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The Time-Harmonic Discontinuous Galerkin Method as a Robust

Forward Solver for Microwave Imaging Applications

Ian Jeffrey*, Nicholas Geddert, Kevin Brown, and Joe LoVetri

Abstract—Novel microwave imaging systems require flexible forward solvers capable of incorporating
arbitrary boundary conditions and inhomogeneous background constitutive parameters. In this work
we focus on the implementation of a time-harmonic Discontinuous Galerkin Method (DGM) forward
solver with a number of features that aim to benefit tomographic microwave imaging algorithms: locally
varying high-order polynomial field expansions, locally varying high-order representations of the complex
constitutive parameters, and exact radiating boundary conditions. The DGM formulated directly from
Maxwell’s curl equations facilitates including both electric and magnetic contrast functions, the latter
being important when considering quantitative imaging with magnetic contrast agents. To improve
forward solver performance we formulate the DGM for time-harmonic electric and magnetic vector
wave equations driven by both electric and magnetic sources. Sufficient implementation details are
provided to permit existing DGM codes based on nodal expansions of Maxwell’s curl equations to be
converted to the wave equation formulations. Results are shown to validate the DGM forward solver
framework for transverse magnetic problems that might typically be found in tomographic imaging
systems, illustrating how high-order expansions of the constitutive parameters can be used to improve
forward solver performance.

1. INTRODUCTION

In the field of computational electromagnetics, the discontinuous Galerkin method (DGM) has been
applied to time-domain (TD) simulations of Maxwell’s equations [1, 2] and is usually formulated as a
high-order version of the time-domain finite-volume method (FVM) [3]. The benefit of TD-DGMs
over time-domain finite-element methods (FEM) is that DGM implementations result in a global
mass matrix that is locally invertible, thereby facilitating the implementation of explicit time-stepping
schemes [1, 4, 5]. More recently, DGM formulations have been applied to elliptic partial differential
equations (PDEs) [6–14], including the time-harmonic Maxwell’s equations. In the frequency domain,
both DGM and FEM formulations result in large sparse systems of equations that must be solved
to determine the electromagnetic fields of interest. In this context, DGM formulations have several
attractive properties including the ability to support unstructured and even non-conformal meshes,
as well as local order refinement where the approximation orders in neighbouring mesh elements may
differ [1, 9]. The DGM is usually applied directly to Maxwell’s first-order curl equations, providing
simultaneous simulation of electric and magnetic fields arising from both electric and magnetic media
and sources [1, 9]. Solving for both electric and magnetic fields requires additional computational time
and memory compared to standard FEM implementations that are formulated for the vector wave
equation [15].

While the number of publications targeting general DGM formulations for time-harmonic
applications has increased in recent years, these works are largely focused on theoretical aspects of
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interior cavity problems [6, 7], DGM formulations for Maxwell’s curl equations [8, 9, 16] and time-
harmonic fluid dynamics [10, 11]. Existing work focuses on mathematical issues such as convergence [12–
14]. To the best of our knowledge, no existing work presents DGM formulations for the time-harmonic
electromagnetic vector wave equations with both electric and magnetic sources and locally varying
constitutive parameters. Our desire to model both dielectric and magnetic materials and sources is
motivated by biomedical microwave imaging (MWI) applications. PDE formulations of Maxwell’s
equations readily support inhomogeneous background materials and boundary conditions, and have been
recently exploited in MWI algorithms by using an FEM forward solver [17, 18]. Recent research suggests
the use of magnetic contrast agents for cancer-detecting MWI [19] and so we consider forward solvers that
support both magnetic and dielectric materials. Also, in MWI a scattered-field formulation is typically
adopted implying that the presence of magnetic materials forces forward solvers to support magnetic,
as well as electric, contrast sources. These considerations lead us naturally to DGM formulations.

Herein, we provide the details of the nodal DGM formulations for solving the time-harmonic vector
wave equations when both electric and magnetic sources are present. In Section 2, the governing
equations are provided. Section 3 reviews the standard nodal unstructured DGM (NUDG) applied
directly to Maxwel’s curl equations and extends the concepts to the vector wave equations for both
electric and magnetic fields. Attention is given to how the electric and magnetic sources contribute to the
numerical fluxes required for the wave equations. In addition, we formulate exact radiating boundary
conditions (ERBCs) for the DGM. Section 4 presents numerical results where ERBCs are shown to
improve simulation accuracy for DGM solutions when compared to the frequently used Silver-Müller
absorbing boundary conditions [1, 9], while the wave equation formulations reduce the computational
cost. The numerical experiments are limited to two-dimensional problems applicable to tomographic
MWI systems and demonstrate that the DGM formulations for both the curl equations and the wave
equations are accurate for conducting, dielectric and magnetic scatterers. Finally, the mechanism of
approximating complex media using the high-order expansions provided by the DGM basis is explored.

2. THE CONTINUOUS EQUATIONS

We consider Maxwell’s curl equations and a time-harmonic scattered-field formulation in a domain Ω
bounded by Γ:

jωε(�x)�Esct(�x) −∇× �Hsct(�x) = − �Jsct(�x)

jωµ(�x) �Hsct(�x) + ∇× �Esct(�x) = − �M sct(�x)
(1)

where �x ∈ Ω is the Cartesian position vector, ω is the angular frequency, the medium is characterized by
the complex scalar permittivity ε(�x) and permeability µ(�x), j =

√
−1 and an exp(jωt) time-dependence

is assumed and suppressed. The electric source �Jsct(�x) and magnetic source �M sct(�x) support the

scattered electric and magnetic fields, denoted respectively by �Esct and �Hsct. For an inhomogeneous
background characterized by εb(�x) and µb(�x) the sources are

�Jsct(�x) = jω(ε(�x) − εb(�x))�Einc(�x)

�M sct(�x) = jω(µ(�x) − µb(�x)) �H inc(�x),
(2)

where the incident fields �Einc and �H inc are supported by sources �J(�x) and �M(�x) according to

jωεb(�x) �Einc(�x) −∇× �H inc(�x) = − �J(�x)

jωµb(�x) �H inc(�x) + ∇× �Einc(�x) = − �M(�x).
(3)

Both the incident and scattered fields are subject to appropriate boundary conditions on Γ. We assume
that Γ is made up of perfect electric conductors (PECs), and surfaces where absorbing boundary
conditions (ABCs) are applied, i.e., Γ = ΓPEC ∪ΓABC. The DGM is most commonly applied to systems
such as (1) as a direct discretization of Maxwell’s curl equations. However, it may also be formulated
for the vector wave equations for the electric and magnetic fields [20]:

∇×
(

µ(�x)−1 ∇× �Esct(�x)
)

+ (jω)2ε(�x)�Esct(�x) = −jω �Jsct(�x) −∇×
(

µ(�x)−1 �M sct(�x)
)

∇×
(

ε(�x)−1 ∇× �Hsct(�x)
)

+ (jω)2µ(�x) �Hsct(�x) = −jω �M sct(�x) + ∇×
(

ε(�x)−1 �Jsct(�x)
) (4)
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Note that the magnetic wave equation is obtained from the electric wave equation by duality:
�Esct → �Hsct → − �Esct, ε → µ → ε and �Jsct → �M sct → − �Jsct.

