report computational experiments with the integer programming formulation and the speed optimization procedure on benchmark instances.

The contribution of this paper is multi-fold and can be stated as follows: (i) we break away from the literature on congestion-aware VRP by using a comprehensive emissions function which includes factors such as load and speed, (ii) we identify conditions under which it is optimal to wait idly at certain locations to avoid congestion, (iii) we develop an exact solution approach which also holds for the special case of zero pollution costs. In other words, all results derived in this paper also apply to the problem of optimizing vehicle speeds and departure times in contexts characterized by driver costs, time windows and traffic congestion only.

The remainder of the paper is structured as follows. The next section presents a formal description of the TDPRP and our general modeling framework. Section 3 provides illustrative examples to motivate the problem. Section 4 describes an integer linear programming formulation of the TDPRP. A complete analytical characterization of the optimal solutions for a single-arc version of
the problem is provided in Section 5. In Section 6, we describe a procedure to optimize departure times and speeds on a fixed route. Computational results obtained on benchmark instances with the proposed TDPRP formulation and the speed optimization procedure are presented in Section 7. Conclusions follow in Section 8.

For the sake of conciseness, all proofs are provided in Appendix C.

2. Problem Description

The TDPRP is defined on a complete graph $G=\{N, A\}$ where N is the set of nodes, 0 is the depot, $N_{0}=N \backslash\{0\}$ is the set of customers, and A is the set of arcs between every pair of nodes. The distance between two nodes $i \neq j \in N$ is denoted by $d_{i j}$. A homogeneous fleet of K vehicles, each with a capacity limit of Q units, is available to serve all customers, where each customer $i \in N_{0}$ has a non-negative demand q_{i}. To each customer $i \in N_{0}$, corresponds a service time h_{i} and a hard time window $\left[l_{i}, u_{i}\right]$ in which service must start. In particular, if a vehicle arrives at node i before l_{i}, it waits until time l_{i} to start service. Without loss of generality we assume that the vehicle can depart from the depot at time zero (we relax this assumption in Sections 5 and 6).

The following sections present the way in which time dependency and congestion are modeled in the TDPRP, and how fuel use rate and GHG emissions are calculated.

2.1. Time-dependency

In the PRP (Bektaş and Laporte, 2011), the travel time of a vehicle depends only on distance and speed, and the latter can be chosen freely. In the TDPRP, the speed also depends on the departure time of the vehicle because it is constrained during periods of traffic congestion. Here, we make use of time-dependent travel times and model traffic congestion using a two-level speed function as in Jabali et al. (2009). We assume there is an initial period of congestion, lasting a units of time, followed by a period of free-flow. This modeling framework is suitable for routing problems which must be executed in the first half of a given day, e.g., starting from a peak-morning period where traffic congestion is expected, and following which it will dissipate. In the peak-period, the vehicle travels at a congestion speed v_{c} whereas in the period that follows, it is only limited by the speed limit v_{m}, meaning that a free-flow speed $v_{f} \leq v_{m}$ can be used for travel. For practical reasons we assume that the speed v_{c} and the time a are constants which can be extracted from archived travel data (e.g., Hansen et al., 2005) and that the same values hold between every pair of locations.

To model time-dependency, consider two locations spaced out by a distance of d. Let $T\left(w, v_{f}\right)$ denote the travel time of a vehicle between the two locations, that is the time spent by the vehicle
on the road depending on its departure time w from the first location, and the chosen free-flow speed v_{f}. It can be calculated using the following formulation proposed by Jabali et al. (2009):

$$
T\left(w, v_{f}\right)= \begin{cases}\frac{d}{v_{c}} & \text { if } w \leq\left(a-\frac{d}{v_{c}}\right)^{+} \tag{1}\\ \frac{v_{f}-v_{c}}{v_{f}}(a-w)+\frac{d}{v_{f}} & \text { if }\left(a-\frac{d}{v_{c}}\right)^{+}<w<a \\ \frac{d}{v_{f}} & \text { if } w \geq a .\end{cases}
$$

The calculation of $T\left(w, v_{f}\right)$ suggests that the planing horizon can be divided into three consecutive time regions in terms of the departure time w, as follows:

- The first one $w \in\left[0,\left(a-\frac{d}{v_{c}}\right)^{+}\right]$is called the all congestion region: the vehicle leaving the first location within this region makes the entire trip during the congestion period and arrives at the second location after d / v_{c} units of time.
- The second one $w \in\left[\left(a-\frac{d}{v_{c}}\right)^{+}, a\right]$, is called the transient region: the vehicle leaving within this region traverses a distance of length $(a-w) v_{c}$ at speed v_{c} and the remaining distance of length $d-(a-w) v_{c}$ at the chosen free-flow speed v_{f}.
- The last one $w \in[a, \infty)$, is called the all free-flow region, in which the vehicle makes the entire trip at the free-flow speed v_{f} and completes the journey in d / v_{f} units of time.
Figure 1(a) shows the speed of a vehicle as a function of time for $v_{f}>v_{c}$. Figure 1(b) shows how T varies with the departure time w given free-flow speed v_{f}.

Figure 1 Time-dependent speed and travel time profiles.

2.2. Modeling Emissions

Our modeling of fuel consumption and emissions follows the same approach as in Bektas and Laporte (2011). Here we provide a brief exposition for the sake of completeness. Since GHG emissions are directly proportional to the amount of fuel consumed, we use the fuel use rate as a proxy to estimate the total amount of GHG emissions. To calculate fuel consumption, we use the comprehensive emissions model of Barth et al. (2005) and Barth and Boriboonsomsin (2008), according
to which the instantaneous fuel use rate, denoted $F R$ (liter/s), when traveling at a constant speed $v(\mathrm{~m} / \mathrm{s})$ with load $f(\mathrm{~kg})$ is estimated as

$$
\begin{equation*}
F R=\frac{\xi}{\kappa \psi}\left(k N_{e} V+\frac{0.5 C_{d} \rho A v^{3}+(\mu+f) v\left(g \sin \phi+g C_{r} \cos \phi\right)}{1000 \varepsilon \varpi}\right), \tag{2}
\end{equation*}
$$

where ξ is fuel-to-air mass ratio, κ is the heating value of a typical diesel fuel $(\mathrm{kJ} / \mathrm{g}), \psi$ is a conversion factor from grams to liters from (g / s) to (liter/s), k is the engine friction factor ($\mathrm{kJ} / \mathrm{rev} / \mathrm{liter}$), N_{e} is the engine speed (rev/s), V is the engine displacement (liter), ρ is the air density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$, A is the frontal surface area $\left(m^{2}\right), \mu$ is the vehicle curb weight (kg), g is the gravitational constant (equal to $9.81 \mathrm{~m} / s^{2}$), ϕ is the road angle, C_{d} and C_{r} are the coefficient of aerodynamic drag and rolling resistance, ε is vehicle drive train efficiency and ϖ is an efficiency parameter for diesel engines. Using $\alpha=g \sin \phi+g C_{r} \cos \phi, \beta=0.5 C_{d} A \rho, \gamma=1 /(1000 \varepsilon \varpi)$ and $\lambda=\xi / \kappa \psi$, (2) can be simplified as

$$
\begin{equation*}
F R=\lambda\left(k N_{e} V+\gamma\left(\beta v^{3}+\alpha(\mu+f) v\right)\right) . \tag{3}
\end{equation*}
$$

The total amount of fuel used, denoted F (liters), for traversing a distance $d(\mathrm{~m})$ at constant speed $v(\mathrm{~m} / \mathrm{s})$ with load $f(\mathrm{~kg})$ is equal to the fuel rate multiplied by the travel time d / v :

$$
\begin{equation*}
F=\lambda\left(k N_{e} V \frac{d}{v}+\gamma \beta d v^{2}+\gamma \alpha(\mu+f) d\right) . \tag{4}
\end{equation*}
$$

Expression (4) contains three terms in the parentheses. We refer to the first term, namely $k N_{e} V d /$ v, as the engine module which is linear in the travel time. The second term, $\gamma \beta d v^{2}$, is called the speed module, which is quadratic in the speed. The last term, $\gamma \alpha(\mu+f) d$, is the weight module, which is independent of travel time and speed. Figure 2 shows the relationship between F and v for a vehicle traveling a distance of 100 km . Other parameters used in generating the figure are given in Table 1.
Figure 2 shows a U-shape curve between fuel consumption and speed, which is consistent with the behavior of functions suggested by other authors (e.g., Demir et al., 2011), confirming that low speeds (as in the case of traffic congestion) lead to very high fuel use rate. The figure also shows the engine module as the main driver of this trend, which contributes considerably to the increase in the amount of emissions at low speeds.

To model the emissions in a time-dependent setting, we rewrite the fuel consumption function F as a function of the departure time w and the free-flow speed v_{f} on a given arc of length d. If a vehicle traverses the arc in the all congestion region, then

$$
F\left(w, v_{f}\right)=\lambda\left[k N_{e} V T\left(w, v_{f}\right)+\gamma \beta T\left(w, v_{f}\right)\left(v_{c}\right)^{3}+\gamma \alpha(\mu+f) d\right] .
$$

Figure 2 Fuel use rate F as a function of speed v

Table 1 Setting of vehicle and emission parameters

Notation	Description	Value
ξ	fuel-to-air mass ratio	1
κ	heating value of a typical diesel fuel $(\mathrm{kJ} / \mathrm{g})$	44
ψ	conversion factor $(\mathrm{g}$ liter)	737
k	engine friction factor $(\mathrm{kJ} / \mathrm{rev} / \mathrm{liter})$	0.2
N_{e}	engine speed $($ rev $/ \mathrm{s})$	33
V	engine displacement (liter)	5
ρ	air density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	1.2041
A	frontal surface area $\left(\mathrm{m}^{2}\right)$	3.912
μ	curb-weight (kg)	
g	gravitational constant $\left(\mathrm{m} / \mathrm{s}^{2}\right)$	6350
ϕ	road angle	9.81
C_{d}	coefficient of aerodynamic drag	0
C_{r}	coefficient of rolling resistance	0.7
ε	vehicle drive train effficiency	0.01
ϖ	efficiency parameter for diesel engines	0.4
f_{c}	fuel price per liter $(£)$	0.9
d_{c}	driver wage $(£ / \mathrm{s})$	1.4

Similarly, in the all free-flow region,

$$
F\left(w, v_{f}\right)=\lambda\left[k N_{e} V T\left(w, v_{f}\right)+\gamma \beta T\left(w, v_{f}\right)\left(v_{f}\right)^{3}+\gamma \alpha(\mu+f) d\right] .
$$

When a vehicle traverses the arc in the transient region, the speed module needs to be split into two terms since the speed changes before and after the end of the congestion period. In this case

$$
F\left(w, v_{f}\right)=\lambda\left[k N_{e} V T\left(w, v_{f}\right)+\gamma \beta\left[(a-w)\left(v_{c}\right)^{3}+\left(w+T\left(w, v_{f}\right)-a\right)\left(v_{f}\right)^{3}\right]+\gamma \alpha(\mu+f) d\right],
$$

where $a-w$ is the time spent in congestion and $w+T\left(w, v_{f}\right)-a$ is the time spent driving at free-flow speed.

In general, let $T^{c}(w)=\min \left\{(a-w)^{+}, d / v_{c}\right\}$ be the time spent by the vehicle in congestion and $T^{f}\left(w, v_{f}\right)=\left[d-(a-w)^{+} v_{c}\right]^{+} / v_{f}$ be the time spent driving at the free-flow speed. We have $T\left(w, v_{f}\right)=T^{c}(w)+T^{f}\left(w, v_{f}\right)$ and we can write

$$
F\left(w, v_{f}\right)=\lambda k N_{e} V T\left(w, v_{f}\right)+\lambda \gamma \beta\left[v_{c}^{3} T^{c}(w)+v_{f}^{3} T^{f}\left(w, v_{f}\right)\right]+\lambda \gamma \alpha(\mu+f) d .
$$

2.3. Aim of the TDPRP

In the TDPRP, the total travel cost function is composed of the cost of fuel and the driver cost for each arc in the network. Let f_{c} denote the fuel price per liter and let d_{c} denote the wage rate for the drivers of the vehicles. Because CO_{2} emissions are proportional to fuel consumption, minimizing fuel cost amounts to minimizing GHG emissions. In practice, we could modify f_{c} to include the cost of GHG emissions. However, there is considerable debate on the price of CO_{2} and the method used to estimate it is rather subjective (see the survey paper by Tol, 2005 gathering 103 estimates of the marginal damage costs of CO_{2} emissions), so we have decided not to include it in our numerical calculations.

We consider two ways of calculating the total time for which the driver is paid, which we call driver wage policies: (i) the driver of each vehicle is paid from the beginning of the time horizon until returning back to the depot, or (ii) the driver is paid only for the time spent away from the depot, i.e., either en-route or at a customer. The difference between policies (i) and (ii) is that the driver is not paid for time spent waiting at the depot under policy (ii); in practice, the driver is asked to report to work later than at the start of the time horizon.

The aim of the TDPRP is to determine a set of routes, starting and ending at the depot, the speeds on each leg of the routes and departure times from each node so as to minimize the total travel cost. We provide an expression for the cost function in Section 4 and one for the special case of a network with only one arc in Section 5 .

In the next section we present a number of numerical examples which illustrate the trade-offs involved in this model. In particular, we outline an important feature of the TDPRP, i.e., that it may be optimal to wait at a node, even after the service is completed, in order to reduce the time spent driving in congestion. Similarly, it may also be optimal for the vehicles not to leave the depot at the start of the time horizon. Hence, the driver's time at a customer can be spent (i) waiting for the start of service in the case of an early arrival-we call this the pre-service wait, (ii) serving the customer, or (iii) waiting after service is completed and before departing to the next customer or back to the depot-we call this the post-service wait.

3. Examples

The purpose of this section is twofold. We first investigate the impact of considering traffic congestion on the routing and scheduling planning activities. We then compare the two driver wage policies, namely paying the drivers from the beginning of the time horizon or from their departure time from the depot. In both cases, we analyze a four-node network where node 0 is the depot at which a single vehicle is based, and $\{1,2,3\}$ is the set of customers. The network is depicted in Figure 3. Every arc has the same two-level speed profile consisting of an initial congestion period which lasts a seconds, followed by a free-flow period. In the examples below, the congestion speed v_{c} is set to $10 \mathrm{~km} / \mathrm{h}$ and the speed limit v_{m} to $110 \mathrm{~km} / \mathrm{h}$. The examples differ with respect to the driver wage policy and the time windows at the customer nodes, which are given above each table. We assume that demand and service time at each customer node are zero. The assumption on the demand values entails no loss of generality given that the weight module does not depend on the vehicle speed, as shown in Section 2.2. The parameters used to calculate the total cost function, which are reported in Table 1, are taken from Demir et al.(2012).

Figure 3 Sample four-node instance

3.1. Impact of traffic congestion

We consider four examples. In each one, we minimize the total travel cost using two different approaches. In the time-independent approach, we ignore traffic congestion when planning the vehicle route and schedule, that is, we assume that the vehicle can always drive at the chosen free-flow speed on each arc of the network. Let S_{N} denote the solution of the time-independent approach. In the time-dependent approach, we account for traffic congestion by solving the TDPRP, the solution of which we denote by S_{D}. However, the costs for both solutions (denoted by $T C\left(S_{N}\right)$ and $T C\left(S_{D}\right)$) are evaluated under traffic congestion. Since S_{D} is optimal under traffic congestion, it follows that $T C\left(S_{D}\right) \leq T C\left(S_{N}\right)$, and the difference in cost between the two solutions represents the value of incorporating traffic congestion information in the decision making process. In the example below, the length of the congestion period is equal to 14400 seconds.

Example 1: Post-service wait at depot. This example shows that ignoring traffic congestion when planning the route and schedule of the vehicle can lead to a substantial increase in costs. It also shows that adding waiting time at the depot can be used as an effective strategy to mitigate the effect of congestion and reduce the total travel cost. We assume no service time windows at customer nodes: $l_{1}=l_{2}=l_{3}=0$, and $u_{1}=u_{2}=u_{3}=\infty$. The driver is paid from the beginning of the time horizon.

The solutions to the time-independent and time-dependent approaches are displayed in Table 2. For each solution, the table reports (i) the set of traversed arcs in chronological order from top to bottom under column Arc, (ii) the speed(s) at which each arc is traversed (for an arc traversed during the transient region, both the congestion speed and free-flow speed are reported), (iii) the departure time from the origin node, (iv) the post-service waiting time at the origin node, i.e. the additional time that the driver intentionally waits once the service is completed before leaving a node (at the depot the waiting time is equal to the departure time), (v) the fuel $\operatorname{cost} F$, (vi) the driver cost W and (vii) the total cost $T C$.

Table 2 Comparison of S_{N} and S_{D} in Example 1

Arc	S_{N}						Arc	S_{D}					
	Speed	Departure time	Waiting time	F	W	TC		Speed	Departure time	Waiting time	F	W	TC
	km/h	s	s	£	£	£		km/h	s	s	£	$£$	£
$(0,1)$	10, $75.34 \dagger$	0	0	25.86	32.73	58.59	$(0,1)$	75.34	14400	14400	11.47	36.94	48.40
$(1,2)$	75.34	14877.8	0	6.88	3.15	10.03	$(1,2)$	75.34	16789.2	0	6.88	3.15	10.03
$(2,3)$	75.34	16311.3	0	11.47	5.26	16.72	$(2,3)$	75.34	18222.7	0	11.47	5.26	16.72
$(3,0)$	75.34	18700.5	0	6.88	3.15	10.03	$(3,0)$	75.34	20611.8	0	6.88	3.15	10.03
Total				51.09	44.29	95.38					36.70	48.50	85.20

\dagger transient region

From Table 2, we see that the two solutions yield the same optimal tour $(0,3,2,1,0)$ and the same set of optimal free-flow speed levels ($75.34 \mathrm{~km} / \mathrm{h}$ on each arc). The difference between the two solutions lies in the fact that the vehicle leaves the depot at time zero in S_{N} but waits until the end of the congestion period in S_{D}. Thus, S_{D} yields a higher driver cost but this increase is more than compensated by a fuel cost saving, yielding a 10.67% total cost saving over S_{N} (85.20 instead of 95.38).

Example 2: Post-service wait at a customer node This example shows that ignoring traffic congestion can lead to a significant cost increase when the schedule fails to include post-service wait times which help mitigate the negative impacts of traffic congestion on emission costs. It also highlights the difference between pre-service and post-service waits. We assume the following service time windows (in seconds) at customer nodes: $l_{1}=15000, l_{2}=0, l_{3}=11000, u_{1}=u_{2}=\infty, u_{3}=12000$. The driver is paid from the beginning of the time horizon. The solutions to the time-independent and time-dependent approaches are displayed in Table 3.

Table 3 Comparison of S_{N} and S_{D} in Example 2

Arc	S_{N}						Arc	S_{D}					
	Speed km/h	Departure time s	Waiting time S	$\begin{aligned} & F \\ & £ \end{aligned}$	$\begin{gathered} W \\ £ \end{gathered}$	$\begin{gathered} T C \\ £ \end{gathered}$		Speed km / h	Departure time s	Waiting time S	$\begin{aligned} & F \\ & £ \end{aligned}$	$\begin{gathered} W \\ £ \end{gathered}$	$\begin{gathered} T C \\ £ \end{gathered}$
$(0,3)$	10	0	0	17.67	24.20	41.87	$(0,3)$	10	0	0	17.67	31.68	49.35
$(3,2)$	10, $72 \dagger$	11000	0	14.69	11.94	26.63	$(3,2)$	75.34	14400	3400	11.47	5.26	16.72
$(2,1)$	72	16427.8	0	6.75	3.30	10.05	$(2,1)$	75.34	16789.2	0	6.88	3.15	10.03
$(1,0)$	75.34	17927.8	0	11.47	5.26	16.72	$(1,0)$	75.34	18222.7	0	11.47	5.26	16.72
Total				50.58	44.70	95.28					47.49	45.35	92.84

In this example, S_{N} and S_{D} yield the same optimal route but different schedules. In both solutions, the time at which the driver arrives at node 3 is 3200 seconds before the lower limit of the time window, hence there is a positive pre-service wait time at that node. In the S_{N} solution, the vehicle leaves immediately after serving customer 3 , while in the S_{D} solution it waits until the end of the traffic congestion. Hence, the pre-service and post-service waiting times at node 3 are both positive in S_{D}. This change in the schedule leads to cost savings of 2.56% over the time-independent solution. From this example, it can be seen that, while pre-service wait times can occur in S_{N} and S_{D}, post-service wait times are strategic decisions motivated by the impact of congestion and in this example only occur in S_{D}, when the driver is paid from the beginning of the time horizon.

Example 3: Late deliveries due to congestion. This example shows that ignoring traffic congestion can prevent the driver from delivering within the set time windows because he chose a suboptimal route and suboptimal free-flow speeds. This can have significant negative consequences in terms of future business profitability. We assume the following service time windows (in seconds) at customer nodes: $l_{1}=l_{2}=l_{3}=0, u_{2}=15500$ and $u_{1}=u_{3}=\infty$. The driver is paid from the beginning of the time horizon. The solutions to the time-independent and time-dependent approaches are displayed in Table 4.

Table 4 Comparison of S_{N} and S_{D} in Example 3

Arc	S_{N}						Arc	S_{D}					
	Speed km/h	Departure time	Waiting time	F	$\begin{gathered} W \\ £ \end{gathered}$	$T C$		Speed km/h	Departure time	Waiting time	F	W	$T C$
$(0,1)$	10, $75.34 \dagger$	0	0	25.86	32.73	58.59	$(0,2)$	10, 106.02 \dagger	5070.96	5070.96	24.81	34.10	58.91
$(1,2)$	75.34	14877.8	inf.	inf.	inf.	inf.	$(2,1)$	75.34	15500	0	6.88	3.15	10.03
$(2,3)$	75.34	16311.3	inf.	inf.	inf.	inf.	$(1,3)$	75.34	16933.5	0	13.37	6.13	19.50
$(3,0)$	75.34	18700.5	inf.	inf.	inf.	inf.	$(3,0)$	75.34	19719.7	0	6.88	3.15	10.03
Total											51.95	46.54	98.48

We see from Table 4 that the optimal tour for S_{N} is $(0,1,2,3,0)$ and the optimal free-flow speed, without congestion, is $75.34 \mathrm{~km} / \mathrm{h}$ for every arc. Under congestion, however, the vehicle is only able to reach customer 2 after $14877.8+(30 / 75.34) 3600=16311.3$ seconds, that is, with a 13.5
minute delay with respect to the upper time window limit. Because of this delay, S_{N} is infeasible in the presence of traffic congestion. The optimal route $(0,2,1,3,0)$ under S_{D} is different and so are the free-flow speeds ($106.02 \mathrm{~km} / \mathrm{h}$ on the first arc and $75.34 \mathrm{~km} / \mathrm{h}$ afterwards). By accounting for traffic congestion, the planner realizes that the driver must go to customer 2 first. It does so after an initial waiting time of 5070.96 seconds at the depot, and then proceeds at a speed of 106 km / h to reach customer 2 , exactly at its upper time window of time 15500 seconds.

