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The Time-Dependent Pollution-Routing Problem (TDPRP) consists of routing a fleet of vehicles in order

to serve a set of customers and determining the speeds on each leg of the routes. The cost function includes

fuel, emission and driver costs, taking into account traffic congestion which, at peak periods, significantly

restricts vehicle speeds and increases emissions. We describe an integer linear programming formulation of

the TDPRP and provide illustrative examples to motivate the problem and give insights about the tradeoffs

it involves. We also provide an analytical characterization of the optimal solutions for a single-arc version

of the problem, identifying conditions under which it is optimal to wait idly at certain locations in order

to avoid congestion and to reduce the cost of emissions. Building on these analytical results we describe a

departure time and speed optimization algorithm on a fixed route. Finally, using benchmark instances, we

present results on the computational performance of the proposed formulation and on the speed optimization

procedure.

Key words : vehicle routing, fuel consumption; CO2 emissions; congestion; integer programming

1. Introduction

Traffic congestion occurs when the capacity of a particular transportation link is insufficient to

accommodate an incoming flow at a particular point in time. Congestion has a number of adverse

consequences, including longer travel times and variations in trip duration which result in decreased

transport reliability, increased fuel consumption and more greenhouse gas (GHG) emissions. It is

known that CO2 emissions are proportional to fuel consumption and depend on vehicle speed.

Heavy congestion results in low speeds with fluctuations, often accompanied by frequent accel-

eration and deceleration, and greatly contributes to CO2 emissions (Barth and Boriboonsomsin,

2008). According to the International Road Transport Union (IRU), around 100 billion liters of

wasted fuel, or 250 billion tonnes of CO2, were attributed to traffic congestion in the United States

in 2004 (IRU, 2012). Noise is another externality resulting from congestion. In particular, noise

from a vehicle’s power unit comprising the engine, air intake and exhaust becomes dominant at low
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speeds of 15–20 mph and at high acceleration rates of 2 m/s2, as reported by the World Business

Council for Sustainable Development (2004). Congestion is at its highest during rush hour, which

typically lasts from 6am or 7am to 9am or 10am in the morning, although this varies from one city

to another, e.g., 6am–9am in Sydney, Brisbane and Melbourne, and 4am–9am in New York City

(Wikipedia, 2012).

Our aim is to study the effect of congestion and GHG emissions within the context of the Vehicle

Routing Problem (VRP), defined as the problem of routing a fleet of vehicles to serve a set of

customers subject to various constraints, such as vehicle capacities (see e.g., Cordeau et al., 2007).

Previous VRP research assumes constant vehicle speed, which is not realistic for most practical

applications. Van Woensel et al. (2001) show that solving the VRP under this assumption can lead

to deviations of up to 20% in CO2 emissions for gasoline vehicles on an average day and up to 40%

in congested traffic. Indeed, vehicle speed varies throughout the day (Van Woensel et al., 2008),

which affects fuel consumption and CO2 emissions. Maden et al. (2010) present an approach for

the time-dependent vehicle routing problem which allows for the planning of more reliable routes

and schedules. It is based on a tabu search algorithm, which minimizes the total travel time and

reduces emissions by avoiding congestion. The authors have applied this algorithm to a real-life

case study and have obtained reductions of about 7% in CO2 emissions.

Accounting for emissions in the context of the VRP is relatively new. For a general introduction

to the topic we refer the reader to Sbihi and Eglese (2007). Figliozzi (2010) presents the emission

minimizing VRP (EVRP), a variant of the time-dependent VRP (TDVRP) with time windows,

which takes into account congestion so as to minimize speed-dependent CO2 emissions, using a

function described by Hickman et al. (1999). The EVRP is modeled on a partition of the working

time, and a set of speeds on each arc (i, j) of the network is defined as a function of the departure

time from node i. A model for the EVRP described by Figliozzi (2010) uses route and departure

times as decision variables, but the model also optimizes speeds as a consequence of the objective

function. Conrad and Figliozzi (2010) and Figliozzi (2011) present results related to a variant of

the EVRP on a case study in Portland, Oregon, where scenarios with and without congestion

are considered. These papers focus on finding approximate, rather than optimal, solutions to the

problems, and hence heuristic algorithms are used to generate solutions. Jabali et al. (2012) take a

similar approach by using the same emissions function in a formulation of the time-dependent VRP

(without time windows), with speed as an additional decision variable. Travel times are modeled

by partitioning the planning horizon into two parts, where one part corresponds to a peak period

in which there is congestion and the vehicle speed is fixed, whereas the other part assumes free-

flow speeds which can be optimized. Jabali et al. (2012) describe a tabu search heuristic for this

problem.
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Another contribution along these lines is due to Bektaş and Laporte (2011) who present the

Pollution-Routing Problem (PRP) as an extension of the classical Vehicle Routing Problem with

Time Windows (VRPTW). The PRP consists of routing a number of vehicles to serve a set of

customers within preset time windows, and determining their speed on each route segment, so as to

minimize a function comprising fuel, emission and driver costs. The emission function used within

the PRP is based on a comprehensive emissions model for heavy-duty vehicles described by Barth

et al. (2005), and differs from previous work in that it allows to optimize both load and speed.

The PRP formulation described by Bektaş and Laporte (2011) considers only free-flow speeds of

40 km/h or higher. Demir et al. (2012) extend the PRP formulation to take into account lower

speeds, but without looking at congestion per se, and describe a heuristic that can solve large-size

instances.

A common assumption in the VRPTW is to allow arrival at a customer location before the opening

of the time window, but service can only start within the time window. None of the work mentioned

above has allowed for idle waiting after service completion as a strategy to avoid congestion. In this

paper we incorporate, for the first time, congestion into the PRP framework so as to adequately

account for the adverse effects of low speeds caused by congestion, and we make use of the “idle

waiting” strategy.

In this paper we introduce the Time-Dependent Pollution-Routing Problem (TDPRP), which

extends the PRP by explicitly taking into account traffic congestion, and we describe an integer

linear programming formulation of the TDPRP which computationally improves upon the PRP

formulation. We also provide an analytical characterization of the optimal solutions for a single-arc

version of the problem and we describe a procedure for optimizing departure times and speeds when

the route is fixed. Finally we report computational experiments with the integer programming

formulation and the speed optimization procedure on benchmark instances.

The contribution of this paper is multi-fold and can be stated as follows: (i) we break away

from the literature on congestion-aware VRP by using a comprehensive emissions function which

includes factors such as load and speed, (ii) we identify conditions under which it is optimal to wait

idly at certain locations to avoid congestion, (iii) we develop an exact solution approach which also

holds for the special case of zero pollution costs. In other words, all results derived in this paper also

apply to the problem of optimizing vehicle speeds and departure times in contexts characterized

by driver costs, time windows and traffic congestion only.

The remainder of the paper is structured as follows. The next section presents a formal descrip-

tion of the TDPRP and our general modeling framework. Section 3 provides illustrative examples

to motivate the problem. Section 4 describes an integer linear programming formulation of the

TDPRP. A complete analytical characterization of the optimal solutions for a single-arc version of
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the problem is provided in Section 5. In Section 6, we describe a procedure to optimize departure

times and speeds on a fixed route. Computational results obtained on benchmark instances with

the proposed TDPRP formulation and the speed optimization procedure are presented in Section

7. Conclusions follow in Section 8.

For the sake of conciseness, all proofs are provided in Appendix C.

2. Problem Description

The TDPRP is defined on a complete graph G= {N,A} where N is the set of nodes, 0 is the depot,

N0 =N \ {0} is the set of customers, and A is the set of arcs between every pair of nodes. The

distance between two nodes i ̸= j ∈N is denoted by dij. A homogeneous fleet of K vehicles, each

with a capacity limit of Q units, is available to serve all customers, where each customer i ∈N0

has a non-negative demand qi. To each customer i∈N0, corresponds a service time hi and a hard

time window [li, ui] in which service must start. In particular, if a vehicle arrives at node i before

li, it waits until time li to start service. Without loss of generality we assume that the vehicle can

depart from the depot at time zero (we relax this assumption in Sections 5 and 6).

The following sections present the way in which time dependency and congestion are modeled

in the TDPRP, and how fuel use rate and GHG emissions are calculated.

2.1. Time-dependency

In the PRP (Bektaş and Laporte, 2011), the travel time of a vehicle depends only on distance and

speed, and the latter can be chosen freely. In the TDPRP, the speed also depends on the departure

time of the vehicle because it is constrained during periods of traffic congestion. Here, we make

use of time-dependent travel times and model traffic congestion using a two-level speed function as

in Jabali et al. (2009). We assume there is an initial period of congestion, lasting a units of time,

followed by a period of free-flow. This modeling framework is suitable for routing problems which

must be executed in the first half of a given day, e.g., starting from a peak-morning period where

traffic congestion is expected, and following which it will dissipate. In the peak-period, the vehicle

travels at a congestion speed vc whereas in the period that follows, it is only limited by the speed

limit vm, meaning that a free-flow speed vf ≤ vm can be used for travel. For practical reasons we

assume that the speed vc and the time a are constants which can be extracted from archived travel

data (e.g., Hansen et al., 2005) and that the same values hold between every pair of locations.

To model time-dependency, consider two locations spaced out by a distance of d. Let T (w,vf )

denote the travel time of a vehicle between the two locations, that is the time spent by the vehicle
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on the road depending on its departure time w from the first location, and the chosen free-flow

speed vf . It can be calculated using the following formulation proposed by Jabali et al. (2009):

T (w,vf ) =


d
vc

if w≤
(
a− d

vc

)+

vf−vc

vf
(a−w)+ d

vf
if

(
a− d

vc

)+

<w< a
d
vf

if w≥ a.

(1)

The calculation of T (w,vf) suggests that the planing horizon can be divided into three consecutive

time regions in terms of the departure time w, as follows:

• The first one w ∈
[
0,
(
a− d

vc

)+
]
is called the all congestion region: the vehicle leaving the first

location within this region makes the entire trip during the congestion period and arrives at the

second location after d/vc units of time.

• The second one w ∈
[(
a− d

vc

)+

, a

]
, is called the transient region: the vehicle leaving within

this region traverses a distance of length (a−w)vc at speed vc and the remaining distance of length

d− (a−w)vc at the chosen free-flow speed vf .

• The last one w ∈ [a,∞), is called the all free-flow region, in which the vehicle makes the entire

trip at the free-flow speed vf and completes the journey in d/vf units of time.

Figure 1(a) shows the speed of a vehicle as a function of time for vf > vc. Figure 1(b) shows how

T varies with the departure time w given free-flow speed vf .

Figure 1 Time-dependent speed and travel time profiles.

2.2. Modeling Emissions

Our modeling of fuel consumption and emissions follows the same approach as in Bektaş and

Laporte (2011). Here we provide a brief exposition for the sake of completeness. Since GHG emis-

sions are directly proportional to the amount of fuel consumed, we use the fuel use rate as a proxy

to estimate the total amount of GHG emissions. To calculate fuel consumption, we use the compre-

hensive emissions model of Barth et al. (2005) and Barth and Boriboonsomsin (2008), according
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to which the instantaneous fuel use rate, denoted FR (liter/s), when traveling at a constant speed

v (m/s) with load f (kg) is estimated as

FR=
ξ

κψ

(
kNeV +

0.5CdρAv
3 +(µ+ f)v (g sinϕ+ gCr cosϕ)

1000εϖ

)
, (2)

where ξ is fuel-to-air mass ratio, κ is the heating value of a typical diesel fuel (kJ/g), ψ is a conver-

sion factor from grams to liters from (g/s) to (liter/s), k is the engine friction factor (kJ/rev/liter),

Ne is the engine speed (rev/s), V is the engine displacement (liter), ρ is the air density (kg/m3),

A is the frontal surface area (m2), µ is the vehicle curb weight (kg), g is the gravitational constant

(equal to 9.81m/s2), ϕ is the road angle, Cd and Cr are the coefficient of aerodynamic drag and

rolling resistance, ε is vehicle drive train efficiency and ϖ is an efficiency parameter for diesel

engines. Using α = g sinϕ + gCr cosϕ, β = 0.5CdAρ, γ = 1/(1000εϖ) and λ = ξ/κψ, (2) can be

simplified as

FR= λ
(
kNeV + γ

(
βv3 +α(µ+ f)v

))
. (3)

The total amount of fuel used, denoted F (liters), for traversing a distance d (m) at constant speed

v (m/s) with load f (kg) is equal to the fuel rate multiplied by the travel time d/v:

F = λ

(
kNeV

d

v
+ γβdv2 + γα(µ+ f)d

)
. (4)

Expression (4) contains three terms in the parentheses. We refer to the first term, namely kNeV d/

v, as the engine module which is linear in the travel time. The second term, γβdv2, is called the

speed module, which is quadratic in the speed. The last term, γα(µ+ f)d, is the weight module,

which is independent of travel time and speed. Figure 2 shows the relationship between F and v

for a vehicle traveling a distance of 100 km. Other parameters used in generating the figure are

given in Table 1.

Figure 2 shows a U-shape curve between fuel consumption and speed, which is consistent with

the behavior of functions suggested by other authors (e.g., Demir et al., 2011), confirming that low

speeds (as in the case of traffic congestion) lead to very high fuel use rate. The figure also shows

the engine module as the main driver of this trend, which contributes considerably to the increase

in the amount of emissions at low speeds.

To model the emissions in a time-dependent setting, we rewrite the fuel consumption function

F as a function of the departure time w and the free-flow speed vf on a given arc of length d. If a

vehicle traverses the arc in the all congestion region, then

F (w,vf ) = λ
[
kNeV T (w,vf )+ γβ T (w,vf )(vc)

3 + γα(µ+ f)d
]
.
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Figure 2 Fuel use rate F as a function of speed v

Table 1 Setting of vehicle and emission parameters

Notation Description Value

ξ fuel-to-air mass ratio 1
κ heating value of a typical diesel fuel (kJ/g) 44
ψ conversion factor (g/liter) 737
k engine friction factor (kJ/rev/liter) 0.2
Ne engine speed (rev/s) 33
V engine displacement (liter) 5
ρ air density (kg/m3) 1.2041
A frontal surface area (m2) 3.912
µ curb-weight (kg) 6350
g gravitational constant (m/s2) 9.81
ϕ road angle 0
Cd coefficient of aerodynamic drag 0.7
Cr coefficient of rolling resistance 0.01
ε vehicle drive train efficiency 0.4
ϖ efficiency parameter for diesel engines 0.9
fc fuel price per liter (£) 1.4
dc driver wage (£/s) 0.0022

Similarly, in the all free-flow region,

F (w,vf) = λ
[
kNeV T (w,vf )+ γβ T (w,vf)(vf)

3 + γα(µ+ f)d
]
.

When a vehicle traverses the arc in the transient region, the speed module needs to be split into

two terms since the speed changes before and after the end of the congestion period. In this case

F (w,vf ) = λ
[
kNeV T (w,vf )+ γβ

[
(a−w)(vc)

3 +(w+T (w,vf )− a)(vf )
3
]
+ γα(µ+ f)d

]
,

where a − w is the time spent in congestion and w + T (w,vf) − a is the time spent driving at

free-flow speed.
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In general, let T c(w) = min{(a − w)+, d/vc} be the time spent by the vehicle in congestion

and T f (w,vf ) = [d− (a−w)+vc]
+/vf be the time spent driving at the free-flow speed. We have

T (w,vf) = T c(w)+T f(w,vf) and we can write

F (w,vf) = λkNeV T (w,vf)+λγβ
[
v3cT

c(w)+ v3fT
f (w,vf )

]
+λγα(µ+ f)d.