3. THE DISCONTINUOUS GALERKIN METHOD

To formulate the DGM for the curl equations (1) and the vector wave equations (4) we assume a partition
∪nVn ≈ Ω, where Vn denotes the nth finite-volume (element). On Vn each field component is expanded
as a polynomial of order p = p(n). The expansion order can vary with element index n. Choosing
the basis as interpolating Lagrange polynomials corresponding to a set of M = M(p(n)) interpolating
nodes results in NUDG methods [1]. Thus, for example, the z-component of the scattered electric field
is expanded in Vn as

Ez(�x) =

M
∑

m=1

Ez(�x
n
m)ℓn

m(�x) + O(|Vn|p(n)+1), �x ∈ Vn. (5)

Here, ℓn
m(�x) is the mth Lagrange polynomial of order p(n) in Vn, {�xn

1 , �xn
2 , . . . , �xn

M} is the set of nodal
points and |Vn| denotes the element measure. The z-component of the electric field is uniquely defined
in Vn to order p(n) by the nodal coefficient vector En

z ∈ C
M×1, where (En

z)m = Ez(�x
n
m) such that

Ez(�x) = (ℓn(�x))T En
z , �x ∈ Vn, (ℓn(�x))T = [ℓn

1 (�x), ℓn
2 (�x), . . . , ℓn

M (�x)] (6)

where T denotes transposition. Details on implementing this basis can be found in [1].

3.1. DGM Testing

Two approaches to producing DGM systems from Maxwell’s curl equations are the ‘weak’ and ‘strong’
forms [1]. We consider the strong form, which for Maxwell’s curl equations can be obtained by testing (1)
with a scalar function ψ(�x) and applying integration by parts twice over a finite volume Vn [1]:

jω

∫

Vn

ψε�Esctdv −
∫

Vn

ψ∇× �Hsctdv +

∫

∂Vn

ψ

(

(

−�n × �Hsct
)∧

+
(

�n × �Hsct
)

)

ds = −
∫

Vn

ψ �Jsctdv

jω

∫

Vn

ψµ �Hsctdv +

∫

Vn

ψ∇× �Esctdv +

∫

∂Vn

ψ

(

(

�n × �Esct
)∧

−
(

�n × �Esct
)

)

ds = −
∫

Vn

ψ �M sctdv.

(7)

We have suppressed the spatial dependence for notational brevity. In these equations, �n = �n(x) denotes
the outward unit normal to the boundary ∂Vn of Vn. We emphasize that high-order representations of
ε = ε(�x) and µ = µ(�x) are possible as will be implemented in the sequel, thus the constitutive parameters
cannot be pulled out of the integral. The tested equations (7) are local to Vn with the exception of the
boundary integral. The boundary values are referred to as (numerical) fluxes and the superscript ∧ is
used to indicate that they should incorporate information from both sides of the boundary in a way
that is consistent with the physical boundary conditions dictated by Maxwell’s equations† [1]. Testing
the electric vector wave equation in (4) with ψ(�x) and applying integration by parts twice results in the
strong form:

(jω)2
∫

Vn

ψε�Esctdv +

∫

Vn

ψ∇×
(

µ−1∇× �Esct
)

dv +

∫

∂Vn

ψ

(

(

�n ×
(

µ−1∇× �Esct
))∧

−
(

�n ×
(

µ−1∇× �Esct
))

)

ds = −jω

∫

Vn

ψ �Jsctdv −
∫

Vn

ψ∇×
(

µ−1 �M sct
)

dv (8)

where the equivalent tested magnetic vector wave equation can be obtained by duality.

† The notation * is often used instead of ∧ for time-domain formulations [1]. For time-harmonic formulations, where * could easily
be confused with complex conjugation, we have substituted ∧.
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3.2. The Local DGM Discrete System for Maxwell’s Curl Equations

Substituting expansions of the form (5) for each field component and source term into the tested
Maxwell’s curl equations (7) and letting the test function ψ range over all functions in the expansion
set {ℓn

m(�x)}, (i.e., applying a Galerkin testing procedure), results in 6M equations in 6M unknowns on
Vn. For example the x-components of the curl equations become

jωMnεnEsct,n
x + Sn

z Hsct,n
y − Sn

y Hsct,n
z + F̃E,n

x = −MnJsct,n
x ,

jωMnµnHsct,n
x − Sn

z Esct,n
y + Sn

y Esct,n
z + F̃H,n

x = −MnM sct,n
x .

(9)

Here, Mn and Sn
ζ ∈ R

M×M are the element mass and stiffness matrices, F̃
E/H,n
ζ are the tested numerical

fluxes, and Jsct,n
ζ and M sct,n

ζ are the nodal values of the sources in Vn. The M × M diagonal matrices
εn and µn respectively contain εn and µn on their diagonals and permit locally varying constitutive
parameters, the interpretation being that for the first term in (9) we are expanding ε(�x)Ex(�x) in the
basis. The elemental matrices are computed as

Mn =

∫

Vn

ℓn(�x) (ℓn(�x))T dv, Sn
ζ =

∫

Vn

ℓn(�x)
∂ (ℓn(�x))T

∂ζ
dv. (10)

Details for evaluating the elemental matrices are provided in [1]. The tested numerical fluxes couple
the fields to adjacent elements and will be described in Section 3.4. The remaining equations can be
obtained by cyclic permutations x → y → z → x. Combining the six single-component equations into
a single system for Vn (suppressing the dependence on n) we arrive at the local system

⎡

⎢

⎢

⎢

⎢

⎢

⎣

α 0 0 0 Sz −Sy

0 α 0 −Sz 0 Sx

0 0 α Sy −Sx 0
0 −Sz Sy β 0 0
Sz 0 −Sx 0 β 0
−Sy Sx 0 0 0 β

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Esct
x

Esct
y

Esct
z

Hsct
x

Hsct
y

Hsct
z

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

F̃E
x

F̃E
y

F̃E
z

F̃H
x

F̃H
y

F̃H
z

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= −

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

MJsct
x

MJsct
y

MJsct
z

MM sct
x

MM sct
y

MM sct
z

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(11)

where α = αn = jωMnεn, and where β = βn = jωMnµn. Collecting the equations for each element
into a global system results in the discrete DGM formulation of Maxwell’s curl equations.

From the three-dimensional local systems, we can obtain the two-dimensional transverse magnetic
(TM) and transverse electric (TE) strong-form DGM systems. For example, by retaining only the rows
(and corresponding columns) relating to Ez, Hx and Hy from the system (11) we obtain the z-invariant
local TM system

[

α Sy −Sx

Sy β 0
−Sx 0 β

]

⎡

⎣

Esct
z

Hsct
x

Hsct
y

⎤

⎦ +

⎡

⎢

⎣

F̃E
z

F̃H
x

F̃H
y

⎤

⎥

⎦
= −

⎡

⎣

MJsct
z

MM sct
x

MM sct
y

⎤

⎦ (12)

where we must interpret the entries of the mass and stiffness matrices as integrals over two-dimensional
elements of two-dimensional Lagrange interpolating polynomials, a basis whose implementation is also
discussed in detail in [1].