Example 4: Reduction of driver and fuel costs. This example shows that S_{N} and S_{D} solutions can both have strategic wait times but for reasons which are different from those mentioned above. We assume the following service time windows (in seconds) at customer nodes: $l_{1}=19000, l_{2}=$ $0, l_{3}=11000, u_{1}=u_{2}=u 3=\infty$. Contrary to the previous three examples, the driver is now paid from his departure time. The solutions to the time-independent and time-dependent approaches are displayed in Table 5.

Table 5 Comparison of S_{N} and S_{D} in Example 4

Table 5 shows that when there are lower time window restrictions at the customers and the driver is paid from its departure time, there can be strategic post-service waiting time at the depot in both solutions S_{N} and S_{D}. In the S_{N} solution, the reason for delaying the vehicle's departure is to reduce the driver cost by avoiding pre-service wait at the customer node. In contrast, in S_{D} solution, there is another reason for delaying the vehicle's departure, which is the desire to avoid traveling in congestion, thereby reducing fuel cost.

From the four examples just presented, we conclude that ignoring traffic congestion can have detrimental consequences on the timing of deliveries. Congestion is likely to increase costs or even lead to an infeasible solution (which can be seen as a solution with infinite costs) when customer nodes have delivery time windows. This is because the planner does not incorporate strategic postservice wait times motivated by traffic congestion in the vehicle schedules. We show that these strategic wait times can occur either at the depot or at the customer nodes.

3.2. Impact of the driver wage policy

In this section we investigate the impact of the driver wage policy on the optimal TDPRP solution, namely whether the driver is paid from the beginning of the time horizon or from his departure time. In the example below, the length of the congestion period is equal to 7200 seconds.

Example 5: Impact of driver wage policy on wait time and routing. In this example we assume the following service time windows (in seconds) at customer nodes: $l_{1}=l_{2}=9000, l_{3}=10000, u_{1}=$ $19000, u_{2}=15000, u_{3}=12000$. The optimal solutions for the two driver wage policies are compared in Table 6.

Table 6 Comparison of the driver wage policies in Example 5

Arc	S_{D} The driver is paid from the beginning of the time horizon						Arc	S_{D} The driver is paid from departure					
	Speed	Departure time	Waiting time	F	W	TC		Speed	Departure time	Waiting time	F	W	TC
	km/h	s	s	£	$£$	£		km/h	S	s	£	£	£
$(0,1)$	97.5	7200	7200	13.64	19.89	33.53	$(0,3)$	75.34	8566.5	8566.5	6.88	3.15	10.03
$(1,2)$	97.5	9046.15	0.00	8.17	2.44	10.61	$(3,2)$	75.34	10000	0	11.47	5.26	16.73
$(2,3)$	97.5	10153.8	0.00	13.59	4.07	17.66	$(2,1)$	75.34	12389.2	0	6.88	3.15	10.03
$(3,0)$	75.34	12000.00	0.00	6.88	3.15	10.03	$(1,0)$	75.34	13822.7	0	11.47	5.26	16.73
Total				42.28	29.55	71.83					36.70	16.82	53.52

Table 6 shows that the driver wage policy may affect the resulting route. When the driver is paid from the beginning of the time horizon, the optimal route is $(0,1,2,3,0)$ and it is optimal to wait until the end of the congestion period. When the driver is paid from his departure time, it is optimal to postpone his departure until after the end of the congestion period but this requires a change of route to ($0,3,2,1,0$) in order to meet the delivery time windows.

In summary, we see that it is important to take the driver wage policy into account when optimizing the route and schedule of the vehicles. When the driver is paid from his departure time, he generally leaves the depot later than if he was paid from the beginning of the time horizon, but this delay has to be compensated by either a change of route or a speed increase.

4. An Integer Linear Programming Formulation for the TDPRP

This section presents a mathematical formulation for the TDPRP. The objective is to determine a set of routes for the K vehicles, all starting and ending at the depot, along with their speeds on each arc, and then departure times from each node so as to minimize a total cost function encompassing driver and fuel costs. The objective function is not linear in the speed values. To linearize it, we discretize the free-flow speed following an approach used by Bektaş and Laporte (2011). Let $R=\{1, \ldots, k\}$ be the index set of different speed levels and v^{1}, \ldots, v^{k} denote the corresponding free-flow speeds where $v_{c} \leq v^{1}<\ldots<v^{k}=v_{m}$. Figure 4 illustrates the different speed values and corresponding travel time functions. Let $b^{0}=0, b^{1}=\left(a-d / v_{c}\right)^{+}, b^{2}=a$ and $b^{3}=\infty$

Figure 4 Time-dependent speed and travel time profiles
and let $\left[b^{m-1}, b^{m}\right)$ denote the m-th time interval, where $m \in\{1,2,3\}$. Specifically, $m=1$ is the all congestion region, $m=2$ is the transient region and $m=3$ is the all free-flow region. We also define $\nu^{m r}$ as the vehicle speed in time region m given free-flow speed v^{r} with $r \in R$, that is, $\nu^{1 r}=v_{c}$, $\nu^{2 r}=v_{c}$ and $\nu^{3 r}=v^{r}$. These definitions allow us to rewrite (1) for $\operatorname{arc}(i, j)$ as $T\left(w, v_{r}\right)=\theta^{m r} w+\eta_{i j}^{m r}$, if $b^{m-1} \leq w<b^{m}$ and $r \in R$, where,

$$
\begin{aligned}
& \theta^{m r}=\left\{\begin{array}{cc}
0 & m=1,3 \\
\frac{\nu^{2 r}-\nu^{3 r}}{\nu^{3 r}} & m=2,
\end{array}\right. \\
& \eta_{i j}^{m r}=\left\{\begin{array}{cr}
\frac{d_{i j}}{\frac{d_{i j}}{(1 / r}} & m=1 \\
\frac{d_{i j}}{\nu^{3 r}}+\left(\frac{\nu^{\nu^{2 r}}-\nu^{2 r}}{\nu^{3 r}}\right) a & m=2 \\
\frac{d_{i j}}{\nu^{3 r}} & m=3 .
\end{array}\right.
\end{aligned}
$$

The model uses the following decision variables:
$x_{i j} \quad$ binary variable equal to 1 if a vehicle traverses arc $(i, j) \in A, 0$ otherwise,
$z_{i j}^{m r}$ binary variable equal to 1 if a vehicle traverses $\operatorname{arc}(i, j) \in A$, leaving node i within time interval $m \in\{1,2,3\}$ with the free-flow speed v_{r} with $r \in R, 0$ otherwise,
$f_{i j}$ amount of commodity flowing on arc (i, j),
$w_{i j}^{m r}$ variable equal to the time instant at which a vehicle leaves node $i \in N$ to traverse arc (i, j) if within time interval $m \in\{1,2,3\}$ with the free-flow speed v_{r} with $r \in R$,
$s_{i} \quad$ total time spent on a route that has node $i \in N_{0}$ as last visited before returning to the depot,
$\varphi_{i} \quad$ time at which service at node $i \in N_{0}$ starts.

Given these variables, $\theta_{i j}^{m r} w_{i j}^{m r}+\eta_{i j}^{m r} x_{i j}^{m r}$ is equal to the travel time of a vehicle on arc $(i, j) \in A$ if the vehicle leaves node i within time interval $m \in\{1,2,3\}$ and uses free-flow speed v^{r} with $r \in R$.

We now present a mixed integer linear programming formulation for the TDPRP:

$$
\begin{align*}
\text { Minimize } & \sum_{(i, j) \in A} \sum_{r \in R} \sum_{m=1}^{3} f_{c} \lambda k N_{e} V\left(\theta_{i j}^{m r} w_{i j}^{m r}+\eta_{i j}^{m r} z_{i j}^{m r}\right) \tag{5}\\
& +\sum_{(i, j) \in A} \sum_{r \in R} \sum_{m=1,3} f_{c} \lambda \gamma \beta\left(\nu^{m r}\right)^{3}\left(\theta_{i j}^{m r} w_{i j}^{m r}+\eta_{i j}^{m r} z_{i j}^{m r}\right) \tag{6}
\end{align*}
$$

$$
\begin{align*}
& +\sum_{(i j) \in A} \sum_{r \in R} f_{c} \lambda \gamma \beta\left(\nu^{2 r}\right)^{3}\left(a z_{i j}^{2 r}-w_{i j}^{2 r}\right) \tag{7}\\
& +\sum_{(i, j) \in A} \sum_{r \in R} f_{c} \lambda \gamma \beta\left(\nu^{3 r}\right)^{3}\left(w_{i j}^{2 r}+\theta_{i j}^{2 r} w_{i j}^{2 r}+\eta_{i j}^{2 r} z_{i j}^{2 r}-a z_{i j}^{2 r}\right) \tag{8}\\
& +\sum_{(i, j) \in A} f_{c} \lambda \gamma \alpha_{i j} d_{i j}\left(\mu x_{i j}+f_{i j}\right) \tag{9}\\
& +\sum_{i \in N_{0}} d_{c} s_{i} \tag{10}
\end{align*}
$$

subject to

$$
\begin{array}{ll}
\sum_{j \in N} x_{0 j}=K & \\
\sum_{i \in N} x_{i j}=1 & \forall j \in N_{0} \\
\sum_{j \in N} x_{i j}=1 & \forall i \in N_{0} \\
\sum_{j \in N} f_{j i}-\sum_{j \in N} f_{i j}=q_{i} & \forall i \in N_{0} \\
q_{j} x_{i j} \leq f_{i j} \leq x_{i j}\left(Q-q_{i}\right) & \forall(i, j) \in A \\
z_{i j}^{m r} b_{i j}^{m-1} \leq w_{i j}^{m r} \leq z_{i j}^{m r} b_{i j}^{m} & \forall(i, j) \in A, m \in\{1,2,3\}, r \in R \\
\sum_{i \in N} \sum_{m=1}^{3} \sum_{r \in R}\left(w_{i j}^{m r}+\theta_{i j}^{m r} w_{i j}^{m r}+\eta_{i j}^{m r} z_{i j}^{m r}\right) \leq \varphi_{j} & \forall j \in N_{0} \\
\sum_{j \in N} \sum_{r \in R} \sum_{m=1}^{3} w_{i j}^{m r} \geq \varphi_{i}+h_{i} & \forall i \in N_{0} \\
l_{i} \leq \varphi_{i} \leq u_{i} & \forall i \in N_{0} \\
s_{i} \geq \sum_{r \in R} \sum_{m=1}^{3}\left(w_{i 0}^{m r}+\theta_{i 0}^{m r} w_{i 0}^{m r}+\eta_{i 0}^{m r} z_{i 0}^{m r}\right) & \forall i \in N_{0} \\
\sum_{m=1}^{3} \sum_{r \in R} z_{i j}^{m r}=x_{i j} & \forall(i, j) \in A \\
z_{i j}^{m r} \in\{0,1\} & \forall(i, j) \in A, m \in\{1,2,3\}, r \in R \\
x_{i j} \in\{0,1\} & \forall(i, j) \in A \\
f_{i j} \geq 0 & \forall(i, j) \in A, m \in\{1,2,3\}, r \in R .
\end{array}
$$

The first five parts of the objective function represent the cost of fuel consumption. In particular, (5) computes the cost induced by the engine module, the terms (6)-(8) measure the cost induced by the speed module, and (9) is the cost induced by the weight module. More precisely, (6) calculates the fuel cost generated by the speed module in the all congestion and in the all free-flow regions, while (7) and (8) represent the fuel cost generated by the speed module in the transient region. Finally, the last term (10) measures the total driver wage when the driver is paid from the beginning
of the time horizon. In contrast, if the driver was paid from its departure time, the total driver wage would be $\sum_{i \in N_{0}} d_{c} s_{i}-\sum_{j \in N_{0}} \sum_{r \in R} \sum_{m=1}^{3} d_{c} w_{0 j}^{m r}$.

Constraint (11) indicates that exactly K vehicles depart from the depot. Constraints (12) and (13) guarantee that each customer is visited exactly once. Constraints (14) and (15) model the flow on each arc, and ensure that vehicle capacities are respected. The boundary conditions on the departure time are imposed by constraint (16). Constraints (17) and (18) are used to express the temporal relationship between arrival time and service time, and between service time and departure time, respectively. The time windows restrictions at customer nodes are imposed by constraint (19). Constraint (20) computes the time at which the vehicle returns to the depot. The relationship between speed and arc-traversal variables is expressed by constraint (21). Finally, constraints (22)-(24) enforce the integrality and nonnegativity restrictions on the variables.

We provide a numerical analysis of the performance of this formulation in Section 7.

5. Analytical Results based on a Single-Arc Network

We now consider a special case of the TDPRP on a network with two nodes, i.e., the depot and one customer node. The aim is to gain insights by analyzing this special case of the problem; as will be shown in Sections 6 and 7, the results obtained in this section are useful for optimizing the TDPRP on a fixed route and for improving the computational performance of the integer linear programming formulation.

We minimize the cost of going from the depot to the customer node (hence, ignoring the return trip to the depot). The customer node has a time window $[l, u]$. Service time at the customer node is equal to h (in this section it can be set equal to zero without loss of generality but we include it because it becomes a relevant variable for the problem presented in Section 6). We assume, without loss of generality, that the demand at the customer is equal to zero and that there is a two-level speed profile with an initial congestion period a, as described in Section 2.1.
In this special case there are only two decision variables: the departure time w from the depot and the free-flow speed v_{f} for the vehicle serving the customer. We must have $v_{f} \in\left[0, v_{m}\right]$ and $w \geq \epsilon$, where $\epsilon \geq 0$ is the earliest time at which the vehicle can leave the depot. For example ϵ can represent loading time at the depot. We refer to ϵ as the beginning of the planning horizon; $w-\epsilon$ is the (strategic) waiting time at the depot. Without loss of generality we assume that $a \geq \epsilon$ and $\epsilon \leq l \leq u \leq \infty$ (for example, if $a<\epsilon$, then the problem can be solved by setting $a=\epsilon$).

Our objective is to minimize the total cost function $T C\left(w, v_{f}\right)$ so that the arrival time at the customer node does not exceed u. In other words, the optimization problem is

$$
\begin{aligned}
& \operatorname{minimize} \substack{w \geq \epsilon \\
0 \leq v_{f} \leq v_{m}} \\
& \text { subject to } T\left(w, v_{f}\right)= \\
& f_{c} F\left(w, v_{f}\right)+d_{c} W\left(w, v_{f}\right)+w \leq u,
\end{aligned}
$$

where F and T are as defined in Section 2 and $W\left(w, v_{f}\right)$ denotes the time for which the driver is paid. If the driver is paid from the beginning of the time horizon (i.e., ϵ), then $W\left(w, v_{f}\right)=$ $\max \left\{w-\epsilon+T\left(w, v_{f}\right), l-\epsilon\right\}+h$. If the driver is paid from his departure time (i.e., w), then $W\left(w, v_{f}\right)=\max \left\{T\left(w, v_{f}\right), l-w\right\}+h$.

For the single-arc problem to be feasible, the vehicle must be able to reach the customer node by time u if it does not wait at the depot, i.e. if $w=\epsilon$. By leaving immediately, the vehicle is either (i) in the all congestion region, i.e., when $\epsilon \leq a-d / v_{c}$, in which case $u \geq \epsilon+d / v_{c}$, or (ii) in the transient region, i.e., when $\epsilon \geq a-d / v_{c}$, in which case $u \geq a+\left(d-(a-\epsilon) v_{c}\right) / v_{m}$. We can summarize these two conditions as follows: $u \geq \min \left\{a, \epsilon+d / v_{c}\right\}+\left(d-(a-\epsilon) v_{c}\right)^{+} / v_{m}$. In what follows we assume that this condition is satisfied.

Let v_{w}^{u} be the free-flow speed required for the driver to arrive at the customer exactly at time u when leaving the depot at time w. Then

$$
v_{w}^{u}=\left\{\begin{array}{c}
\frac{d-(a-w)^{+} v_{c}}{u-\max \{a, w\}}, \\
\infty, \\
\text { otherwise } w \in\left[\max \left\{\epsilon, a-d / v_{c}\right\}, u\right] \text { and } u>a
\end{array}\right.
$$

Similarly, let v_{w}^{l} be the free-flow speed required for the driver to arrive at the customer exactly at time l when leaving the depot at w. Then

$$
v_{w}^{l}=\left\{\begin{array}{c}
\frac{d-(a-w)^{+} v_{c}}{l-\max \{a, w\}}, \\
\infty, \\
\text { if } w \in\left[\max \left\{\epsilon, a-d / v_{c}\right\}, l\right] \text { and } l>a \\
\text { otherwise }
\end{array}\right.
$$

The departure time w from the depot must be such that $v_{w}^{u} \leq v_{m}$ otherwise it is not possible to arrive by time u. Let w_{m}^{u} denote the time at which the vehicle needs to depart from the depot to reach the customer at exactly time u, driving at free-flow speed v_{m}.

$$
w_{m}^{u}=\left\{\begin{array}{cc}
u-\frac{d}{v_{m}}, & \text { if } v_{m} \geq v_{a}^{u} \text { and } u>a \\
a-\frac{d-u-a) v_{m}}{v_{u}}, & \text { if } v_{m}<v_{a}^{u} \text { and } u>a \\
u-\frac{d}{v_{c}} & \text { if } \epsilon \leq u \leq a
\end{array}\right.
$$

In other words, w_{m}^{u} is an upper bound on the departure time, i.e., for a value of the departure time w to be feasible we need $w \in\left[\epsilon, w_{m}^{u}\right)$. Similarly let w_{m}^{l} be the maximum departure time such that the driver arrives exactly at time l driving at free-flow speed v_{m} :

$$
w_{m}^{l}=\left\{\begin{array}{cc}
l-\frac{d}{v_{m}}, & \text { if } v_{m} \geq v_{a}^{l} \text { and } l>a \\
a-\frac{d-(l-a) v_{m}}{v_{c}}, & \text { if } v_{m}<v_{a}^{l} \text { and } l>a \\
l-\frac{d i d}{v_{c}} & \text { if } \epsilon \leq l \leq a
\end{array}\right.
$$

We first determine the optimal free-flow speed v_{f} for a given departure time $w \in$ $\left[\max \left\{\epsilon, a-d / v_{c}\right\}, w_{m}^{u}\right]$. As shown in Lemma 1, this can be done by comparing the speed levels v_{w}^{l} and v_{w}^{u} to two key speed levels: $\bar{v}=\left(\left(f_{c} \lambda k N_{e} V+d_{c}\right) / 2 f_{c} \lambda \beta \gamma\right)^{1 / 3}$ and $\underline{v}=\left(k N_{e} V / 2 \beta \gamma\right)^{1 / 3}$. The speed level \bar{v} minimizes fuel and driver costs, i.e., $T C$, in the absence of any time window, whereas
the speed \underline{v} minimizes fuel consumption only, i.e., F, in the absence of any time windows. Both values are independent of the departure time w. These speed values have previously been identified by Demir et al.(2012).

Lemma 1. Consider a single-arc TDPRP instance and a departure time w such that $w \in$ $\left[\max \left\{\epsilon, a-d / v_{c}\right\}, w_{m}^{u}\right]$. There are four cases: (i) if $v_{w}^{l} \leq \underline{v}$ then the optimal free-flow speed is $\min \left\{v_{m}, \underline{v}\right\}$, (ii) if $\underline{v} \leq v_{w}^{l} \leq \bar{v}$ then the optimal free-flow speed is $\min \left\{v_{m}, v_{w}^{l}\right\}$, (iii) if $v_{w}^{u} \leq \bar{v} \leq v_{w}^{l}$ then the optimal free-flow speed is $\min \left\{v_{m}, \bar{v}\right\}$, (iv) if $\bar{v} \leq v_{w}^{u}$ then the optimal speed is v_{w}^{u}.

Note that the optimal speed for a given departure time does not depend on the driver wage policy. Using Lemma 1, we can reduce the problem of minimizing $T C$ to a unidimensional optimization problem, that is, we set w as the unique decision variable.

We now provide the full characterization of the optimal solution. Let $S=\left(w^{*}, v_{f}^{*}\right)$ denote a solution, where w^{*} is the optimal departure time and v_{f}^{*} is the optimal free-flow speed, Theorem 1 provides the solution when the driver is paid from the beginning of the time horizon, i.e, from time ϵ, and Theorem 2 provides the solution when the driver is paid from his departure time i.e., from time w. Observe that whenever the vehicle traverses the entire arc during the congestion period, the free-flow speed is never used but we may still write $S=\left(w^{*}, v_{f}^{*}\right)$, with v_{f}^{*} being equal to any positive value.

Theorem 1. Consider a single-arc TDPRP instance. If the driver is paid from the beginning of the time horizon, the optimal solution depends mainly on the relative values of the nine speed levels: $v_{m}, \underline{v}, \bar{v}, \hat{v}=\left(\left(k N_{e} V+\beta \gamma v_{c}^{3}\right) / 3 \beta \gamma v_{c}\right)^{1 / 2}, \check{v}=\left(\left(f_{c} \lambda k N_{e} V+d_{c}+f_{c} \lambda \beta \gamma v_{m}^{3}\right) / 3 f_{c} \lambda \beta \gamma v_{m}\right)^{1 / 2}, v_{\epsilon}^{l}, v_{a}^{l}$, v_{ϵ}^{u} and v_{a}^{u} and is given in Table 11 in Appendix A.

Theorem 1 suggests that, when the driver is paid from the beginning of the time horizon, there are four important free-flow speed values: $\bar{v}, \underline{v}, \hat{v}$ and \check{v}, which only depend on the values from Table 1. In particular, the first two values are defined as in Lemma 1, and the latter two are comparison parameters. The intuition is as follows. Delaying the departure of the driver has two effects: on the one hand, it may increase the driver costs as the driver is paid for a longer period of time; on the other hand, it may reduce the time spent driving in congestion, allowing the driver to reach a higher average driving speed and spend less time on the road. The engine module component of the emission costs is decreasing in the departure time, whereas the driver costs and speed module are increasing in it. As a result, the overall impact on the total cost depends on the trade-off between these costs. More specifically, when $v_{m} \leq \bar{v}\left(v_{m}>\bar{v}\right)$, the total cost function is initially decreasing in the transient region (where both effects are active) only if $\hat{v} \geq \check{v}(\hat{v} \geq \bar{v})$. In this case, it may be beneficial to postpone the departure time past time ϵ because the drop in the engine module part
of the emission costs more than offsets the increase in driver costs and speed module.
Beside the speeds just described, the optimal solution also depend on other four free-flow speed values: $v_{\epsilon}^{l}, v_{\epsilon}^{u}, v_{a}^{l}$, and v_{a}^{u}, which only depend on the instance parameters, that is, l, u, d and a.

Theorem 2. Consider a single-arc TDPRP instance. If the driver is paid from his departure time, the optimal solution depends mainly on the relative values of the eight speed levels: $v_{m}, \underline{v}, \bar{v}, \tilde{v}=$ $\left(\left(f_{c} \lambda k N_{e} V+d_{c}+f_{c} \lambda \beta \gamma v_{c}^{3}\right) / 3 f_{c} \lambda \beta \gamma v_{c}\right)^{1 / 2}, v_{\epsilon}^{l}, v_{a}^{l}, v_{\epsilon}^{u}$ and v_{a}^{u} and is given in Table 12 in Appendix A.