2.3. Aim of the TDPRP

In the TDPRP, the total travel cost function is composed of the cost of fuel and the driver cost for

each arc in the network. Let fc denote the fuel price per liter and let dc denote the wage rate for the

drivers of the vehicles. Because CO2 emissions are proportional to fuel consumption, minimizing

fuel cost amounts to minimizing GHG emissions. In practice, we could modify fc to include the cost

of GHG emissions. However, there is considerable debate on the price of CO2 and the method used

to estimate it is rather subjective (see the survey paper by Tol, 2005 gathering 103 estimates of the

marginal damage costs of CO2 emissions), so we have decided not to include it in our numerical

calculations.

We consider two ways of calculating the total time for which the driver is paid, which we call

driver wage policies: (i) the driver of each vehicle is paid from the beginning of the time horizon

until returning back to the depot, or (ii) the driver is paid only for the time spent away from the

depot, i.e., either en-route or at a customer. The difference between policies (i) and (ii) is that the

driver is not paid for time spent waiting at the depot under policy (ii); in practice, the driver is

asked to report to work later than at the start of the time horizon.

The aim of the TDPRP is to determine a set of routes, starting and ending at the depot, the

speeds on each leg of the routes and departure times from each node so as to minimize the total

travel cost. We provide an expression for the cost function in Section 4 and one for the special case

of a network with only one arc in Section 5.

In the next section we present a number of numerical examples which illustrate the trade-offs

involved in this model. In particular, we outline an important feature of the TDPRP, i.e., that it

may be optimal to wait at a node, even after the service is completed, in order to reduce the time

spent driving in congestion. Similarly, it may also be optimal for the vehicles not to leave the depot

at the start of the time horizon. Hence, the driver’s time at a customer can be spent (i) waiting

for the start of service in the case of an early arrival—we call this the pre-service wait, (ii) serving

the customer, or (iii) waiting after service is completed and before departing to the next customer

or back to the depot—we call this the post-service wait.
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3. Examples

The purpose of this section is twofold. We first investigate the impact of considering traffic con-

gestion on the routing and scheduling planning activities. We then compare the two driver wage

policies, namely paying the drivers from the beginning of the time horizon or from their departure

time from the depot. In both cases, we analyze a four-node network where node 0 is the depot at

which a single vehicle is based, and {1,2,3} is the set of customers. The network is depicted in

Figure 3. Every arc has the same two-level speed profile consisting of an initial congestion period

which lasts a seconds, followed by a free-flow period. In the examples below, the congestion speed

vc is set to 10 km/h and the speed limit vm to 110 km/h. The examples differ with respect to the

driver wage policy and the time windows at the customer nodes, which are given above each table.

We assume that demand and service time at each customer node are zero. The assumption on the

demand values entails no loss of generality given that the weight module does not depend on the

vehicle speed, as shown in Section 2.2. The parameters used to calculate the total cost function,

which are reported in Table 1, are taken from Demir et al.(2012).

Figure 3 Sample four-node instance

3.1. Impact of traffic congestion

We consider four examples. In each one, we minimize the total travel cost using two different

approaches. In the time-independent approach, we ignore traffic congestion when planning the

vehicle route and schedule, that is, we assume that the vehicle can always drive at the chosen

free-flow speed on each arc of the network. Let SN denote the solution of the time-independent

approach. In the time-dependent approach, we account for traffic congestion by solving the TDPRP,

the solution of which we denote by SD. However, the costs for both solutions (denoted by TC(SN)

and TC(SD)) are evaluated under traffic congestion. Since SD is optimal under traffic congestion,

it follows that TC(SD)≤ TC(SN), and the difference in cost between the two solutions represents

the value of incorporating traffic congestion information in the decision making process. In the

example below, the length of the congestion period is equal to 14400 seconds.
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Example 1: Post-service wait at depot. This example shows that ignoring traffic congestion when

planning the route and schedule of the vehicle can lead to a substantial increase in costs. It also

shows that adding waiting time at the depot can be used as an effective strategy to mitigate

the effect of congestion and reduce the total travel cost. We assume no service time windows at

customer nodes: l1 = l2 = l3 = 0, and u1 = u2 = u3 =∞. The driver is paid from the beginning of

the time horizon.

The solutions to the time-independent and time-dependent approaches are displayed in Table

2. For each solution, the table reports (i) the set of traversed arcs in chronological order from top

to bottom under column Arc, (ii) the speed(s) at which each arc is traversed (for an arc traversed

during the transient region, both the congestion speed and free-flow speed are reported), (iii) the

departure time from the origin node, (iv) the post-service waiting time at the origin node, i.e. the

additional time that the driver intentionally waits once the service is completed before leaving a

node (at the depot the waiting time is equal to the departure time), (v) the fuel cost F , (vi) the

driver cost W and (vii) the total cost TC.

Table 2 Comparison of SN and SD in Example 1

SN SD

Arc Speed Departure time Waiting time F W TC Arc Speed Departure time Waiting time F W TC
km/h s s £ £ £ km/h s s £ £ £

(0, 1) 10, 75.34† 0 0 25.86 32.73 58.59 (0, 1) 75.34 14400 14400 11.47 36.94 48.40
(1, 2) 75.34 14877.8 0 6.88 3.15 10.03 (1, 2) 75.34 16789.2 0 6.88 3.15 10.03
(2, 3) 75.34 16311.3 0 11.47 5.26 16.72 (2, 3) 75.34 18222.7 0 11.47 5.26 16.72
(3, 0) 75.34 18700.5 0 6.88 3.15 10.03 (3, 0) 75.34 20611.8 0 6.88 3.15 10.03

Total 51.09 44.29 95.38 36.70 48.50 85.20

†transient region

From Table 2, we see that the two solutions yield the same optimal tour (0,3,2,1,0) and the same

set of optimal free-flow speed levels (75.34 km/h on each arc). The difference between the two

solutions lies in the fact that the vehicle leaves the depot at time zero in SN but waits until the

end of the congestion period in SD. Thus, SD yields a higher driver cost but this increase is more

than compensated by a fuel cost saving, yielding a 10.67% total cost saving over SN (85.20 instead

of 95.38).

Example 2: Post-service wait at a customer node This example shows that ignoring traffic conges-

tion can lead to a significant cost increase when the schedule fails to include post-service wait times

which help mitigate the negative impacts of traffic congestion on emission costs. It also highlights

the difference between pre-service and post-service waits. We assume the following service time

windows (in seconds) at customer nodes: l1 = 15000, l2 = 0, l3 = 11000, u1 = u2 =∞, u3 = 12000.

The driver is paid from the beginning of the time horizon. The solutions to the time-independent

and time-dependent approaches are displayed in Table 3.
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Table 3 Comparison of SN and SD in Example 2

SN SD

Arc Speed Departure time Waiting time F W TC Arc Speed Departure time Waiting time F W TC
km/h s s £ £ £ km/h s s £ £ £

(0, 3) 10 0 0 17.67 24.20 41.87 (0, 3) 10 0 0 17.67 31.68 49.35
(3, 2) 10, 72† 11000 0 14.69 11.94 26.63 (3, 2) 75.34 14400 3400 11.47 5.26 16.72
(2, 1) 72 16427.8 0 6.75 3.30 10.05 (2, 1) 75.34 16789.2 0 6.88 3.15 10.03
(1, 0) 75.34 17927.8 0 11.47 5.26 16.72 (1, 0) 75.34 18222.7 0 11.47 5.26 16.72

Total 50.58 44.70 95.28 47.49 45.35 92.84

†transient region

In this example, SN and SD yield the same optimal route but different schedules. In both solutions,

the time at which the driver arrives at node 3 is 3200 seconds before the lower limit of the time

window, hence there is a positive pre-service wait time at that node. In the SN solution, the vehicle

leaves immediately after serving customer 3, while in the SD solution it waits until the end of

the traffic congestion. Hence, the pre-service and post-service waiting times at node 3 are both

positive in SD. This change in the schedule leads to cost savings of 2.56% over the time-independent

solution. From this example, it can be seen that, while pre-service wait times can occur in SN and

SD, post-service wait times are strategic decisions motivated by the impact of congestion and in

this example only occur in SD, when the driver is paid from the beginning of the time horizon.

Example 3: Late deliveries due to congestion. This example shows that ignoring traffic congestion

can prevent the driver from delivering within the set time windows because he chose a suboptimal

route and suboptimal free-flow speeds. This can have significant negative consequences in terms

of future business profitability. We assume the following service time windows (in seconds) at

customer nodes: l1 = l2 = l3 = 0, u2 = 15500 and u1 = u3 =∞. The driver is paid from the beginning

of the time horizon. The solutions to the time-independent and time-dependent approaches are

displayed in Table 4.

Table 4 Comparison of SN and SD in Example 3

SN SD

Arc Speed Departure time Waiting time F W TC Arc Speed Departure time Waiting time F W TC
km/h s s £ £ £ km/h s s £ £ £

(0, 1) 10, 75.34† 0 0 25.86 32.73 58.59 (0, 2) 10, 106.02† 5070.96 5070.96 24.81 34.10 58.91
(1, 2) 75.34 14877.8 inf. inf. inf. inf. (2, 1) 75.34 15500 0 6.88 3.15 10.03
(2, 3) 75.34 16311.3 inf. inf. inf. inf. (1, 3) 75.34 16933.5 0 13.37 6.13 19.50
(3, 0) 75.34 18700.5 inf. inf. inf. inf. (3, 0) 75.34 19719.7 0 6.88 3.15 10.03

Total 51.95 46.54 98.48

†transient region

We see from Table 4 that the optimal tour for SN is (0,1,2,3,0) and the optimal free-flow speed,

without congestion, is 75.34 km/h for every arc. Under congestion, however, the vehicle is only

able to reach customer 2 after 14877.8 + (30/75.34)3600 = 16311.3 seconds, that is, with a 13.5
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minute delay with respect to the upper time window limit. Because of this delay, SN is infeasible

in the presence of traffic congestion. The optimal route (0,2,1,3,0) under SD is different and so

are the free-flow speeds (106.02 km/h on the first arc and 75.34 km/h afterwards). By accounting

for traffic congestion, the planner realizes that the driver must go to customer 2 first. It does so

after an initial waiting time of 5070.96 seconds at the depot, and then proceeds at a speed of 106

km/h to reach customer 2, exactly at its upper time window of time 15500 seconds.

Example 4: Reduction of driver and fuel costs. This example shows that SN and SD solutions

can both have strategic wait times but for reasons which are different from those mentioned above.

We assume the following service time windows (in seconds) at customer nodes: l1 = 19000, l2 =

0, l3 = 11000, u1 = u2 = u3 =∞. Contrary to the previous three examples, the driver is now paid

from his departure time. The solutions to the time-independent and time-dependent approaches

are displayed in Table 5.

Table 5 Comparison of SN and SD in Example 4

SN SD

Arc Speed Departure time Waiting time F D TC Arc Speed Departure time Waiting time F D TC
km/h s s £ £ £ km/h s s £ £ £

(0, 3) 10, 75.34† 13743.8 13743.8 7.54 4.41 11.94 (0, 3) 75.34 14400 14400 6.88 3.15 10.03
(3, 2) 75.34 15746.4 0 11.47 5.26 16.73 (3, 2) 75.34 15833.5 0 11.47 5.26 16.72
(2, 1) 75.34 18135.6 0 6.88 3.15 10.04 (2, 1) 75.34 18222.7 0 6.88 3.15 10.03
(1, 0) 75.34 19569.1 0 11.47 5.26 16.73 (1, 0) 75.34 19656.2 0 11.47 5.26 16.72

Total 37.36 18.07 55.43 36.70 16.82 53.52

†transient region

Table 5 shows that when there are lower time window restrictions at the customers and the driver

is paid from its departure time, there can be strategic post-service waiting time at the depot in

both solutions SN and SD. In the SN solution, the reason for delaying the vehicle’s departure is

to reduce the driver cost by avoiding pre-service wait at the customer node. In contrast, in SD

solution, there is another reason for delaying the vehicle’s departure, which is the desire to avoid

traveling in congestion, thereby reducing fuel cost.

From the four examples just presented, we conclude that ignoring traffic congestion can have

detrimental consequences on the timing of deliveries. Congestion is likely to increase costs or even

lead to an infeasible solution (which can be seen as a solution with infinite costs) when customer

nodes have delivery time windows. This is because the planner does not incorporate strategic post-

service wait times motivated by traffic congestion in the vehicle schedules. We show that these

strategic wait times can occur either at the depot or at the customer nodes.
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3.2. Impact of the driver wage policy

In this section we investigate the impact of the driver wage policy on the optimal TDPRP solution,

namely whether the driver is paid from the beginning of the time horizon or from his departure

time. In the example below, the length of the congestion period is equal to 7200 seconds.

Example 5: Impact of driver wage policy on wait time and routing. In this example we assume

the following service time windows (in seconds) at customer nodes: l1 = l2 = 9000, l3 = 10000, u1 =

19000, u2 = 15000, u3 = 12000. The optimal solutions for the two driver wage policies are compared

in Table 6.

Table 6 Comparison of the driver wage policies in Example 5

SD The driver is paid from the beginning of the time horizon SD The driver is paid from departure

Arc Speed Departure time Waiting time F W TC Arc Speed Departure time Waiting time F W TC
km/h s s £ £ £ km/h s s £ £ £

(0, 1) 97.5 7200 7200 13.64 19.89 33.53 (0, 3) 75.34 8566.5 8566.5 6.88 3.15 10.03
(1, 2) 97.5 9046.15 0.00 8.17 2.44 10.61 (3, 2) 75.34 10000 0 11.47 5.26 16.73
(2, 3) 97.5 10153.8 0.00 13.59 4.07 17.66 (2, 1) 75.34 12389.2 0 6.88 3.15 10.03
(3, 0) 75.34 12000.00 0.00 6.88 3.15 10.03 (1, 0) 75.34 13822.7 0 11.47 5.26 16.73

Total 42.28 29.55 71.83 36.70 16.82 53.52

Table 6 shows that the driver wage policy may affect the resulting route. When the driver is paid

from the beginning of the time horizon, the optimal route is (0,1,2,3,0) and it is optimal to wait

until the end of the congestion period. When the driver is paid from his departure time, it is

optimal to postpone his departure until after the end of the congestion period but this requires a

change of route to (0,3,2,1,0) in order to meet the delivery time windows.

In summary, we see that it is important to take the driver wage policy into account when

optimizing the route and schedule of the vehicles. When the driver is paid from his departure time,

he generally leaves the depot later than if he was paid from the beginning of the time horizon, but

this delay has to be compensated by either a change of route or a speed increase.

4. An Integer Linear Programming Formulation for the TDPRP

This section presents a mathematical formulation for the TDPRP. The objective is to determine

a set of routes for the K vehicles, all starting and ending at the depot, along with their speeds

on each arc, and then departure times from each node so as to minimize a total cost function

encompassing driver and fuel costs. The objective function is not linear in the speed values. To

linearize it, we discretize the free-flow speed following an approach used by Bektaş and Laporte

(2011). Let R = {1, . . . , k} be the index set of different speed levels and v1, . . . , vk denote the

corresponding free-flow speeds where vc ≤ v1 < . . . < vk = vm. Figure 4 illustrates the different speed

values and corresponding travel time functions. Let b0 = 0, b1 = (a− d/vc)
+
, b2 = a and b3 = ∞
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Figure 4 Time-dependent speed and travel time profiles

and let [bm−1, bm) denote the m-th time interval, where m ∈ {1,2,3}. Specifically, m= 1 is the all

congestion region, m= 2 is the transient region and m= 3 is the all free-flow region. We also define

νmr as the vehicle speed in time region m given free-flow speed vr with r ∈ R, that is, ν1r = vc,

ν2r = vc and ν
3r = vr. These definitions allow us to rewrite (1) for arc (i, j) as T (w,vr) = θmrw+ηmr

ij ,

if bm−1 ≤w< bm and r ∈R, where,

θmr =

{
0 m= 1,3

ν2r−ν3r

ν3r
m= 2,

ηmr
ij =


dij
ν1r

m= 1
dij
ν3r

+
(

ν3r−ν2r

ν3r

)
a m= 2

dij
ν3r

m= 3.