3.3. The Local DGM Discrete System for the Vector Wave Equations

To derive the local DGM system for the electric vector wave equation, we consider the x-component of
the electric field equation given in (8). A Galerkin testing procedure on Vn gives the local system

(jω)2MnεnEsct,n
x −

(

Sn
y (µn)−1Dn

y + Sn
z (µn)−1Dn

z

)

Esct,n
x + Sn

y (µn)−1Dn
xEsct,n

y

+Sn
z (µn)−1Dn

xEsct,n
z + F̃E,n

x = −jωMnJsct,n
x −

(

Sn
z (µn)−1M sct,n

y − Sn
y (µn)−1M sct,n

z

)

, (13)

where a derivation of the required operators is provided in the appendix. The matrices Dn
ζ are derivative

operators such that the product Dn
ζ En

ξ results in the coefficients of the derivative of Eξ(�x) with respect
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to ζ in Vn. The definition of the tested numerical flux F̃E,n
x is specific to this system of equations and

should not be confused with the analogous term in (9); its computation will be discussed in Section 3.5.
Letting γζξ = (jω)2Mnεn − (Sn

ζ (µn)−1Dn
ζ +Sn

ξ (µn)−1Dn
ξ ) and δζξ = Sn

ζ (µn)−1Dn
ξ , the local system on

Vn for the electric wave equation (with n suppressed) is
[

γyz δyx δzx

δxy γzx δzy

δxz δyz γyx

]

⎡

⎣

Esct
x

Esct
y

Esct
z

⎤

⎦ +

⎡

⎢

⎣

F̃E
x

F̃E
y

F̃E
z

⎤

⎥

⎦
= −jω

⎡

⎣

MJsct
x

MJsct
y

MJsct
z

⎤

⎦ −

⎡

⎣

0 −Szµ
−1 Syµ

−1

Szµ
−1 0 −Sxµ−1

−Syµ
−1 Sxµ−1 0

⎤

⎦

⎡

⎣

M sct
x

M sct
y

M sct
z

⎤

⎦ . (14)

The corresponding system for the magnetic fields is
⎡

⎣

γ̃yz δ̃yx δ̃zx

δ̃xy γ̃zx δ̃zy

δ̃xz δ̃yz γ̃yx

⎤

⎦

⎡

⎣

Hsct
x

Hsct
y

Hsct
z

⎤

⎦ +

⎡

⎢

⎣

F̃H
x

F̃H
y

F̃H
z

⎤

⎥

⎦
= −jω

⎡

⎣

MM sct
x

MM sct
y

MM sct
z

⎤

⎦ +

⎡

⎣

0 −Szε
−1 Syε

−1

Szε
−1 0 −Sxε−1

−Syε
−1 Sxε−1 0

⎤

⎦

⎡

⎣

Jsct
x

Jsct
y

Jsct
z

⎤

⎦ (15)

where, if γζξ = γζξ(ε(�x), µ(�x)), then γ̃ζξ = γζξ(µ(�x), ε(�x)) and similar notation is applied to δ̃ζξ. The
z-invariant TM equations can be obtained as two decoupled systems, one from the electric field wave
equation:

γyxE
sct
z + F̃E

z = −jωMJsct
z −

(

−Syµ
−1M sct

x + Sxµ
−1M sct

y

)

. (16)

and the other from the magnetic field wave equation:
[

γ̃yz δ̃yx

δ̃xy γ̃zx

]

[

Hsct
x

Hsct
y

]

+

[

F̃H
x

F̃H
y

]

= −jω

[MM sct
x

MM sct
y

]

+

[ Syε
−1

−Sxε−1

]

Jsct
z (17)

We emphasize that the presented theory permits the construction of the DGM discrete wave equation
systems from operators readily available in the DGM discretization of Maxwell’s curl equations.

3.4. Numerical Fluxes for the Curl Equations

Evaluation of the fluxes for the DGM formulation of Maxwell’s curl equations can be found in [1].
Nevertheless, we repeat the equations herein to facilitate the exposition of evaluating the fluxes for the
wave equations in the next section. The flux terms in Equation (11) come from the boundary integral
in (7). To simplify the notation we introduce

�ΦE,n(�x) =
(

−�n × �Hsct
)∧

+ �n × �Hsct,n

�ΦH,n(�x) =
(

�n × �Esct
)∧

− �n × �Esct,n, �x ∈ ∂Vn

(18)

so we may write
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

F̃E,n
x

F̃E,n
y

F̃E,n
z

F̃H,n
x

F̃H,n
y

F̃H,n
z

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

∫

∂Vn

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ℓn(�x)ΦE,n
x (�x)

ℓn(�x)ΦE,n
y (�x)

ℓn(�x)ΦE,n
z (�x)

ℓn(�x)ΦH,n
x (�x)

ℓn(�x)ΦH,n
y (�x)

ℓn(�x)ΦH,n
z (�x)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

ds (19)

For the moment we consider only the evaluation of �ΦE/H,n and will return to the full evaluation of the

above expression in Section 3.9. From [1], �ΦE/H,n satisfies

�ΦE,n(�x) =
Z+

{{Z}} n̂ × [[ �Hsct]] − α

{{Z}} n̂ × (n̂ × [[ �Esct]]) (20)

where Z =
√

µ/ǫ = Y −1 is the impedance of the medium, [[ �Hsct]] = �Hsct,−− �Hsct,+, {{Z}} = Z−+Z+,
and negative superscripts denote quantities associated with Vn while positive superscripts denote

quantities associated with the neighbouring element at a given position on ∂Vn
‡. Thus �Hsct,− ≡ �Hsct,n.

‡ Note that in [1] the notation {{Z}} is used to denote the average of Z− and Z+ and an additional factor of 1/2 is included in the
flux expressions.
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The parameter α ∈ [0, 1] is chosen as zero for a centered flux or 1 for an upwind flux. It follows from
duality that for �x ∈ ∂Vn [3, 21],

[

�ΦE,n(�x)
�ΦH,n(�x)

]

= A−

[

�Esct,−(�x)
�Hsct,−(�x)

]

+ A+

[

�Esct,+(�x)
�Hsct,+(�x)

]

(21)

where for notational brevity we have introduced the operators:

A− =

[A−
Z

A−
Y

]

=

⎡

⎣

−αN 2

{{Z}}
Z+N
{{Z}}

−Y +N
{{Y }}

−αN 2

{{Y }}

⎤

⎦ , A+ =

[A+
Z

A+
Y

]

=

⎡

⎣

αN 2

{{Z}}
−Z+N
{{Z}}

Y +N
{{Y }}

αN 2

{{Y }}

⎤

⎦ . (22)

with N = N (n̂) ∈ R
3×3 being the n̂× operator:

N =

[

0 −nz ny

nz 0 −nx

−ny nx 0

]

. (23)

For TM and TE formulations care must be taken when implementing the operator N . In fact, two
different n̂× operators are required due to the different number of components in the electric and
magnetic fields. For z-invariant problems we define the following operators:

NE
TM = NH

TE =

[

ny

−nx

]

, NH
TM = NE

TE = [−ny nx] , (24)

such that, in the TM case, N 2 �E becomes NH
TMNE

TMEz while N 2 �H becomes NE
TMNH

TM[Hx Hy]
T . In this

way the relationship (21) can be computed for TM problems by constructing A−/+ using the appropriate

NE/H
TM operators and limiting the field components to Ez, Hx and Hy.