When the driver is paid from his departure time, delaying departure does not lead to an increase in driver costs. In fact it may lead to a decrease since waiting may mean less driving in congestion and therefore spending less time on the road. In this case the trade-off is between the speed module of the emission costs, which is increasing in the departure time, and the driver costs and engine module which are decreasing.

We make the following remarks about the optimal solutions under both driver wage policies.
Remark 1. Consider a single-arc TDPRP instance.

- If there is no time window, i.e. $l=0$ and $u=\infty$, and the driver is paid from the beginning of the time horizon, then one of the following two solutions is optimal: either leave the depot immediately $\left(w^{*}=\epsilon\right)$, or wait until the end of the congestion period ($w^{*}=a$). In both cases the optimal speed is \bar{v}. Differently, when the driver is paid from his departure time, leaving the depot at the end of the congestion period $\left(w^{*}=a\right)$ and driving at free-flow speed \bar{v} is optimal.
- When the driver is paid from the beginning of the time horizon, there always exists an optimal solution where the driver leaves at or before the end of the congestion period, i.e., at time $w^{*} \leq a$. However, when the driver is paid from his departure time, it may be optimal to leave the depot after the end of the congestion period, i.e., at time $w>a$.
- The optimal departure time when the driver is paid from the beginning of the time horizon is at most equal to the optimal departure time when the driver is paid from his departure time. This is due to the fact that there is an extra incentive to delay departure when the driver is paid from his departure time, which is to reduce the driver costs.
- If there is no congestion period, the TDPRP reduces to the PRP. In this case, our results show that, when the driver is paid from the beginning of the time horizon, there always exists an optimal solution where the driver leaves the depot immediately, i.e., $w^{*}=\epsilon$. However, this result is not true when the driver is paid from his departure time. In this case, even in the absence of congestion, it may be optimal to delay the departure of the vehicle in order to save on the driver costs, when leaving at time ϵ would lead to a pre-service waiting time at the customer node.
- The results of this section also apply to the case where emission costs are ignored (i.e., if f_{c} is set to 0) so that the objective function reduces to minimizing only the driver cost, that is, Theorems 1 and 2 can be used to obtain an optimal solution (note that $\bar{v}=\tilde{v}=\tilde{v}=\infty$ in this case). When the driver is paid from the beginning of the time horizon, it is always optimal for him to leave immediately and drive at speed v_{m}. However, when the driver is paid from his departure time, it may be optimal to wait at the depot.

The following theorem establishes the relationship between the optimal departure time and the time window $[l, u]$.

Theorem 3. The (earliest) optimal departure time from the depot w^{*} is non-decreasing in l and u. The optimal free-flow speed v^{*} (whenever it is used) is non-increasing in l and u.

The following example illustrates how the optimal solution to the TDPRP varies with l and u.
Example 1. The parameters in Table 1 imply that $\underline{v}=55.19 \mathrm{~km} / \mathrm{h}$ and $\bar{v}=75.34 \mathrm{~km} / \mathrm{h}$. Let $\epsilon=0$, $d=100 \mathrm{~km}, v_{c}=19 \mathrm{~km} / \mathrm{h} v_{m}=130 \mathrm{~km} / \mathrm{h}$ and $a=10000$ seconds. This implies that $\hat{v}=77.58$ km / h and $\tilde{v}=122.99 \mathrm{~km} / \mathrm{h}$. Table 7 shows the optimal solution as a function of the lower (l) and upper (u) time windows, given in seconds.

Table 7 Optimal solution $S=\left(w^{*}, v_{f}^{*}\right)$ as a function of lower and upper time window

	Driver paid from the beginning of the time horizon				Driver paid from departure time		
l	u	w^{*}	v_{f}^{*}	Arrival Time	w^{*}	v_{f}^{*}	Arrival Time
7500	11375	0	$123.63\left(v_{\epsilon}^{u}\right)$	$11375(u)$	0	$123.63\left(v_{\epsilon}^{u}\right)$	$11375(u)$
7500	12500	$1260.42(<a)$	$77.58(\hat{v})$	$12500(u)$	$7235.49(<a)$	$122.99(\hat{v})$	$12500(u)$
7500	14700	$10000(a)$	$76.60\left(v_{a}^{u}\right)$	$14700(u)$	$10000(a)$	$76.60\left(v_{u}^{a}\right)$	$14700(u)$
7500	70000	$10000(a)$	$75.34(\bar{v})$	$14778.20(\in(l, u))$	$10000(a)$	$75.34(\bar{v})$	$14778.20(\in(l, u))$
15000	70000	$10000(a)$	$72\left(v_{a}^{l}\right)$	$15000(l)$	$10221.79(>a)$	$75.34(\bar{v})$	$15000(l)$
25000	70000	$10000(a)$	$55.19(\underline{v})$	$16523(<l)$	$20221.79(>a)$	$75.34(\bar{v})$	$25000(l)$

We see that for low values of l and u, it is optimal for the driver to leave the depot immediately and arrive at the customer node exactly at time u. As u increases, it becomes optimal to wait at the depot and eventually arrive between l and u. Then as l is increased, the optimal arrival time becomes exactly l and then possibly (when the driver is paid from the beginning of the time horizon) a value less than l, meaning that there is a pre-service waiting time.

Based on the properties of single-arc TDPRP instance we derive the following results which also apply to the general case.

Lemma 2. Given a TDPRP instance,
(i) it is never optimal for drivers to drive at a free-flow speed lower than \underline{v};
(ii) if drivers are paid from their departure time, it is never optimal for them to drive on the first arc of a route at a free-flow speed lower than $\min \left\{\bar{v}, v_{m}\right\}$.

These results will be useful to improve the efficiency of the MIP formulation, as discussed in Section 7.

6. Departure Time and Speed Optimization on Fixed Routes

In this section, we consider a special case of the TDPRP where there is only one vehicle and a fixed sequence in which the customer nodes are to be visited. We refer to this problem as the Departure Time and Speed Optimization Problem (DSOP). Let $(0,1 \ldots, n, n+1)$ be the fixed sequence of nodes. Node $n+1$ may be a copy of the depot, implying a return to the origin but this does not have to be the case. Let d_{i} denote the distance on arc $(i, i+1)$ with $0 \leq i \leq n$. As described in Section $2, l_{i}, u_{i}$ and h_{i} are respectively the lower time window limit, the upper time window limit and the service time at node i. Without loss of generality the demand values at each nodes are set equal to zero. We assume the driver is paid from the beginning of the time horizon.
The decision variables are (i) the departure time from node i, denoted w_{i} for $i=0, \ldots, n$ and (ii) the free-flow speed driven on arc $(i, i+1)$ (if possible), denoted v_{f}^{i} for $i=0, \ldots, n$. We must have $v_{f}^{i} \in\left[0, v_{m}\right]$ for $i=0, \ldots, n, w_{0} \geq \epsilon$, where ϵ denotes the earliest time the driver can leave the depot, and $w_{i} \geq \max \left\{l_{i}, w_{i-1}+T\left(w_{i-1}, v_{f}^{i-1}\right)\right\}+h_{i}$ for $i=1, \ldots, n$, where $T\left(w_{i-1}, v_{f}^{i-1}\right)$ denotes the travel time of the vehicle between nodes $i-1$ and i.

6.1. Solution methods for the DSOP

The TDPRP reduces to K instances of the DSOP if the route of each of the K vehicles is fixed. This means that the DSOP can, in principle, be solved by a commercial optimization software using the MIP model presented in Section 4, where constraints (11)-(15), (23), and (24) are relaxed. Even in this case, however, solving the resulting problem requires considerable computational effort due to the large number of binary decision variables representing the discretized speeds. Furthermore, the precision of the solution depends on the level of discretization of the free-flow speeds. To overcome these limitations, we propose a polynomial time solution method which, in our numerical experiments, has been observed to solve the problem to optimality in every case we have considered. The algorithm builds on the solution to the Speed Optimization Problem (SOP) proposed by Norstad et al. (2010) and Hvattum et al. (2013) for ship routing, which was then adapted to the PRP by Demir et al. (2012). The idea is to compute the optimal solution by recursively adjusting the travel speed for segments of the route until a feasible solution is found. The method is exact provided the total cost function is convex (Hvattum et al., 2013). Unfortunately this is not the case with the TDPRP due to the time dependency. Our proposed method builds on the analytical properties presented in Section 5 and maintains the recursive nature of the algorithm proposed for the SOP.

The pseudo-code for our DSOP algorithm is provided in Appendix B. A solution to the DSOP problem is obtained by setting $s=0$ and $e=n+1$. The DSOP algorithm operates as follows. It first solves a relaxed problem without any time windows at intermediary nodes, that is, with only the time window at the end node maintained. This solution is calculated by reducing the problem to a single-arc TDPRP which is solved using Theorem 1. Once the solution to the relaxed problem has been calculated, the algorithm checks whether there are any time window violations at intermediate nodes, i.e., whether the arrival time at node i is lower than l_{i} or higher than u_{i}. In case of multiple violations, the algorithm selects the node p with the largest violation. The violation is eliminated by calling the algorithm recursively on each side of the node where it occurred, that is, by calling the function for (s, \ldots, p) and for (p, \ldots, e) separately.

7. Computational Results

This section presents the results of computational experiments using the integer linear programming formulation of the TDPRP presented in Secion 4 and the DSOP algorithm discussed in Section 6. All tests were carried out using three sets of instances from the PRPLIB (http://www.apollo. management.soton.ac.uk/prplib.htm), with respectively 10,15 and 20 nodes as described by Demir et al. (2012). All experiments were conducted by using CPLEX 12.1 on a server with 2.93 GHz and 1.1 Gb RAM. The nodes in these instances represent randomly selected cities from the United Kingdom, with real distances. The time windows and service times, however, are randomly generated.

We set CPLEX to run sequentially in deterministic mode in a single thread. A common timelimit of three hours was imposed on all instances. To improve the efficiency of the formulation, we have used preprocessing to reduce the input data space by using the results of Lemma 2. More specifically, we downsize the set of free-flow speed levels R by setting $v_{1}=\underline{v}$. We also include the values of the three speed levels \bar{v}, \hat{v} and \tilde{v} in the set of free-flow speed levels R, whenever these do not exceed the upper speed limit v_{m}. Finally, we supplement the formulation with two-node subtour breaking constraints $x_{i j}+x_{j i} \leq 1, \forall i, j \in N_{0}, i \neq j$, as was also done by Bektaş and Laporte (2011).

7.1. Performance on PRP instances

This section compares the performance of the proposed formulation for the TDPRP with that of Bektaş and Laporte (2011) for cases where there is no congestion. Table 25 in Appendix D. presents the results of this experiment using 10 -node instances. The first two columns of the table are self-explanatory, whereas the columns PRP and TDPRP present the total cost produced by the respective formulations and $\mathrm{t}(\mathrm{PRP})$ and t (TDPRP) present the associated computational
times (in seconds) required to solve each instance to optimality. Compared with the mathematical formulation proposed by Bektaş and Laporte (2011), the TDPRP formulation is superior in terms of the computational time required to reach optimality. The average solution time with the new formulation is indeed significantly reduced from 508.47 to 5.52 seconds. The proposed model also can solve some larger PRP instances to optimality, in particular the 15- and 20-node instances, as shown Section in 7.3. The Bektaş and Laporte (2011) formulation could not handle such sizes because of the computational time requirements. One possible explanation for our formulation to be faster, despite being more general, is that it does not include any big-M parameters. Bektaş and Laporte (2011) use such a parameter both in the time window constraints and in the calculation of the total travel time.

7.2. Performance of the DSOP algorithm

We have performed several computational experiments in order to evaluate the performance of our DSOP algorithm. We compare the solutions obtained by our DSOP algorithm (denoted S_{A}) with the value obtained with the MIP formulation (denoted $S_{I P}$). The tests were run on three sets of instances from the PRPLIB. For each set of instances, the time window limits were relaxed by a factor δ, i.e. $l_{i}^{\prime}=l_{i}-\delta\left(u_{i}-l_{i}\right)$ and $u_{i}^{\prime}=u_{i}+\delta\left(u_{i}-l_{i}\right)$. In order to solve the MIP formulation, three sets (5,10 , and 15) of free-flow speed levels were considered. The results are reported in Table 8 which contains the average percentage deviation $\operatorname{Dev}(\%)$ in total costs between S_{A} and $S_{I P}$, which is calculated as $100\left(T C\left(S_{A}\right)-T C\left(S_{I P}\right)\right) / T C\left(S_{A}\right)$, where $T C(S)$ denotes the total cost of a solution S.

Table 8 Average Dev (\%) for three sets of instances

Instances	δ	a	v_{c}		\# of speed levels		
		(s)	$(\mathrm{Km} / \mathrm{h})$		5	10	15
UK10	0.2	0	-		-0.113	-0.011	-0.005
UK10	0.3	3000	15		-0.106	-0.015	-0.005
UK10	0.5	3600	10		-0.086	-0.009	-0.002
UK15	0.7	3000	15		-0.121	-0.018	-0.004
UK20	1.0	3000	15		-0.091	-0.018	-0.008

Table 8 shows that in all cases, the deviations are negative, implying that the solution computed with our DSOP algorithm is better than the solution obtained with CPLEX, i.e., $T C\left(S_{I P}\right)>$ $T C\left(S_{A}\right)$. This is because the MIP model optimizes the free-flow speed over a finite set of speed levels, whereas in our algorithm considers speed as a continuous variable. These findings are consistent with our DSOP algorithm reaching the optimal solution in all the problem instances we considered.

7.3. Importance of modeling traffic congestion and impact of driver wage policy

In this section, we compare the results of cases with and without congestion, as we did in Section 3 , using $10-15$ - and 20 -node PRP instances. More specifically, by using the integer linear programming formulation described in Section 4, we compute a time-dependent optimal solution S_{D}. Using the same formulation and fixing the congestion period to zero, we compute an timeindependent optimal solution S_{N}. We note that solving the problem by means of a time-independent approach may generate multiple optimal solutions which yield different total costs under a congestion scenario, in which case we select the solution with the minimum waiting time at the depot. For every instance, we assume the same two-level speed profile as defined in Section 2.1, and we consider both driver wage policies. The congestion speed v_{c} is set to $10 \mathrm{~km} / \mathrm{h}$ and we consider two values for the length of the congestion period: 3600 and 7200 seconds. A summary of the results is provided in Tables 9 and 10 (the full results over 60 instances are reported in Tables EC.14-EC. 19 in Appendix D). These tables report, for each set of instances the percentage of infeasible solutions S_{D} and S_{N}, the average computational time (denoted by $t\left(S_{N}\right)$ and $t\left(S_{D}\right)$) and the average saving of using a time-dependent formulation. The latter is calculated as Saving $\%=$ $100\left(T C\left(S_{N}\right)-T C\left(S_{D}\right)\right) / T C\left(S_{N}\right)$, representing the percentage decrease in costs which results from incorporating traffic congestion into planning vehicles routes and schedules.

Table 9 Summarized results for three sets of instances with an initial congestion period of 3600 seconds

Instances	Drivers paid from the beginning of the time horizon					Drivers paid from departure				
	$\begin{gathered} \hline \text { Infeasible } \\ S_{N} \% \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Infeasible } \\ S_{D} \% \\ \hline \end{gathered}$	$\begin{gathered} t\left(S_{N}\right) \\ \mathrm{s} \end{gathered}$	$\begin{gathered} t\left(S_{D}\right) \\ \mathrm{s} \end{gathered}$	Saving \%	$\begin{gathered} \hline \text { Infeasible } \\ S_{N} \% \\ \hline \end{gathered}$	$\begin{gathered} \text { Infeasible } \\ S_{D} \% \\ \hline \end{gathered}$	$\begin{gathered} t\left(S_{N}\right) \\ \mathrm{s} \end{gathered}$	$\begin{gathered} t\left(S_{D}\right) \\ \mathrm{s} \end{gathered}$	Saving \%
UK_10	30	0	3.663	4.981	3.206	30	0	3.136	4.561	6.330
UK_15	55	5	976.610	467.797	3.478	45	5	1148.129	668.824	5.705
UK_20 \dagger	19	0	1527.273	1119.881	2.937	24	0	2179.146	1003.909	5.736

Table 10 Summarized results for three sets of instances with an initial congestion period of 7200 seconds

Instances	Drivers paid from the beginning of the time horizon					Drivers paid from departure				
	Infeasible $S_{N} \%$	Infeasible $S_{D} \%$	$\begin{gathered} t\left(S_{N}\right) \\ \mathrm{s} \end{gathered}$	$\begin{gathered} t\left(S_{D}\right) \\ \mathrm{s} \end{gathered}$	Saving \%	Infeasible $S_{N} \%$	Infeasible $S_{D} \%$	$\begin{gathered} t\left(S_{N}\right) \\ \mathrm{S} \end{gathered}$	$\begin{gathered} t\left(S_{D}\right) \\ \mathrm{s} \end{gathered}$	Saving \%
UK_10	50	0	3.663	10.870	4.942	50	0	3.136	8.514	15.276
UK_15	80	10	976.610	463.724	5.055	85	10	1148.129	714.044	14.986
UK_20†	80	0	1527.273	3388.063	5.310	88	0	2179.146	3628.597	14.910

Tables 9 and 10 show that in the presence of traffic congestion, using a time-dependent formulation significantly decreases the percentage of infeasible solutions. Furthermore the results also suggest that if both solutions are feasible, the time-dependent one can yield considerable cost savings over the time-independent one. The potential cost reduction increases proportionally to the length of the congestion period and can more than double when the driver is paid from his
departure time. These implications support the assertions made in Section 3 by means of simple examples.

8. Conclusions

We have introduced and analyzed the time-dependent vehicle routing problem with time windows, which considers vehicles traveling under two subsequent periods of congestion and free-flow, respectively, and explicitly accounts for fuel consumption which increases sharply when vehicles travel at slow speed. Since the amount of emissions from a vehicle is proportional to the amount of fuel consumed, the modeling approach adopted in this paper yields solution with reduced greenhouse gas emissions. We emphasize that our results also hold for the time-dependent VRP even if emissions are not considered in the objective function.

We have provided an integer linear programming formulation, which is also valid for the special case of the problem where there is no congestion (e.g., as in the PRP introduced by Bektass and Laporte 2011). We have presented several examples that motivate idle waiting time, either pre- or post-service, at customer nodes or at the depot, in order to minimize a total cost function incorporating fuel consumption, emissions and driver wages. We have derived a complete characterization of the optimal solution for a single-arc version of the TDPRP, identifying conditions under which it is optimal to wait before departure, and the associated amount of time. The characterization prescribes optimal speed levels under various conditions associated with time windows, the length of the congestion period and the speed limits. The analytical results derived in the paper were used to strengthen the computational performance of the mathematical formulation. Computational results have confirmed that the proposed formulation computationally outperforms the formulation recently proposed for the PRP. Moreover, the analytical expressions for optimal speeds can easily be used as a "rule-of-thumb" for the design of vehicle routes under congestion.

The paper has also described a procedure to optimize departure times and speeds on a fixed route, also building on the analytical results proven for the single-arc version of the problem. The procedure extends previous algorithms specifically designed for the speed-optimization problem (e.g., Norstad et al. (2010), Hvattum et al. (2013) and Demir et al., 2012). The combined departure time and speed optimization problem is significantly more complicated. The pseudocode we have proposed for its solution was empirically shown to run very quickly and consistently provide highly accurate solutions on realistic instances. Our procedure can be embedded within algorithms for the TDPRP, or can be used as a stand-alone routine when vehicle routes have already been fixed. One obvious extension of the paper is to study the problem with multiple time zones where there are multiple occurrences of congestion and free-flow traffic conditions. The most likely case to arise in practice is a four-period problem corresponding to morning congestion, followed by a period
free-flow, and a repetition of this pattern in afternoon rush-hour and evening traffic. Our study indicates that this extension is likely to be significantly more complicated to analyze, but our work can serve as a good starting point for its analysis.