The model uses the following decision variables:

xij binary variable equal to 1 if a vehicle traverses arc (i, j)∈A, 0 otherwise,
zmr
ij binary variable equal to 1 if a vehicle traverses arc (i, j)∈A, leaving node i within time

interval m∈ {1,2,3} with the free-flow speed vr with r ∈R, 0 otherwise,
fij amount of commodity flowing on arc (i, j),
wmr

ij variable equal to the time instant at which a vehicle leaves node i∈N to traverse arc
(i, j) if within time interval m∈ {1,2,3} with the free-flow speed vr with r ∈R,

si total time spent on a route that has node i∈N0 as last visited before returning to the
depot,

φi time at which service at node i∈N0 starts.

Given these variables, θmr
ij w

mr
ij + ηmr

ij x
mr
ij is equal to the travel time of a vehicle on arc (i, j)∈A

if the vehicle leaves node i within time interval m∈ {1,2,3} and uses free-flow speed vr with r ∈R.

We now present a mixed integer linear programming formulation for the TDPRP:

Minimize
∑

(i,j)∈A

∑
r∈R

3∑
m=1

fcλkNeV (θmr
ij w

mr
ij + ηmr

ij z
mr
ij ) (5)

+
∑

(i,j)∈A

∑
r∈R

∑
m=1,3

fcλγβ(ν
mr)3(θmr

ij w
mr
ij + ηmr

ij z
mr
ij ) (6)
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+
∑

(ij)∈A

∑
r∈R

fcλγβ(ν
2r)3(az2rij −w2r

ij ) (7)

+
∑

(i,j)∈A

∑
r∈R

fcλγβ(ν
3r)3(w2r

ij + θ2rij w
2r
ij + η2rij z

2r
ij − az2rij ) (8)

+
∑

(i,j)∈A

fcλγαijdij(µxij + fij) (9)

+
∑
i∈N0

dcsi (10)

subject to∑
j∈N

x0j =K (11)∑
i∈N

xij = 1 ∀j ∈N0 (12)∑
j∈N

xij = 1 ∀i∈N0 (13)∑
j∈N

fji −
∑
j∈N

fij = qi ∀i∈N0 (14)

qjxij ≤ fij ≤ xij(Q− qi) ∀(i, j)∈A (15)

zmr
ij b

m−1
ij ≤wmr

ij ≤ zmr
ij b

m
ij ∀(i, j)∈A,m∈ {1,2,3}, r ∈R (16)∑

i∈N

3∑
m=1

∑
r∈R

(
wmr

ij + θmr
ij w

mr
ij + ηmr

ij z
mr
ij

)
≤φj ∀j ∈N0 (17)

∑
j∈N

∑
r∈R

3∑
m=1

wmr
ij ≥φi +hi ∀i∈N0 (18)

li ≤φi ≤ ui ∀i∈N0 (19)

si ≥
∑
r∈R

3∑
m=1

(wmr
i0 + θmr

i0 w
mr
i0 + ηmr

i0 z
mr
i0 ) ∀i∈N0 (20)

3∑
m=1

∑
r∈R

zmr
ij = xij ∀(i, j)∈A (21)

zmr
ij ∈ {0,1} ∀(i, j)∈A,m∈ {1,2,3}, r ∈R (22)

xij ∈ {0,1} ∀(i, j)∈A (23)

fij ≥ 0 ∀(i, j)∈A,m∈ {1,2,3}, r ∈R. (24)

The first five parts of the objective function represent the cost of fuel consumption. In particular,

(5) computes the cost induced by the engine module, the terms (6)–(8) measure the cost induced by

the speed module, and (9) is the cost induced by the weight module. More precisely, (6) calculates

the fuel cost generated by the speed module in the all congestion and in the all free-flow regions,

while (7) and (8) represent the fuel cost generated by the speed module in the transient region.

Finally, the last term (10) measures the total driver wage when the driver is paid from the beginning
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of the time horizon. In contrast, if the driver was paid from its departure time, the total driver

wage would be
∑

i∈N0
dcsi −

∑
j∈N0

∑
r∈R

∑3

m=1 dcw
mr
0j .

Constraint (11) indicates that exactly K vehicles depart from the depot. Constraints (12) and

(13) guarantee that each customer is visited exactly once. Constraints (14) and (15) model the

flow on each arc, and ensure that vehicle capacities are respected. The boundary conditions on

the departure time are imposed by constraint (16). Constraints (17) and (18) are used to express

the temporal relationship between arrival time and service time, and between service time and

departure time, respectively. The time windows restrictions at customer nodes are imposed by

constraint (19). Constraint (20) computes the time at which the vehicle returns to the depot.

The relationship between speed and arc-traversal variables is expressed by constraint (21). Finally,

constraints (22)–(24) enforce the integrality and nonnegativity restrictions on the variables.

We provide a numerical analysis of the performance of this formulation in Section 7.

5. Analytical Results based on a Single-Arc Network

We now consider a special case of the TDPRP on a network with two nodes, i.e., the depot and

one customer node. The aim is to gain insights by analyzing this special case of the problem; as

will be shown in Sections 6 and 7, the results obtained in this section are useful for optimizing the

TDPRP on a fixed route and for improving the computational performance of the integer linear

programming formulation.

We minimize the cost of going from the depot to the customer node (hence, ignoring the return

trip to the depot). The customer node has a time window [l, u]. Service time at the customer node

is equal to h (in this section it can be set equal to zero without loss of generality but we include it

because it becomes a relevant variable for the problem presented in Section 6). We assume, without

loss of generality, that the demand at the customer is equal to zero and that there is a two-level

speed profile with an initial congestion period a, as described in Section 2.1.

In this special case there are only two decision variables: the departure time w from the depot

and the free-flow speed vf for the vehicle serving the customer. We must have vf ∈ [0, vm] and

w≥ ϵ, where ϵ≥ 0 is the earliest time at which the vehicle can leave the depot. For example ϵ can

represent loading time at the depot. We refer to ϵ as the beginning of the planning horizon; w− ϵ

is the (strategic) waiting time at the depot. Without loss of generality we assume that a≥ ϵ and

ϵ≤ l≤ u≤∞ (for example, if a< ϵ, then the problem can be solved by setting a= ϵ).

Our objective is to minimize the total cost function TC(w,vf) so that the arrival time at the

customer node does not exceed u. In other words, the optimization problem is

minimize w≥ϵ
0≤vf≤vm

TC(w,vf ) = fcF (w,vf )+ dcW (w,vf)

subject to T (w,vf)+w≤ u,
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where F and T are as defined in Section 2 and W (w,vf) denotes the time for which the driver

is paid. If the driver is paid from the beginning of the time horizon (i.e., ϵ), then W (w,vf ) =

max{w− ϵ+T (w,vf), l− ϵ} + h. If the driver is paid from his departure time (i.e., w), then

W (w,vf) =max{T (w,vf), l−w}+h.

For the single-arc problem to be feasible, the vehicle must be able to reach the customer node by

time u if it does not wait at the depot, i.e. if w= ϵ. By leaving immediately, the vehicle is either (i)

in the all congestion region, i.e., when ϵ≤ a−d/vc, in which case u≥ ϵ+d/vc, or (ii) in the transient

region, i.e., when ϵ≥ a− d/vc, in which case u≥ a+ (d− (a− ϵ)vc)/vm. We can summarize these

two conditions as follows: u ≥min{a, ϵ+ d/vc}+ (d− (a− ϵ)vc)
+/vm. In what follows we assume

that this condition is satisfied.

Let vuw be the free-flow speed required for the driver to arrive at the customer exactly at time u

when leaving the depot at time w. Then

vuw =

{
d−(a−w)+vc
u−max{a,w} , if w ∈ [max{ϵ, a− d/vc} , u] and u> a

∞, otherwise.

Similarly, let vlw be the free-flow speed required for the driver to arrive at the customer exactly at

time l when leaving the depot at w. Then

vlw =

{
d−(a−w)+vc
l−max{a,w} , if w ∈ [max{ϵ, a− d/vc} , l] and l > a

∞, otherwise.

The departure time w from the depot must be such that vuw ≤ vm otherwise it is not possible to

arrive by time u. Let wu
m denote the time at which the vehicle needs to depart from the depot to

reach the customer at exactly time u, driving at free-flow speed vm.

wu
m =


u− d

vm
, if vm ≥ vua and u> a

a− d−(u−a)vm
vc

, if vm < v
u
a and u> a

u− d
vc

if ϵ≤ u≤ a.

In other words, wu
m is an upper bound on the departure time, i.e., for a value of the departure time

w to be feasible we need w ∈ [ϵ,wu
m). Similarly let wl

m be the maximum departure time such that

the driver arrives exactly at time l driving at free-flow speed vm:

wl
m =


l− d

vm
, if vm ≥ vla and l > a

a− d−(l−a)vm
vc

, if vm < v
l
a and l > a

l− d
vc

if ϵ≤ l≤ a.

We first determine the optimal free-flow speed vf for a given departure time w ∈

[max{ϵ, a− d/vc},wu
m]. As shown in Lemma 1, this can be done by comparing the speed levels

vlw and vuw to two key speed levels: v̄ = ((fcλkNeV + dc)/2fcλβγ)
1/3

and v = (kNeV /2βγ)
1/3

. The

speed level v̄ minimizes fuel and driver costs, i.e., TC, in the absence of any time window, whereas
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the speed v minimizes fuel consumption only, i.e., F , in the absence of any time windows. Both

values are independent of the departure time w. These speed values have previously been identified

by Demir et al.(2012).

Lemma 1. Consider a single-arc TDPRP instance and a departure time w such that w ∈

[max{ϵ, a− d/vc} ,wu
m]. There are four cases: (i) if vlw ≤ v then the optimal free-flow speed is

min{vm, v} , (ii) if v ≤ vlw ≤ v̄ then the optimal free-flow speed is min{vm, vlw}, (iii) if vuw ≤ v̄ ≤ vlw

then the optimal free-flow speed is min{vm, v̄}, (iv) if v̄≤ vuw then the optimal speed is vuw.

Note that the optimal speed for a given departure time does not depend on the driver wage policy.

Using Lemma 1, we can reduce the problem of minimizing TC to a unidimensional optimization

problem, that is, we set w as the unique decision variable.

We now provide the full characterization of the optimal solution. Let S = (w∗, v∗f) denote a

solution, where w∗ is the optimal departure time and v∗f is the optimal free-flow speed, Theorem 1

provides the solution when the driver is paid from the beginning of the time horizon, i.e, from time

ϵ, and Theorem 2 provides the solution when the driver is paid from his departure time i.e., from

time w. Observe that whenever the vehicle traverses the entire arc during the congestion period,

the free-flow speed is never used but we may still write S = (w∗, v∗f), with v
∗
f being equal to any

positive value.

Theorem 1. Consider a single-arc TDPRP instance. If the driver is paid from the beginning of

the time horizon, the optimal solution depends mainly on the relative values of the nine speed levels:

vm, v, v, v̂ = ((kNeV +βγv3c )/3βγvc)
1/2

, v̌ = ((fcλkNeV + dc + fcλβγv
3
m)/3fcλβγvm)

1/2
, vlϵ, v

l
a,

vuϵ and vua and is given in Table 11 in Appendix A.

Theorem 1 suggests that, when the driver is paid from the beginning of the time horizon, there

are four important free-flow speed values: v̄, v, v̂ and v̌, which only depend on the values from Table

1. In particular, the first two values are defined as in Lemma 1, and the latter two are comparison

parameters. The intuition is as follows. Delaying the departure of the driver has two effects: on

the one hand, it may increase the driver costs as the driver is paid for a longer period of time; on

the other hand, it may reduce the time spent driving in congestion, allowing the driver to reach a

higher average driving speed and spend less time on the road. The engine module component of the

emission costs is decreasing in the departure time, whereas the driver costs and speed module are

increasing in it. As a result, the overall impact on the total cost depends on the trade-off between

these costs. More specifically, when vm ≤ v (vm > v), the total cost function is initially decreasing

in the transient region (where both effects are active) only if v̂≥ v̌ (v̂≥ v). In this case, it may be

beneficial to postpone the departure time past time ϵ because the drop in the engine module part
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of the emission costs more than offsets the increase in driver costs and speed module.

Beside the speeds just described, the optimal solution also depend on other four free-flow speed

values: vlϵ, v
u
ϵ , v

l
a, and v

u
a , which only depend on the instance parameters, that is, l, u, d and a.

Theorem 2. Consider a single-arc TDPRP instance. If the driver is paid from his departure time,

the optimal solution depends mainly on the relative values of the eight speed levels: vm, v, v, ṽ =

((fcλkNeV + dc + fcλβγv
3
c )/3fcλβγvc)

1/2
, vlϵ, v

l
a, v

u
ϵ and vua and is given in Table 12 in Appendix

A.

When the driver is paid from his departure time, delaying departure does not lead to an increase

in driver costs. In fact it may lead to a decrease since waiting may mean less driving in congestion

and therefore spending less time on the road. In this case the trade-off is between the speed module

of the emission costs, which is increasing in the departure time, and the driver costs and engine

module which are decreasing.

We make the following remarks about the optimal solutions under both driver wage policies.

Remark 1. Consider a single-arc TDPRP instance.

• If there is no time window, i.e. l = 0 and u =∞, and the driver is paid from the beginning

of the time horizon, then one of the following two solutions is optimal: either leave the depot

immediately (w∗ = ϵ), or wait until the end of the congestion period (w∗ = a). In both cases the

optimal speed is v. Differently, when the driver is paid from his departure time, leaving the depot

at the end of the congestion period (w∗ = a) and driving at free-flow speed v is optimal.

• When the driver is paid from the beginning of the time horizon, there always exists an optimal

solution where the driver leaves at or before the end of the congestion period, i.e., at time w∗ ≤ a.

However, when the driver is paid from his departure time, it may be optimal to leave the depot

after the end of the congestion period, i.e., at time w> a.

• The optimal departure time when the driver is paid from the beginning of the time horizon is

at most equal to the optimal departure time when the driver is paid from his departure time. This

is due to the fact that there is an extra incentive to delay departure when the driver is paid from

his departure time, which is to reduce the driver costs.

• If there is no congestion period, the TDPRP reduces to the PRP. In this case, our results

show that, when the driver is paid from the beginning of the time horizon, there always exists an

optimal solution where the driver leaves the depot immediately, i.e., w∗ = ϵ. However, this result

is not true when the driver is paid from his departure time. In this case, even in the absence of

congestion, it may be optimal to delay the departure of the vehicle in order to save on the driver

costs, when leaving at time ϵ would lead to a pre-service waiting time at the customer node.
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• The results of this section also apply to the case where emission costs are ignored (i.e., if

fc is set to 0) so that the objective function reduces to minimizing only the driver cost, that is,

Theorems 1 and 2 can be used to obtain an optimal solution (note that v = v̌ = ṽ = ∞ in this

case). When the driver is paid from the beginning of the time horizon, it is always optimal for him

to leave immediately and drive at speed vm. However, when the driver is paid from his departure

time, it may be optimal to wait at the depot.

The following theorem establishes the relationship between the optimal departure time and the

time window [l, u].

Theorem 3. The (earliest) optimal departure time from the depot w∗ is non-decreasing in l and

u. The optimal free-flow speed v∗ (whenever it is used) is non-increasing in l and u.