3.5. Numerical Fluxes for the Vector Wave Equations

For the discrete electric-field wave Equation (14) we define

�ΨE,n(�x) =
(

�n × (µ−1∇× �Esct)
)∧

− �n × (µ−1∇× �Esct,n), �x ∈ ∂Vn (25)

such that the required tested fluxes can be written as:
⎡

⎢

⎣

F̃E,n
x

F̃E,n
y

F̃E,n
z

⎤

⎥

⎦
=

∫

∂Vn

⎡

⎢

⎣

ℓn(�x)ΨE,n
x (�x)

ℓn(�x)ΨE,n
y (�x)

ℓn(�x)ΨE,n
z (�x)

⎤

⎥

⎦
ds. (26)

We seek to cast this in a form that is recognizable from the standard flux calculation (21). Again we

only consider evaluating �ΨE,n, while details on how to evaluate (26) are deferred to Section 3.9. As

µ−1∇× �Esct = −jω �Hsct − µ−1 �M sct it follows from (25) and (18) that

�ΨE,n = jω�ΦE,n − �n × (µ−1 �M sct)∧ + �n × (µ−1 �M sct,n) = jω�ΦE,n (27)

where we have assumed that the boundary integrals of the terms involving the magnetic sources cancel§.
The right-hand side of this expression has previously been provided in (21), but some additional work
is required because we do not carry the magnetic field in the electric wave equation. To eliminate the

magnetic field from the expression we again use the fact that �Hsct = −(jωµ)−1 �M sct− (jωµ)−1∇× �Esct,
which when combined with (27) and (21) produces

�ΨE,n(�x)=jωA−
Z

[

�Esct,−

−(jωµ−)−1(∇× �Esct,−+ �M sct,−)

]

+jωA+
Z

[

�Esct,+

−(jωµ+)−1(∇× �Esct,+ + �M sct+)

]

. (28)

The curl of the electric field can be computed in a straightforward fashion using standard basis operators

found both in [1] and the appendix. The terms that involve the magnetic sources �M sct,+/− will

§ While we do not rigorously prove this simplification the numerical results support the claim.
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contribute, after testing, to the right-hand side of the global system of equations. The fluxes required
for the magnetic vector wave equation can be derived in a similar manner. Letting

�ΨH,n(�x) =
(

�n ×
(

ε−1
n ∇× �Hsct

))∧
− �n ×

(

ε−1
n ∇× �Hsct,−

)

(29)

the required tested fluxes are:
⎡

⎢

⎣

F̃H,n
x

F̃H,n
y

F̃H,n
z

⎤

⎥

⎦
=

∫

∂Vn

⎡

⎢

⎣

ℓn(�x)ΨH,n
x (�x)

ℓn(�x)ΨH,n
y (�x)

ℓn(�x)ΨH,n
z (�x)

⎤

⎥

⎦
ds. (30)

It follows that �ΨH,n = jω�ΦH,n resulting in

�ΨH,n = jωA−
Y

[

(jωε−)−1(∇× �Hsct,− − �Jsct,−)
�Hsct,−

]

+ jωA+
Y

[

(jωε+)−1(∇× �Hsct,+ − �Jsct,+)
�Hsct,+

]

. (31)

The relations given in (21), (28) and (31) are valid for interfaces between elements involving finite
constitutive parameters. Boundary-specific fluxes can be computed from these by making assumptions
regarding the neighbouring element as shown in the following sections.

3.6. Silver-Müller Boundary Conditions

For an element Vn adjacent to an ABC, Silver-Müller (SM) boundary condition can be implemented by

assuming that Z+ = Z− and that �E+ = �H+ = �0 [1, 3]. Using the notation:

A−
SM =

[

A−
SM,Z

A−
SM,Y

]

=

[

−αN 2

2Z−
Z−N
2Z−

−Y −N
2Y −

−αN 2

2Y −

]

(32)

the Silver-Müller absorbing boundary flux for the curl equations is simply:
[

�ΦE,n(�x)
�ΦH,n(�x)

]

SM

= A−
SM

[

�Esct,−(�x)
�Hsct,−(�x)

]

�x ∈ ΓABC (33)

while for the electric and magnetic vector wave equations respectively we have:

�ΨE,n
SM = jωA−

SM,Z

[

�Esct,−

−(jωµ−)−1
(

∇× �Esct,− + �M sct,−
)

]

�ΨH,n
SM = jωA−

SM,Y

[

(jωε−)−1
(

∇× �Hsct,− − �Jsct,−
)

�Hsct,−

]

(34)

3.7. PEC Boundary Conditions

At a point on ∂Vn lying on a PEC surface, the numerical flux can be obtained for the total fields by
assuming no contribution from across the boundary and taking the limit of the flux terms as Z+ tends
to 0. The scattered-field fluxes are then recovered by decomposing the total field into scattered and
incident fields [3, 21]. For the curl equations we have:

A−
PEC =

[

A−
PEC,Z

A−
PEC,Y

]

=

[

−αN 2

Z− 0

−N 0

]

(35)

such that the curl equation flux is:
[

�ΦE,n(�x)
�ΦH,n(�x)

]

PEC

= A−
PEC

[

�Esct,−

�Hsct,−

]

+ A−
PEC

[

�Einc

�H inc

]

. (36)
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Here, the term involving the incident field must be shifted to the right-hand-side of the resulting global
system of equations. Due to the definition of the operator A−

PEC the magnetic fields can be taken as
zero. With this in mind, the PEC fluxes for the electric and magnetic wave equations are respectively:

�ΨE,n
PEC = jωA−

PEC,Z

[

�Esct,−

�0

]

+ jωA−
PEC,Z

[

�Einc

�0

]

�ΨH,n
PEC = jωA−

PEC,Y

[

(jωε−)−1
(

∇× �Hsct,− − �Jsct,−
)

�0

]

+ jωA−
PEC,Y

[

�Einc

�0

]

.

(37)

3.8. Exact Radiating Boundary Conditions

Silver-Müller (SM) boundary conditions are attractive for DGMs because they are simple to implement
and offer relatively accurate results provided that the boundary condition is located sufficiently far from
all scattering targets. Perfectly matched layers (PML) offer an alternative to the SM conditions that are
generally more accurate but require tuning the spatial profile of an artificially lossy medium [4, 22, 23].
As an alternative, we use exact radiating boundary conditions (ERBCs). ERBCs use a Huygens’ surface
contained inside the computational domain to evaluate the fields at the computational boundary ΓABC,
and have been previously used for FEMs [24], TD-FVMs [25] and TD finite-difference methods [26, 27].