Appendix A: Optimal solution tables

Condition 1	Condition 2	Condition 3	Condition 4	Condition 5	Solution
$l \leq u \leq a$					$\left(w, v_{f}\right)$ where $w \in\left[\epsilon, \max \left\{\epsilon,\left(l-\frac{d}{v_{c}}\right)\right\}\right]$
$l<a<u$	$v_{m} \leq \bar{v}$	$v_{a}^{u} \leq v_{m}$	$\hat{v} \geq \check{v}$		$\left(a, v_{m}\right)$ or (ϵ, v_{m})
			$\hat{v} \leq \stackrel{y}{v}$		$\left(\epsilon, v_{m}\right)$
		$v_{a}^{u} \geq v_{m}$	$\hat{v} \geq \check{v}$		$\left(w_{m}^{u}, v_{m}\right)$ or $\left(\epsilon, v_{m}\right)$
			$\hat{v} \leq \check{v}$		$\left(\epsilon, v_{m}\right)$
	$v_{m} \geq \bar{v}$		$\hat{v} \geq \bar{v}$		(a, \bar{v}) or (ϵ, \bar{v})
		$v_{a}^{u} \leq v$	$\hat{v} \leq \bar{v}$		(ϵ, \bar{v})
		$\bar{v} \leq v_{a}^{u} \leq v_{m}$		$v_{\epsilon}^{u} \leq \bar{v}$	(ϵ, \bar{v})
				$v_{\epsilon}^{u} \geq \bar{v}$	$\left(\epsilon, v_{\epsilon}^{u}\right)$
			$\bar{v} \leq \hat{v} \leq v_{a}^{u}$	$v_{\epsilon}^{u} \leq \hat{v}$	($\left.\hat{w}^{u}, \hat{v}\right)$ or (ϵ, \bar{v})
				$v_{\epsilon}^{u} \geq \hat{v}$	$\left(\epsilon, v_{\epsilon}^{u}\right)$
			$\hat{v} \geq v_{a}^{u}$		$\left(a, v_{u}^{a}\right)$ or (ϵ, \bar{v})
		$v_{a}^{u} \geq v_{m}$	$\hat{v} \leq \bar{v}$	$v_{\epsilon}^{u} \leq \bar{v}$	(ϵ, \bar{v})
				$v_{\epsilon}^{u} \geq \bar{v}$	$\left(\epsilon, v_{\epsilon}^{u}\right)$
			$\bar{v} \leq \hat{v} \leq v_{m}$	$v_{\epsilon}^{u} \leq \hat{v}$	($\left.\hat{w}^{u}, \hat{v}\right)$ or (ϵ, \bar{v})
				$v_{\epsilon}^{u} \geq \hat{v}$	$\left(\epsilon, v_{\epsilon}^{u}\right)$
			$\hat{v} \geq v_{m}$		$\left(w_{m}^{u}, v_{m}\right)$ or (ϵ, \bar{v})
$a<l<u$	$v_{m} \leq \underline{v}$	$v_{a}^{l} \leq v_{m}$			$\left(w, v_{m}\right)$ where $w \in\left[a, w_{m}^{l}\right]$
		$v_{a}^{u} \leq v_{m} \leq v_{a}^{l}$	$\hat{v} \geq \check{v}$		$\left(a, v_{m}\right)$
			$\hat{v} \leq \check{v}$		$\left(w_{m}^{l}, v_{m}\right)$
		$v_{a}^{u} \geq v_{m}$	$\hat{v} \geq \check{v}$		(w_{m}^{u}, v_{m})
			$\hat{v} \leq \check{v}$		$\left(w_{m}^{l}, v_{m}\right)$
	$\underline{v} \leq v_{m} \leq \bar{v}$	$v_{a}^{l} \leq \underline{v}$			(w, \underline{v}) where $w \in\left[a, \underline{w}^{l}\right]$
		$\underline{v} \leq v_{a}^{l} \leq v_{m}$	$v_{a}^{l} \geq \hat{v}$	$v_{\epsilon}^{l} \leq \hat{v}$	$\left(\hat{w}^{l}, \hat{v}\right)$
				$v_{\epsilon}^{l} \geq \hat{v}$	$\left(\epsilon, v_{\epsilon}^{l}\right)$
			$v_{a}^{l} \leq \hat{v}$		$\left(a, v_{a}^{l}\right)$
		$v_{a}^{u} \leq v_{m} \leq v_{a}^{l}$	$\hat{v} \leq v_{m}$	$v_{\epsilon}^{l} \leq \hat{v}$	$\left(\hat{w}^{l}, \hat{v}\right)$
				$\hat{v} \leq v_{\epsilon}^{l} \leq v_{m}$	$\left(\epsilon, v_{\epsilon}^{l}\right)$
				$v_{\epsilon}^{l} \geq v_{m}$	$\left(\epsilon, v_{m}\right)$
			$v_{m} \leq \hat{v} \leq \check{v}$	$v_{\epsilon}^{l} \leq v_{m}$	$\left(w_{m}^{l}, v_{m}\right)$
				$v_{\epsilon}^{l} \geq v_{m}$	$\left(\epsilon, v_{m}\right)$
			$\hat{v} \geq \check{v}$		$\left(a, v_{m}\right)$
		$v_{a}^{u} \geq v_{m}$	$\hat{v} \leq v_{m}$	$v_{\epsilon}^{l} \leq \hat{v}$	$\left(\hat{w}^{l}, \hat{v}\right)$
				$\hat{v} \leq v_{\epsilon}^{l} \leq v_{m}$	$\left(\epsilon, v_{\epsilon}^{l}\right)$
				$v_{\epsilon}^{l} \geq v_{m}$	$\left(\epsilon, v_{m}\right)$
			$v_{m} \leq \hat{v} \leq \check{v}$	$v_{\epsilon}^{l} \leq v_{m}$	$\left(w_{m}^{l}, v_{m}\right)$
				$v_{\epsilon}^{l} \geq v_{m}$	$\left(\epsilon, v_{m}\right)$
			$\hat{v} \geq \check{v}$		$\left(w_{m}^{u}, v_{m}\right)$
	$v_{m} \geq \bar{v}$	$v_{a}^{l} \leq \underline{v}$			(w, \underline{v}) where $w \in\left[a, \underline{w}^{l}\right]$
		$\underline{v} \leq v_{a}^{l} \leq \bar{v}$	$v_{a}^{l} \geq \hat{v}$	$v_{\epsilon}^{l} \leq \hat{v}$	$\left(\hat{w}^{l}, \hat{v}\right)$
				$v_{\epsilon}^{l} \geq \hat{v}$	$\left(\epsilon, v_{\epsilon}^{l}\right)$
			$v_{a}^{l} \leq \hat{v}$		$\left(a, v_{a}^{l}\right)$
		$v_{a}^{u} \leq \bar{v} \leq v_{a}^{l}$	$\hat{v} \leq \bar{v}$	$v_{\epsilon}^{l} \leq \hat{v}$	$\left(\hat{w}^{l}, \hat{v}\right)$
				$\hat{v} \leq v_{\epsilon}^{l} \leq \bar{v}$	$\left(\epsilon, v_{\epsilon}^{l}\right)$
				$v_{\epsilon}^{l} \geq \bar{v}$	(ϵ, \bar{v})
			$\hat{v} \geq \bar{v}$		(a, \bar{v})
		$\bar{v} \leq v_{a}^{u} \leq v_{m}$	$\hat{v} \leq \bar{v}$	$v_{\epsilon}^{l} \leq \hat{v}$	$\left(\hat{w}^{l}, \hat{v}\right)$
				$\hat{v} \leq v_{\epsilon}^{l} \leq \bar{v}$	$\left(\epsilon, v_{\epsilon}^{l}\right)$
				$v_{\epsilon}^{u} \leq \bar{v} \leq v_{\epsilon}^{l}$	(ϵ, \bar{v})
				$\bar{v} \leq v_{\epsilon}^{u}$	$\left(\epsilon, v_{\epsilon}^{u}\right)$
			$\bar{v} \leq \hat{v} \leq v_{a}^{u}$	$v_{\epsilon}^{u} \leq \hat{v}$	$\left(\hat{w}^{u}, \hat{v}\right)$
				$v_{\epsilon}^{u} \geq \hat{v}$	$\left(\epsilon, v_{\epsilon}^{u}\right)$
			$\hat{v} \geq v_{a}^{u}$		$\left(a, v_{a}^{u}\right)$
		$v_{a}^{u} \geq v_{m}$	$\hat{v} \leq \bar{v}$	$v_{\epsilon}^{l} \leq \hat{v}$	$\left(\hat{w}^{l}, \hat{v}\right)$
				$\hat{v} \leq v_{\epsilon}^{l} \leq \bar{v}$	$\left(\epsilon, v_{\epsilon}^{l}\right)$
				$v_{\epsilon}^{u} \leq \bar{v} \leq v_{\epsilon}^{l}$	(ϵ, \bar{v})
				$\bar{v} \leq v_{\epsilon}^{u}$	$\left(\epsilon, v_{\epsilon}^{u}\right)$
			$\bar{v} \leq \hat{v} \leq v_{m}$	$v_{\epsilon}^{u} \leq \hat{v}$	$\left(\hat{w}^{u}, \hat{v}\right)$
				$v_{\epsilon}^{u} \geq \hat{v}$	$\left(\epsilon, v_{\epsilon}^{u}\right)$
			$\hat{v} \geq v_{m}$		$\left(w_{m}^{u}, v_{m}\right)$

Table 11 Optimal solution when driver is paid from the beginning of the time horizon.

Condition 1	Condition 2	Condition 3	Condition 4	Condition 5	Solution
$l \leq u \leq a$					$\left(w, v_{f}\right)$ where $w \in\left[\max \left\{\epsilon,\left(l-\frac{d}{v_{c}}\right)\right\}, u-\frac{d}{v_{c}}\right]$
$l<a<u$	$v_{m} \leq \bar{v}$	$v_{a}^{u} \leq v_{m}$			$\left(w, v_{m}\right)$ where $w \in\left[a, w_{m}^{u}\right]$
		$v_{a}^{u} \geq v_{m}$			$\left(w_{m}^{u}, v_{m}\right)$
	$v_{m} \geq \bar{v}$	$v_{a}^{u} \leq \bar{v}$			(w, \bar{v}) where $w \in\left[a, \bar{w}^{u}\right]$
		$\bar{v} \leq v_{a}^{u} \leq v_{m}$	$\tilde{v} \leq v_{a}^{u}$	$v_{\epsilon}^{u} \leq \tilde{v}$	$\left(\tilde{w}^{u}, \tilde{v}\right)$
				$v_{\epsilon}^{u} \geq \tilde{v}$	$\left(\epsilon, v_{\epsilon}^{u}\right)$
			$\tilde{v} \geq v_{a}^{u}$		$\left(a, v_{a}^{u}\right)$
		$v_{a}^{u} \geq v_{m}$	$\tilde{v} \leq v_{m}$	$v_{\epsilon}^{u} \leq \tilde{v}$	$\left(\tilde{w}^{u}, \tilde{v}\right)$
				$v_{\epsilon}^{u} \geq \tilde{v}$	$\left(\epsilon, v_{\epsilon}^{u}\right)$
			$\tilde{v} \geq v_{m}$		$\left(w_{m}^{u}, v_{m}\right)$
$a<l<u$	$v_{m} \leq \underline{v}$	$v_{a}^{l} \leq v_{m}$			$\left(w, v_{m}\right)$ where $w \in\left[w_{m}^{l}, w_{m}^{u}\right]$
		$v_{a}^{u} \leq v_{m} \leq v_{a}^{l}$			$\left(w, v_{m}\right)$ where $w \in\left[a, w_{m}^{u}\right]$
		$v_{a}^{u} \geq v_{m}$			$\left(w_{m}^{u}, v_{m}\right)$
	$\underline{v} \leq v_{m} \leq \bar{v}$	$v_{a}^{l} \leq \underline{v}$			$\left(w, v_{m}\right)$ where $w \in\left[w_{m}^{l}, w_{m}^{u}\right]$
		$\underline{v} \leq v_{a}^{l} \leq v_{m}$			$\left(w, v_{m}\right)$ where $w \in\left[w_{m}^{l}, w_{m}^{u}\right]$
		$v_{a}^{u} \leq v_{m} \leq v_{a}^{l}$			$\left(w, v_{m}\right)$ where $w \in\left[a, w_{m}^{u}\right]$
		$v_{a}^{u} \geq v_{m}$			$\left(w_{m}^{u}, v_{m}\right)$
	$v_{m} \geq \bar{v}$	$v_{a}^{l} \leq \underline{v}$			(w, \bar{v}) where $w \in\left[\bar{w}^{l}, \bar{w}^{u}\right]$
		$\underline{v} \leq v_{a}^{l} \leq \bar{v}$			(w, \bar{v}) where $w \in\left[\bar{w}^{l}, \bar{w}^{u}\right]$
		$v_{a}^{u} \leq \bar{v} \leq v_{a}^{l}$			(w, \bar{v}) where $w \in\left[a, \bar{w}^{u}\right]$
		$\bar{v} \leq v_{a}^{u} \leq v_{m}$	$\tilde{v} \leq v_{a}^{u}$	$v_{\epsilon}^{u} \leq \tilde{v}$	$\left(\tilde{w}^{u}, \tilde{v}\right)$
				$v_{\epsilon}^{u} \geq \tilde{v}$	$\left(\epsilon, v_{\epsilon}^{u}\right)$
			$\tilde{v} \geq v_{a}^{u}$		$\left(a, v_{a}^{u}\right)$
		$v_{a}^{u} \geq v_{m}$	$\tilde{v} \leq v_{m}$	$v_{\epsilon}^{u} \leq \tilde{v}$	$\left(\tilde{w}^{u}, \tilde{v}\right)$
				$v_{\epsilon}^{u} \geq \tilde{v}$	$\left(\epsilon, v_{\epsilon}^{u}\right)$
			$\tilde{v} \geq v_{m}$		$\left(w_{m}^{u}, v_{m}\right)$
where $\tilde{w}^{u}=a-(d-(u-a) \tilde{v}) / v_{c}$ and $\bar{w}^{u}=u-d / \bar{v}$					
Table 12 Optimal solution when driver is paid from departure time					

Appendix B: Pseudocode for the DSOP procedure

```
Algorithm DSOP algorithm part 1
    procedure \(\operatorname{DSOP}(s, e, \epsilon)\)
        \(\left[r, w_{s}, \ldots, w_{e-1}, v_{f}^{s}, \ldots, v_{f}^{e-1}\right] \leftarrow\) SOLVE_RELAXED \((s, e, \epsilon) ;\)
        violation \(\leftarrow 0, p \leftarrow 0\);
        for \(i \leftarrow r+1\) to \(e-1\) do
            \(g_{i} \leftarrow \max \left\{0, l_{i}-w_{i-1}-T_{i-1}, w_{i-1}+T_{i-1}-u_{i}\right\} ;\)
            if \(g_{i}>\) violation then
                violation \(\leftarrow g_{i}, p \leftarrow i ;\)
            end if
        end for
        if violation \(>0\) and \(w_{p-1}+T_{p-1}<l_{p}\) then
            \(u_{p} \leftarrow l_{p} ;\)
            \(\left[w_{s}^{*}, \ldots, w_{p-1}^{*}, v_{f}^{s *}, \ldots, v_{f}^{p-1 *}\right] \leftarrow \operatorname{DSOP}(s, p, \epsilon) ;\)
            \(\epsilon \leftarrow \max \left\{w_{p-1}^{*}+T_{p-1}, l_{p}\right\}+h_{p} ;\)
            \(a^{\prime} \leftarrow \max \{\epsilon, a\}\);
            \(\left[w_{p}^{*}, \ldots, w_{e-1}^{*}, v_{f}^{p *}, \ldots, v_{f}^{e-1 *}\right] \leftarrow \operatorname{DSOP}(p, e, \epsilon) ;\)
        end if
        if violation \(>0\) and \(w_{p-1}+T_{p-1}>u_{p}\) then
            \(l_{p} \leftarrow u_{p} ;\)
            \(\left[w_{s}^{*}, \ldots, w_{p-1}^{*}, v_{f}^{s *}, \ldots, v_{f}^{p-1 *}\right] \leftarrow \operatorname{DSOP}\left(s, p, \epsilon_{s}\right) ;\)
            \(\epsilon \leftarrow \max \left\{w_{p-1}^{*}+T_{p-1}, l_{p}\right\}+h_{p} ;\)
            \(a^{\prime}=\max \{\epsilon, a\}\);
            \(\left[w_{p}^{*}, \ldots, w_{e-1}^{*}, v_{f}^{p *}, \ldots, v_{f}^{e-1^{*}}\right] \leftarrow \operatorname{DSOP}(p, e, \epsilon) ;\)
        end if
    end procedure
```

The DSOP algorithm also uses as inputs the problem parameters $\left(a, v_{c}, d_{i}\right.$ for $i=s, \ldots, e-$ $1, l_{j}, u_{j}, h_{j}$ for $j=s, \ldots, e$) but for the sake of conciseness, these are not written as variables in the function declaration. Furthermore, the function SINGLE_ARC_TDPRP calculates the optimal

```
Algorithm DSOP algorithm part 2
    function SOLVE_RELAXED \(\left(s, e, \epsilon_{s}\right)\)
        \(k \leftarrow s, j \leftarrow s, \epsilon \leftarrow \epsilon_{s} ;\)
        while \(\epsilon<a-d_{s} / v_{c}\) and \(k<e-1\) do
            \(k \leftarrow k+1 ;\)
            \(\epsilon \leftarrow \epsilon+d_{k-1} / v_{c}+h_{k} ;\)
        end while
        while \(j \leq k\) do
            \(d \leftarrow \sum_{i=j}^{e-1} d_{i}, h \leftarrow \sum_{i=j+1}^{e-1} h_{i}, u \leftarrow\left(u_{e}-h\right), l \leftarrow\left(l_{e}-h\right), a^{\prime} \leftarrow \max \{\epsilon, a\} ;\)
            \(\left(w_{j}, v_{j}\right) \leftarrow\) SINGLE_ARC_TDPRP \(\left(a, v_{c}, d, \epsilon, l, u\right)\)
            if \(w_{j} \leq a-d_{j} / v_{c}\) then
                \(w_{j} \leftarrow \epsilon ;\)
            end if
            \(T_{j}^{c} \leftarrow \min \left\{\left(a-w_{j}\right)^{+}, d / v_{c}\right\}, T_{j}^{f} \leftarrow\left(d-\left(a-w_{j}\right)^{+} v_{c}\right)^{+} / v_{j}, T \leftarrow T_{j}^{c}+\sum_{i=s}^{j-1} d_{i} / v_{c}+T_{j}^{f} ;\)
            \(T C^{j} \leftarrow f_{c} \lambda\left[\gamma \alpha(\mu+f) \sum_{i=s}^{e-1} d_{i}+k N_{e} V T_{j}+\beta \gamma\left(v_{c}^{3}\left(T_{j}^{c}+\sum_{i=s}^{j-1} d_{i} / v_{c}\right)+v_{j}{ }^{3} T_{j}^{f}\right)\right]+d_{c} \max \left\{w_{j}+T_{j}^{c}+T_{j}^{f}+h, l_{e}\right\} ;\)
            \(j \leftarrow j+1\);
            \(\epsilon \leftarrow \epsilon+d_{j-1} / v_{c}+h_{j} ;\)
        end while
        \(T C^{t} \leftarrow \min \left\{T C^{s}, \ldots, T C^{k}\right\} ;\)
        \(w_{s}^{*} \leftarrow \epsilon_{s}\);
        for \(i \leftarrow s+1\) to \(t-1\) do
            \(w_{i}^{*} \leftarrow w_{i-1}^{*}+d_{i-1} / v_{c}+h_{i} ;\)
        end for
        \(w_{t}^{*} \leftarrow w_{t}\) and \(v_{f}^{s *}=\ldots=v_{f}^{e-1^{*}} \leftarrow v_{t}\)
        for \(i \leftarrow t+1\) to \(e-1\) do
            \(w_{i}^{*} \leftarrow w_{i-1}^{*}+T_{i-1}+h_{i} ;\)
        end for
        \(r^{*} \leftarrow t ;\)
    end function
```

values $\left[r, w_{s}, \ldots, w_{e-1}, v_{f}^{s}, \ldots, v_{f}^{e-1}\right]$ using Theorem 1 . We denote by T_{j} and T the total travel time spent by the vehicle on the arc $(j, j+1)$ and on the path (s, \ldots, e), respectively. Furthermore, we denote by T_{j}^{c} and T_{j}^{f} the time spent by the vehicle traveling on the path (j, \ldots, e) at congestion speed and at free-flow speed, respectively.

Appendix C: Proofs of Lemmas and Theorems

To simplify the notation in the proofs below, we let $A=f_{c} \lambda \gamma \alpha(\mu+f), B=f_{c} \lambda k N_{e} V$ and $C=$ $f_{c} \lambda \beta \gamma, D=d_{c}$. Note that $A, B, C, D \geq 0$.

C.1. Proof of Lemma 1

Proof of Lemma 1 First note that since $w \leq w_{m}^{u}$, we have $v_{m} \geq v_{w}^{u}$. For a fixed w, we need to minimize $T C$ with respect to v_{f} in $\left[v_{w}^{u}, v_{m}\right]$.
When the driver is paid from the beginning of the time horizon, the total cost function $T C$ for a fixed w as a function of the free-flow speed can be written as

$$
T C\left(w, v_{f}\right)= \begin{cases}A d+\left(B+D+C v_{c}^{3}\right) T_{c}(w)+\left(B+D+C v_{f}^{3}\right) T_{f}\left(w, v_{f}\right)+D(w-\epsilon) & \text { if } v_{w}^{u}<v_{f}<v_{w}^{l} \\ A d+\left(B+C v_{c}^{3}\right) T_{c}(w)+\left(B+C v_{f}^{3}\right) T_{f}\left(w, v_{f}\right)+D(l-\epsilon) & \text { if } v_{f} \geq v_{w}^{l} .\end{cases}
$$

For a fixed w, the function $T C$ is continuous in v_{f} and is made of two pieces which are both convex in v_{f}. More precisely, the first piece is minimized at $v_{f}=\bar{v}$, while the second one at $v_{f}=\underline{v}$. Note that $\underline{v}<\bar{v}$.

In case (i) the first part is non-increasing and the second one is minimized at \underline{v}. If $\underline{v}>v_{m}$, the global minimum is achieved at v_{m}, otherwise it is achieved at \underline{v}. In case (ii) the first part is nonincreasing and the second one is non-decreasing. If $v_{w}^{l}>v_{m}$, the global minimum is achieved at v_{m}, otherwise it is achieved at v_{w}^{l}. In case (iii) the first part is minimized at \bar{v}, while the second one is increasing. If $\bar{v}>v_{m}$, the global minimum is achieved at v_{m}, otherwise it is achieved at \bar{v}. Finally, in case (iv) both parts are non-decreasing so the global minimum is achieved at v_{w}^{u}.

When the driver is paid from his departure time, the total cost function has an extra $-D(w-\epsilon)$ term, which does not depend on v_{f}. Hence, the solution is the same.

C.2. Proof of Theorem 1

Proof of Theorem 1 In the following tables, we use circled numbers such as (1) and (2), to refer to the pieces of the $T C$ function. For each piece we use symbols such as $\rightarrow, \nearrow, \searrow$ and \smile, to indicate whether the $T C$ function is respectively constant, non-decreasing, non-increasing or convex, with respect to w.

Let $T(w)=\min _{v_{f} \in\left[0, v_{m}\right]} T C\left(w, v_{f}\right)$ such that $w+T\left(w, v_{f}\right) \leq u$. We consider three cases: $(1) l \leq$ $u \leq a$, (2) $l<a<u$ and (3) $a \leq l<u$.

In case (1), we have:

$$
T C(w)= \begin{cases}A d+\left(B+C v_{c}^{3}\right) \frac{d}{v_{c}}+D(l-\epsilon) & \text { if } \epsilon \leq w<\max \left\{\epsilon, l-\frac{d}{v_{c}}\right\} \\ A d+\left(B+D+C v_{c}^{3}\right) \frac{d}{v_{c}}+D w & \text { if } \max \left\{\epsilon, l-\frac{d}{v_{c}}\right\} \leq w \leq u-\frac{d}{v_{c}} .\end{cases}
$$

The first piece is constant in w and the second is increasing in w. So any departure time in $\left[\epsilon, \max \left\{\epsilon, l-\frac{d}{v_{c}}\right\}\right]$ is optimal. We summarize this information in Table 13

Table 13 Case 1

Case	${ }^{(1)}$	${ }^{2}$	Solution
1	\rightarrow	\nearrow	$\left(w, v_{f}\right)$ with $w \in\left[\epsilon, \max \left\{\epsilon, l-\frac{d}{v_{c}}\right\}\right]$

where (1) and (2) are the time regions delimited by the breakpoints: $\max \left\{\epsilon, l-\frac{d}{v_{c}}\right\}$ and $u-\frac{d}{v_{c}}$. In case (2), we distinguish two subcases: (2.1) $v_{m}<\bar{v},(2.2) v_{m} \geq \bar{v}$.
In case (2.1):

$$
T C(w)= \begin{cases}A d+\left(B+C v_{c}^{3}\right) \frac{d}{v_{c}}+D(l-\epsilon) & \text { if } \epsilon \leq w<\max \left\{\epsilon, l-\frac{d}{v_{c}}\right\} \\ A d+\left(B+D+C v_{c}^{3}\right) \frac{d}{v_{c}}+D w & \text { if } \max \left\{\epsilon, l-\frac{d}{v_{c}}\right\} \leq w<\max \left\{\epsilon, a-\frac{d}{v_{c}}\right\} \\ A d+\left(B+D+C v_{c}^{3}\right)(a-w)^{+}+\left(B+D+C\left(v_{m}\right)^{3}\right) \frac{d-(a-w)+v_{c}}{v_{m}}+D w & \text { if } \max \left\{\epsilon, a-\frac{d}{v_{c}}\right\} \leq w \leq w_{m}^{u}\end{cases}
$$

Table 14 gives the solution depending on which piece contains the value a.