The following example illustrates how the optimal solution to the TDPRP varies with l and u.

Example 1. The parameters in Table 1 imply that v= 55.19 km/h and v= 75.34 km/h. Let ϵ= 0,

d = 100 km , vc = 19 km/h vm = 130 km/h and a = 10000 seconds. This implies that v̂ = 77.58

km/h and ṽ= 122.99 km/h. Table 7 shows the optimal solution as a function of the lower (l) and

upper (u) time windows, given in seconds.

Table 7 Optimal solution S = (w∗, v∗f ) as a function of lower and upper time window

Driver paid from the beginning of the time horizon Driver paid from departure time

l u w∗ v∗f Arrival Time w∗ v∗f Arrival Time

7500 11375 0 123.63 (vuϵ ) 11375 (u) 0 123.63 (vuϵ ) 11375 (u)
7500 12500 1260.42 (<a) 77.58 (v̂) 12500 (u) 7235.49 (<a) 122.99 (ṽ) 12500 (u)
7500 14700 10000 (a) 76.60 (vua ) 14700 (u) 10000 (a) 76.60 (vau) 14700 (u)

7500 70000 10000 (a) 75.34 (v) 14778.20 (∈ (l, u)) 10000 (a) 75.34 (v) 14778.20 (∈ (l, u))

15000 70000 10000 (a) 72 (vla) 15000 (l) 10221.79 (>a) 75.34 (v) 15000 (l)
25000 70000 10000 (a) 55.19 (v) 16523 (< l) 20221.79 (>a) 75.34 (v) 25000 (l)

We see that for low values of l and u, it is optimal for the driver to leave the depot immediately

and arrive at the customer node exactly at time u. As u increases, it becomes optimal to wait

at the depot and eventually arrive between l and u. Then as l is increased, the optimal arrival

time becomes exactly l and then possibly (when the driver is paid from the beginning of the time

horizon) a value less than l, meaning that there is a pre-service waiting time.

Based on the properties of single-arc TDPRP instance we derive the following results which also

apply to the general case.

Lemma 2. Given a TDPRP instance,

(i) it is never optimal for drivers to drive at a free-flow speed lower than v;

(ii) if drivers are paid from their departure time, it is never optimal for them to drive on the first

arc of a route at a free-flow speed lower than min{v̄, vm}.
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These results will be useful to improve the efficiency of the MIP formulation, as discussed in

Section 7.

6. Departure Time and Speed Optimization on Fixed Routes

In this section, we consider a special case of the TDPRP where there is only one vehicle and a fixed

sequence in which the customer nodes are to be visited. We refer to this problem as the Departure

Time and Speed Optimization Problem (DSOP). Let (0,1 . . . , n,n+ 1) be the fixed sequence of

nodes. Node n+1 may be a copy of the depot, implying a return to the origin but this does not

have to be the case. Let di denote the distance on arc (i, i+ 1) with 0 ≤ i ≤ n. As described in

Section 2, li, ui and hi are respectively the lower time window limit, the upper time window limit

and the service time at node i. Without loss of generality the demand values at each nodes are set

equal to zero. We assume the driver is paid from the beginning of the time horizon.

The decision variables are (i) the departure time from node i, denoted wi for i= 0, . . . , n and (ii)

the free-flow speed driven on arc (i, i+1) (if possible), denoted vif for i= 0, . . . , n. We must have

vif ∈ [0, vm] for i= 0, . . . , n, w0 ≥ ϵ, where ϵ denotes the earliest time the driver can leave the depot,

and wi ≥max{li,wi−1 + T (wi−1, v
i−1
f )}+ hi for i= 1, . . . , n, where T (wi−1, v

i−1
f ) denotes the travel

time of the vehicle between nodes i− 1 and i.

6.1. Solution methods for the DSOP

The TDPRP reduces toK instances of the DSOP if the route of each of theK vehicles is fixed. This

means that the DSOP can, in principle, be solved by a commercial optimization software using the

MIP model presented in Section 4, where constraints (11)–(15), (23), and (24) are relaxed. Even

in this case, however, solving the resulting problem requires considerable computational effort due

to the large number of binary decision variables representing the discretized speeds. Furthermore,

the precision of the solution depends on the level of discretization of the free-flow speeds. To

overcome these limitations, we propose a polynomial time solution method which, in our numerical

experiments, has been observed to solve the problem to optimality in every case we have considered.

The algorithm builds on the solution to the Speed Optimization Problem (SOP) proposed by

Norstad et al. (2010) and Hvattum et al. (2013) for ship routing, which was then adapted to the

PRP by Demir et al. (2012). The idea is to compute the optimal solution by recursively adjusting

the travel speed for segments of the route until a feasible solution is found. The method is exact

provided the total cost function is convex (Hvattum et al., 2013). Unfortunately this is not the

case with the TDPRP due to the time dependency. Our proposed method builds on the analytical

properties presented in Section 5 and maintains the recursive nature of the algorithm proposed for

the SOP.
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The pseudo-code for our DSOP algorithm is provided in Appendix B. A solution to the DSOP

problem is obtained by setting s= 0 and e= n+1. The DSOP algorithm operates as follows. It first

solves a relaxed problem without any time windows at intermediary nodes, that is, with only the

time window at the end node maintained. This solution is calculated by reducing the problem to a

single-arc TDPRP which is solved using Theorem 1. Once the solution to the relaxed problem has

been calculated, the algorithm checks whether there are any time window violations at intermediate

nodes, i.e., whether the arrival time at node i is lower than li or higher than ui. In case of multiple

violations, the algorithm selects the node p with the largest violation. The violation is eliminated

by calling the algorithm recursively on each side of the node where it occurred, that is, by calling

the function for (s, . . . , p) and for (p, . . . , e) separately.

7. Computational Results

This section presents the results of computational experiments using the integer linear programming

formulation of the TDPRP presented in Secion 4 and the DSOP algorithm discussed in Section 6.

All tests were carried out using three sets of instances from the PRPLIB (http://www.apollo.

management.soton.ac.uk/prplib.htm), with respectively 10, 15 and 20 nodes as described by

Demir et al. (2012). All experiments were conducted by using CPLEX 12.1 on a server with 2.93

GHz and 1.1 Gb RAM. The nodes in these instances represent randomly selected cities from the

United Kingdom, with real distances. The time windows and service times, however, are randomly

generated.

We set CPLEX to run sequentially in deterministic mode in a single thread. A common time-

limit of three hours was imposed on all instances. To improve the efficiency of the formulation, we

have used preprocessing to reduce the input data space by using the results of Lemma 2. More

specifically, we downsize the set of free-flow speed levels R by setting v1 = v. We also include the

values of the three speed levels v̄, v̂ and ṽ in the set of free-flow speed levels R, whenever these

do not exceed the upper speed limit vm. Finally, we supplement the formulation with two-node

subtour breaking constraints xij +xji ≤ 1,∀i, j ∈N0, i ̸= j, as was also done by Bektaş and Laporte

(2011).

7.1. Performance on PRP instances

This section compares the performance of the proposed formulation for the TDPRP with that

of Bektaş and Laporte (2011) for cases where there is no congestion. Table 25 in Appendix D.

presents the results of this experiment using 10-node instances. The first two columns of the

table are self-explanatory, whereas the columns PRP and TDPRP present the total cost produced

by the respective formulations and t(PRP) and t(TDPRP) present the associated computational
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times (in seconds) required to solve each instance to optimality. Compared with the mathematical

formulation proposed by Bektaş and Laporte (2011), the TDPRP formulation is superior in terms

of the computational time required to reach optimality. The average solution time with the new

formulation is indeed significantly reduced from 508.47 to 5.52 seconds. The proposed model also

can solve some larger PRP instances to optimality, in particular the 15- and 20-node instances,

as shown Section in 7.3. The Bektaş and Laporte (2011) formulation could not handle such sizes

because of the computational time requirements. One possible explanation for our formulation to

be faster, despite being more general, is that it does not include any big-M parameters. Bektaş and

Laporte (2011) use such a parameter both in the time window constraints and in the calculation

of the total travel time.

7.2. Performance of the DSOP algorithm

We have performed several computational experiments in order to evaluate the performance of our

DSOP algorithm. We compare the solutions obtained by our DSOP algorithm (denoted SA) with

the value obtained with the MIP formulation (denoted SIP ). The tests were run on three sets of

instances from the PRPLIB. For each set of instances, the time window limits were relaxed by a

factor δ, i.e. l′i = li− δ(ui− li) and u′
i = ui+ δ(ui− li). In order to solve the MIP formulation, three

sets (5, 10, and 15) of free-flow speed levels were considered. The results are reported in Table

8 which contains the average percentage deviation Dev (%) in total costs between SA and SIP ,

which is calculated as 100(TC(SA)−TC(SIP ))/TC(SA), where TC(S) denotes the total cost of a

solution S.

Table 8 Average Dev (%) for three sets of instances

Instances δ a vc # of speed levels

(s) (Km/h) 5 10 15

UK10 0.2 0 - -0.113 -0.011 -0.005
UK10 0.3 3000 15 -0.106 -0.015 -0.005
UK10 0.5 3600 10 -0.086 -0.009 -0.002
UK15 0.7 3000 15 -0.121 -0.018 -0.004
UK20 1.0 3000 15 -0.091 -0.018 -0.008

Table 8 shows that in all cases, the deviations are negative, implying that the solution com-

puted with our DSOP algorithm is better than the solution obtained with CPLEX, i.e., TC(SIP )>

TC(SA). This is because the MIP model optimizes the free-flow speed over a finite set of speed

levels, whereas in our algorithm considers speed as a continuous variable. These findings are con-

sistent with our DSOP algorithm reaching the optimal solution in all the problem instances we

considered.
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7.3. Importance of modeling traffic congestion and impact of driver wage policy

In this section, we compare the results of cases with and without congestion, as we did in Sec-

tion 3, using 10-, 15- and 20-node PRP instances. More specifically, by using the integer linear

programming formulation described in Section 4, we compute a time-dependent optimal solution

SD. Using the same formulation and fixing the congestion period to zero, we compute an time-

independent optimal solution SN . We note that solving the problem by means of a time-independent

approach may generate multiple optimal solutions which yield different total costs under a conges-

tion scenario, in which case we select the solution with the minimum waiting time at the depot.

For every instance, we assume the same two-level speed profile as defined in Section 2.1, and we

consider both driver wage policies. The congestion speed vc is set to 10 km/h and we consider

two values for the length of the congestion period: 3600 and 7200 seconds. A summary of the

results is provided in Tables 9 and 10 (the full results over 60 instances are reported in Tables

EC.14–EC.19 in Appendix D). These tables report, for each set of instances the percentage of

infeasible solutions SD and SN , the average computational time (denoted by t(SN) and t(SD)) and

the average saving of using a time-dependent formulation. The latter is calculated as Saving %=

100(TC(SN)−TC(SD))/TC(SN), representing the percentage decrease in costs which results from

incorporating traffic congestion into planning vehicles routes and schedules.

Table 9 Summarized results for three sets of instances with an initial congestion period of 3600 seconds

Drivers paid from the beginning of the time horizon Drivers paid from departure

Instances Infeasible Infeasible t(SN) t(SD) Saving Infeasible Infeasible t(SN) t(SD) Saving

SN % SD % s s % SN % SD % s s %

UK 10 30 0 3.663 4.981 3.206 30 0 3.136 4.561 6.330
UK 15 55 5 976.610 467.797 3.478 45 5 1148.129 668.824 5.705
UK 20† 19 0 1527.273 1119.881 2.937 24 0 2179.146 1003.909 5.736

†Results calculated only on the instances solved to optimality.

Table 10 Summarized results for three sets of instances with an initial congestion period of 7200 seconds

Drivers paid from the beginning of the time horizon Drivers paid from departure

Instances Infeasible Infeasible t(SN) t(SD) Saving Infeasible Infeasible t(SN) t(SD) Saving

SN % SD % s s % SN % SD % s s %

UK 10 50 0 3.663 10.870 4.942 50 0 3.136 8.514 15.276
UK 15 80 10 976.610 463.724 5.055 85 10 1148.129 714.044 14.986
UK 20† 80 0 1527.273 3388.063 5.310 88 0 2179.146 3628.597 14.910

†Results calculated only on the instances solved to optimality.

Tables 9 and 10 show that in the presence of traffic congestion, using a time-dependent formu-

lation significantly decreases the percentage of infeasible solutions. Furthermore the results also

suggest that if both solutions are feasible, the time-dependent one can yield considerable cost

savings over the time-independent one. The potential cost reduction increases proportionally to

the length of the congestion period and can more than double when the driver is paid from his
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departure time. These implications support the assertions made in Section 3 by means of simple

examples.

8. Conclusions

We have introduced and analyzed the time-dependent vehicle routing problem with time windows,

which considers vehicles traveling under two subsequent periods of congestion and free-flow, respec-

tively, and explicitly accounts for fuel consumption which increases sharply when vehicles travel at

slow speed. Since the amount of emissions from a vehicle is proportional to the amount of fuel con-

sumed, the modeling approach adopted in this paper yields solution with reduced greenhouse gas

emissions. We emphasize that our results also hold for the time-dependent VRP even if emissions

are not considered in the objective function.

We have provided an integer linear programming formulation, which is also valid for the special

case of the problem where there is no congestion (e.g., as in the PRP introduced by Bektaş and

Laporte 2011). We have presented several examples that motivate idle waiting time, either pre- or

post-service, at customer nodes or at the depot, in order to minimize a total cost function incorpo-

rating fuel consumption, emissions and driver wages. We have derived a complete characterization

of the optimal solution for a single-arc version of the TDPRP, identifying conditions under which

it is optimal to wait before departure, and the associated amount of time. The characterization

prescribes optimal speed levels under various conditions associated with time windows, the length

of the congestion period and the speed limits. The analytical results derived in the paper were used

to strengthen the computational performance of the mathematical formulation. Computational

results have confirmed that the proposed formulation computationally outperforms the formulation

recently proposed for the PRP. Moreover, the analytical expressions for optimal speeds can easily

be used as a “rule-of-thumb” for the design of vehicle routes under congestion.

The paper has also described a procedure to optimize departure times and speeds on a fixed

route, also building on the analytical results proven for the single-arc version of the problem. The

procedure extends previous algorithms specifically designed for the speed-optimization problem

(e.g., Norstad et al. (2010), Hvattum et al. (2013) and Demir et al., 2012). The combined departure

time and speed optimization problem is significantly more complicated. The pseudocode we have

proposed for its solution was empirically shown to run very quickly and consistently provide highly

accurate solutions on realistic instances. Our procedure can be embedded within algorithms for

the TDPRP, or can be used as a stand-alone routine when vehicle routes have already been fixed.

One obvious extension of the paper is to study the problem with multiple time zones where there

are multiple occurrences of congestion and free-flow traffic conditions. The most likely case to arise

in practice is a four-period problem corresponding to morning congestion, followed by a period
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free-flow, and a repetition of this pattern in afternoon rush-hour and evening traffic. Our study

indicates that this extension is likely to be significantly more complicated to analyze, but our work

can serve as a good starting point for its analysis.