Our ERBC implementation follows the FVTD approach in [25]. On ΓABC the quantities �Esct,+ and
�Hsct,+ are computed using the Huygens’ surface ΓERBC shown in Fig. 1, which is assumed to enclose
all scattered-field sources. The required time-harmonic Huygens’ integrals are available, for example,
in [15]. The electric field on ΓABC can be computed from

�Esct,+(�x) =

∫

ΓERBC

(

−jωµb[n̂
′ × �Hsct(�x ′)]Gb(�x, �x ′) + [n̂′ · �Esct(�x′)]∇′Gb(�x, �x ′)

+ [n̂′ × �Esct(�x ′)] ×∇′Gb(�x, �x ′)
)

ds′, �x ∈ ΓABC (38)

where ΓERBC is the integration surface. The magnetic field can be obtained by duality. Here Gb(�x, �x ′) is
the Green’s function for the background medium external to ΓERBC. For the wave equations additional
transformations are used to determine both the electric and magnetic fields. Evaluation of the Huygens’
integrals is performed by interpolating the fields to a set of quadrature points on ΓERBC and evaluating
the integrals to a desired order. We assume that ΓABC and ΓERBC are sufficiently separated that no
singularity extraction is required. To account for variation in the Green’s function we typically assume

PEC

ABCΓ

ERBCΓ

µ ε

ΓPEC

µ εb b

x

E

'

n'

x H
sct,+

sct,+

Figure 1. ERBC configuration. All sources are contained within ΓERBC. The zoomed view shows the
interior elements used to interpolate to quadrature points on the ERBC surface (red). The Huygens’

intergral is used to evaluate �Esct,+ and �Hsct,+ on ΓABC (blue).
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an integration rule whose order is twice that used in the DGM. In order to simplify the interpolation
process we assume that the integration surface coincides with element boundaries. When implementing
ERBCs for FVTD it was found that evaluating the integration surface values using elements inside the
volume it encloses provided stable solutions [25], and we maintain that approach herein.

3.9. Implementation Details

To facilitate efficient construction of the global DGM system of equations, we provide implementation
details related to evaluating the tested numerical fluxes (19), (26) and (30). We exploit the particular
choice of nodal expansions presented in [1] for simplex elements, such that each simplex face maintains a
subset of the nodal points that is commensurate with the expansion order p(n) for (D− 1)-dimensional
functions along ∂Vn. Examples are shown (for 2D-geometries) in Fig. 2 for orders 1 and 2. Three nodes
are required to capture a first-order function in D = 2 dimensions. On each of the three faces there are
two points, sufficient to capture first-order behaviour in D = 1 dimensions along the face. Details for
generating nodal points maintaining this property are provided in [1].

Second-order nodes in V

First-order nodes in V

Solution in V    interpolated to 

nodes in V   on   V

Flux-compatible re-ordering as a  

collection of 

V Vnn'

U
sct, n' U

sct, n', n

Vn
Vn

U
sct, n', n

ν(n', n) U 
sct, n' U 

sct, n'

∼

n

n'

n'

n n, i
U

sct, n', n
∼

(x      )n
j (k)
i

Figure 2. The interpolation-permutation framework used to compute flux contributions from
neighbouring elements when the solution order varies from Vn to Vn′ . The first and second order
elements also demonstrate the preservation of order when moving from an element to its boundary.

The tested fluxes for the curl equations (19) are decomposed into a sum of integrals along the

D + 1 faces of a D-dimensional simplex Vn. We use ∂Vn,i to denote the ith face of Vn and ΦE,n,i
ζ (�x) to

represent the restriction of ΦE,n
ζ (�x) to �x ∈ ∂Vn,i. Along the face the nodal points may be expressed as

{�xn
ji(k)}, k = 1, . . . ,K, where ji(k) maps the kth face point index to the nodal index in Vn. Expanding

each Φ
E/H,n,i
ζ (�x) using a nodal basis along ∂Vn,i results in

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

F̃E,n
x

F̃E,n
y

F̃E,n
z

F̃H,n
x

F̃H,n
y

F̃H,n
z

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

D+1
∑

i=1

∫

∂Vn,i

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ℓn(�x)ΦE,n,i
x (�x)

ℓn(�x)ΦE,n,i
y (�x)

ℓn(�x)ΦE,n,i
z (�x)

ℓn(�x)ΦH,n,i
x (�x)

ℓn(�x)ΦH,n,i
y (�x)

ℓn(�x)ΦH,n,i
z (�x)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

ds ≈
D+1
∑

i=1

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Mn,iΦE,n,i
x

Mn,iΦE,n,i
y

Mn,iΦE,n,i
z

Mn,iΦH,n,i
x

Mn,iΦH,n,i
y

Mn,iΦH,n,i
z

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, Mn,i =

∫

∂Vn,i

ℓn(�x)(ℓn,i(�x))T ds (39)

where (ℓn,i(�x))T = [ℓn
ji(1)

(�x) ℓn
ji(2)

(�x) . . . ℓn
ji(K)(�x)] represents the nodal basis functions corresponding

to points along the ith face of Vn and where Φ
E/H,n,i
ζ represents the expansion coefficients for the flux

functions along ∂Vn,i. Computation of the element-face mass matrix, Mn,i, can be found in [1].
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The evaluation of the curl-equation fluxes in (39), using (21) at a given point along ∂Vn,i, is
facilitated when the field components at that point are collected together. To this end assume that Vn

and Vn′ share a common edge ∂Vn,i and let Esct,n′,n
ζ denote the value of Esct

ζ (�x) in Vn′ evaluated at the
nodal points in Vn that lie on the shared edge ∂Vn,i, i.e.,

Esct,n′,n,
ζ = [Esct,n′

ζ (�xn
ji(1)

) Esct,n′

ζ (�xn
ji(2)

) . . . Esct,n′

ζ (�xn
ji(K))]

T

and let Ũ sct,n′,n(�x) denote the collection of all field components in Vn′ at a point along the edge, i.e.,

Ũ sct,n′,n(�x) =
[

Esct,n′

x (�x), Esct,n′

y (�x), Esct,n′

z (�x), Hsct,n′

x (�x), Hsct,n′

y (�x), Hsct,n′

z (�x)
]T

, �x ∈ ∂Vn,i

We may now introduce the compact notation:

Usct,n = concat
(

Esct,n
x , Esct,n

y , Esct,n
z , Hsct,n

x , Hsct,n
y , Hsct,n

z

)

Usct,n′,n = concat
(

Esct,n′,n
x , Esct,n′,n

y , Esct,n′,n
z , Hsct,n′,n

x , Hsct,n′,n
y , Hsct,n′,n

z

)

Ũ
sct,n′,n

= concat
(

Ũ sct,n′,n(�xn
ji(1)

), Ũ sct,n′,n(�xn
ji(2)

), . . . , Ũ sct,n′,n(�xn
ji(K))

)

(40)

where concat is used to represent the concatenation of column vectors and the bold face type is used to
emphasize that the above quantities are collections of nodal coefficients for multiple functions. Thus,

• Usct,n contains the coefficients for all field components on Vn in the usual volumetric order expected
by the elemental system (11).