Table 14 Case 2.1

Case	$a \epsilon$	Condition 1	Condition 2	(1)	(2)	(3)	(4)	Solution
2.1.1.1	$\left[\max \left\{\epsilon, a-\frac{d}{v_{c}}\right\}, w_{m}^{u}\right)$	$v_{a}^{u} \leq v_{m}$	$\hat{v} \geq \check{v}$	\rightarrow	\nearrow	\searrow	\nearrow	$\left(a, v_{m}\right)$ or $\left(\epsilon, v_{m}\right)$
2.1.1.2	$\left.\max \left\{\epsilon, a-\frac{d}{v_{c}}\right\}, w_{m}^{u}\right)$	$v_{a}^{u} \leq v_{m}$	$\hat{v} \leq \check{v}$	\rightarrow	\nearrow	\nearrow	\nearrow	$\left(\epsilon, v_{m}\right)$
2.1.2.1	$\left[w_{m}^{u}, \infty\right)$	$v_{a}^{u} \geq v_{m}$	$\hat{v} \geq \check{v}$	\rightarrow	\nearrow	\searrow		$\left(w_{m}^{u}, v_{m}\right)$ or $\left(\epsilon, v_{m}\right)$
2.1.2.2	$\left[w_{m}^{u}, \infty\right)$	$v_{a}^{u} \geq v_{m}$	$\hat{v} \leq \check{v}$	\rightarrow	\nearrow	\nearrow		$\left(\epsilon, v_{m}\right)$

In some cases, there are two possible solutions. Then, the optimal solution can be obtained by calculating the cost associated with each one of them to find out which is the least (note that this needs to be done only if $\epsilon<a-\frac{d}{v_{c}}$, otherwise the solution with $w>\epsilon$ is the optimal one).

In case (2.2)

$$
T C(w)= \begin{cases}A d+\left(B+C v_{c}^{3}\right) \frac{d}{v_{c}}+D(l-\epsilon) & \text { if } \epsilon \leq w<\max \left\{\epsilon, l-\frac{d}{v_{c}}\right\} \\ A d+\left(B+D+C v_{c}^{3}\right) \frac{d}{v_{c}}+D w & \text { if } \max \left\{\epsilon, l-\frac{d}{v_{c}}\right\} \leq w<\max \left\{\epsilon, a-\frac{d}{v_{c}}\right\} \\ A d+\left(B+D+C v_{c}^{3}\right)(a-w)^{+}+\left(B+D+C \bar{v}^{3}\right) \frac{d-(a-w)^{+} v_{c}}{v}+D w & \text { if } \max \left\{\epsilon, a-\frac{d}{v_{c}}\right\} \leq w<\max \left\{\epsilon, \bar{w}^{u}\right\} \\ A d+\left(B+D+C v_{c}^{3}\right)(a-w)^{+}+\left(B+D+C\left(v_{w}^{u}\right)^{3}\right) \frac{d-(a-w)+v_{c}}{v_{w}^{u}}+D w & \text { if } \max \left\{\epsilon, \bar{w}^{u}\right\} \leq w \leq w_{m}^{u} .\end{cases}
$$

where

$$
\bar{w}^{u}=\left\{\begin{array}{cc}
a-\frac{d-(u-a) \bar{v}}{v_{c}} & \text { if } v_{a}^{u} \geq \bar{v} \\
u-\frac{\bar{d}}{\bar{v}} & \text { otherwise } .
\end{array}\right.
$$

Table 15 gives the solution in all possible subcases.

Table 15 Case 2.2

Case	$a \in$	Condition 1	Condition 2	Condition 3	(1)	(2)	(3)	(4)	(5)	Solution
2.2.1.1	$\left[\max \left\{\epsilon, a-\frac{d}{v_{c}}\right\}, \bar{w}^{u}\right\}$	$v_{a}^{u} \leq \bar{v}$	$\hat{v} \geq \bar{v}$		\rightarrow	\nearrow	\searrow	\nearrow	\nearrow	(a, \bar{v}) or (ϵ, \bar{v})
2.2.1.2	$\left.\cdots \max \left\{\epsilon, a-\frac{d}{v_{c}}\right\}, \bar{w}^{u}\right)$	$v_{a}^{u} \leq \bar{v}$	$\hat{v} \leq \bar{v}$		\rightarrow	\nearrow	\nearrow	\nearrow	\nearrow	(ϵ, \bar{v})
2.2.2.1.1	$\cdots \quad\left[\bar{w}^{u}, w_{m}^{u}\right)$	$\bar{v} \leq v_{a}^{u} \leq v_{m}$	$\hat{v} \leq \bar{v}$	$v_{\epsilon}^{u} \leq \bar{v}$	\rightarrow	\nearrow	\nearrow	\nearrow	\nearrow	(ϵ, \bar{v})
2.2.2.1.2	$\left[\bar{w}^{u}, w_{m}^{u}\right)$	$\bar{v} \leq v_{a}^{u} \leq v_{m}$	$\hat{v} \leq \bar{v}$	$v_{\epsilon}^{u} \geq \bar{v}$	\nearrow	\nearrow				$\left(\epsilon, v_{\epsilon}^{u}\right)$
2.2.2.2.1	$\left[\bar{w}^{u}, w_{m}^{u}\right)$	$\bar{v} \leq v_{a}^{u} \leq v_{m}$	$\bar{v} \leq \hat{v} \leq v_{a}^{u}$	$v_{\epsilon}^{u} \leq \hat{v}$	\rightarrow	\nearrow	\downarrow	\smile	\nearrow	($\left.\hat{w}^{u}, \hat{v}\right)$ or (ϵ, \bar{v})
2.2.2.2.2	$\left[\bar{w}^{u}, w_{m}^{u}\right)$	$\bar{v} \leq v_{a}^{u} \leq v_{m}$	$\bar{v} \leq \hat{v} \leq v_{a}^{u}$	$v_{\epsilon}^{u} \geq \hat{v}$	\nearrow	\nearrow				$\left(\epsilon, v_{\epsilon}^{u}\right)$
2.2.2.3	$\left[\bar{w}^{u}, w_{m}^{u}\right)$	$\bar{v} \leq v_{a}^{u} \leq v_{m}$	$\hat{v} \geq v_{a}^{u}$		\rightarrow	\nearrow	\downarrow	\searrow	\nearrow	$\left(a, v_{u}^{a}\right)$ or (ϵ, \bar{v})
2.2.3.1.1	$\left[w_{m}^{u}, \infty\right)$	$v_{a}^{u} \geq v_{m}$	$\hat{v} \leq \bar{v}$	$v_{\epsilon}^{u} \leq \bar{v}$	\rightarrow	\nearrow	\nearrow	\nearrow		(ϵ, \bar{v})
2.2.3.1.2	$\left[w_{m}^{u}, \infty\right)$	$v_{a}^{u} \geq v_{m}$	$\hat{v} \leq \bar{v}$	$v_{\epsilon}^{u} \geq \bar{v}$	\nearrow	\nearrow				$\left(\epsilon, v_{\epsilon}^{u}\right)$
2.2.3.2.1	$\left[w_{m}^{u}, \infty\right)$	$v_{a}^{u} \geq v_{m}$	$\bar{v} \leq \hat{v} \leq v_{m}$	$v_{\epsilon}^{u} \leq \hat{v}$	\rightarrow	\nearrow	\searrow	\smile		($\left.\hat{w}^{u}, \hat{v}\right)$ or (ϵ, \bar{v})
2.2.3.2.2	$\left[w_{m}^{u}, \infty\right)$	$v_{a}^{u} \geq v_{m}$	$\bar{v} \leq \hat{v} \leq v_{m}$	$v_{\epsilon}^{u} \geq \hat{v}$	\nearrow					$\left(\epsilon, v_{\epsilon}^{u}\right)$
2.2.3.3	$\left[w_{m}^{u}, \infty\right)$	$v_{a}^{u} \geq v_{m}$	$\hat{v} \geq v_{m}$		\rightarrow	\nearrow	\searrow	\searrow		$\left(w_{m}^{u}, v_{m}\right)$ or (ϵ, \bar{v})

where $\hat{w}^{u}=a-(d-(u-a) \hat{v}) / v_{c}$.

In case (3), we distinguish three subcases: (3.1) $v_{m}<\underline{v},(3.2) \underline{v} \leq v_{m}<\bar{v},(3.3) v_{m} \geq \bar{v}$.
In case (3.1)
$T C(w)= \begin{cases}A d+\left(B+C v_{c}^{3}\right) \frac{d}{v_{c}}+D(l-\epsilon) & \text { if } \epsilon \leq w<\max \left\{\epsilon,\left(a-\frac{d}{v_{c}}\right)\right\} \\ A d+\left(B+C v_{c}^{3}\right)(a-w)^{+}+\left(B+C\left(v_{m}\right)^{3}\right) \frac{d-(a-w)^{+} v_{c}}{v_{m}}+D(l-\epsilon) & \text { if } \max \left\{\epsilon,\left(a-\frac{d}{v_{c}}\right)\right\} \leq w<\max \left\{\epsilon, w_{m}^{l}\right\} \\ A d+\left(B+D+C v_{c}^{3}\right)(a-w)^{+}+\left(B+D+C\left(v_{m}\right)^{3}\right) \frac{d-(a-w)^{+} v_{c}}{v_{m}}+D w & \text { if } \max \left\{\epsilon, w_{m}^{l}\right\} \leq w \leq w_{m}^{u} .\end{cases}$
Table 16 gives the solution in all possible subcases.

Table 16 Case 3.1

Case	$a \in$	Condition 1	Condition 2	(1)	(2)	(3)	(4)	Solution
3.1.1	$\left[\max \left\{\epsilon,\left(a-\frac{d}{v_{c}}\right)\right\}, \max \left\{\epsilon, w_{m}^{l}\right\}\right)$	$v_{a}^{l} \leq v_{m}$		\rightarrow	\searrow	\rightarrow	\nearrow	$\left(w, v_{m}\right)$ where $w \in\left[a, w_{m}^{l}\right]$
3.1.2.1	$\left[w_{m}^{l}, w_{m}^{u}\right]$	$v_{a}^{u} \leq v_{m} \leq v_{a}^{l}$	$\check{v} \leq \hat{v}$	\rightarrow	\searrow	\searrow	\nearrow	$\left(a, v_{m}\right)$
3.1.2.1	$\left[w_{m}^{l}, w_{m}^{u}\right]$	$v_{a}^{u} \leq v_{m} \leq v_{a}^{l}$	$\check{v} \geq \hat{v}$	\rightarrow	\searrow	\nearrow	\nearrow	$\left(\max \left\{\epsilon, w_{m}^{l}\right\}, v_{m}\right)$
3.1.3.1	$\left[w_{m}^{u}, \infty\right)$	$v_{a}^{u} \geq v_{m}$	$\check{v} \leq \hat{v}$	\rightarrow	\searrow	\searrow	$\left(w_{m}^{u}, v_{m}\right)$	
3.1.3.2	$\left[w_{m}^{u}, \infty\right)$	$v_{a}^{u} \geq v_{m}$	$\check{v} \geq \hat{v}$	\rightarrow	\searrow	\nearrow		$\left(\max \left\{\epsilon, w_{m}^{l}\right\}, v_{m}\right)$

In case (3.2)

$$
T C(w)= \begin{cases}A d+\left(B+C v_{c}^{3}\right) \frac{d}{v_{c}}+D(l-\epsilon) & \text { if } \epsilon \leq w<\max \left\{\epsilon,\left(a-\frac{d}{v_{c}}\right)\right\} \\ A d+\left(B+C v_{c}^{3}\right)(a-w)^{+}+\left(B+C \underline{v}^{3}\right) \frac{d-(a-w)+v_{c}}{v}+D(l-\epsilon) & \text { if } \max \left\{\epsilon,\left(a-\frac{d}{v_{c}}\right)\right\} \leq w<\max \left\{\epsilon, \underline{w}^{l}\right\} \\ A d+\left(B+C v_{c}^{3}\right)(a-w)^{+}+\left(B+C\left(v_{w}^{l}\right)^{3}\right) \frac{d-(a-w)+v_{c}}{v_{w}^{w}}+D(l-\epsilon) & \text { if } \max \left\{\epsilon, \underline{w}^{l}\right\} \leq w<\max \left\{\epsilon, w_{m}^{l}\right\} \\ A d+\left(B+D+C v_{c}^{3}\right)(a-w)^{+}+\left(B+D+C\left(v_{m}\right)^{3}\right) \frac{d-(a-w)^{+} v_{c}}{v_{m}}+D w & \text { if } \max \left\{\epsilon,\left(w_{m}^{l}\right)\right\} \leq w \leq w_{m}^{u},\end{cases}
$$

where

$$
\underline{w}^{l}=\left\{\begin{array}{cc}
a-\frac{d-(l-a) \underline{v}}{v_{c}} & \text { if } v_{a}^{l} \geq \underline{v} \\
l-\frac{d}{v} & \text { otherwise }
\end{array}\right.
$$

Table 17 gives the solution in all possible subcases.

Table 17 Case 3.2

Case	$a \in$	Condition 1	Condition 2	Condition 3	(1)	(2)	(3)	(4)	(5)	Solution
3.2.1	$\left[\max \left\{\epsilon,\left(a-\frac{d}{v_{c}}\right)\right\}, \underline{w}^{l}\right)$	$v_{a}^{l} \leq \underline{v}$			\rightarrow	\searrow	\rightarrow	\nearrow	\nearrow	(w, \underline{v}) where $w \in\left[a, \underline{w}^{l}\right]$
3.2.2.1.1	[$\left[\bar{w}^{l}, w_{m}^{l}\right)$	$\underline{v} \leq v_{a}^{l} \leq v_{m}$	$v_{a}^{l} \geq \hat{v}$	$v_{\epsilon}^{l} \leq \hat{v}$	\rightarrow	\searrow	\smile	\nearrow	\nearrow	$\left(\hat{w}^{l}, \hat{v}\right)$
3.2.2.1.2	[$\underline{w}^{l}, w_{m}^{l}$)	$\underline{v} \leq v_{a}^{l} \leq v_{m}$	$v_{a}^{l} \geq \hat{v}$	$v_{\epsilon}^{l} \geq \hat{v}$	\nearrow	\nearrow	\nearrow			$\left(\epsilon, v_{\epsilon}^{l}\right)$
3.2.2.2	[$\underline{w}^{l}, w_{m}^{l}$)	$\underline{v} \leq v_{a}^{l} \leq v_{m}$	$v_{a}^{l} \leq \hat{v}$		\rightarrow	\searrow	\downarrow	\nearrow	\nearrow	$\left(a, v_{a}^{l}\right)$
3.2.3.1.1	[w_{m}^{l}, w_{m}^{u})	$v_{a}^{u} \leq v_{m} \leq v_{a}^{l}$	$\hat{v} \leq v_{m}$	$v_{\epsilon}^{l} \leq \hat{v}$	\rightarrow	\searrow	\smile	\nearrow	\nearrow	$\left(\hat{w}^{l}, \hat{v}\right)$
3.2.3.1.2	$\left[w_{m}^{l}, w_{m}^{u}\right)$	$v_{a}^{u} \leq v_{m} \leq v_{a}^{l}$	$\hat{v} \leq v_{m}$	$\hat{v} \leq v_{\epsilon}^{l} \leq v_{m}$	\nearrow	\nearrow	\nearrow			$\left(\epsilon, v_{\epsilon}^{l}\right)$
3.2.3.1.3	$\left[w_{m}^{l}, w_{m}^{u}\right)$	$v_{a}^{u} \leq v_{m} \leq v_{a}^{l}$	$\hat{v} \leq v_{m}$	$v_{\epsilon}^{l} \geq v_{m}$	\nearrow	\nearrow				$\left(\epsilon, v_{m}\right)$
3.2.3.2.1	$\left[w_{m}^{l}, w_{m}^{u}\right)$	$v_{a}^{u} \leq v_{m} \leq v_{a}^{l}$	$v_{m} \leq \hat{v} \leq \check{v}$	$v_{\epsilon}^{l} \leq v_{m}$	\rightarrow	\downarrow	\searrow	\nearrow	\nearrow	$\left(w_{m}^{l}, v_{m}\right)$
3.2.3.2.2	$\left[w_{m}^{l}, w_{m}^{u}\right)$	$v_{a}^{u} \leq v_{m} \leq v_{a}^{l}$	$v_{m} \leq \hat{v} \leq \check{v}$	$v_{\epsilon}^{l} \geq v_{m}$	\nearrow	\nearrow				$\left(\epsilon, v_{m}\right)$
3.2.3.3	$\left[w_{m}^{l}, w_{m}^{u}\right)$	$v_{a}^{u} \leq v_{m} \leq v_{a}^{l}$	$\hat{v} \geq \check{v}$		\rightarrow	\searrow	\searrow	\searrow	\nearrow	$\left(a, v_{m}\right)$
3.2.4.1.1	$\left[w_{m}^{u}, \infty\right)$	$v_{a}^{u} \geq v_{m}$	$\hat{v} \leq v_{m}$	$v_{\epsilon}^{l} \leq \hat{v}$	\rightarrow	\downarrow	\smile	\nearrow		$\left(\hat{w}^{l}, \hat{v}\right)$
3.2.4.1.2	$\left[w_{m}^{u}, \infty\right)$	$v_{a}^{u} \geq v_{m}$	$\hat{v} \leq v_{m}$	$\hat{v} \leq v_{\epsilon}^{l} \leq v_{m}$	\nearrow	\nearrow				$\left(\epsilon, v_{\epsilon}^{l}\right)$
3.2.4.1.3	$\left[w_{m}^{u}, \infty\right)$	$v_{a}^{u} \geq v_{m}$	$\hat{v} \leq v_{m}$	$v_{\epsilon}^{l} \geq v_{m}$	\nearrow					$\left(\epsilon, v_{m}\right)$
3.2.4.2.1	$\left[w_{m}^{u}, \infty\right)$	$v_{a}^{u} \geq v_{m}$	$v_{m} \leq \hat{v} \leq \check{v}$	$v_{\epsilon}^{l} \leq v_{m}$	\rightarrow	\searrow	\searrow	\nearrow		$\left(w_{m}^{l}, v_{m}\right)$
3.2.4.2.2	$\left[w_{m}^{u}, \infty\right)$	$v_{a}^{u} \geq v_{m}$	$v_{m} \leq \hat{v} \leq \check{v}$	$v_{\epsilon}^{l} \geq v_{m}$	\nearrow	-				$\left(\epsilon, v_{m}\right)$
3.2.4.3	$\left[w_{m}^{u}, \infty\right)$	$v_{a}^{u} \geq v_{m}$	$\hat{v} \geq \check{v}$		\rightarrow	\searrow	\searrow	\searrow		$\left(w_{m}^{u}, v_{m}\right)$

where $\hat{w}^{l}=a-(d-(l-a) \hat{v}) / v_{c}$.

In case (3.3):

$$
T C(w)= \begin{cases}A d+\left(B+C v_{c}^{3}\right) \frac{d}{v_{c}}+D(l-\epsilon) & \text { if } \epsilon \leq w<\max \left\{\epsilon,\left(a-\frac{d}{v_{c}}\right)\right\} \\ A d+\left(B+C v_{c}^{3}\right)(a-w)^{+}+\left(B+C \underline{v}^{3}\right) \frac{d-(a-w)^{+} v_{c}}{v}+D(l-\epsilon) & \text { if } \max \left\{\epsilon,\left(a-\frac{d}{v_{c}}\right)\right\} \leq w<\max \left\{\epsilon, \underline{w}^{l}\right\} \\ A d+\left(B+C v_{c}^{3}\right)(a-w)^{+}+\left(B+C\left(v_{w}^{l}\right)^{3}\right) \frac{d-(a-w)+v_{c}}{v_{w}^{l}}+D(l-\epsilon) & \text { if } \max \left\{\epsilon, \underline{w}^{l}\right\} \leq w<\max \left\{\epsilon, \bar{w}^{l}\right\} \\ A d+\left(B+D+C v_{c}^{3}\right)(a-w)^{+}+\left(B+D+C \bar{v}^{3}\right) \frac{d-(a-w)+v_{c}}{\bar{v}}+D w & \text { if } \max \left\{\epsilon, \bar{w}^{l}\right\} \leq w<\max \left\{\epsilon, \bar{w}^{u}\right\} \\ A d+\left(B+D+C v_{c}^{3}\right)(a-w)^{+}+\left(B+D+C\left(v_{w}^{u}\right)^{3}\right) \frac{d-(a-w)+v_{c}}{v_{w}^{w}}+D w & \text { if } \max \left\{\epsilon, \bar{w}^{u}\right\} \leq w \leq w_{m}^{u}\end{cases}
$$

where

$$
\bar{w}^{l}=\left\{\begin{array}{cc}
a-\frac{d-(l-a) \bar{v}}{v_{c}} & \text { if } v_{a}^{l} \geq \bar{v} \\
l-\frac{d}{\bar{v}} & \text { otherwise. }
\end{array}\right.
$$

Table 18 gives the solution for all subcases.