Appendix A: Optimal solution tables

Condition 1 Condition 2 Condition 3 Condition 4 Condition 5 Solution

l≤ u≤ a (w,vf ) where w ∈
[
ϵ,max

{
ϵ,
(
l− d

vc

)}]

l < a< u

vm ≤ v
vu
a ≤ vm

v̂≥ v̌ (a, vm) or (ϵ, vm)
v̂≤ v̌ (ϵ, vm)

vu
a ≥ vm

v̂≥ v̌ (wu
m, vm) or (ϵ, vm)

v̂≤ v̌ (ϵ, vm)

vm ≥ v

vu
a ≤ v

v̂≥ v (a, v) or (ϵ, v)
v̂≤ v (ϵ, v)

v≤ vu
a ≤ vm

v̂≤ v
vu
ϵ ≤ v (ϵ, v)

vu
ϵ ≥ v (ϵ, vu

ϵ )

v≤ v̂≤ vu
a

vu
ϵ ≤ v̂ (ŵu, v̂) or (ϵ, v)

vu
ϵ ≥ v̂ (ϵ, vu

ϵ )
v̂≥ vu

a (a, va
u) or (ϵ, v)

vu
a ≥ vm

v̂≤ v
vu
ϵ ≤ v (ϵ, v)

vu
ϵ ≥ v (ϵ, vu

ϵ )

v≤ v̂≤ vm
vu
ϵ ≤ v̂ (ŵu, v̂) or (ϵ, v)

vu
ϵ ≥ v̂ (ϵ, vu

ϵ )
v̂≥ vm (wu

m, vm) or (ϵ, v)

a< l < u

vm ≤ v

vl
a ≤ vm (w,vm) where w ∈ [a,wl

m]

vu
a ≤ vm ≤ vl

a

v̂≥ v̌ (a, vm)
v̂≤ v̌ (wl

m, vm)

vu
a ≥ vm

v̂≥ v̌ (wu
m, vm)

v̂≤ v̌ (wl
m, vm)

v≤ vm ≤ v

vl
a ≤ v (w,v) where w ∈ [a,wl]

v≤ vl
a ≤ vm

vl
a ≥ v̂

vl
ϵ ≤ v̂ (ŵl, v̂)

vl
ϵ ≥ v̂ (ϵ, vl

ϵ)
vl
a ≤ v̂ (a, vl

a)

vu
a ≤ vm ≤ vl

a

v̂≤ vm

vl
ϵ ≤ v̂ (ŵl, v̂)

v̂≤ vl
ϵ ≤ vm (ϵ, vl

ϵ)
vl
ϵ ≥ vm (ϵ, vm)

vm ≤ v̂≤ v̌
vl
ϵ ≤ vm (wl

m, vm)
vl
ϵ ≥ vm (ϵ, vm)

v̂≥ v̌ (a, vm)

vu
a ≥ vm

v̂≤ vm

vl
ϵ ≤ v̂ (ŵl, v̂)

v̂≤ vl
ϵ ≤ vm (ϵ, vl

ϵ)
vl
ϵ ≥ vm (ϵ, vm)

vm ≤ v̂≤ v̌
vl
ϵ ≤ vm (wl

m, vm)
vl
ϵ ≥ vm (ϵ, vm)

v̂≥ v̌ (wu
m, vm)

vm ≥ v

vl
a ≤ v (w,v) where w ∈ [a,wl]

v≤ vl
a ≤ v

vl
a ≥ v̂

vl
ϵ ≤ v̂ (ŵl, v̂)

vl
ϵ ≥ v̂ (ϵ, vl

ϵ)
vl
a ≤ v̂ (a, vl

a)

vu
a ≤ v≤ vl

a

v̂≤ v
vl
ϵ ≤ v̂ (ŵl, v̂)

v̂≤ vl
ϵ ≤ v (ϵ, vl

ϵ)
vl
ϵ ≥ v (ϵ, v)

v̂≥ v (a, v)

v≤ vu
a ≤ vm

v̂≤ v

vl
ϵ ≤ v̂ (ŵl, v̂)

v̂≤ vl
ϵ ≤ v (ϵ, vl

ϵ)
vu
ϵ ≤ v≤ vl

ϵ (ϵ, v)
v≤ vu

ϵ (ϵ, vu
ϵ )

v≤ v̂≤ vu
a

vu
ϵ ≤ v̂ (ŵu, v̂)

vu
ϵ ≥ v̂ (ϵ, vu

ϵ )
v̂≥ vu

a (a, vu
a )

vu
a ≥ vm

v̂≤ v

vl
ϵ ≤ v̂ (ŵl, v̂)

v̂≤ vl
ϵ ≤ v (ϵ, vl

ϵ)
vu
ϵ ≤ v≤ vl

ϵ (ϵ, v)
v≤ vu

ϵ (ϵ, vu
ϵ )

v≤ v̂≤ vm
vu
ϵ ≤ v̂ (ŵu, v̂)

vu
ϵ ≥ v̂ (ϵ, vu

ϵ )
v̂≥ vm (wu

m, vm)
where ŵl = a− (d− (l− a)v̂)/vc, ŵu = a− (d− (u− a)v̂)/vc and wl = l− d/v.

Table 11 Optimal solution when driver is paid from the beginning of the time horizon.
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Condition 1 Condition 2 Condition 3 Condition 4 Condition 5 Solution

l≤ u≤ a (w,vf ) where w ∈
[
max

{
ϵ,
(
l− d

vc

)}
, u− d

vc

]

l < a< u

vm ≤ v
vu
a ≤ vm (w,vm) where w ∈ [a,wu

m]
vu
a ≥ vm (wu

m, vm)

vm ≥ v

vu
a ≤ v (w,v) where w ∈ [a,wu]

v≤ vu
a ≤ vm

ṽ≤ vu
a

vu
ϵ ≤ ṽ (w̃u, ṽ)

vu
ϵ ≥ ṽ (ϵ, vu

ϵ )
ṽ≥ vu

a (a, vu
a )

vu
a ≥ vm

ṽ≤ vm
vu
ϵ ≤ ṽ (w̃u, ṽ)

vu
ϵ ≥ ṽ (ϵ, vu

ϵ )
ṽ≥ vm (wu

m, vm)

a< l < u

vm ≤ v
vl
a ≤ vm (w,vm) where w ∈ [wl

m,wu
m]

vu
a ≤ vm ≤ vl

a (w,vm) where w ∈ [a,wu
m]

vu
a ≥ vm (wu

m, vm)

v≤ vm ≤ v

vl
a ≤ v (w,vm) where w ∈ [wl

m,wu
m]

v≤ vl
a ≤ vm (w,vm) where w ∈ [wl

m,wu
m]

vu
a ≤ vm ≤ vl

a (w,vm) where w ∈ [a,wu
m]

vu
a ≥ vm (wu

m, vm)

vm ≥ v

vl
a ≤ v (w,v) where w ∈ [wl,wu]

v≤ vl
a ≤ v (w,v) where w ∈ [wl,wu]

vu
a ≤ v≤ vl

a (w,v) where w ∈ [a,wu]

v≤ vu
a ≤ vm

ṽ≤ vu
a

vu
ϵ ≤ ṽ (w̃u, ṽ)

vu
ϵ ≥ ṽ (ϵ, vu

ϵ )
ṽ≥ vu

a (a, vu
a )

vu
a ≥ vm

ṽ≤ vm
vu
ϵ ≤ ṽ (w̃u, ṽ)

vu
ϵ ≥ ṽ (ϵ, vu

ϵ )
ṽ≥ vm (wu

m, vm)
where w̃u = a− (d− (u− a)ṽ)/vc and wu = u− d/v.

Table 12 Optimal solution when driver is paid from departure time

Appendix B: Pseudocode for the DSOP procedure

Algorithm DSOP algorithm part 1
1: procedure DSOP(s, e, ϵ)
2: [r,ws, . . . ,we−1, vs

f , . . . , v
e−1
f ]← SOLVE RELAXED (s, e, ϵ);

3: violation← 0, p← 0;
4: for i← r+1 to e− 1 do
5: gi←max{0, li−wi−1−Ti−1,wi−1 +Ti−1−ui};
6: if gi > violation then
7: violation← gi, p← i;
8: end if
9: end for
10: if violation> 0 and wp−1 +Tp−1 < lp then
11: up← lp;
12: [w∗

s , . . . ,w
∗
p−1, v

s
f
∗, . . . , vp−1

f

∗
]← DSOP(s, p, ϵ);

13: ϵ←max{w∗
p−1 +Tp−1, lp}+hp;

14: a′←max{ϵ, a};
15: [w∗

p, . . . ,w
∗
e−1, v

p
f
∗, . . . , ve−1

f

∗
]← DSOP(p, e, ϵ);

16: end if
17: if violation> 0 and wp−1 +Tp−1 >up then
18: lp← up;
19: [w∗

s , . . . ,w
∗
p−1, v

s
f
∗, . . . , vp−1

f

∗
]← DSOP(s, p, ϵs);

20: ϵ←max{w∗
p−1 +Tp−1, lp}+hp;

21: a′ =max{ϵ, a};
22: [w∗

p, . . . ,w
∗
e−1, v

p
f
∗, . . . , ve−1

f

∗
]← DSOP(p, e, ϵ);

23: end if
24: end procedure

The DSOP algorithm also uses as inputs the problem parameters (a, vc, di for i = s, . . . , e −

1, lj, uj, hj for j = s, . . . , e) but for the sake of conciseness, these are not written as variables in

the function declaration. Furthermore, the function SINGLE ARC TDPRP calculates the optimal
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Algorithm DSOP algorithm part 2
25: function SOLVE RELAXED(s, e, ϵs)
26: k← s, j← s, ϵ← ϵs;
27: while ϵ < a− ds/vc and k < e− 1 do
28: k← k+1;
29: ϵ← ϵ+ dk−1/vc +hk;
30: end while
31: while j ≤ k do
32: d←

∑e−1
i=j di , h←

∑e−1
i=j+1 hi, u← (ue−h), l← (le−h), a′←max{ϵ, a};

33: (wj , vj)← SINGLE ARC TDPRP (a, vc, d, ϵ, l, u);
34: if wj ≤ a− dj/vc then
35: wj← ϵ;
36: end if
37: T c

j ←min{(a−wj)+, d/vc}, T f
j ← (d− (a−wj)+vc)+/vj , T ← T c

j +
∑j−1

i=s di/vc +T f
j ;

38: TCj← fcλ[γα(µ+ f)
∑e−1

i=s
di + kNeV Tj +βγ(v3

c(T
c
j +

∑j−1
i=s

di/vc)+ vj
3T f

j )]+ dc max
{
wj +T c

j +T f
j +h, le

}
;

39: j← j+1;
40: ϵ← ϵ+ dj−1/vc +hj ;
41: end while
42: TCt←min{TCs, . . . , TCk};
43: w∗

s ← ϵs;
44: for i← s+1 to t− 1 do
45: w∗

i ←w∗
i−1 + di−1/vc +hi;

46: end for
47: w∗

t ←wt and vs
f
∗ = . . .= ve−1

f

∗← vt;
48: for i← t+1 to e− 1 do
49: w∗

i ←w∗
i−1 +Ti−1 +hi;

50: end for
51: r∗← t;
52: end function

values [r,ws, . . . ,we−1, v
s
f , . . . , v

e−1
f ] using Theorem 1. We denote by Tj and T the total travel time

spent by the vehicle on the arc (j, j+1) and on the path (s, . . . , e), respectively. Furthermore, we

denote by T c
j and T f

j the time spent by the vehicle traveling on the path (j, . . . , e) at congestion

speed and at free-flow speed, respectively.

Appendix C: Proofs of Lemmas and Theorems

To simplify the notation in the proofs below, we let A = fcλγα(µ+ f), B = fcλkNeV and C =

fcλβγ, D= dc. Note that A,B,C,D≥ 0.

C.1. Proof of Lemma 1

Proof of Lemma 1 First note that since w ≤ wu
m, we have vm ≥ vuw. For a fixed w, we need to

minimize TC with respect to vf in [vuw, vm].

When the driver is paid from the beginning of the time horizon, the total cost function TC for

a fixed w as a function of the free-flow speed can be written as

TC(w,vf) =

{
Ad+(B+D+Cv3c )Tc(w)+ (B+D+Cv3f)Tf (w,vf)+D(w− ϵ) if vuw < vf < v

l
w

Ad+(B+Cv3c )Tc(w)+ (B+Cv3f)Tf(w,vf )+D(l− ϵ) if vf ≥ vlw.

For a fixed w, the function TC is continuous in vf and is made of two pieces which are both convex

in vf . More precisely, the first piece is minimized at vf = v̄, while the second one at vf = v. Note

that v < v̄.
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In case (i) the first part is non-increasing and the second one is minimized at v. If v > vm, the

global minimum is achieved at vm, otherwise it is achieved at v. In case (ii) the first part is non-

increasing and the second one is non-decreasing. If vlw > vm, the global minimum is achieved at vm,

otherwise it is achieved at vlw. In case (iii) the first part is minimized at v̄, while the second one is

increasing. If v̄ > vm, the global minimum is achieved at vm, otherwise it is achieved at v̄. Finally,

in case (iv) both parts are non-decreasing so the global minimum is achieved at vuw.

When the driver is paid from his departure time, the total cost function has an extra −D(w− ϵ)
term, which does not depend on vf . Hence, the solution is the same. �

C.2. Proof of Theorem 1

Proof of Theorem 1 In the following tables, we use circled numbers such as ¬ and ­, to refer to

the pieces of the TC function. For each piece we use symbols such as →, ↗, ↘ and ⌣, to indicate

whether the TC function is respectively constant, non-decreasing, non-increasing or convex, with

respect to w.

Let T (w) = minvf∈[0,vm] TC(w,vf ) such that w+ T (w,vf)≤ u. We consider three cases: (1) l ≤
u≤ a, (2) l < a< u and (3) a≤ l < u.

In case (1), we have:

TC(w) =

{
Ad+(B+Cv3

c)
d

vc
+D(l− ϵ) if ϵ≤w<max

{
ϵ, l− d

vc

}
Ad+(B+D+Cv3

c)
d

vc
+Dw if max

{
ϵ, l− d

vc

}
≤w≤ u− d

vc
.

The first piece is constant in w and the second is increasing in w. So any departure time in[
ϵ,max

{
ϵ, l− d

vc

}]
is optimal. We summarize this information in Table 13

Table 13 Case 1

Case ¬ ­ Solution

1 → ↗ (w,vf ) with w ∈
[
ϵ,max

{
ϵ, l− d

vc

}]

where ¬ and ­ are the time regions delimited by the breakpoints: max
{
ϵ, l− d

vc

}
and u− d

vc
.

In case (2), we distinguish two subcases: (2.1) vm < v, (2.2) vm ≥ v.

In case (2.1):

TC(w) =


Ad+(B+Cv3

c)
d

vc
+D(l− ϵ) if ϵ≤w<max

{
ϵ, l− d

vc

}
Ad+(B+D+Cv3

c)
d

vc
+Dw if max

{
ϵ, l− d

vc

}
≤w<max

{
ϵ, a− d

vc

}
Ad+(B+D+Cv3

c)(a−w)+ +(B+D+C(vm)3) d−(a−w)+vc
vm

+Dw if max
{
ϵ, a− d

vc

}
≤w≤wu

m.

Table 14 gives the solution depending on which piece contains the value a.

Table 14 Case 2.1

Case a∈ Condition 1 Condition 2 ¬ ­ ® ¯ Solution

2.1.1.1
[
max

{
ϵ, a− d

vc

}
,wu

m

)
vu
a ≤ vm v̂≥ v̌ → ↗ ↘ ↗ (a, vm) or (ϵ, vm)

2.1.1.2
[
max

{
ϵ, a− d

vc

}
,wu

m

)
vu
a ≤ vm v̂≤ v̌ → ↗ ↗ ↗ (ϵ, vm)

2.1.2.1 [wu
m,∞) vu

a ≥ vm v̂≥ v̌ → ↗ ↘ (wu
m, vm) or (ϵ, vm)

2.1.2.2 [wu
m,∞) vu

a ≥ vm v̂≤ v̌ → ↗ ↗ (ϵ, vm)
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In some cases, there are two possible solutions. Then, the optimal solution can be obtained by

calculating the cost associated with each one of them to find out which is the least (note that this

needs to be done only if ϵ < a− d
vc
, otherwise the solution with w> ϵ is the optimal one).