• Usct,n′,n contains the evaluation of the fields in Vn′ at the nodal points in Vn that lie on ∂Vn,i in
the usual volumetric order.

• Ũ
sct,n′,n

is a re-ordering of Usct,n′,n such that all field components at a single point are collected
together.

It follows that

Ũ
sct,n′,n

= PUsct,n′,n = PV(n′, n)Usct,n′

where V(n′, n) is a block interpolation operator that maps each field component expansion in Vn′ to the
nodes in Vn on the shared face, and P is a permutation matrix that then reorders the field components
on ∂Vn,i to be compatible with numerical flux evaluations. An illustration is provided in Fig. 2. This
expression can be evaluated when n′ = n or when n′ denotes the index of the neighbour to Vn across ∂Vn,i.
When n′ = n or p(n) = p(n′), V(n′, n) is simply a selection matrix. Otherwise, V(n′, n) interpolates
the order p(n′) expansion of each field component in Vn′ to the Vn nodes on ∂Vn,i. As a result, the
coefficients of each component of the flux terms in (39) can be computed as:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ΦE,n,i
x

ΦE,n,i
y

ΦE,n,i
z

ΦH,n,i
x

ΦH,n,i
y

ΦH,n,i
z

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= P−1A−PV(n, n)Usct,n + P−1A+PV(n′, n)Usct,n′

(41)

where P−1 = PT puts the coefficients back in the usual volumetric order and where A−/+ is a block-
diagonal matrix whose blocks are composed of A−/+ evaluated at the nodes in Vn on ∂Vn,i. The tested
numerical fluxes in (19) can now be evaluated directly, but we note that an additional interpolation is
required to compute the constitutive parameters at the nodal points in Vn on ∂Vn,i when the permittivity
and/or permeability vary over Vn′ .

To evaluate the numerical fluxes required for the electric wave Equation (26) we use
⎡

⎢

⎣

ΨE,n,i
x

ΨE,n,i
y

ΨE,n,i
z

⎤

⎥

⎦
= P−1

E jωA−
ZPV(n, n)Usct,n + P−1

E jωA+
ZPV(n′, n)Usct,n′

(42)
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where P−1
E is a permutation matrix commensurate with the number of field components for the electric

field. To evaluate the above fluxes we must compute the magnetic fields in Usct,n from the electric fields
and magnetic sources. For the magnetic wave equation we have

⎡

⎢

⎣

ΨH,n,i
x

ΨH,n,i
y

ΨH,n,i
z

⎤

⎥

⎦
= P−1

H jωA−
Y PV(n, n)Usct,n + P−1

H jωA+
Y PV(n′, n)Usct,n′

(43)

where P−1
H is a permutation matrix commensurate with the number of field components for the magnetic

field and where the electric field components of Usct,n must be determined from the magnetic fields and
electric sources.

3.10. The Global DGM System

The global system for the curl-equations can be constructed by collecting together the elemental
systems (11) resulting in:

KUsct = RUinc (44)

where K = K(ω, ε, µ) contains the volumetric and flux matrices that multiply the scattered-field

coefficients, and Usct/inc is the concatenation of Usct/inc,n over each mesh element. The matrix
R = R(ω, ε, µ, εb, µb) produces the right-hand-side volumetric and flux terms due to the incident fields
and the difference between the constitutive parameters and the background, where ε and µ denote the
collection of complex constitutive coefficients over the entire mesh.

The discrete versions of the electric and magnetic wave equations can be written using similar
notation:

KEUE,sct = REUinc, KHUH,sct = RHUinc (45)

where UE/H,sct contains the electric or magnetic field coefficients collected over all elements and where
KE/H and RE/H are the appropriate operators for the electric or magnetic wave equation formulations.
Note that in the case of general constitutive parameters, both the electric and magnetic incident fields
contribute to the right-hand-side of all three systems.

4. NUMERICAL RESULTS

In this section we present simulation results to demonstrate the performance of the DGM applied to
both Maxwell’s curl equations and the vector wave equations for transverse magnetic field problems.
We denote the Maxwell’s curl equations formulation as DGM-TM-ME (or simply ME) and the wave
equation formulations as DGM-TM-WE and DGM-TM-WH (simply WE or WH), for the electric and
magnetic wave equations respectively. In all tests, the upwind parameter α = 1 was used. Due to the
modest sizes of the problems considered, Matlab was used to implement the DGM formulations, using
basis function and plotting routines provided in [1]. Simulations were executed on an iMac equipped
with a single 2-core 3.06 GHz Intel Core i3 processor and 8GB of 1333 MHz DDR3 memory. For all
examples the systems (44) and/or (45) were solved using Matlab’s sparse LU factorization routine.

4.1. Analytic Comparisons for PEC and Penetrable Circular Cylinders

In order to validate the DGM-TM-ME, DGM-TM-WE and DGM-TM-WH implementations we begin
with TM planewave scattering from both PEC and penetrable cylinders. The incident field was selected
to be an x-propagating planewave:

Einc
z = e−jk0x, H inc

x = 0, H inc
y = −Z−1

0 e−jk0x (46)

where k0 = 2πf/c0 is the free space wavenumber for frequency f , Z0 is the impedance of free space
and c0 is the speed of light in vacuum. Analytic series solutions for PEC and penetrable cylinders
can be found in [28]. For the penetrable cylinders we selected two configurations, an ε-target, having
a relative permittivity of εr = 2 (with relative permeability µr = 1) and a µ-target having relative
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permeability µr = 1.5 (with releative permittivity εr = 1). The computational domains were generated
using Gmsh [29] and are shown for a particular discretization in Fig. 3. The radii of the cylinder targets
are 0.1061 m corresponding to approximately 0.7 wavelengths in freespace at the simulation frequency
of 2 GHz. The domain Ω is truncated at a radius of 0.4243 m by ΓABC upon which either a Silver-Müller
or ERBC boundary condition was imposed. In the former case the surface ΓERBC was simply ignored.
The PEC and penetrable meshes are respectively composed of 558 and 848 triangles, and at 2 GHz are
approximately 5.5 wavelengths across. The largest edge length of any element in the meshes is 0.077 m,
which is larger than a half wavelength. The cylinder boundaries are approximated using small elements
to properly capture the geometries. Fig. 4 shows the real part of both the analytic and the DGM-TM-
WH computed Esct

z fields for the ε-target. The fields were computed using constant 4th order DGM
formulations without ERBC mesh truncation. Visually, the solutions are indistinguishable from each
other. They are also visually the same as the ME and WE formulations although their solutions are not

X

Y

Z

 

 

Y

Z
X

(a) (b)

ABCΓ

ERBC
Γ

Γ PEC

ABCΓ

ERBC
Γ

Figure 3. Meshes used for simulating planewave scattering from (a) a PEC cylinder and (b) penetrable
cylinders. The meshes are the same for SM and ERBC boundary conditions. The ERBC Huygens’
surface is shown in red, while the boundary of the penetrable cylinders is shown in black.