Table 18 Case 3.3

Case	$a \in$	Condition 1	Condition 2	Condition 3	(1)	(2)	(3)	(4)	(5)	(6)	Solution
3.3.1	$\left[\max \left\{\epsilon,\left(a-\frac{d}{v_{c}}\right)\right\}, \epsilon^{l}\right)$	$v_{a}^{l} \leq \underline{v}$			\rightarrow	\searrow	\rightarrow	\nearrow	\nearrow	\nearrow	(w, \underline{v}) where $w \in\left[a, \underline{w}^{l}\right]$
3.3.2.1.1	, ${\left.\underline{\underline{w}}{ }^{l}, \bar{w}^{l}\right)}^{c^{c}}$)	$\underline{v} \leq v_{a}^{l} \leq \bar{v}$	$v_{a}^{l} \geq \hat{v}$	$v_{\epsilon}^{l} \leq \hat{v}$	\rightarrow	\searrow	\checkmark	\nearrow	\nearrow	\nearrow	$\left(\hat{w}^{l}, \hat{v}\right)$
3.3.2.1.2	$\left[\underline{[w}^{l}, \bar{w}^{l}\right.$)	$\underline{v} \leq v_{a}^{l} \leq \bar{v}$	$v_{a}^{l} \geq \hat{v}$	$v_{\epsilon}^{l} \geq \hat{v}$	\nearrow	\nearrow	\nearrow	\nearrow			$\left(\epsilon, v_{\epsilon}^{l}\right)$
3.3.2.2	[$\underline{\underline{w}}^{l}, \bar{w}^{l}$)	$\underline{\underline{v}} \leq v_{a}^{l} \leq \bar{v}$	$v_{a}^{l} \leq \hat{v}$		\rightarrow	\searrow	\searrow	\nearrow	\nearrow	\nearrow	$\left(a, v_{a}^{l}\right)$
3.3.3.1.1	[$\overline{\bar{w}}^{l}, \bar{w}^{u}$)	$v_{a}^{u} \leq \bar{v} \leq v_{a}^{l}$	$\hat{v} \leq \bar{v}$	$v_{\epsilon}^{l} \leq \hat{v}$	\rightarrow	\searrow	\smile	\nearrow	\nearrow	\nearrow	$\left(\hat{w}^{l}, \hat{v}\right)$
3.3.3.1.2	[\bar{w}^{l}, \bar{w}^{u})	$v_{a}^{u} \leq \bar{v} \leq v_{a}^{l}$	$\hat{v} \leq \bar{v}$	$\hat{v} \leq v_{\epsilon}^{l} \leq \bar{v}$	\nearrow	\nearrow	\nearrow	\nearrow			$\left(\epsilon, v_{\epsilon}^{l}\right)$
3.3.3.1.3	[\bar{w}^{l}, \bar{w}^{u})	$v_{a}^{u} \leq \bar{v} \leq v_{a}^{l}$	$\hat{v} \leq \bar{v}$	$v_{\epsilon}^{l} \geq \bar{v}$	\nearrow	\nearrow	\nearrow				(ϵ, \bar{v})
3.3.3.2	[\bar{w}^{l}, \bar{w}^{u})	$v_{a}^{u} \leq \bar{v} \leq v_{a}^{l}$	$\hat{v} \geq \bar{v}$		\rightarrow	\searrow	\searrow	\searrow	\nearrow	\nearrow	(a, \bar{v})
3.3.4.1.1	$\left[\bar{w}^{u}, w_{m}^{u}\right)$	$\bar{v} \leq v_{a}^{u} \leq v_{m}$	$\hat{v} \leq \bar{v}$	$v_{\epsilon}^{l} \leq \hat{v}$	\rightarrow	drser	\smile	\nearrow	\nearrow	\nearrow	$\left(\hat{w}^{l}, \hat{v}\right)$
3.3.4.1.2	$\left[\bar{w}^{u}, w_{m}^{u}\right)$	$\bar{v} \leq v_{a}^{u} \leq v_{m}$	$\hat{v} \leq \bar{v}$	$\hat{v} \leq v_{\epsilon}^{l} \leq \bar{v}$	\nearrow	\nearrow	\nearrow	\nearrow			$\left(\epsilon, v_{\epsilon}^{l}\right)$
3.3.4.1.3	$\left[\bar{w}^{u}, w_{m}^{u}\right)$	$\bar{v} \leq v_{a}^{u} \leq v_{m}$	$\hat{v} \leq \bar{v}$	$v_{\epsilon}^{u} \leq \bar{v} \leq v_{\epsilon}^{l}$	\nearrow	\nearrow	\nearrow				(ϵ, \bar{v})
3.3.4.1.4	$\left[\bar{w}^{u}, w_{m}^{u}\right)$	$\bar{v} \leq v_{a}^{u} \leq v_{m}$	$\hat{v} \leq \bar{v}$	$\bar{v} \leq v_{\epsilon}^{u}$	\nearrow	\nearrow					$\left(\epsilon, v_{\epsilon}^{u}\right)$
3.3.4.2.1	$\left[\bar{w}^{u}, w_{m}^{u}\right)$	$\bar{v} \leq v_{a}^{u} \leq v_{m}$	$\bar{v} \leq \hat{v} \leq v_{a}^{u}$	$v_{\epsilon}^{u} \leq \hat{v}$	\rightarrow	\downarrow	\searrow	\searrow	\smile	\nearrow	$\left(\hat{w}^{u}, \hat{v}\right)$
3.3.4.2.2	$\left[\bar{w}^{u}, w_{m}^{u}\right)$	$\bar{v} \leq v_{a}^{u} \leq v_{m}$	$\bar{v} \leq \hat{v} \leq v_{a}^{u}$	$v_{\epsilon}^{u} \geq \hat{v}$	\nearrow	\nearrow					$\left(\epsilon, v_{\epsilon}^{u}\right)$
3.3.4.3	$\left[\bar{w}^{u}, w_{m}^{u}\right)$	$\bar{v} \leq v_{a}^{u} \leq v_{m}$	$\hat{v} \geq v_{a}^{u}$		\rightarrow	\searrow	\searrow	\searrow	\searrow	\nearrow	$\left(a, v_{a}^{u}\right)$
3.3.5.1.1	$\left[w_{m}^{u}, \infty\right)$	$v_{a}^{u} \geq v_{m}$	$\hat{v} \leq \bar{v}$	$v_{\epsilon}^{l} \leq \hat{v}$	\rightarrow	\searrow	\smile	\nearrow	\nearrow		$\left(\hat{w}^{l}, \hat{v}\right)$
3.3.5.1.2	$\left[w_{m}^{u}, \infty\right)$	$v_{a}^{u} \geq v_{m}$	$\hat{v} \leq \bar{v}$	$\hat{v} \leq v_{\epsilon}^{l} \leq \bar{v}$	\nearrow	\nearrow	\nearrow				$\left(\epsilon, v_{\epsilon}^{l}\right)$
3.3.5.1.3	$\left[w_{m}^{u}, \infty\right)$	$v_{a}^{u} \geq v_{m}$	$\hat{v} \leq \bar{v}$	$v_{\epsilon}^{u} \leq \bar{v} \leq v_{\epsilon}^{l}$	\nearrow	\nearrow					(ϵ, \bar{v})
3.3.5.1.4	$\left[w_{m}^{u}, \infty\right)$	$v_{a}^{u} \geq v_{m}$	$\hat{v} \leq \bar{v}$	$\bar{v} \leq v_{\epsilon}^{u}$	\nearrow						$\left(\epsilon, v_{\epsilon}^{u}\right)$
3.3.5.2.1	$\left[w_{m}^{u}, \infty\right)$	$v_{a}^{u} \geq v_{m}$	$\bar{v} \leq \hat{v} \leq v_{m}$	$v_{\epsilon}^{u} \leq \hat{v}$	\rightarrow	\searrow	\searrow	\downarrow	\smile		$\left(\hat{w}^{u}, \hat{v}\right)$
3.3.5.2.2	$\left[w_{m}^{u}, \infty\right)$	$v_{a}^{u} \geq v_{m}$	$\bar{v} \leq \hat{v} \leq v_{m}$	$v_{\epsilon}^{u} \geq \hat{v}$	\nearrow						$\left(\epsilon, v_{\epsilon}^{u}\right)$
3.3.5.3	$\left[w_{m}^{u}, \infty\right)$	$v_{a}^{u} \geq v_{m}$	$\hat{v} \geq v_{m}$		\rightarrow	\searrow	\searrow	\downarrow	\searrow		$\left(w_{m}^{u}, v_{m}\right)$

where $\hat{w}^{u}=a-(d-(u-a) \hat{v}) / v_{c}$ and $\hat{w}^{l}=a-(d-(l-a) \hat{v}) / v_{c}$.

C.3. Proof of Theorem 2

Proof of Theorem 2 Let $T(w)=\min _{v_{f} \in\left[\epsilon, v_{m}\right]} T C\left(w, v_{f}\right)$ such that $w+T\left(w, v_{f}\right) \leq u$. We consider three cases: (1) $l \leq u \leq a$, (2) $l<a<u$ and (3) $a \leq l<u$.

In case (1), we have

$$
T C(w)= \begin{cases}A d+\left(B+C v_{c}^{3}\right) \frac{d}{v_{c}}+D(l-w) & \text { if } \epsilon \leq w<\max \left\{\epsilon, l-\frac{d}{v_{c}}\right\} \\ A d+\left(B+D+C v_{c}^{3}\right) \frac{d}{v_{c}} & \text { if } \max \left\{\epsilon, l-\frac{d}{v_{c}}\right\} \leq w \leq u-\frac{d}{v_{c}} .\end{cases}
$$

The first piece is decreasing in w and the second is constant in w. So any departure time in $\left[\max \left\{\epsilon, l-\frac{d}{v_{c}}\right\}, u\right]$ is optimal. We summarize this information in Table 19.

Table 19 Case 1

Case	(1)	${ }^{2}$	Solution
1	\searrow	\rightarrow	$\left(w, v_{f}\right)$ with $w \in\left[\max \left\{\epsilon, l-\frac{d}{v_{c}}\right\}, u-\frac{d}{v_{c}}\right]$

In case 2 we distinguish two subcases: (2.1) $v_{m}<\bar{v}$, (2.2) $v_{m} \geq \bar{v}$.
In case (2.1)

$$
T C(w)= \begin{cases}A d+\left(B+C v_{c}^{3}\right) \frac{d}{v_{c}}+D(l-w) & \text { if } \epsilon \leq w<\max \left\{\epsilon, l-\frac{d}{v_{c}}\right\} \\ A d+\left(B+D+C v_{c}^{3}\right) \frac{d}{v_{c}} & \text { if } \max \left\{\epsilon, l-\frac{d}{v_{c}}\right\} \leq w<\max \left\{\epsilon,\left(a-\frac{d}{v_{c}}\right)\right\} \\ A d+\left(B+D+C v_{c}^{3}\right)(a-w)^{+}+\left(B+D+C\left(v_{m}\right)^{3}\right) \frac{d-(a-w)+v_{c}}{v_{m}} & \text { if } \max \left\{\epsilon,\left(a-\frac{d}{v_{c}}\right)\right\} \leq w \leq w_{m}^{u}\end{cases}
$$

Table 20 gives the solution in all possible subcases.

Table $20 \quad$ Case 2.1

Case	$a \in$	Condition 1	(1)	(2)	(3)	(4)	Solution
2.1.1	$\left[\max \left\{\epsilon,\left(a-\frac{d}{v_{c}}\right)\right\}, w_{m}^{u}\right)$	$v_{a}^{u} \leq v_{m}$	\searrow	\rightarrow	\searrow	\rightarrow	$\left(w, v_{m}\right)$ where $w \in\left[a, w_{m}^{u}\right]$
2.1.2	$\left[w_{m}^{u}, \infty\right)$	$v_{a}^{u} \geq v_{m}$	\searrow	\rightarrow	\searrow		$\left(w_{m}^{u}, v_{m}\right)$

In case (2.2)
$T C(w)=\left\{\begin{array}{l}A d+\left(B+C v_{c}^{3}\right) \frac{d}{v_{c}}+D(l-w) \\ A d+\left(B+D+C v_{c}^{3}\right) \frac{d}{v_{c}} \\ A d+\left(B+D+C v_{c}^{3}\right)(a-w)^{+}+\left(B+D+C \bar{v}^{3}\right) \frac{d-(a-w)+v_{c}}{\bar{v}} \\ A d+\left(B+D+C v_{c}^{3}\right)(a-w)^{+}+\left(B+D+C\left(v_{w}^{u}\right)^{3}\right) \frac{d-(a-w)+v_{c}}{v_{w}^{u}}\end{array}\right.$
if $\epsilon \leq w<\max \left\{\epsilon, l-\frac{d}{v_{c}}\right\}$
if $\max \left\{\epsilon, l-\frac{d}{v_{c}}\right\} \leq w<\max \left\{\epsilon,\left(a-\frac{d}{v_{c}}\right)\right\}$
if $\max \left\{\epsilon,\left(a-\frac{d}{v_{c}}\right)\right\} \leq w<\max \left\{\epsilon, \bar{w}^{u}\right\}$
if $\max \left\{\epsilon,\left(a-\overline{v_{c}}\right)\right\} \leq w$
if $\max \left\{\epsilon, \bar{w}^{u}\right\} \leq w \leq w_{m}^{u}$.

Table 21 gives the solution in all possible subcases.

Table 21 Case 2.2

Case	$a \in$	Condition 1	Condition 2	Condition 3	(1)	(2)	(3)	(4)	(5)	Solution
2.2.1	$\left[\max \left\{\epsilon,\left(a-\frac{d}{v_{c}}\right)\right\}, \bar{w}^{u}\right)$	$v_{a}^{u} \leq \bar{v}$			\searrow	\rightarrow	\searrow	\rightarrow	\nearrow	(w, \bar{v}) where $w \in\left[a, \bar{w}^{u}\right)$
2.2.2.1.1	[$\left.\bar{w}^{u}, w_{m}^{u}\right)$	$\bar{v} \leq v_{a}^{u} \leq v_{m}$	$\tilde{v} \leq v_{a}^{u}$	$v_{\epsilon}^{u} \leq \tilde{v}$	\searrow	\rightarrow	\downarrow	\smile	\nearrow	$\left(\tilde{w}^{u}, \tilde{v}\right)$
2.2.2.1.2	$\left[\bar{w}^{u}, w_{m}^{u}\right)$	$\bar{v} \leq v_{a}^{u} \leq v_{m}$	$\tilde{v} \leq v_{a}^{u}$	$v_{\epsilon}^{u} \geq \tilde{v}$	\nearrow	\nearrow				$\left(\epsilon, v_{\epsilon}^{u}\right)$
2.2.2.2	$\left[\bar{w}^{u}, w_{m}^{u}\right)$	$\bar{v} \leq v_{a}^{u} \leq v_{m}$	$\tilde{v} \geq v_{a}^{u}$		\downarrow	\rightarrow	\searrow	\searrow	\nearrow	$\left(a, v_{a}^{u}\right)$
2.2.3.1.1	$\left[w_{m}^{u}, \infty\right)$	$v_{a}^{u} \geq v_{m}$	$\tilde{v} \leq v_{m}$	$v_{\epsilon}^{u} \leq \tilde{v}$	\searrow	\rightarrow	\downarrow	\smile		$\left(\tilde{w}^{u}, \tilde{v}\right)$
2.2.3.1.2	$\left[w_{m}^{u}, \infty\right)$	$v_{a}^{u} \geq v_{m}$	$\underline{v} \leq v_{m}$	$v_{\epsilon}^{u} \geq \tilde{v}$	\nearrow					$\left(\epsilon, v_{\epsilon}^{u}\right)$
2.2.3.2	$\left[w_{m}^{u}, \infty\right)$	$v_{a}^{u} \geq v_{m}$	$\tilde{v} \geq v_{m}$		\searrow	\rightarrow	\searrow	\searrow		$\left(w_{m}^{u}, v_{m}\right)$

where $\tilde{w}^{u}=a-(d-(u-a) \tilde{v}) / v_{c}$.

In case 3 we distinguish three subcases: (3.1) $v_{m}<\underline{v},(3.2) \underline{v} \leq v_{m}<\bar{v}$, (3.3) $v_{m} \geq \bar{v}$.
In case (3.1)
$T C(w)= \begin{cases}A d+\left(B+C v_{c}^{3}\right) \frac{d}{v_{c}}+D(l-w) & \text { if } \epsilon \leq w<\max \left\{\epsilon,\left(a-\frac{d}{v_{c}}\right)\right\} \\ A d+\left(B+C v_{c}^{3}\right)(a-w)^{+}+\left(B+C\left(v_{m}\right)^{3}\right) \frac{d-(a-w)+v_{c}}{v_{m}}+D(l-w) & \text { if } \max \left\{\epsilon,\left(a-\frac{d}{v_{c}}\right)\right\} \leq w<\max \left\{\epsilon, w_{m}^{l}\right\} \\ A d+\left(B+D+C v_{c}^{3}\right)(a-w)^{+}+\left(B+D+C\left(v_{m}\right)^{3}\right) \frac{d-(a-w)+v_{c}}{v_{m}} & \text { if } \max \left\{\epsilon, w_{m}^{l}\right\} \leq w \leq w_{m}^{u} .\end{cases}$
Table 22 gives the solution in all possible subcases.

Table 22 Case 3.1

Case	$a \in$	Condition 1	(1)	(2)	(3)	(4)	Solution
3.1.1	$\left[\max \left\{\epsilon,\left(a-\frac{d}{v_{c}}\right)\right\}, w_{m}^{l}\right)$	$v_{a}^{l} \leq v_{m}$	\searrow	\searrow	\searrow	\rightarrow	$\left(w, v_{m}\right)$ where $w \in\left[w_{m}^{l}, w_{m}^{u}\right]$
3.1.2	$\left[w_{m}^{l}, w_{m}^{u}\right)$	$v_{a}^{u} \leq v_{m} \leq v_{a}^{l}$	\searrow	\searrow	\searrow	\rightarrow	$\left(w, v_{m}\right)$ where $w \in\left[a, w_{m}^{u}\right]$
3.1.3	$\left[w_{m}^{l}, w_{m}^{u}\right)$	$v_{a}^{u} \geq v_{m}$	\searrow	\searrow	\searrow		$\left(w_{m}^{u}, v_{m}\right)$.

In case (3.2)
$T C(w)= \begin{cases}A d+\left(B+C v_{c}^{3}\right) \frac{d}{v_{c}}+D(l-w) & \text { if } \epsilon \leq w<\max \left\{\epsilon,\left(a-\frac{d}{v_{c}}\right)\right\} \\ A d+\left(B+C v_{c}^{3}\right)(a-w)^{+}+\left(B+C \underline{v}^{3}\right) \frac{d-(a-w)^{+} v_{c}}{v}+D(l-w) & \text { if } \max \left\{\epsilon,\left(a-\frac{d}{v_{c}}\right)\right\} \leq w<\max \left\{\epsilon, \underline{w}^{l}\right\} \\ A d+\left(B+C v_{c}^{3}\right)(a-w)^{+}+\left(B+C\left(v_{w}^{l}\right)^{3}\right) \frac{d-(a-w)+v_{c}}{v_{w}^{l}}+D(l-w) & \text { if } \max \left\{\epsilon, \underline{w}^{l}\right\} \leq w<\max \left\{\epsilon, w_{m}^{l}\right\} \\ A d+\left(B+D+C v_{c}^{3}\right)(a-w)^{+}+\left(B+D+C\left(v_{m}\right)^{3}\right) \frac{d-(a-w)^{+}+v_{c}}{v_{m}} & \text { if } \max \left\{\epsilon, w_{m}^{l}\right\} \leq w \leq w_{m}^{u} .\end{cases}$
Table 23 gives the solution in all possible subcases.

Table 23 Case 3.2

Case	$a \in$	Condition 1	(1)	(2)	(3)	(4)	(5)	Solution
3.2 .1	$\left[\max \left\{\epsilon,\left(a-\frac{d}{v_{c}}\right)\right\}, \underline{w}^{l}\right)$	$v_{a}^{l} \leq \underline{v}$	\searrow	\searrow	\searrow	\searrow	\rightarrow	$\left(w, v_{m}\right)$ where $w \in\left[w_{m}^{l}, w_{m}^{u}\right]$
3.2 .2	$\left[\underline{w}^{l}, w_{m}^{l}\right)$	$\underline{v} \leq v_{a}^{l} \leq v_{m}$	\searrow	\searrow	\searrow	\searrow	\rightarrow	$\left(w, v_{m}\right)$ where $w \in\left[w_{m}^{l}, w_{m}^{u}\right]$
3.2 .3	$\left[w_{m}^{l}, w_{m}^{u}\right)$	$v_{a}^{u} \leq v_{m} \leq v_{a}^{l}$	\searrow	\searrow	\searrow	\searrow	\rightarrow	$\left(w, v_{m}\right)$ where $w \in\left[a, w_{m}^{u}\right]$
3.2 .4	$\left[w_{m}^{u}, \infty\right)$	$v_{a}^{u} \geq v_{m}$	\searrow	\searrow	\searrow	\searrow		$\left(w_{m}^{u}, v_{m}\right)$

In case (3.3)

$$
T C(w)= \begin{cases}A d+\left(B+C v_{c}^{3}\right) \frac{d}{v_{c}}+D l & \text { if } \epsilon \leq w<\max \left\{\epsilon,\left(a-\frac{d}{v_{c}}\right)\right\} \\ A d+\left(B+C v_{c}^{3}\right)(a-w)^{+}+\left(B+C \underline{v}^{3}\right) \frac{d-(a-w)+v_{c}}{\underline{v}}+D(l-w) & \text { if } \max \left\{\epsilon,\left(a-\frac{d}{v_{c}}\right)\right\} \leq w<\left(\underline{w}^{l}\right)^{+} \\ A d+\left(B+C v_{c}^{3}\right)(a-w)^{+}+\left(B+C\left(v_{w}^{l}\right)^{3}\right) \frac{d-(a-w)^{+} v_{c}}{v_{w}^{l}}+D(l-w) & \text { if }\left(\underline{w}^{l}\right)^{+} \leq w<\left(\bar{w}^{l}\right)^{+} \\ A d+\left(B+D+C v_{c}^{3}\right)(a-w)^{+}+\left(B+D+C \bar{v}^{3}\right) \frac{d-(a-w)^{+} v_{c}}{\bar{v}} & \text { if }\left(\bar{w}^{l}\right)^{+} \leq w<\left(\bar{w}^{u}\right)^{+} \\ A d+\left(B+D+C v_{c}^{3}\right)(a-w)^{+}+\left(B+D+C\left(v_{w}^{u}\right)^{3}\right) \frac{d-(a-w)+v_{c}}{v_{w}^{w}} & \text { if }\left(\bar{w}^{u}\right)^{+} \leq w \leq w_{m}^{u} .\end{cases}
$$

Table 24 gives the solution in all possible subcases.

Table 24 Case 3.3

Case	$a \in$	Condition 1	Condition 2	Condition 3	(1)	(2)	(3)	(4)	(5)	(6)	Solution
3.3.1	$\left.\max \left\{\epsilon,\left(a-\frac{d}{v_{c}}\right)\right\}, \underline{w}^{l}\right)$	$v_{a}^{l} \leq \underline{v}$			\downarrow	\searrow	\searrow	\searrow	\rightarrow	\nearrow	(w, \bar{v}) where $w \in\left[\bar{w}^{l}, \bar{w}^{u}\right]$
3.3.2	$\left[\underline{w}^{l}, \bar{w}^{l}\right)$ l	$\underline{v} \leq v_{a}^{l} \leq \bar{v}$			\searrow	\searrow	\searrow	\searrow	\rightarrow	\nearrow	(w, \bar{v}) where $w \in\left[\bar{w}^{l}, \bar{w}^{u}\right]$
3.3.3	[\bar{w}^{l}, \bar{w}^{u})	$v_{a}^{u} \leq \bar{v} \leq v_{a}^{l}$			\searrow	\downarrow	\downarrow	\downarrow	\rightarrow	\nearrow	(w, \bar{v}) where $w \in\left[a, \bar{w}^{u}\right]$
3.3.4.1.1	$\left[\bar{w}^{u}, w_{m}^{u}\right)$	$\bar{v} \leq v_{a}^{u} \leq v_{m}$	$\tilde{v} \leq v_{a}^{u}$	$v_{\epsilon}^{u} \leq \tilde{v}$	\searrow	\downarrow	\searrow	\searrow	\sim	\nearrow	$\left(\tilde{w}^{u}, \tilde{v}\right)$
3.3.4.1.2	$\left[\bar{w}^{u}, w_{m}^{u}\right)$	$\bar{v} \leq v_{a}^{u} \leq v_{m}$	$\tilde{v} \leq v_{a}^{u}$	$v_{\epsilon}^{u} \geq \tilde{v}$	\nearrow	\nearrow					$\left(\epsilon, v_{\epsilon}^{u}\right)$
3.3.4.1	$\left[\bar{w}^{u}, w_{m}^{u}\right)$	$\bar{v} \leq v_{a}^{u} \leq v_{m}$	$\tilde{v} \geq v_{a}^{u}$			\downarrow	\searrow	\downarrow	\searrow	\nearrow	$\left(a, v_{a}^{u}\right)$
3.3.5.1.1	$\left[w_{m}^{u}, \infty\right)$	$v_{a}^{u} \geq v_{m}$	$\tilde{v} \leq v_{m}$	$v_{\epsilon}^{u} \leq \tilde{v}$	\downarrow	\downarrow	\searrow	\searrow	\smile		$\left(\tilde{w}^{u}, \tilde{v}\right)$
3.3.5.1.2	$\left[w_{m}^{u}, \infty\right)$	$v_{a}^{u} \geq v_{m}$	$\tilde{v} \leq v_{m}$	$v_{\epsilon}^{u} \geq \tilde{v}$	\nearrow						$\left(\epsilon, v_{\epsilon}^{u}\right)$
3.3.5.1	$\left[w_{m}^{u}, \infty\right)$	$v_{a}^{u} \geq v_{m}$	$\tilde{v} \geq v_{m}$			\searrow	\downarrow	\searrow	\searrow		$\left(w_{m}^{u}, v_{m}\right)$

where $\tilde{w}^{u}=a-(d-(u-a) \hat{v}) / v_{c}$.