In case (2.2)

TC(w) =


Ad+(B+Cv3

c)
d

vc
+D(l− ϵ) if ϵ≤w<max

{
ϵ, l− d

vc

}
Ad+(B+D+Cv3

c)
d

vc
+Dw if max

{
ϵ, l− d

vc

}
≤w<max

{
ϵ, a− d

vc

}
Ad+(B+D+Cv3

c)(a−w)+ +(B+D+Cv3) d−(a−w)+vc
v

+Dw if max
{
ϵ, a− d

vc

}
≤w<max{ϵ,wu}

Ad+(B+D+Cv3
c)(a−w)+ +(B+D+C(vu

w)3) d−(a−w)+vc
vu
w

+Dw if max{ϵ,wu} ≤w≤wu
m.

where

w̄u =

{
a− d−(u−a)v̄

vc
if vua ≥ v̄

u− d
v̄

otherwise.

Table 15 gives the solution in all possible subcases.

Table 15 Case 2.2

Case a∈ Condition 1 Condition 2 Condition 3 ¬ ­ ® ¯ ° Solution

2.2.1.1
[
max

{
ϵ, a− d

vc

}
,wu

)
vu
a ≤ v v̂≥ v → ↗ ↘ ↗ ↗ (a, v) or (ϵ, v)

2.2.1.2
[
max

{
ϵ, a− d

vc

}
,wu

)
vu
a ≤ v v̂≤ v → ↗ ↗ ↗ ↗ (ϵ, v)

2.2.2.1.1 [wu,wu
m) v≤ vu

a ≤ vm v̂≤ v vu
ϵ ≤ v → ↗ ↗ ↗ ↗ (ϵ, v)

2.2.2.1.2 [wu,wu
m) v≤ vu

a ≤ vm v̂≤ v vu
ϵ ≥ v ↗ ↗ (ϵ, vu

ϵ )
2.2.2.2.1 [wu,wu

m) v≤ vu
a ≤ vm v≤ v̂≤ vu

a vu
ϵ ≤ v̂ → ↗ ↘ ⌣ ↗ (ŵu, v̂) or (ϵ, v)

2.2.2.2.2 [wu,wu
m) v≤ vu

a ≤ vm v≤ v̂≤ vu
a vu

ϵ ≥ v̂ ↗ ↗ (ϵ, vu
ϵ )

2.2.2.3 [wu,wu
m) v≤ vu

a ≤ vm v̂≥ vu
a → ↗ ↘ ↘ ↗ (a, va

u) or (ϵ, v)
2.2.3.1.1 [wu

m,∞) vu
a ≥ vm v̂≤ v vu

ϵ ≤ v → ↗ ↗ ↗ (ϵ, v)
2.2.3.1.2 [wu

m,∞) vu
a ≥ vm v̂≤ v vu

ϵ ≥ v ↗ ↗ (ϵ, vu
ϵ )

2.2.3.2.1 [wu
m,∞) vu

a ≥ vm v≤ v̂≤ vm vu
ϵ ≤ v̂ → ↗ ↘ ⌣ (ŵu, v̂) or (ϵ, v)

2.2.3.2.2 [wu
m,∞) vu

a ≥ vm v≤ v̂≤ vm vu
ϵ ≥ v̂ ↗ (ϵ, vu

ϵ )
2.2.3.3 [wu

m,∞) vu
a ≥ vm v̂≥ vm → ↗ ↘ ↘ (wu

m, vm) or (ϵ, v)

where ŵu = a− (d− (u− a)v̂)/vc.

In case (3), we distinguish three subcases: (3.1) vm < v, (3.2) v≤ vm < v, (3.3) vm ≥ v.

In case (3.1)

TC(w) =


Ad+(B+Cv3

c)
d

vc
+D(l− ϵ) if ϵ≤w<max

{
ϵ,
(
a− d

vc

)}
Ad+(B+Cv3

c)(a−w)+ +(B+C(vm)3) d−(a−w)+vc
vm

+D(l− ϵ) if max
{
ϵ,
(
a− d

vc

)}
≤w<max{ϵ,wl

m}

Ad+(B+D+Cv3
c)(a−w)+ +(B+D+C(vm)3) d−(a−w)+vc

vm
+Dw if max{ϵ,wl

m} ≤w≤wu
m.

Table 16 gives the solution in all possible subcases.

Table 16 Case 3.1

Case a∈ Condition 1 Condition 2 ¬ ­ ® ¯ Solution

3.1.1
[
max

{
ϵ,
(
a− d

vc

)}
,max{ϵ,wl

m}
)

vl
a ≤ vm → ↘ → ↗ (w,vm) where w ∈ [a,wl

m]

3.1.2.1 [wl
m,wu

m] vu
a ≤ vm ≤ vl

a v̌≤ v̂ → ↘ ↘ ↗ (a, vm)
3.1.2.1 [wl

m,wu
m] vu

a ≤ vm ≤ vl
a v̌≥ v̂ → ↘ ↗ ↗ (max{ϵ,wl

m} , vm)
3.1.3.1 [wu

m,∞) vu
a ≥ vm v̌≤ v̂ → ↘ ↘ (wu

m, vm)
3.1.3.2 [wu

m,∞) vu
a ≥ vm v̌≥ v̂ → ↘ ↗ (max{ϵ,wl

m} , vm)
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In case (3.2)

TC(w) =


Ad+(B+Cv3

c)
d

vc
+D(l− ϵ) if ϵ≤w<max

{
ϵ,
(
a− d

vc

)}
Ad+(B+Cv3

c)(a−w)+ +(B+Cv3) d−(a−w)+vc
v

+D(l− ϵ) if max
{
ϵ,
(
a− d

vc

)}
≤w<max{ϵ,wl}

Ad+(B+Cv3
c)(a−w)+ +(B+C(vl

w)3) d−(a−w)+vc

vl
w

+D(l− ϵ) if max{ϵ,wl} ≤w<max{ϵ,wl
m}

Ad+(B+D+Cv3
c)(a−w)+ +(B+D+C(vm)3) d−(a−w)+vc

vm
+Dw ifmax{ϵ, (wl

m)} ≤w≤wu
m,

where

wl =

{
a− d−(l−a)v

vc
if vla ≥ v

l− d
v

otherwise.

Table 17 gives the solution in all possible subcases.

Table 17 Case 3.2

Case a∈ Condition 1 Condition 2 Condition 3 ¬ ­ ® ¯ ° Solution

3.2.1
[
max

{
ϵ,
(
a− d

vc

)}
,wl

)
vl
a ≤ v → ↘ → ↗ ↗ (w,v) where w ∈ [a,wl]

3.2.2.1.1 [wl,wl
m) v≤ vl

a ≤ vm vl
a ≥ v̂ vl

ϵ ≤ v̂ → ↘ ⌣ ↗ ↗ (ŵl, v̂)
3.2.2.1.2 [wl,wl

m) v≤ vl
a ≤ vm vl

a ≥ v̂ vl
ϵ ≥ v̂ ↗ ↗ ↗ (ϵ, vl

ϵ)
3.2.2.2 [wl,wl

m) v≤ vl
a ≤ vm vl

a ≤ v̂ → ↘ ↘ ↗ ↗ (a, vl
a)

3.2.3.1.1 [wl
m,wu

m) vu
a ≤ vm ≤ vl

a v̂≤ vm vl
ϵ ≤ v̂ → ↘ ⌣ ↗ ↗ (ŵl, v̂)

3.2.3.1.2 [wl
m,wu

m) vu
a ≤ vm ≤ vl

a v̂≤ vm v̂≤ vl
ϵ ≤ vm ↗ ↗ ↗ (ϵ, vl

ϵ)
3.2.3.1.3 [wl

m,wu
m) vu

a ≤ vm ≤ vl
a v̂≤ vm vl

ϵ ≥ vm ↗ ↗ (ϵ, vm)
3.2.3.2.1 [wl

m,wu
m) vu

a ≤ vm ≤ vl
a vm ≤ v̂≤ v̌ vl

ϵ ≤ vm → ↘ ↘ ↗ ↗ (wl
m, vm)

3.2.3.2.2 [wl
m,wu

m) vu
a ≤ vm ≤ vl

a vm ≤ v̂≤ v̌ vl
ϵ ≥ vm ↗ ↗ (ϵ, vm)

3.2.3.3 [wl
m,wu

m) vu
a ≤ vm ≤ vl

a v̂≥ v̌ → ↘ ↘ ↘ ↗ (a, vm)
3.2.4.1.1 [wu

m,∞) vu
a ≥ vm v̂≤ vm vl

ϵ ≤ v̂ → ↘ ⌣ ↗ (ŵl, v̂)
3.2.4.1.2 [wu

m,∞) vu
a ≥ vm v̂≤ vm v̂≤ vl

ϵ ≤ vm ↗ ↗ (ϵ, vl
ϵ)

3.2.4.1.3 [wu
m,∞) vu

a ≥ vm v̂≤ vm vl
ϵ ≥ vm ↗ (ϵ, vm)

3.2.4.2.1 [wu
m,∞) vu

a ≥ vm vm ≤ v̂≤ v̌ vl
ϵ ≤ vm → ↘ ↘ ↗ (wl

m, vm)
3.2.4.2.2 [wu

m,∞) vu
a ≥ vm vm ≤ v̂≤ v̌ vl

ϵ ≥ vm ↗ (ϵ, vm)
3.2.4.3 [wu

m,∞) vu
a ≥ vm v̂≥ v̌ → ↘ ↘ ↘ (wu

m, vm)

where ŵl = a− (d− (l− a)v̂)/vc.

In case (3.3):

TC(w) =


Ad+(B+Cv3

c)
d

vc
+D(l− ϵ) if ϵ≤w<max

{
ϵ,
(
a− d

vc

)}
Ad+(B+Cv3

c)(a−w)+ +(B+Cv3) d−(a−w)+vc
v

+D(l− ϵ) if max
{
ϵ,
(
a− d

vc

)}
≤w<max{ϵ,wl}

Ad+(B+Cv3
c)(a−w)+ +(B+C(vl

w)3) d−(a−w)+vc

vl
w

+D(l− ϵ) if max{ϵ,wl} ≤w<max{ϵ,wl}

Ad+(B+D+Cv3
c)(a−w)+ +(B+D+Cv̄3) d−(a−w)+vc

v̄
+Dw if max{ϵ,wl} ≤w<max{ϵ,wu}

Ad+(B+D+Cv3
c)(a−w)+ +(B+D+C(vu

w)3) d−(a−w)+vc
vu
w

+Dw if max{ϵ,wu} ≤w≤wu
m

where

w̄l =

{
a− d−(l−a)v̄

vc
if vla ≥ v̄

l− d
v̄

otherwise.

Table 18 gives the solution for all subcases.

31



Table 18 Case 3.3

Case a∈ Condition 1 Condition 2 Condition 3 ¬ ­ ® ¯ ° ± Solution

3.3.1
[
max

{
ϵ,
(
a− d

vc

)}
, ϵl

)
vl
a ≤ v → ↘ → ↗ ↗ ↗ (w,v) where w ∈ [a,wl]

3.3.2.1.1 [wl,wl) v≤ vl
a ≤ v vl

a ≥ v̂ vl
ϵ ≤ v̂ → ↘ ⌣ ↗ ↗ ↗ (ŵl, v̂)

3.3.2.1.2 [wl,wl) v≤ vl
a ≤ v vl

a ≥ v̂ vl
ϵ ≥ v̂ ↗ ↗ ↗ ↗ (ϵ, vl

ϵ)
3.3.2.2 [wl,wl) v≤ vl

a ≤ v vl
a ≤ v̂ → ↘ ↘ ↗ ↗ ↗ (a, vl

a)
3.3.3.1.1 [wl,wu) vu

a ≤ v≤ vl
a v̂≤ v vl

ϵ ≤ v̂ → ↘ ⌣ ↗ ↗ ↗ (ŵl, v̂)
3.3.3.1.2 [wl,wu) vu

a ≤ v≤ vl
a v̂≤ v v̂≤ vl

ϵ ≤ v ↗ ↗ ↗ ↗ (ϵ, vl
ϵ)

3.3.3.1.3 [wl,wu) vu
a ≤ v≤ vl

a v̂≤ v vl
ϵ ≥ v ↗ ↗ ↗ (ϵ, v)

3.3.3.2 [wl,wu) vu
a ≤ v≤ vl

a v̂≥ v → ↘ ↘ ↘ ↗ ↗ (a, v)
3.3.4.1.1 [wu,wu

m) v≤ vu
a ≤ vm v̂≤ v vl

ϵ ≤ v̂ → ↘ ⌣ ↗ ↗ ↗ (ŵl, v̂)
3.3.4.1.2 [wu,wu

m) v≤ vu
a ≤ vm v̂≤ v v̂≤ vl

ϵ ≤ v ↗ ↗ ↗ ↗ (ϵ, vl
ϵ)

3.3.4.1.3 [wu,wu
m) v≤ vu

a ≤ vm v̂≤ v vu
ϵ ≤ v≤ vl

ϵ ↗ ↗ ↗ (ϵ, v)
3.3.4.1.4 [wu,wu

m) v≤ vu
a ≤ vm v̂≤ v v≤ vu

ϵ ↗ ↗ (ϵ, vu
ϵ )

3.3.4.2.1 [wu,wu
m) v≤ vu

a ≤ vm v≤ v̂≤ vu
a vu

ϵ ≤ v̂ → ↘ ↘ ↘ ⌣ ↗ (ŵu, v̂)
3.3.4.2.2 [wu,wu

m) v≤ vu
a ≤ vm v≤ v̂≤ vu

a vu
ϵ ≥ v̂ ↗ ↗ (ϵ, vu

ϵ )
3.3.4.3 [wu,wu

m) v≤ vu
a ≤ vm v̂≥ vu

a → ↘ ↘ ↘ ↘ ↗ (a, vu
a )

3.3.5.1.1 [wu
m,∞) vu

a ≥ vm v̂≤ v vl
ϵ ≤ v̂ → ↘ ⌣ ↗ ↗ (ŵl, v̂)

3.3.5.1.2 [wu
m,∞) vu

a ≥ vm v̂≤ v v̂≤ vl
ϵ ≤ v ↗ ↗ ↗ (ϵ, vl

ϵ)
3.3.5.1.3 [wu

m,∞) vu
a ≥ vm v̂≤ v vu

ϵ ≤ v≤ vl
ϵ ↗ ↗ (ϵ, v)

3.3.5.1.4 [wu
m,∞) vu

a ≥ vm v̂≤ v v≤ vu
ϵ ↗ (ϵ, vu

ϵ )
3.3.5.2.1 [wu

m,∞) vu
a ≥ vm v≤ v̂≤ vm vu

ϵ ≤ v̂ → ↘ ↘ ↘ ⌣ (ŵu, v̂)
3.3.5.2.2 [wu

m,∞) vu
a ≥ vm v≤ v̂≤ vm vu

ϵ ≥ v̂ ↗ (ϵ, vu
ϵ )

3.3.5.3 [wu
m,∞) vu

a ≥ vm v̂≥ vm → ↘ ↘ ↘ ↘ (wu
m, vm)

where ŵu = a− (d− (u− a)v̂)/vc and ŵl = a− (d− (l− a)v̂)/vc.

�

C.3. Proof of Theorem 2

Proof of Theorem 2 Let T (w) =minvf∈[ϵ,vm] TC(w,vf ) such that w+T (w,vf)≤ u. We consider

three cases: (1) l≤ u≤ a, (2) l < a< u and (3) a≤ l < u.