(a) (b)

Figure 4. Comparison of (a) the real part of Esct
z computed analytically and (b) using the DGM-TM-

WH (magnetic wave equation) formulation at constant order p = 4.
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Figure 5. Relative errors in Real (Esct
z ) for the ME, WE and WH formulations, with and without

ERBCs, as a function of constant expansion order p for the cylinder targets: (a) PEC, (b) ε-target and
(c) µ-target.

shown. Rather than plot the fields produced for the PEC and µ-target cases (as they are also visually
identical to the analytic solutions at 4th order), in Fig. 5 we plot the relative error between the analytic
Esct

z field for all three cylinder targets and the three DGM formulations as a function of a constant
expansion order p(n) = p. Given a pth-order function f(�x) on an element Vn it is straightforward to

show that the inner product of f with itself satisfies 〈f, f〉Vn
= fhMnf where h denotes the conjugate

transpose. Thus the relative L2 error summarized in Fig. 5 is calculated as:

∥

∥

∥
Esct,analytic

z − Esct,DGM
z

∥

∥

∥

2
∥

∥

∥
Esct,analytic

z

∥

∥

∥

2

≈

(

N
∑

n=1

(

Esct,analytic,n
z − Esct,DGM,n

z

)h
Mn

(

Esct,analytic,n
z − Esct,DGM,n

z

)

)1/2

(

N
∑

n=1

(

Esct,analytic,n
z

)h
MnEsct,analytic,n

z

)1/2

(47)
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where there are N total elements in the mesh and where Esct,analytic,n
z represents the coefficients of

the analytic solution expanded in the DGM basis on Vn, while Esct,DGM,n
z contains the numerically

computed DGM field coefficients. To ensure that the computed DGM solution is accurate throughout
each element (and not just at the nodal points), the error quantifer (47) was not computed directly using
the DGM coefficients over the simulation meshes. Instead, the error was computed by first interpolating
the DGM solutions to refined meshes (not shown), consisting of N = 8, 062 and 10, 576 elements for
the PEC and penetrable cylinder simulations respectively. Interpolating from the simulation meshes
to the the refined meshes poses a problem as smaller elements in the refined meshes used for error
calculations may fall outside of the simulation domains. To avoid having to extrapolate from the DGM
solution space to the refined meshes, the latter were taken with a decreased outer radius of 0.3182 m
and a slightly increased inner radius of 0.1071 m for the PEC case. Thus the errors shown in Fig. 5 are
computed over a large sub-domain of Ω.

For all three DGM formulations the error displays high-order convergence at low orders. The WE
and WH formulations lag the DGM-TM-ME in terms of convergence due to the curl-curl term in the
wave equations which requires an additional derivative computation when compared to the curl equation
formulation. The 2nd-order solutions for both the WE and WH formulations are so poor (due to the
curl-curl derivatives and the prescribed element sizes) that they have not been included in the figure.
Further, WE outperforms WH at low orders due to the fact that that recovery of the electric field from
the magnetic fields produced by the WH formulation requires an additional curl computation.

At 4th order, the fields produced by the three methods are practically indistinguishable. The
benefits of the wave equation formulations can then be demonstrated by the performance summary
in Table 1, which shows the reduction in degrees of freedom as well as the fill- and factor-times of
the respective discrete operators for the ε-target. We note the increased factor times for the WE and
WH formulations with ERBC over the ME formulation. In our experience this increase is problem-
specific and the relatively small problem size considered herein may play a role. ERBCs improve the
solution accuracy in all cases at the cost of the increased computational complexity required to relate all
elements on the ERBC surface to all elements on the ABC surface. Mitigating this expense is possible,
for example by using MLFMM [27], but is beyond the scope of this work.

Table 1. Comparison of the DGM solutions for the ε-target at 4th order, including the dimension of
the matrix dimK , the number of non-zeros (nnz) in the system, the fill-time tfill and the factor time
tfactor.

Order p Element Count dimK nnzK tfill (s) tfactor (s)

DGM-TM-ME 4 848 38,160 1,973,384 2.7 1.9

DGM-TM-ME + ERBC 4 848 38,160 2,640,284 4.4 3.4

DGM-TM-WE 4 848 12,720 378,750 1.8 1.0

DGM-TM-WE + ERBC 4 848 12,720 452,850 2.4 5.0

DGM-TM-WH 4 848 25,440 1,514,615 2.5 6.8

DGM-TM-WH + ERBC 4 848 25,440 1,811,015 3.7 11.0

For these examples, increasing the expansion order beyond p = 4 fails to improve the solution
accuracy, a result that is attributed to the geometric modelling error in representing the cylinders [30].
One way to improve the results is to use h-refinement, i.e., to reduce the element size. While h-refinement
can be a computational burden when the order p(n) is constant, the flexibility of DGM to support locally
varying expansion orders can offset the additional cost. To validate the variable order formulations we
consider the ε-target on a refined mesh consisting of 1, 778 elements and shown in Fig. 6. The number of
elements within the cylinder results in an excessive oversampling of the fields and therefore we applied
a locally varying order as a function of each element’s electrical size. For this particular problem the
order ranged from 3 through 5, resulting in a discrete system having 22, 514 degrees of freedom in the
DGM-TM-WE case. By comparison, a constant 5th order WE formulation on this same mesh would
require 37, 338 degrees of freedom. The result of this h-refinement is also shown in Fig. 6, where we
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Figure 6. (a) Refined mesh for the ε-target upon which a variable order from p = 3 to p = 5 is imposed
based on element size. (b), the relative errors obtained from the variable-order DGM formulations are
appended (as the last data point after order p = 6) to the ε-target error plot for the constant-order
mesh, originally shown in Fig. 5.

have supplemented the error convergence for the ε-target shown in Fig. 5 with an additional set of
data points for the variable-order solutions. The combination of ERBCs and more accurate geometric
modelling achieves better error levels than the 6th order simulations on the original meshes. The refined
mesh used here is an extreme case; the number of elements within the cylinder could be significantly
reduced by only enforcing small element sizes in the vicinity of the cylinder boundary.