C.4. Proof of Theorem 3

Proof of Theorem 3 The result follows from a careful comparison of the cases listed in Table 11 in Theorem 1 and in Table 12 in Theorem 2.

C.5. Proof of Lemma 2

Proof of part (i). The proof is by contradiction.
Suppose that there exists an optimal solution (denoted by S^{*}) where the speed on one arc is lower than \underline{v}. Without loss of generality, suppose that this arc belongs to the route $(0, \ldots, n+1)$, where $n+1$ is a copy of the depot. Let w_{i}^{*} denote the optimal departure time from node i and let v_{i}^{*} denote the optimal speed on arc $(i, i+1)$. So there exists $k \in\{0, \ldots, n\}$ such that $v_{k}^{*}<\underline{v}$.

The total cost associated with this route is $\sum_{i=0}^{n} f_{c} F_{i}\left(w_{i}^{*}, v_{i}^{*}\right)+d_{c} W\left(w_{0}^{*}, \ldots, w_{n}^{*}, v_{0}^{*}, \ldots, v_{n}^{*}\right)$, where F_{i} denotes the fuel cost on arc $(i, i+1)$ and W is the total time the driver is paid for.

We construct an alternative solution (denoted by S^{\prime}) as follows: let $w_{i}^{\prime}=w_{i}^{*}$ for $i=0, \ldots, n$, $v_{i}^{\prime}=v_{i}^{*}$ for $i=0, \ldots, k-1, k+1, \ldots, n$ and $v_{k}^{\prime}=\underline{v}$. In other words, we increase the speed on arc $(k, k+1)$ to \underline{v} and we keep the same departure time from node $k+1$ (unless $k=n$) by adding some extra waiting time. The resulting solution is feasible since the arrival time at each node is at
most equal to that in the optimal solution. Compared to S^{*}, in S^{\prime} the total time the driver is paid for (W) can only decrease (it decreases if $k=n$, otherwise it remains the same). Whereas the fuel $\operatorname{cost}\left(F_{i}\right)$ is the same on every arc except on $\operatorname{arc}(k, k+1)$, where it decreases since \underline{v} is the speed that minimizes the fuel cost for a given departure time in a one-arc problem as shown in Section 5. Therefore, the alternative solution S^{\prime} yields a total cost lower that the optimal solution S^{*} and this leads to a contradiction.

Proof of part (ii). The proof is by contradiction.
Suppose that there exists an optimal solution (denoted by S^{*}) where the speed on the first arc of a route is lower than $\min \left\{\bar{v}, v_{m}\right\}$. Without loss of generality, suppose that this arc belongs to the route $(0, \ldots, n+1)$, where $n+1$ is a copy of the depot. Let w_{i}^{*} denote the optimal departure time from node i and let v_{i}^{*} denote the optimal speed on $\operatorname{arc}(i, i+1)$. So we have $v_{0}^{*} \leq \min \left\{\bar{v}, v_{m}\right\}$.

The total cost associated with this route is $\sum_{i=0}^{n} f_{c} F_{i}\left(w_{i}^{*}, v_{i}^{*}\right)+d_{c} W\left(w_{0}^{*}, \ldots, w_{n}^{*}, v_{0}^{*}, \ldots, v_{n}^{*}\right)$, where F_{i} denotes the fuel cost on $\operatorname{arc}(i, i+1)$ and W is the total time the driver is paid for. This cost function can be rewritten as

$$
\begin{equation*}
\sum_{i=1}^{n} f_{c} F_{i}\left(w_{i}^{*}, v_{i}^{*}\right)+d_{c} W_{1, \ldots, n}\left(w_{1}^{*}, \ldots, w_{n}^{*}, v_{1}^{*}, \ldots, v_{n}^{*}\right)+f_{c} F_{0}\left(w_{0}^{*}, v_{0}^{*}\right)+d_{c} W_{0}\left(w_{0}^{*}, v_{0}^{*}\right) \tag{25}
\end{equation*}
$$

where $W_{1, \ldots, n}$ is the time spent from the arrival at node 1 until the return to the depot and W_{0} is the time spent from the departure from the depot to the arrival at node 1 . Note that the last two terms in (25) correspond to the total cost function of a one-arc TDPRP when the driver is paid from his departure time.
We construct an alternative solution (denoted by S^{\prime}) as follows: let $w_{i}^{\prime}=w_{i}^{*}$ for $i=1, \ldots, n, v_{i}^{\prime}=v_{i}^{*}$ for $i=1, \ldots, n, v_{0}^{\prime}=\min \left\{\bar{v}, v_{m}\right\}$ and $w_{0}^{\prime}>w_{0}^{*}$ such that the arrival time at node 1 is the same in S^{\prime} as in S^{*}. The departure times and free-flow speeds on arcs $(i, i+1)$ where $i=1, \ldots, n$ remain unchanged and therefore the resulting solution is feasible. For the same reasons, in both solutions S^{*} and S^{\prime} the first two terms of the 25 remain the same. Whereas, as results from the proof of Theorem 2, the last two terms 25 are lower in S^{\prime} compared to S^{*}. Hence, we have a contradiction.

Appendix D: Computational Results

D.1. Results on PRP instances

Table 25 Comparison of PRP versus TDPRP formulations with respect to computational time

Instance	PRP	$\mathrm{t}(\mathrm{PRP})$	TDPRP	$\mathrm{t}(\mathrm{TDPRP})$
	$£$	s	$£$	s
UK10_01	170.66	163.40	170.66	10.71
UK10_02	204.87	113.90	204.88	3.73
UK10_03	200.33	926.00	200.34	3.36
UK10_04	189.94	396.50	189.95	5.00
UK10_05	175.61	1253.70	175.62	4.93
UK10_06	214.56	347.50	214.53	3.43
UK10_07	190.14	191.00	190.15	5.06
UK10_08	222.16	139.80	222.17	2.23
UK10_09	174.53	54.00	174.54	4.64
UK10_10	189.83	76.00	189.84	2.83
UK10_11	262.07	50.50	262.08	4.40
UK10_12	183.18	1978.70	183.19	14.71
UK10_13	195.97	1235.10	195.97	2.94
UK10_14	163.17	84.10	163.18	2.77
UK10_15	127.15	433.30	127.16	6.25
UK10_16	186.63	680.80	186.63	7.03
UK10_17	159.07	27.00	159.08	3.22
UK10_18	162.09	522.10	162.09	4.19
UK10_19	169.46	130.50	169.46	1.52
UK10_20	168.8	1365.50	168.81	17.44
Average		508.47		5.52

The PRP results in columns 2 and 3 are taken from Demir et al. (2012). The reason behind the slight discrepancy between the values in columns 2 and 4 is due to numerical approximation.

D.2. Results on TDPRP instances

Each table reports the two cases: (i) driver paid from the beginning of the time horizon, (ii) driver paid from his departure time. In both cases the tables display, for each instance, the cost values of the S_{D} and S_{N} solutions (denoted by $T C\left(S_{N}\right)$ and $T C\left(S_{D}\right)$) and the CPU times (in seconds) required to construct these solutions (denoted by $t\left(S_{N}\right)$ and $t\left(S_{D}\right)$). Under the last column are reposted the cost savings of incorporating traffic congestion when planning the vehicles' routes and schedules.

Table 26 Computational results for 10-node instances with initial congestion period of 3600 seconds

Instance	\# of vehicles	Drivers paid from the beginning of the time horizon					Drivers paid from departure				
		$\begin{gathered} T C\left(S_{N}\right) \\ £ \end{gathered}$	$t\left(S_{N}\right)$	$\begin{gathered} T C\left(S_{D}\right) \\ £ \end{gathered}$	$t\binom{\left.S_{D}\right)}{\mathrm{s}}$	Saving \%	$\begin{gathered} T C\left(S_{N}\right) \\ £ \end{gathered}$	$t\left(S_{N}\right)$	$\begin{gathered} T C\left(S_{D}\right) \\ £ \end{gathered}$	$t\left(S_{\mathrm{s}}\right)$	$\begin{gathered} \text { Saving } \\ \% \end{gathered}$
UK10_01	2	inf.	4.621	183.98	6.01		177.97	3.989	168.14	6.05	5.52
UK10_02	2	225.1	3.086	218.9	3.63	2.75	220.26	1.811	203.06	6.79	7.81
UK10_03	2	219.33	12.878	213.34	8.76	2.73	210.54	8.329	197.5	2.94	6.19
UK10_04	2	209.97	2.83	202.17	2.20	3.71	187.18	1.359	185.88	2.65	0.69
UK10_05	2	195.8	3.994	188.07	3.95	3.95	185.77	1.235	172.23	3.27	7.29
UK10_06	2	inf.	2.549	229.13	3.55	-	inf.	2.213	213.29	5.86	-
UK10_07	2	210.37	1.536	205.18	3.31	2.47	203.98	1.81	189.34	3.35	7.18
UK10_08	2	242.26	1.831	237.17	2.46	2.1	242.26	1.094	221.33	2.11	8.64
UK10_09	2	194.82	2.59	189.73	2.97	2.61	194.82	2.858	173.89	3.23	10.74
UK10_10	2	210.03	1.913	204.89	2.56	2.44	209.59	2.259	189.05	2.75	9.80
UK10_11	2	inf.	2.71	277.12	2.57	-	inf.	1.922	261.28	2.71	-
UK10_12	2	198.41	5.318	193.65	4.20	2.4	181.64	2.524	177.81	3.88	2.11
UK10_13	2	216.19	1.788	208.37	2.08	3.61	205.72	1.18	192.53	2.04	6.41
UK10_14	2	inf.	1.535	179.84	17.40	-	inf.	1.202	164.72	6.40	-
UK10_15	2	141.13	3.064	135.46	4.01	4.02	123.22	2.734	119.62	4.39	2.92
UK10_16	2	206.25	4.966	198.86	4.20	3.58	194.8	5.03	183.02	5.60	6.05
UK10_17	2	inf.	2.165	171.6	2.51	-	inf.	1.344	155.76	2.81	-
UK10_18	2	182.37	3.779	173.96	6.04	4.61	inf.	2.897	158	4.42	-
UK10_19	2	inf.	1.738	181.28	5.38	-	inf.	2.292	165.44	5.61	-
UK10_20	2	189.06	8.368	181.68	11.84	3.9	178.83	14.637	165.84	14.38	7.27

Table 27 Computational results for 10-node instances with initial congestion period of 7200 seconds

Instance	\# of vehicles	Drivers paid from from the beginning of the time horizon					Drivers paid from departure				
		$\begin{gathered} T C\left(S_{N}\right) \\ £ \end{gathered}$	$t\left(S_{N}\right)$	$\begin{gathered} T C\left(S_{D}\right) \\ \mathscr{L} \end{gathered}$	$t\left(S_{\mathrm{D}}\right)$	$\begin{gathered} \text { Saving } \\ \% \end{gathered}$	$\begin{gathered} T C\left(S_{N}\right) \\ \mathscr{L} \end{gathered}$	$t\left(S_{N}\right)$	$\begin{gathered} T C\left(S_{D}\right) \\ £ \end{gathered}$	$t\left(S_{\mathrm{s}}\right)$	$\begin{gathered} \text { Saving } \\ \% \end{gathered}$
UK10_01	2	inf.	4.621	201.759	22.609	-	inf.	3.989	170.079	20.347	-
UK10_02	2	inf.	3.086	241.305	12.883	-	inf.	1.811	210.629	23.02	-
UK10_03	2	240.03	12.878	229.692	30.295	4.31	231.47	8.329	198.012	20.987	14.46
UK10_04	2	230.84	2.83	217.561	4.886	5.75	206.4	1.359	185.881	3.536	9.94
UK10_05	2	216.68	3.994	203.912	4.323	5.89	206.71	1.235	172.232	4.362	16.68
UK10_06	2	inf.	2.549	249.982	6.606	-	inf.	2.213	218.302	12.376	-
UK10_07	2	231.31	1.536	221.305	5.895	4.32	inf.	1.81	189.625	3.744	-
UK10_08	2	263.19	1.831	253.009	2.43	3.87	263.19	1.094	221.329	1.964	15.91
UK10_09	2	215.75	2.59	205.569	4.705	4.72	215.75	2.858	173.889	5.064	19.40
UK10_10	2	230.94	1.913	220.735	3.602	4.42	230.53	2.259	189.054	3.823	17.99
UK10_11	2	inf.	2.71	296.274	3.923	-	inf.	1.922	264.594	2.923	-
UK10_12	2	219.28	5.318	208.748	21.781	4.8	202.64	2.524	177.807	4.435	12.25
UK10_13	2	inf.	1.788	224.214	2.944	-	226.65	1.18	192.535	2.629	15.05
UK10_14	2	inf.	1.535	199.359	5.322	-	inf.	1.202	167.679	5.443	-
UK10_15	2	inf.	3.064	152.872	9.701	-	inf.	2.734	121.192	8.282	-
UK10_16	2	226.95	4.966	214.698	6.528	5.4	215.73	5.03	183.019	6.013	15.16
UK10_17	2	inf.	2.165	207.46	32.347	-	inf.	1.344	175.831	16.013	-
UK10_18	2	inf.	3.779	189.683	11.334	-	inf.	2.897	158.003	7.033	-
UK10_19	2	inf.	1.738	199.145	6.484	-	inf.	2.292	167.471	5.816	-
UK10_20	2	209.99	8.368	197.515	18.795	5.94	197.25	14.637	165.835	12.468	15.92

Table 28 Computational results for 15-node instances with initial congestion period of 3600 seconds

Instance	\# of vehicles	Drivers paid from the beginning of the time horizon					Drivers paid from departure				
		$\begin{gathered} T C\left(S_{N}\right) \\ £ \end{gathered}$	$\begin{gathered} t\left(S_{N}\right) \\ \mathrm{S} \end{gathered}$	$\begin{gathered} T C\left(S_{D}\right) \\ £ \end{gathered}$	$t\left(S_{\mathrm{S}}\right)$	Saving \%	$\begin{gathered} T C\left(S_{N}\right) \\ \mathscr{L} \end{gathered}$	$t\left(S_{N}\right)$	$\begin{gathered} T C\left(S_{D}\right) \\ £ \end{gathered}$	$t\left(S_{D}\right)$	Saving \%
UK15_01	2	inf.	234.876	299.06	556.779		inf.	667.671	283.22	618.285	-
UK15_02	2	226	25.921	219.36	30.368	2.94	213.31	28.081	203.52	35.623	4.59
UK15_03	2	inf.	4746.72	316.59	3186.76	-	inf.	7422	300.75	6316.59	-
UK15_04	3	inf.	71.642	318.5	53.856	-	inf.	24.984	294.74	33.259	
UK15_05	2	inf.	14.173	299.9	40.135		inf.	41.472	284.06	27.854	-
UK15_06	2	inf.	8862	244.05	1050.61		240.6	2221.46	228.21	1932.42	5.15
UK15_07	3	281.15	26.713	269.44	6.444	4.16	261.56	8.188	245.68	9.836	6.07
UK15_08	2	185.47	162.844	178.97	33.585	3.51	171.94	75.109	163.13	52.407	5.12
UK15_09	3	293.51	1138.32	281.89	70.983	3.96	278.86	126.323	258.11	105.375	7.44
UK15_10	2	234.14	40.695	227.71	42.992	2.74	225.05	30.757	211.87	53.35	5.85
UK15_11	2	inf.	20.694	275.26	232.202	-	inf.	26.448	259.42	123.375	-
UK15_12	3	340.57	24.63	330.51	19.709	2.95	331.72	38.737	306.75	36.773	7.53
UK15_13	2	inf.	909.862	265.09	1028.96	-	inf.	1939.6	249.25	1379.09	-
UK15_14	2	inf.	3083.37	inf.	2871.24	-	inf.	10130	inf.	2408.28	-
UK15_15	2	239.81	48.446	232.81	96.552	2.92	219	134.975	216.97	155.686	0.93
UK15_16	2	224.67	27.339	214.37	7.879	4.58	208.32	7.297	198.53	44.555	4.70
UK15_17	3	inf.	9.823	302.04	5.002	-	300.07	5.176	278.28	6.245	7.26
UK15_18	3	inf.	58.385	332.4	10.292	-	inf.	27.238	308.65	21.238	-
UK15_19	2	184.85	9.464	178.31	4.504	3.54	176.81	4.235	162.47	6.814	8.11
UK15_20	3	inf.	16.278	220.57	7.095	-	inf.	2.836	196.81	9.424	-

Table 29 Computational results for 15-node instances with initial congestion period of 7200 seconds

Instance	\# of vehicles	Drivers paid from the beginning of the time horizon					Drivers paid from departure				
		$\begin{gathered} T C\left(S_{N}\right) \\ \mathscr{L} \end{gathered}$	$t\left(S_{N}\right)$	$\begin{gathered} T C\left(S_{D}\right) \\ \mathscr{L} \end{gathered}$	$t\left(S_{D}\right)$	$\begin{gathered} \text { Saving } \\ \% \end{gathered}$	$\begin{gathered} T C\left(S_{N}\right) \\ \mathscr{L} \end{gathered}$	$t\left(S_{N}\right)$	$T C\left(S_{D}\right)$	$t\left(S_{D}\right)$	$\begin{gathered} \text { Saving } \\ \% \end{gathered}$
UK15_01	2	inf.	234.675	337.71	2489.17	-	inf.	667.671	306.424	2972.56	-
UK15_02	2	inf.	25.859	235.40	63.909	-	231.955	28.081	203.723	42.193	12.17
UK15_03	2	inf.	4858.37	inf.	476.417	-	inf.	7422	inf.	748.034	
UK15_04	3	inf.	71.58	343.16	67.644	-	inf.	24.984	295.64	194.174	
UK15_05	2	inf.	14.136	349.49	272.127	-	inf.	41.472	331.041	520.049	
UK15_06	2	inf.	8856.99	263.74	1853.29	-	inf.	2221.46	232.062	2105.63	-
UK15_07	3	inf.	26.68	304.60	168.012	-	inf.	8.188	257.08	114.883	-
UK15_08	2	206.04	162.787	194.81	70.76	5.45	192.867	75.109	163.125	60.499	15.42
UK15_09	3	inf.	1137.68	306.18	234.592	-	inf.	126.323	258.656	290.286	-
UK15_10	2	inf.	40.646	245.23	74.021	-	inf.	30.757	213.553	44.76	-
UK15_11	2	inf.	20.684	337.12	824.139	-	inf.	26.448	308.15	790.047	-
UK15_12	3	inf.	24.61	354.41	31.765	-	inf.	38.737	69.5452	72.182	-
UK15_13	2	inf.	913.76	282.77	2093.01	-	inf.	1939.6	262.932	5685.92	-
UK15_14	2	inf.	3079.17	inf.	6.475	-	inf.	10130	inf.	6.63	-
UK15_15	2	260.51	48.302	248.65	94.523	4.55	inf.	134.975	216.972	106.012	-
UK15-16	2	245.24	27.304	230.21	11.012	6.13	inf.	7.297	198.533	12.89	13.40
UK15_17	3	inf.	9.795	325.80	14.139	-	inf.	5.176	278.28	14.343	16.10
UK15_18	3	inf.	58.323	363.74	173.09	-	inf.	27.238	316.224	417.771	-
UK15_19	2	202.42	9.474	194.15	13.227	4.09	197.739	4.235	162.465	10.802	17.84
UK15_20	3	inf.	16.227	244.55	243.154	-	inf.	2.836	200.675	71.206	-

Table 30 Computational results for 20-node instances with initial congestion period of 3600 seconds

Instance	\# of vehicles	Drivers paid from the beginning of the time horizon					Drivers paid from departure				
		$\begin{gathered} T C\left(S_{N}\right) \\ £ \end{gathered}$	$\begin{gathered} t\left(S_{N}\right) \\ \mathrm{s} \end{gathered}$	$\begin{gathered} T C\left(S_{D}\right) \\ £ \end{gathered}$	$\begin{gathered} t\left(S_{D}\right) \\ \mathrm{s} \end{gathered}$	Saving \%	$\begin{gathered} T C\left(S_{N}\right) \\ £ \end{gathered}$	$\begin{gathered} t\left(S_{N}\right) \\ \mathrm{s} \end{gathered}$	$\begin{gathered} T C\left(S_{D}\right) \\ £ \end{gathered}$	$\begin{gathered} t\left(S_{D}\right) \\ \mathrm{s} \end{gathered}$	Saving \%
UK20_01	3	347.16	416.29	337.86	265.72	2.68	328.9	212.494	314.1	169.662	4.5
UK20_02	3	365.84	295.04	352.88	225.98	3.54	inf.	321.042	329.12	161.038	-
UK20_03	3	233.27	76.69	224.01	44.97	3.97	216.53	66.346	200.01	42.364	7.63
UK20_04	3	354.83	3360.44	347.12	1546.29	2.17	354.34	2929.29	323.36	1919.35	8.74
UK20_05	3	325.59	258.29	317.36	360.26	2.53	312.87	370.708	292.12	219.976	6.63
UK20_06	3	349.35*	2124.82	365.02*	5637.66	-	339.50*	6701.12	347.27*	1520.5	
UK20_07	3	255.39	1456.06	246.935*	2394.83	-	223.1*	10800.4	223.4*	1091.46	
UK20_08	3	307.47	575.73	298.25	54.03	3.00	288.17	232.228	274.1	83.39	4.88
UK20_09	3	inf.	54.36	345.02	169.47		inf.	32.644	321.26	119.142	-
UK20_10	3	291.58*	3977.50	310.91	1816.07	-	307.98	9120.02	287.15	2288.59	6.76
UK20-11	3	391.00	140.35	381.58	38.50	2.41	374.23	173.63	357.82	234.211	4.38
UK20_12	3	346.02	2253.71	334.63	463.88	3.29	322.48	1853.51	310.87	463.902	3.6
UK20_13	3	339.15	83.24	329.86	176.90	2.74	327.46	128.737	306.1	74.618	6.52
UK20_14	3	inf.*	10799.60	inf.*	1701.06		inf.*	2521.06	inf.*	1651.95	-
UK20_15	3	349.63	642.49	338.37	607.60	3.22	327.47	3105.17	313.94	800.895	4.13
UK20_16	3	358.16	741.31	346.36	170.18	3.30	331.72	895.873	322.6	149.282	2.75
UK20_17	,	inf.	905.97	379.72*	2170.39	-	inf.	2498.11	355.607	5864.8	-
UK20_18	3	inf.	445.71	367.47	1132.39	-	inf.	1357.34	343.71	685.198	-
UK20_19	3	351.16	1926.32	343.36	3405.90	2.22	349.63	253.101	319.6	2524.09	8.59
UK20_20	3	354.13	11.56	343.13	15.56	3.11	337.82	10.089	319.37	13.752	5.46

* Not solved to optimality.