In case (1), we have

TC(w) =

Ad+(B+Cv3c )
d
vc
+D(l−w) if ϵ≤w<max

{
ϵ, l− d

vc

}
Ad+(B+D+Cv3c )

d
vc

if max
{
ϵ, l− d

vc

}
≤w≤ u− d

vc
.

The first piece is decreasing in w and the second is constant in w. So any departure time in[
max

{
ϵ, l− d

vc

}
, u
]
is optimal. We summarize this information in Table 19.

Table 19 Case 1

Case ¬ ­ Solution

1 ↘ → (w,vf ) with w ∈
[
max

{
ϵ, l− d

vc

}
, u− d

vc

]

In case 2 we distinguish two subcases: (2.1) vm < v, (2.2) vm ≥ v.

In case (2.1)

TC(w) =


Ad+(B+Cv3

c)
d

vc
+D(l−w) if ϵ≤w<max

{
ϵ, l− d

vc

}
Ad+(B+D+Cv3

c)
d

vc
if max

{
ϵ, l− d

vc

}
≤w<max

{
ϵ,
(
a− d

vc

)}
Ad+(B+D+Cv3

c)(a−w)+ +(B+D+C(vm)3) d−(a−w)+vc
vm

if max
{
ϵ,
(
a− d

vc

)}
≤w≤wu

m.

Table 20 gives the solution in all possible subcases.
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Table 20 Case 2.1

Case a∈ Condition 1 ¬ ­ ® ¯ Solution

2.1.1
[
max

{
ϵ,
(
a− d

vc

)}
,wu

m

)
vu
a ≤ vm ↘ → ↘ → (w,vm) where w ∈ [a,wu

m]

2.1.2 [wu
m,∞) vu

a ≥ vm ↘ → ↘ (wu
m, vm)

In case (2.2)

TC(w) =


Ad+(B+Cv3

c)
d

vc
+D(l−w) if ϵ≤w<max

{
ϵ, l− d

vc

}
Ad+(B+D+Cv3

c)
d

vc
if max

{
ϵ, l− d

vc

}
≤w<max

{
ϵ,
(
a− d

vc

)}
Ad+(B+D+Cv3

c)(a−w)+ +(B+D+Cv3) d−(a−w)+vc
v

if max
{
ϵ,
(
a− d

vc

)}
≤w<max{ϵ,wu}

Ad+(B+D+Cv3
c)(a−w)+ +(B+D+C(vu

w)3) d−(a−w)+vc
vu
w

if max{ϵ,wu} ≤w≤wu
m.

Table 21 gives the solution in all possible subcases.

Table 21 Case 2.2

Case a∈ Condition 1 Condition 2 Condition 3 ¬ ­ ® ¯ ° Solution

2.2.1
[
max

{
ϵ,
(
a− d

vc

)}
,wu

)
vu
a ≤ v ↘ → ↘ → ↗ (w,v) where w ∈ [a,wu)

2.2.2.1.1 [wu,wu
m) v≤ vu

a ≤ vm ṽ≤ vu
a vu

ϵ ≤ ṽ ↘ → ↘ ⌣ ↗ (w̃u, ṽ)
2.2.2.1.2 [wu,wu

m) v≤ vu
a ≤ vm ṽ≤ vu

a vu
ϵ ≥ ṽ ↗ ↗ (ϵ, vu

ϵ )
2.2.2.2 [wu,wu

m) v≤ vu
a ≤ vm ṽ≥ vu

a ↘ → ↘ ↘ ↗ (a, vu
a )

2.2.3.1.1 [wu
m,∞) vu

a ≥ vm ṽ≤ vm vu
ϵ ≤ ṽ ↘ → ↘ ⌣ (w̃u, ṽ)

2.2.3.1.2 [wu
m,∞) vu

a ≥ vm ṽ≤ vm vu
ϵ ≥ ṽ ↗ (ϵ, vu

ϵ )
2.2.3.2 [wu

m,∞) vu
a ≥ vm ṽ≥ vm ↘ → ↘ ↘ (wu

m, vm)

where w̃u = a− (d− (u− a)ṽ)/vc.

In case 3 we distinguish three subcases: (3.1) vm < v, (3.2) v≤ vm < v, (3.3) vm ≥ v.

In case (3.1)

TC(w) =


Ad+(B+Cv3

c)
d

vc
+D(l−w) if ϵ≤w<max

{
ϵ,
(
a− d

vc

)}
Ad+(B+Cv3

c)(a−w)+ +(B+C(vm)3) d−(a−w)+vc
vm

+D(l−w) if max
{
ϵ,
(
a− d

vc

)}
≤w<max{ϵ,wl

m}

Ad+(B+D+Cv3
c)(a−w)+ +(B+D+C(vm)3) d−(a−w)+vc

vm
if max{ϵ,wl

m} ≤w≤wu
m.

Table 22 gives the solution in all possible subcases.

Table 22 Case 3.1

Case a∈ Condition 1 ¬ ­ ® ¯ Solution

3.1.1
[
max

{
ϵ,
(
a− d

vc

)}
,wl

m

)
vl
a ≤ vm ↘ ↘ ↘ → (w,vm) where w ∈ [wl

m,wu
m]

3.1.2 [wl
m,wu

m) vu
a ≤ vm ≤ vl

a ↘ ↘ ↘ → (w,vm) where w ∈ [a,wu
m]

3.1.3 [wl
m,wu

m) vu
a ≥ vm ↘ ↘ ↘ (wu

m, vm).

In case (3.2)

TC(w) =


Ad+(B+Cv3

c)
d

vc
+D(l−w) if ϵ≤w<max

{
ϵ,
(
a− d

vc

)}
Ad+(B+Cv3

c)(a−w)+ +(B+Cv3) d−(a−w)+vc
v

+D(l−w) if max
{
ϵ,
(
a− d

vc

)}
≤w<max{ϵ,wl}

Ad+(B+Cv3
c)(a−w)+ +(B+C(vl

w)3) d−(a−w)+vc

vl
w

+D(l−w) if max{ϵ,wl} ≤w<max{ϵ,wl
m}

Ad+(B+D+Cv3
c)(a−w)+ +(B+D+C(vm)3) d−(a−w)+vc

vm
if max{ϵ,wl

m} ≤w≤wu
m.

Table 23 gives the solution in all possible subcases.
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Table 23 Case 3.2

Case a∈ Condition 1 ¬ ­ ® ¯ ° Solution

3.2.1
[
max

{
ϵ,
(
a− d

vc

)}
,wl

)
vl
a ≤ v ↘ ↘ ↘ ↘ → (w,vm) where w ∈ [wl

m,wu
m]

3.2.2 [wl,wl
m) v≤ vl

a ≤ vm ↘ ↘ ↘ ↘ → (w,vm) where w ∈ [wl
m,wu

m]
3.2.3 [wl

m,wu
m) vu

a ≤ vm ≤ vl
a ↘ ↘ ↘ ↘ → (w,vm) where w ∈ [a,wu

m]
3.2.4 [wu

m,∞) vu
a ≥ vm ↘ ↘ ↘ ↘ (wu

m, vm)

In case (3.3)

TC(w) =


Ad+(B+Cv3

c)
d

vc
+Dl if ϵ≤w<max

{
ϵ,
(
a− d

vc

)}
Ad+(B+Cv3

c)(a−w)+ +(B+Cv3) d−(a−w)+vc
v

+D(l−w) if max
{
ϵ,
(
a− d

vc

)}
≤w< (wl)+

Ad+(B+Cv3
c)(a−w)+ +(B+C(vl

w)3) d−(a−w)+vc

vl
w

+D(l−w) if (wl)+ ≤w< (wl)+

Ad+(B+D+Cv3
c)(a−w)+ +(B+D+Cv̄3) d−(a−w)+vc

v̄
if (wl)+ ≤w< (wu)+

Ad+(B+D+Cv3
c)(a−w)+ +(B+D+C(vu

w)3) d−(a−w)+vc
vu
w

if (wu)+ ≤w≤wu
m.

Table 24 gives the solution in all possible subcases.

Table 24 Case 3.3

Case a∈ Condition 1 Condition 2 Condition 3 ¬ ­ ® ¯ ° ± Solution

3.3.1
[
max

{
ϵ,
(
a− d

vc

)}
,wl

)
vl
a ≤ v ↘ ↘ ↘ ↘ → ↗ (w,v) where w ∈ [wl,wu]

3.3.2 [wl,wl) v≤ vl
a ≤ v ↘ ↘ ↘ ↘ → ↗ (w,v) where w ∈ [wl,wu]

3.3.3 [wl,wu) vu
a ≤ v≤ vl

a ↘ ↘ ↘ ↘ → ↗ (w,v) where w ∈ [a,wu]
3.3.4.1.1 [wu,wu

m) v≤ vu
a ≤ vm ṽ≤ vu

a vu
ϵ ≤ ṽ ↘ ↘ ↘ ↘ ⌣ ↗ (w̃u, ṽ)

3.3.4.1.2 [wu,wu
m) v≤ vu

a ≤ vm ṽ≤ vu
a vu

ϵ ≥ ṽ ↗ ↗ (ϵ, vu
ϵ )

3.3.4.1 [wu,wu
m) v≤ vu

a ≤ vm ṽ≥ vu
a ↘ ↘ ↘ ↘ ↘ ↗ (a, vu

a )
3.3.5.1.1 [wu

m,∞) vu
a ≥ vm ṽ≤ vm vu

ϵ ≤ ṽ ↘ ↘ ↘ ↘ ⌣ (w̃u, ṽ)
3.3.5.1.2 [wu

m,∞) vu
a ≥ vm ṽ≤ vm vu

ϵ ≥ ṽ ↗ (ϵ, vu
ϵ )

3.3.5.1 [wu
m,∞) vu

a ≥ vm ṽ≥ vm ↘ ↘ ↘ ↘ ↘ (wu
m, vm)

where w̃u = a− (d− (u− a)v̂)/vc.

�

C.4. Proof of Theorem 3

Proof of Theorem 3 The result follows from a careful comparison of the cases listed in Table

11 in Theorem 1 and in Table 12 in Theorem 2. �

C.5. Proof of Lemma 2

Proof of part (i). The proof is by contradiction.

Suppose that there exists an optimal solution (denoted by S∗) where the speed on one arc is lower

than v. Without loss of generality, suppose that this arc belongs to the route (0, . . . , n+1), where

n+ 1 is a copy of the depot. Let w∗
i denote the optimal departure time from node i and let v∗i

denote the optimal speed on arc (i, i+1). So there exists k ∈ {0, . . . , n} such that v∗k < v.

The total cost associated with this route is
∑n

i=0 fcFi(w
∗
i , v

∗
i )+dcW (w∗

0, . . . ,w
∗
n, v

∗
0 , . . . , v

∗
n), where

Fi denotes the fuel cost on arc (i, i+1) and W is the total time the driver is paid for.

We construct an alternative solution (denoted by S′) as follows: let w′
i = w∗

i for i = 0, . . . , n,

v′i = v∗i for i = 0, . . . , k − 1, k + 1, . . . , n and v′k = v. In other words, we increase the speed on arc

(k, k + 1) to v and we keep the same departure time from node k + 1 (unless k = n) by adding

some extra waiting time. The resulting solution is feasible since the arrival time at each node is at
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most equal to that in the optimal solution. Compared to S∗, in S′ the total time the driver is paid

for (W ) can only decrease (it decreases if k= n, otherwise it remains the same). Whereas the fuel

cost (Fi) is the same on every arc except on arc (k, k+1), where it decreases since v is the speed

that minimizes the fuel cost for a given departure time in a one-arc problem as shown in Section

5. Therefore, the alternative solution S′ yields a total cost lower that the optimal solution S∗ and

this leads to a contradiction.

Proof of part (ii). The proof is by contradiction.

Suppose that there exists an optimal solution (denoted by S∗) where the speed on the first arc of

a route is lower than min{v̄, vm}. Without loss of generality, suppose that this arc belongs to the

route (0, . . . , n+1), where n+1 is a copy of the depot. Let w∗
i denote the optimal departure time

from node i and let v∗i denote the optimal speed on arc (i, i+1). So we have v∗0 ≤min{v̄, vm}.

The total cost associated with this route is
∑n

i=0 fcFi(w
∗
i , v

∗
i )+dcW (w∗

0, . . . ,w
∗
n, v

∗
0 , . . . , v

∗
n), where

Fi denotes the fuel cost on arc (i, i+1) and W is the total time the driver is paid for. This cost

function can be rewritten as

n∑
i=1

fcFi(w
∗
i , v

∗
i )+ dcW1,...,n(w

∗
1, . . . ,w

∗
n, v

∗
1 , . . . , v

∗
n)+ fcF0(w

∗
0, v

∗
0)+ dcW0(w

∗
0, v

∗
0) (25)

where W1,...,n is the time spent from the arrival at node 1 until the return to the depot and W0 is

the time spent from the departure from the depot to the arrival at node 1. Note that the last two

terms in (25) correspond to the total cost function of a one-arc TDPRP when the driver is paid

from his departure time.

We construct an alternative solution (denoted by S′) as follows: let w′
i =w∗

i for i= 1, . . . , n, v′i = v∗i

for i= 1, . . . , n, v′0 =min{v̄, vm} and w′
0 >w∗

0 such that the arrival time at node 1 is the same in

S′ as in S∗. The departure times and free-flow speeds on arcs (i, i+ 1) where i= 1, . . . , n remain

unchanged and therefore the resulting solution is feasible. For the same reasons, in both solutions S∗

and S′ the first two terms of the 25 remain the same. Whereas, as results from the proof of Theorem

2, the last two terms 25 are lower in S′ compared to S∗. Hence, we have a contradiction. �
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Appendix D: Computational Results

D.1. Results on PRP instances

Table 25 Comparison of PRP versus TDPRP formulations with respect to computational time

Instance PRP t(PRP) TDPRP t(TDPRP)

£ s £ s

UK10 01 170.66 163.40 170.66 10.71
UK10 02 204.87 113.90 204.88 3.73
UK10 03 200.33 926.00 200.34 3.36
UK10 04 189.94 396.50 189.95 5.00
UK10 05 175.61 1253.70 175.62 4.93
UK10 06 214.56 347.50 214.53 3.43
UK10 07 190.14 191.00 190.15 5.06
UK10 08 222.16 139.80 222.17 2.23
UK10 09 174.53 54.00 174.54 4.64
UK10 10 189.83 76.00 189.84 2.83
UK10 11 262.07 50.50 262.08 4.40
UK10 12 183.18 1978.70 183.19 14.71
UK10 13 195.97 1235.10 195.97 2.94
UK10 14 163.17 84.10 163.18 2.77
UK10 15 127.15 433.30 127.16 6.25
UK10 16 186.63 680.80 186.63 7.03
UK10 17 159.07 27.00 159.08 3.22
UK10 18 162.09 522.10 162.09 4.19
UK10 19 169.46 130.50 169.46 1.52
UK10 20 168.8 1365.50 168.81 17.44

Average 508.47 5.52

The PRP results in columns 2 and 3 are taken from Demir et al. (2012). The reason behind the

slight discrepancy between the values in columns 2 and 4 is due to numerical approximation.