Table 31 Computational results for 20-node instances with initial congestion period of 7200 seconds

Instance	\# of vehicles	Drivers paid from the beginning of the time horizon					Drivers paid from departure				
		$\begin{gathered} T C\left(S_{N}\right) \\ \mathscr{L} \end{gathered}$	$t\left(S_{N}\right)$	$\begin{gathered} T C\left(S_{D}\right) \\ £ \end{gathered}$	$\begin{gathered} t\left(S_{D}\right) \\ \mathrm{s} \end{gathered}$	Saving \%	$\begin{gathered} T C\left(S_{N}\right) \\ £ \end{gathered}$	$\begin{gathered} t\left(S_{N}\right) \\ \mathrm{s} \end{gathered}$	$\begin{gathered} T C\left(S_{D}\right) \\ £ \end{gathered}$	$\begin{gathered} t\left(S_{D}\right) \\ \mathrm{s} \\ \hline \end{gathered}$	Saving \%
UK20_01	3	inf.	416.29	362.44	286.10	-	inf.	212.49	314.9	673.14	-
UK20_02	3	inf.	295.04	378.75	207.29	-	inf.	321.04	331.2	541.942	-
UK20_03	3	264.38	76.69	247.53	158.97	6.37	245.9	66.35	200.0	100.151	18.66
UK20_04	3	inf.	3360.44	371.80	4318.09	-	inf.	2929.29	324.3	4647.32	-
UK20_05	3	356.9	258.29	340.60	894.88	4.57	inf.	370.71	293.1	940.19	-
UK20_06	3	349.35*	2124.82	412.04*	10799.80	-	339.50*	6701.12	inf.	-	-
UK20_07	3	285.35	1456.06	270.63*	7058.32	-	223.17^{*}	10800.40	inf.*	4299.49	-
UK20_08	3	338.8	575.73	321.91	128.01	4.99	inf.	232.23	274.4	119.653	-
UK20_09	3	inf.	54.36	379.15	676.14	-	inf.	32.64	331.8	1761.27	-
UK20_10	3	291.58*	3977.50	335.73*	4271.10	-	inf.	9120.02	288.8	7355.26	-
UK20_11	3	inf.	140.35	414.64	2554.09	-	inf.	173.63	368.2	2471.3	-
UK20_12	3	inf.	2253.71	361.30	3523.84	-	inf.	1853.51	316.2	3076.75	-
UK20_13	3	inf.	83.24	360.09	2171.69	-	inf.	128.74	312.6	1884.26	-
UK20_14	3	inf.*	10799.60	inf.*	1954.92	-	inf.*	2521.06	inf.*	1779.78	-
UK20_15	3	inf.	642.49	366.01	3407.18	-	inf.	3105.17	318.5	5048.37	-
UK20_16	3	inf.	741.31	370.12	748.19	-	363.12	895.87	322.6	1811.35	11.16
UK20_17	3	inf.	905.97	410.747*	10800.80	-	inf.	2498.11	369.13*	10797.9	-
UK20_18	3	inf.	445.71	395.57	4054.01	-	inf.	1357.34	351.65*	10799.5	-
UK20_19	3	inf.	1926.32	371.63	9726.61	-	inf.	253.10	324.111*	10799.5	-
UK20_20	3	inf.	11.56	367.51	21.24	-	inf.	10.09	320.0	36.212	-

[^0]
References

Barth, M., Younglove, T., Scora, G. 2005. Development of a heavy-duty diesel modal emissions and fuel consumption model.

Barth, M., Boriboonsomsin, K. 2008. Real-world CO_{2} impacts of traffic congestion. Transportation Research Record: Journal of the Transportation Research Board 2058 163-171.

Bektaş T., Laporte G. 2011. The Pollution-Routing Problem. Transportation Research Part B 45(8) 12321250.

Conrad, R.G., Figliozzi, M.A. 2010. Algorithms to quantify impact of congestion on time-dependent realworld urban freight distribution networks. Transportation Research Record: Journal of the Transportation Research Board 2168 104-113.

Cordeau, J.-F., Laporte, G., Savelsbergh, M.W.P., Vigo, D. 2007. Vehicle Routing. C. Barnhart, G. Laporte, eds., Transportation, Handbooks in Operations Research and Management Science, vol. 14, chap. 6. Elsevier, Amsterdam, The Netherlands, 367-428.

Demir E., Bektaş T., Laporte G. 2011. A comparative analysis of several vehicle emission models for freight transportation. Transportation Research Part D: Transport and Environment 6(5) 347-257.

Demir E., Bektaş T., Laporte G. 2012. An adaptive large neighborhood search heuristic for the PollutionRouting Problem. European Journal of Operational Research 223(2) 346-359.

Figliozzi, M.A. 2010. Vehicle routing problem for emissions minimization. Transportation Research Record: Journal of the Transportation Research Board 2197 1-7.

Figliozzi, M.A. 2011. The impacts of congestion on time-definitive urban freight distribution networks CO_{2} emission levels: Results from a case study in Portland, Oregon. Transportation Research Part C: Emerging Technologies 19 766-778.

Hansen, S., Byrd, A., Delcambre, A., Rodriguez, A., Matthews, S., Bertini, R.L. 2005. Technical Report. PORTAL: An on-line regional transportation data archive with transportation system management applications.

Hickman, J., D. Hassel, R. Joumard, Z. Samaras, S. Sorenson. 1999. Technical Report. MEET Methodology for calculating transport emissions and energy consumption. Available at: http://www. transport-research.info/Upload/Documents/200310/meet.pdf (accessed on January 28, 2013).

Hvattum, L. M., I. Norstad, K. Fagerholt, G. Laporte. 2013. Analysis of an exact algorithm for the vessel speed optimization problem. Forthcoming in Networks .

International Road Transport Union. 2012. Congestion is responsible for wasted fuel. Available at: http: //www.iru.org/en_policy_co2_response_wasted (accessed January 28, 2013).

Jabali O., Van Woensel T., de Kok A.G. 2012. Analysis of travel times and CO_{2} emissions in time-dependent vehicle routing. Production and Operations Management Journal 21(6) 1060-1074.

Knight, R. (Editor). 2004. Technical Report. Mobility 2030: Meeting the challenges to sustainability. Available at: http://www.is.wayne.edu/drbowen/SenSemF04/Mobility2030FullReport.pdf (accessed on January 28, 2013).

Maden, W. Eglese, R., Black, D. 2010. Vehicle routing and scheduling with time-varying data: a case study. Journal of the Operational Research Society 61(3) 515-522.

Norstad, I., K. Fagerholt, G. Laporte. 2010. Tramp ship routing and scheduling with speed optimization. Transportation Research Part C: Emerging Technologies 19(5) 853-865.

Sbihi, A. Eglese, R. 2007. Combinatorial optimization and green logistics. 4OR:Quarterly Journal of Operations Research 5(2) 99-116.

Tol, R.S.J. 2005. The marginal damage costs of carbon dioxide emissions: an assessment of the uncertainties. Energy Policy 33(16) 2064-2074.

Van Woensel, T., Creten, R., Vandaele, N. 2001. Managing the environmental externalities of traffic logistics: The issue of emissions. Production and Operations Management 10(2) 207-223.

Van Woensel, T., Kerbache, L., Peremans, H. and Vandaele, N. 2008. Vehicle routing with dynamic travel times: a queueing approach. European Journal of Operational Research 186(3) 990-1007.

Wikipedia. 2012. Rush hour. http://en.wikipedia.org/wiki/Rush_hour (accessed on January 28, 2013).

nr. Year Title	Author(s)
4092013 The Time-Dependent Pollution-Routing Problem	Anna Franceschetti, Dorothée Honhon, Tom van Woensel, Tolga Bektas, Gilbert Laporte.
4082013 Scheduling the scheduling task: A time Management perspective on scheduling	J.A. Larco, V. Wiers, J. Fransoo
4072013 Clustering Clinical Departments for Wards to Achieve a Prespecified Blocking Probability	J. Theresia van Essen, Mark van Houdenhoven, Johann L. Hurink
4062013 MyPHRMachines: Personal Health Desktops in the Cloud	Pieter Van Gorp, Marco Comuzzi
4052013 Maximising the Value of Supply Chain Finance	Kasper van der Vliet, Matthew J. Reindorp, Jan C. Fransoo
4042013 Reaching 50 million nanostores: retail distribution in emerging megacities	Edgar E. Blanco, Jan C. Fransoo
4032013 A Vehicle Routing Problem with Flexible Time Windows	Duygu Tas, Ola Jabali, Tom van Woensel
4022013 The Service Dominant Business Model: A Service Focused Conceptualization	Egon Lüftenegger, Marco Comuzzi, Paul Grefen, Caren Weisleder
$4012013 \frac{\text { Relationship between freight accessibility and }}{\text { Logistics employment in US counties }}$	Frank P. van den Heuvel, Liliana Rivera, Karel H. van Donselaar, Ad de Jong, Yossi Sheffi, Peter W. de Langen, Jan C. Fransoo
A Condition-Based Maintenance Policy for MultiComponent Systems with a High Maintenance 4002012 Setup Cost	Qiushi Zhu, Hao Peng, Geert-Jan van Houtum
A flexible iterative improvement heuristic to Support creation of feasible shift rosters in 3992012 Self-rostering	E. van der Veen, J.L. Hurink, J.M.J. Schutten, S.T. Uijland
Scheduled Service Network Design with Synchronization and Transshipment Constraints 3982012 For Intermodal Container Transportation Networks	K. Sharypova, T.G. Crainic, T. van Woensel, J.C. Fransoo

Destocking, the bullwhip effect, and the credit Crisis: empirical modeling of supply chain 3972012 Dynamics

Vehicle routing with restricted loading 3962012 capacities

Service differentiation through selective
3952012 lateral transshipments

A Generalized Simulation Model of an
3942012 Integrated Emergency Post

Business Process Technology and the Cloud: 3932012 Defining a Business Process Cloud Platform

Vehicle Routing with Soft Time Windows and Stochastic Travel Times: A Column Generation 3922012 And Branch-and-Price Solution Approach

Improve OR-Schedule to Reduce Number of 3912012 Required Beds

How does development lead time affect 3902012 performance over the ramp-up lifecycle?

Evidence from the consumer electronics 3892012 industry

The Impact of Product Complexity on Ramp3882012 Up Performance

Co-location synergies: specialized versus 3872012 diverse logistics concentration areas

Proximity matters: Synergies through co-location 3862012 of logistics establishments

Spatial concentration and location dynamics in 3852012 logistics:the case of a Dutch province

Maximiliano Udenio, Jan C. Fransoo, Robert Peels
J. Gromicho, J.J. van Hoorn, A.L. Kok J.M.J. Schutten
E.M. Alvarez, M.C. van der Heijden, I.M.H. Vliegen, W.H.M. Zijm

Martijn Mes, Manon Bruens

Vasil Stoitsev, Paul Grefen
D. Tas, M. Gendreau, N. Dellaert, T. van Woensel, A.G. de Kok
J.T. v. Essen, J.M. Bosch, E.W. Hans, M. v. Houdenhoven, J.L. Hurink

Andres Pufall, Jan C. Fransoo, Ad de Jong

Andreas Pufall, Jan C. Fransoo, Ad de Jong, Ton de Kok

Frank P.v.d. Heuvel, Peter W.de Langen, Karel H. v. Donselaar, Jan C. Fransoo

Frank P.v.d. Heuvel, Peter W.de Langen, Karel H. v.Donselaar, Jan C. Fransoo

Frank P. v.d.Heuvel, Peter W.de Langen, Karel H.v. Donselaar, Jan C. Fransoo

Zhiqiang Yan, Remco Dijkman, Paul Grefen

3842012 FNet: An Index for Advanced Business Process Querying	W.R. Dalinghaus, P.M.E. Van Gorp
3832012 Defining Various Pathway Terms	Egon Lüftenegger, Paul Grefen, Caren Weisleder
3822012 The Service Dominant Strategy Canvas: Defining and Visualizing a Service Dominant	Stefano Fazi, Tom van Woensel, Jan C. Fransoo
Strategy through the Traditional Strategic Lens	
3812012 A Stochastic Variable Size Bin Packing Problem With Time Constraints	K. Sharypova, T. van Woensel, J.C. Fransoo
Coordination and Analysis of Barge Container 3802012 Hinterland Networks	Frank P. van den Heuvel, Peter W. de Langen, Karel H. van Donselaar, Jan C. Fransoo
$3792012 \frac{\text { Proximity matters: Synergies through co-location }}{\text { of logistics establishments }}$	Heidi Romero, Remco Dijkman, Paul Grefen, Arjan van Weele
A literature review in process harmonization: a 3782012 conceptual framework	S.W.A. Haneya, J.M.J. Schutten, P.C. Schuur, W.H.M. Zijm
A Generic Material Flow Control Model for 3772012 Two Different Industries	H.G.H. Tiemessen, M. Fleischmann, G.J. van Houtum, J.A.E.E. van Nunen, E. Pratsini
Dynamic demand fulfillment in spare parts 3762012 networks with multiple customer classes	K. Fikse, S.W.A. Haneyah, J.M.J. Schutten
	Albert Douma, Martijn Mes
3752012 Improving the performance of sorter systems by scheduling inbound containers	
3742012 Strategies for dynamic appointment making by container terminals	Pieter van Gorp, Marco Comuzzi
$3732012 \frac{\text { MyPHRMachines: Lifelong Personal Health }}{\text { Records in the Cloud }}$	E.M. Alvarez, M.C. van der Heijden, W.H.M. Zijm
Service differentiation in spare parts supply 3722012 through dedicated stocks	Frank Karsten, Rob Basten
Spare parts inventory pooling: how to share	X.Lin, R.J.I. Basten, A.A. Kranenburg, G.J. van Houtum
3712012 the benefits	

Redundancy Optimization for Critical 3392010 Components in High-Availability Capital Goods
$3382010 \frac{\text { Analysis of a two-echelon inventory system with }}{\text { two supply modes }}$ $3352010 \frac{\text { Analysis of the dial-a-ride problem of Hunsaker }}{\text { and Savelsbergh }}$ Attaining stability in multi-skill workforce 3342010 scheduling

An exact approach for relating recovering
3322010 Surgical patient workload to the master surgical schedule
$3312010 \begin{aligned} & \text { Efficiency evaluation for pooling resources in } \\ & \text { health care }\end{aligned}$

The Effect of Workload Constraints in
3302010 Mathematical Programming Models for Production Planning

Using pipeline information in a multi-echelon spare parts inventory system

Reducing costs of repairable spare parts supply systems via dynamic scheduling

Identification of Employment Concentration and Specialization Areas: Theory and Application 3272010

A combinatorial approach to multi-skill workforce 3262010 scheduling

3252010 Stability in multi-skill workforce scheduling
P.T. Vanberkel, R.J. Boucherie, E.W. Hans, J.L. Hurink, W.A.M. van Lent, W.H. van Harten

Peter T. Vanberkel, Richard J. Boucherie, Erwin W. Hans, Johann L. Hurink, Nelly Litvak
M.M. Jansen, A.G. de Kok, I.J.B.F. Adan

Christian Howard, Ingrid Reijnen, Johan Marklund, Tarkan Tan
H.G.H. Tiemessen, G.J. van Houtum
F.P. van den Heuvel, P.W. de Langen,
K.H. van Donselaar, J.C. Fransoo

Murat Firat, Cor Hurkens

Murat Firat, Cor Hurkens, Alexandre Laugier
M.A. Driessen, J.J. Arts, G.J. v. Houtum, W.D. Rustenburg, B. Huisman
R.J.I. Basten, G.J. van Houtum

3102010 The state of the art of innovation-driven business models in the financial services industry	E. Lüftenegger, S. Angelov, E. van der Linden, P. Grefen
3092010 Design of Complex Architectures Using a Three Dimension Approach: the CrossWork Case	R. Seguel, P. Grefen, R. Eshuis
$3082010 \text { Effect of carbon emission regulations on }$	K.M.R. Hoen, T. Tan, J.C. Fransoo, G.J. van Houtum
$3072010 \frac{\text { Interaction between intelligent agent strategies }}{\text { for real-time transportation planning }}$	Martijn Mes, Matthieu van der Heijden, Peter Schuur
3062010 Internal Slackening Scoring Methods	Marco Slikker, Peter Borm, René van den Brink
$3052010 \text { Vehicle Routing with Traffic Congestion and }$	A.L. Kok, E.W. Hans, J.M.J. Schutten, W.H.M. Zijm
$3042010 \frac{\text { Practical extensions to the level of repair }}{\text { analysis }}$ analysis	R.J.I. Basten, M.C. van der Heijden, J.M.J. Schutten
Ocean Container Transport: An Underestimated 3032010 and Critical Link in Global Supply Chain Performance	Jan C. Fransoo, Chung-Yee Lee
Capacity reservation and utilization for a 3022010 manufacturer with uncertain capacity and demand	Y. Boulaksil; J.C. Fransoo; T. Tan
3002009 Spare parts inventory pooling games	F.J.P. Karsten; M. Slikker; G.J. van Houtum
$2992009 \frac{\text { Capacity flexibility allocation in an outsourced }}{\text { supply chain with reservation }}$	Y. Boulaksil, M. Grunow, J.C. Fransoo
2982010 An optimal approach for the joint problem of level of repair analysis and spare parts stocking	R.J.I. Basten, M.C. van der Heijden, J.M.J. Schutten
Responding to the Lehman Wave: Sales 2972009 Forecasting and Supply Management during the Credit Crisis	Robert Peels, Maximiliano Udenio, Jan C. Fransoo, Marcel Wolfs, Tom Hendrikx
An exact approach for relating recovering 2962009 surgical patient workload to the master surgical schedule	Peter T. Vanberkel, Richard J. Boucherie, Erwin W. Hans, Johann L. Hurink, Wineke A.M. van Lent, Wim H. van Harten
An iterative method for the simultaneous 2952009 optimization of repair decisions and spare parts stocks	R.J.I. Basten, M.C. van der Heijden, J.M.J. Schutten
2942009 Fujaba hits the Wall(-e)	Pieter van Gorp, Ruben Jubeh, Bernhard Grusie, Anne Keller
$2932009 \frac{\text { Implementation of a Healthcare Process in Four }}{\text { Different Workflow Systems }}$	R.S. Mans, W.M.P. van der Aalst, N.C. Russell, P.J.M. Bakker
$2922009 \text { Business Process Model Repositories - }$	Zhiqiang Yan, Remco Dijkman, Paul Grefen
2912009 Efficient Optimization of the Dual-Index Policy	Joachim Arts, Marcel van Vuuren, Gudrun Kiesmuller
2902009 Hierarchical Knowledge-Gradient for	Martijn R.K. Mes; Warren B. Powell;

Sampling	Peter I. Frazier
Analyzing combined vehicle routing and break 2892009 scheduling from a distributed decision making perspective	C.M. Meyer; A.L. Kok; H. Kopfer; J.M.J. Schutten
2882009 Anticipation of lead time performance in Supply Chain Operations Planning	Michiel Jansen; Ton G. de Kok; Jan C. Fransoo
$2872009 \frac{\text { Inventory Models with Lateral Transshipments: A }}{\text { Review }}$	Colin Paterson; Gudrun Kiesmuller; Ruud Teunter; Kevin Glazebrook
$2862009 \begin{aligned} & \text { Efficiency evaluation for pooling resources in } \\ & \text { health care }\end{aligned}$	P.T. Vanberkel; R.J. Boucherie; E.W. Hans; J.L. Hurink; N. Litvak
2852009 A Survey of Health Care Models that Encompass Multiple Departments	P.T. Vanberkel; R.J. Boucherie; E.W. Hans; J.L. Hurink; N. Litvak
$2842009 \begin{aligned} & \text { Supporting Process Control in Business } \\ & \text { Collaborations }\end{aligned}$	S. Angelov; K. Vidyasankar; J. Vonk; P. Grefen
2832009 Inventory Control with Partial Batch Ordering	O. Alp; W.T. Huh; T. Tan
$2822009 \frac{\text { Translating Safe Petri Nets to Statecharts in a }}{\text { Struchin }}$ Structure-Preserving Way	R. Eshuis
2812009 The link between product data model and process model	J.J.C.L. Vogelaar; H.A. Reijers
$2802009 \frac{\text { Inventory planning for spare parts networks with }}{\text { delivery time requirements }}$	I.C. Reijnen; T. Tan; G.J. van Houtum
$2792009 \frac{\text { Co-Evolution of Demand and Supply under }}{\text { Compotition }}$ Competition	B. Vermeulen; A.G. de Kok
Toward Meso-level Product-Market Network 2782010 Indices for Strategic Product Selection and (Re)Design Guidelines over the Product LifeCycle	B. Vermeulen, A.G. de Kok
An Efficient Method to Construct Minimal 2772009 Protocol Adaptors	R. Seguel, R. Eshuis, P. Grefen
2762009 Coordinating Supply Chains: a Bilevel Programming Approach	Ton G. de Kok, Gabriella Muratore
$2752009 \frac{\text { Inventory redistribution for fashion products }}{\text { under demand parameter update }}$	G.P. Kiesmuller, S. Minner
Comparing Markov chains: Combining 2742009 aggregation and precedence relations applied to sets of states	A. Busic, I.M.H. Vliegen, A. Scheller-Wolf
2732009 Separate tools or tool kits: an exploratory study	I.M.H. Vliegen, P.A.M. Kleingeld, G.J. van Houtum
An Exact Solution Procedure for Multi-Item Two2722009 Echelon Spare Parts Inventory Control Problem with Batch Ordering	Engin Topan, Z. Pelin Bayindir, Tarkan Tan
$2712009 \frac{\text { Distributed Decision Making in Combined }}{\text { Vehicle Routing and Break Scheduling }}$	C.M. Meyer, H. Kopfer, A.L. Kok, M. Schutten
2702009 Dynamic Programming Algorithm for the Vehicle	A.L. Kok, C.M. Meyer, H. Kopfer, J.M.J.

	Routing Problem with Time Windows and EC Social Legislation	Schutten
2692009	Similarity of Business Process Models: Metics and Evaluation	Remco Dijkman, Marlon Dumas, Boudewijn van Dongen, Reina Kaarik, Jan Mendling
2672009	Vehicle routing under time-dependent travel times: the impact of congestion avoidance	A.L. Kok, E.W. Hans, J.M.J. Schutten
2662009	Restricted dynamic programming: a flexible framework for solving realistic VRPs	J. Gromicho; J.J. van Hoorn; A.L. Kok; J.M.J. Schutten;

Working Papers published before 2009 see: http://beta.ieis.tue.nl

[^0]: * Not solved to optimality