D.2. Results on TDPRP instances

Each table reports the two cases: (i) driver paid from the beginning of the time horizon, (ii) driver

paid from his departure time. In both cases the tables display, for each instance, the cost values

of the SD and SN solutions (denoted by TC(SN) and TC(SD)) and the CPU times (in seconds)

required to construct these solutions (denoted by t(SN) and t(SD)). Under the last column are

reposted the cost savings of incorporating traffic congestion when planning the vehicles’ routes and

schedules.
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Table 26 Computational results for 10-node instances with initial congestion period of 3600 seconds

Drivers paid from the beginning of the time horizon Drivers paid from departure

Instance # of TC(SN) t(SN) TC(SD) t(SD) Saving TC(SN) t(SN) TC(SD) t(SD) Saving
vehicles £ s £ s % £ s £ s %

UK10 01 2 inf. 4.621 183.98 6.01 - 177.97 3.989 168.14 6.05 5.52
UK10 02 2 225.1 3.086 218.9 3.63 2.75 220.26 1.811 203.06 6.79 7.81
UK10 03 2 219.33 12.878 213.34 8.76 2.73 210.54 8.329 197.5 2.94 6.19
UK10 04 2 209.97 2.83 202.17 2.20 3.71 187.18 1.359 185.88 2.65 0.69
UK10 05 2 195.8 3.994 188.07 3.95 3.95 185.77 1.235 172.23 3.27 7.29
UK10 06 2 inf. 2.549 229.13 3.55 - inf. 2.213 213.29 5.86 -
UK10 07 2 210.37 1.536 205.18 3.31 2.47 203.98 1.81 189.34 3.35 7.18
UK10 08 2 242.26 1.831 237.17 2.46 2.1 242.26 1.094 221.33 2.11 8.64
UK10 09 2 194.82 2.59 189.73 2.97 2.61 194.82 2.858 173.89 3.23 10.74
UK10 10 2 210.03 1.913 204.89 2.56 2.44 209.59 2.259 189.05 2.75 9.80
UK10 11 2 inf. 2.71 277.12 2.57 - inf. 1.922 261.28 2.71 -
UK10 12 2 198.41 5.318 193.65 4.20 2.4 181.64 2.524 177.81 3.88 2.11
UK10 13 2 216.19 1.788 208.37 2.08 3.61 205.72 1.18 192.53 2.04 6.41
UK10 14 2 inf. 1.535 179.84 17.40 - inf. 1.202 164.72 6.40 -
UK10 15 2 141.13 3.064 135.46 4.01 4.02 123.22 2.734 119.62 4.39 2.92
UK10 16 2 206.25 4.966 198.86 4.20 3.58 194.8 5.03 183.02 5.60 6.05
UK10 17 2 inf. 2.165 171.6 2.51 - inf. 1.344 155.76 2.81 -
UK10 18 2 182.37 3.779 173.96 6.04 4.61 inf. 2.897 158 4.42 -
UK10 19 2 inf. 1.738 181.28 5.38 - inf. 2.292 165.44 5.61 -
UK10 20 2 189.06 8.368 181.68 11.84 3.9 178.83 14.637 165.84 14.38 7.27

Table 27 Computational results for 10-node instances with initial congestion period of 7200 seconds

Drivers paid from from the beginning of the time horizon Drivers paid from departure

Instance # of TC(SN) t(SN) TC(SD) t(SD) Saving TC(SN) t(SN) TC(SD) t(SD) Saving
vehicles £ s £ s % £ s £ s %

UK10 01 2 inf. 4.621 201.759 22.609 - inf. 3.989 170.079 20.347 -
UK10 02 2 inf. 3.086 241.305 12.883 - inf. 1.811 210.629 23.02 -
UK10 03 2 240.03 12.878 229.692 30.295 4.31 231.47 8.329 198.012 20.987 14.46
UK10 04 2 230.84 2.83 217.561 4.886 5.75 206.4 1.359 185.881 3.536 9.94
UK10 05 2 216.68 3.994 203.912 4.323 5.89 206.71 1.235 172.232 4.362 16.68
UK10 06 2 inf. 2.549 249.982 6.606 - inf. 2.213 218.302 12.376 -
UK10 07 2 231.31 1.536 221.305 5.895 4.32 inf. 1.81 189.625 3.744 -
UK10 08 2 263.19 1.831 253.009 2.43 3.87 263.19 1.094 221.329 1.964 15.91
UK10 09 2 215.75 2.59 205.569 4.705 4.72 215.75 2.858 173.889 5.064 19.40
UK10 10 2 230.94 1.913 220.735 3.602 4.42 230.53 2.259 189.054 3.823 17.99
UK10 11 2 inf. 2.71 296.274 3.923 - inf. 1.922 264.594 2.923 -
UK10 12 2 219.28 5.318 208.748 21.781 4.8 202.64 2.524 177.807 4.435 12.25
UK10 13 2 inf. 1.788 224.214 2.944 - 226.65 1.18 192.535 2.629 15.05
UK10 14 2 inf. 1.535 199.359 5.322 - inf. 1.202 167.679 5.443 -
UK10 15 2 inf. 3.064 152.872 9.701 - inf. 2.734 121.192 8.282 -
UK10 16 2 226.95 4.966 214.698 6.528 5.4 215.73 5.03 183.019 6.013 15.16
UK10 17 2 inf. 2.165 207.46 32.347 - inf. 1.344 175.831 16.013 -
UK10 18 2 inf. 3.779 189.683 11.334 - inf. 2.897 158.003 7.033 -
UK10 19 2 inf. 1.738 199.145 6.484 - inf. 2.292 167.471 5.816 -
UK10 20 2 209.99 8.368 197.515 18.795 5.94 197.25 14.637 165.835 12.468 15.92
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Table 28 Computational results for 15-node instances with initial congestion period of 3600 seconds

Drivers paid from the beginning of the time horizon Drivers paid from departure

Instance # of TC(SN) t(SN) TC(SD) t(SD) Saving TC(SN) t(SN) TC(SD) t(SD) Saving
vehicles £ s £ s % £ s £ s %

UK15 01 2 inf. 234.876 299.06 556.779 - inf. 667.671 283.22 618.285 -
UK15 02 2 226 25.921 219.36 30.368 2.94 213.31 28.081 203.52 35.623 4.59
UK15 03 2 inf. 4746.72 316.59 3186.76 - inf. 7422 300.75 6316.59 -
UK15 04 3 inf. 71.642 318.5 53.856 - inf. 24.984 294.74 33.259 -
UK15 05 2 inf. 14.173 299.9 40.135 - inf. 41.472 284.06 27.854 -
UK15 06 2 inf. 8862 244.05 1050.61 - 240.6 2221.46 228.21 1932.42 5.15
UK15 07 3 281.15 26.713 269.44 6.444 4.16 261.56 8.188 245.68 9.836 6.07
UK15 08 2 185.47 162.844 178.97 33.585 3.51 171.94 75.109 163.13 52.407 5.12
UK15 09 3 293.51 1138.32 281.89 70.983 3.96 278.86 126.323 258.11 105.375 7.44
UK15 10 2 234.14 40.695 227.71 42.992 2.74 225.05 30.757 211.87 53.35 5.85
UK15 11 2 inf. 20.694 275.26 232.202 - inf. 26.448 259.42 123.375 -
UK15 12 3 340.57 24.63 330.51 19.709 2.95 331.72 38.737 306.75 36.773 7.53
UK15 13 2 inf. 909.862 265.09 1028.96 - inf. 1939.6 249.25 1379.09 -
UK15 14 2 inf. 3083.37 inf. 2871.24 - inf. 10130 inf. 2408.28 -
UK15 15 2 239.81 48.446 232.81 96.552 2.92 219 134.975 216.97 155.686 0.93
UK15 16 2 224.67 27.339 214.37 7.879 4.58 208.32 7.297 198.53 44.555 4.70
UK15 17 3 inf. 9.823 302.04 5.002 - 300.07 5.176 278.28 6.245 7.26
UK15 18 3 inf. 58.385 332.4 10.292 - inf. 27.238 308.65 21.238 -
UK15 19 2 184.85 9.464 178.31 4.504 3.54 176.81 4.235 162.47 6.814 8.11
UK15 20 3 inf. 16.278 220.57 7.095 - inf. 2.836 196.81 9.424 -

Table 29 Computational results for 15-node instances with initial congestion period of 7200 seconds

Drivers paid from the beginning of the time horizon Drivers paid from departure

Instance # of TC(SN) t(SN) TC(SD) t(SD) Saving TC(SN) t(SN) TC(SD) t(SD) Saving
vehicles £ s £ s % £ s £ s %

UK15 01 2 inf. 234.675 337.71 2489.17 - inf. 667.671 306.424 2972.56 -
UK15 02 2 inf. 25.859 235.40 63.909 - 231.955 28.081 203.723 42.193 12.17
UK15 03 2 inf. 4858.37 inf. 476.417 - inf. 7422 inf. 748.034 -
UK15 04 3 inf. 71.58 343.16 67.644 - inf. 24.984 295.64 194.174 -
UK15 05 2 inf. 14.136 349.49 272.127 - inf. 41.472 331.041 520.049 -
UK15 06 2 inf. 8856.99 263.74 1853.29 - inf. 2221.46 232.062 2105.63 -
UK15 07 3 inf. 26.68 304.60 168.012 - inf. 8.188 257.08 114.883 -
UK15 08 2 206.04 162.787 194.81 70.76 5.45 192.867 75.109 163.125 60.499 15.42
UK15 09 3 inf. 1137.68 306.18 234.592 - inf. 126.323 258.656 290.286 -
UK15 10 2 inf. 40.646 245.23 74.021 - inf. 30.757 213.553 44.76 -
UK15 11 2 inf. 20.684 337.12 824.139 - inf. 26.448 308.15 790.047 -
UK15 12 3 inf. 24.61 354.41 31.765 - inf. 38.737 69.5452 72.182 -
UK15 13 2 inf. 913.76 282.77 2093.01 - inf. 1939.6 262.932 5685.92 -
UK15 14 2 inf. 3079.17 inf. 6.475 - inf. 10130 inf. 6.63 -
UK15 15 2 260.51 48.302 248.65 94.523 4.55 inf. 134.975 216.972 106.012 -
UK15 16 2 245.24 27.304 230.21 11.012 6.13 inf. 7.297 198.533 12.89 13.40
UK15 17 3 inf. 9.795 325.80 14.139 - inf. 5.176 278.28 14.343 16.10
UK15 18 3 inf. 58.323 363.74 173.09 - inf. 27.238 316.224 417.771 -
UK15 19 2 202.42 9.474 194.15 13.227 4.09 197.739 4.235 162.465 10.802 17.84
UK15 20 3 inf. 16.227 244.55 243.154 - inf. 2.836 200.675 71.206 -
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Table 30 Computational results for 20-node instances with initial congestion period of 3600 seconds

Drivers paid from the beginning of the time horizon Drivers paid from departure

Instance # of TC(SN) t(SN) TC(SD) t(SD) Saving TC(SN) t(SN) TC(SD) t(SD) Saving
vehicles £ s £ s % £ s £ s %

UK20 01 3 347.16 416.29 337.86 265.72 2.68 328.9 212.494 314.1 169.662 4.5
UK20 02 3 365.84 295.04 352.88 225.98 3.54 inf. 321.042 329.12 161.038 -
UK20 03 3 233.27 76.69 224.01 44.97 3.97 216.53 66.346 200.01 42.364 7.63
UK20 04 3 354.83 3360.44 347.12 1546.29 2.17 354.34 2929.29 323.36 1919.35 8.74
UK20 05 3 325.59 258.29 317.36 360.26 2.53 312.87 370.708 292.12 219.976 6.63
UK20 06 3 349.35* 2124.82 365.02* 5637.66 - 339.50* 6701.12 347.27* 1520.5 -
UK20 07 3 255.39 1456.06 246.935* 2394.83 - 223.1* 10800.4 223.4* 1091.46 -
UK20 08 3 307.47 575.73 298.25 54.03 3.00 288.17 232.228 274.1 83.39 4.88
UK20 09 3 inf. 54.36 345.02 169.47 - inf. 32.644 321.26 119.142 -
UK20 10 3 291.58* 3977.50 310.91 1816.07 - 307.98 9120.02 287.15 2288.59 6.76
UK20 11 3 391.00 140.35 381.58 38.50 2.41 374.23 173.63 357.82 234.211 4.38
UK20 12 3 346.02 2253.71 334.63 463.88 3.29 322.48 1853.51 310.87 463.902 3.6
UK20 13 3 339.15 83.24 329.86 176.90 2.74 327.46 128.737 306.1 74.618 6.52
UK20 14 3 inf.* 10799.60 inf.* 1701.06 - inf.* 2521.06 inf.* 1651.95 -
UK20 15 3 349.63 642.49 338.37 607.60 3.22 327.47 3105.17 313.94 800.895 4.13
UK20 16 3 358.16 741.31 346.36 170.18 3.30 331.72 895.873 322.6 149.282 2.75
UK20 17 3 inf. 905.97 379.72* 2170.39 - inf. 2498.11 355.607 5864.8 -
UK20 18 3 inf. 445.71 367.47 1132.39 - inf. 1357.34 343.71 685.198 -
UK20 19 3 351.16 1926.32 343.36 3405.90 2.22 349.63 253.101 319.6 2524.09 8.59
UK20 20 3 354.13 11.56 343.13 15.56 3.11 337.82 10.089 319.37 13.752 5.46

* Not solved to optimality.

Table 31 Computational results for 20-node instances with initial congestion period of 7200 seconds

Drivers paid from the beginning of the time horizon Drivers paid from departure

Instance # of TC(SN) t(SN) TC(SD) t(SD) Saving TC(SN) t(SN) TC(SD) t(SD) Saving
vehicles £ s £ s % £ s £ s %

UK20 01 3 inf. 416.29 362.44 286.10 - inf. 212.49 314.9 673.14 -
UK20 02 3 inf. 295.04 378.75 207.29 - inf. 321.04 331.2 541.942 -
UK20 03 3 264.38 76.69 247.53 158.97 6.37 245.9 66.35 200.0 100.151 18.66
UK20 04 3 inf. 3360.44 371.80 4318.09 - inf. 2929.29 324.3 4647.32 -
UK20 05 3 356.9 258.29 340.60 894.88 4.57 inf. 370.71 293.1 940.19 -
UK20 06 3 349.35* 2124.82 412.04* 10799.80 - 339.50* 6701.12 inf. - -
UK20 07 3 285.35 1456.06 270.63* 7058.32 - 223.17* 10800.40 inf.* 4299.49 -
UK20 08 3 338.8 575.73 321.91 128.01 4.99 inf. 232.23 274.4 119.653 -
UK20 09 3 inf. 54.36 379.15 676.14 - inf. 32.64 331.8 1761.27 -
UK20 10 3 291.58* 3977.50 335.73* 4271.10 - inf. 9120.02 288.8 7355.26 -
UK20 11 3 inf. 140.35 414.64 2554.09 - inf. 173.63 368.2 2471.3 -
UK20 12 3 inf. 2253.71 361.30 3523.84 - inf. 1853.51 316.2 3076.75 -
UK20 13 3 inf. 83.24 360.09 2171.69 - inf. 128.74 312.6 1884.26 -
UK20 14 3 inf.* 10799.60 inf.* 1954.92 - inf.* 2521.06 inf.* 1779.78 -
UK20 15 3 inf. 642.49 366.01 3407.18 - inf. 3105.17 318.5 5048.37 -
UK20 16 3 inf. 741.31 370.12 748.19 - 363.12 895.87 322.6 1811.35 11.16
UK20 17 3 inf. 905.97 410.747* 10800.80 - inf. 2498.11 369.13* 10797.9 -
UK20 18 3 inf. 445.71 395.57 4054.01 - inf. 1357.34 351.65* 10799.5 -
UK20 19 3 inf. 1926.32 371.63 9726.61 - inf. 253.10 324.111* 10799.5 -
UK20 20 3 inf. 11.56 367.51 21.24 - inf. 10.09 320.0 36.212 -

* Not solved to optimality
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