4.2. High-Order Approximations to Constitutive Parameters

An alternative geometric modelling approach for DGM formulations is to use high-order polynomial
expansions for the constitutive parameters. To begin we will illustrate the concept with a continuous

(a) (b)

Figure 7. Gradient dielectric target discretized as (a) a constant value based on the centroid position
of each element in a fine mesh and (b) on a coarse mesh at each of the 10th-order nodes in each element.
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constitutive profile. We consider a gradient relative permittivity profile,

εr(ρ, φ) =

{

3 − 2ρ/a, ρ ≤ a
1, ρ > a

(48)

in cylidrical coordinates (ρ, φ, z) where the radius of the cylinder a = 0.1061 m. We solved for the
scattered fields from this gradient target using the incident fields defined in (46) and two discretization
schemes. First, the refined mesh shown in Fig. 7(a), consisting of 3, 966 elements, was used and a
constant relative permittivity value is assigned to each element. The relative permittivity was prescribed
as the value of the gradient profile at the centroid of each element. In this configuration, a 2nd order
DGM-TM-ME solution was computed as a reference solution. Next, a coarse mesh consisting of 96
elements was adopted. On this mesh, shown in Fig. 7(b), a 10th-order basis expansion was assumed
and the relative permittivity was prescribed directly at the underlying nodal points using Equation (48).
The results of the simulations are summarized in Table 2 and show excellent agreement and significantly
improved computational performance for the WE and WH formulations.

As a final elementary example we return to the scattering from the µ-target cylinder defined in
Section 4.1. Now, however, we have approximated the exact geometry by evaluating it at the 10th order
nodes of the 96 element mesh described in the previous example, as well as at the 4th-order nodes in a
more refined mesh consisting of 2, 938 elements. The resulting constitutive approximations are shown in
Fig. 8 and simulation results are provided in Table 3. There are two points of interest highlighted by the
results. First, using high-order approximations to the constitutive parameters reduces the computational
cost, demonstrated by the computational times on the 10th-order 96-element mesh. Second, and more
importantly, the DGM-TM-WE formulation performs poorly. Approximating a step-function with high-
order polynomials will introduce oscillations in the representation of the constitutive parameters. The
DGM-TM-WE flux calculation in (28) results in a contour integral of the magnetic source vector (unlike
DGM-TM-WH or DGM-TM-ME), which suggests that the effects of the oscillations along the contour
corrupt the results beyond the effects of the oscillations over each volume. Although not included herein,
we can confirm that for the ε-target, it is the DGM-TM-WH formulation that suffers similarly.

Table 2. Summary of gradient-target results comparing the refined 2nd order reference solution to the
10th order variable permittivity approximation. Errors are computed relative to the reference solution.

Order p
Element

Count
dimK nnzK tfill (s) tfactor (s)

Relative

Error

DGM-TM-ME

Reference
2 3,966 71,388 2,061,232 7.3 3.4 -

DGM-TM-ME 10 96 19,008 3,292,750 3.3 4.2 0.0065

DGM-TM-WE 10 96 6,336 615,648 0.8 0.28 0.0064

DGM-TM-WH 10 96 12,672 2,461,782 2.2 0.95 0.0093

Table 3. Summary of simulations for the locally varying constitutive approximation of the µ-target for
a coarse and fine mesh. Errors are computed relative to the analytic solution.

Order p
Element

Count
dimK nnzK tfill (s) tfactor (s)

Relative

Error

DGM-TM-ME 4 2,938 132,210 6,839,268 9.4 8.1 0.026

DGM-TM-WE 4 2,938 44,070 1,315,650 6.1 4.4 0.069

DGM-TM-WH 4 2,938 88,140 5,262,600 8.9 42.0 0.027

DGM-TM-ME 10 96 19,008 3,294,592 3.3 3.9 0.026

DGM-TM-WE 10 96 6,336 615,648 0.87 0.24 0.072

DGM-TM-WH 10 96 12,672 2,461,782 2.3 0.95 0.028
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(a) (b)

Figure 8. The µ-target approximated using polynomials on (a) the coarse 96 element mesh using
p = 10 and (b) a 2,938 element mesh using p = 4.

(a) (b)

(c) (d)

Figure 9. (a) A University of Wisconsin-Madison UWCEM breast model target, modelled using FEM
and (b) DGM with a variable-order basis. (c) The fields produced by FEM and (d) DGM-TM-WE
agree. White boxes denote the location of the parameters shown.
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4.3. A Practical Example of a Forward Solution for Biomedical Microwave Imaging
Applications

As a final practical example, used to demonstrate the capabilities of a DGM forward solver for
tomographic microwave imaging applications, we consider simulating scattering from a human breast
model. The model, a realistic MRI-derived numerical phantom from the University of Wisconsin-
Madison UWCEM Numerical Breast Phantom Repository [31, 32], has been converted to an FEM
model shown in Fig. 9. The FEM model consists of 100,584 triangles resulting in 50,482 degrees of
freedom. The problem was also formulated using the DGM-TM-WE on a coarser mesh, made up of 568
triangles, using a variable-order basis with orders 5 through 7. The DGM constitutive parameters were
obtained by a simple nearest-neighbour interpolation from the FEM mesh, resulting in a profile that is
also shown in Fig. 9. Note that only the real part of the dielectric is shown, but that simulations include
the imaginary part of the complex dielectric. The DGM-TM-WE model results in 13, 628 degrees of
freedom. Simulations were performed for a 1GHz line source located at (x, y) = (0.09, 0) meters in
a freespace background medium. FEM and DGM simulation results are provided, for comparison, in
Fig. 9. The DGM solution has 3% error with ERBCs (8% without) relative to the FEM solution,
with fill and factor times not exceeding 2.5 seconds with ERBCs. The error was computed by first
interpolating the DGM solution to the FEM mesh. This example demonstrates the flexibility of
the proposed DGM formulations to handle geometries that are typically found in biomedical MWI
applications. Improvements to the DGM model could be made by using automated local h-p refinement
in regions where the constitutive parameters exhibit large gradients. However, we wish to emphasize the
flexibility of the DGM formulation for efficiently representing very complicated constitutive structures
without prior knowledge of their location or features. This flexibility is very attractive for imaging
applications where we typically have severely limited knowledge of a target’s constitutive properties.

5. CONCLUSION

The DGM formulated for Maxwell’s curl equations offers flexibility that is desirable for microwave
imaging applications including: local solution order refinement, support for locally varying constitutive
parameters and support for both electric and magnetic constitutive parameters. To improve
computational performance we have developed DGM formulations for the electric and magnetic vector
wave equations when both electric and magnetic sources support the fields. The wave equation
formulations also permit locally varying field order, locally varying constitutive parameters, and are
compatible with exact radiating boundary conditions (ERBCs).

We have demonstrated through a number of examples that both the curl-equation DGM and the
wave equation DGMs provide accurate solutions to transverse magnetic field problems in the presence
of both electric and magnetic sources. ERBCs improve the overall accuracy of the scheme and provide
a mechanism for validating computational models using Silver-Müller boundary conditions: if solutions
with and without ERBCs do not differ substantially, Silver-Müller conditions are sufficient.

An important feature of the DGM formulations is that high-order constitutive parameters provide
a mechanism for essentially decoupling the physical medium from the mesh used to support the fields.
For imaging applications, this implies that we can reduce the number of degrees of freedom required to
represent unknown physical parameters yet still maintain accuracy in the fields. Results have shown
that when modelling discontinuous constitutive parameters using the DGM polynomial basis, one should
be careful in choosing a formulation. For example, the accuracy of the inhomogeneous magnetic vector
wave equation suffers for discontinuous dielectric targets when the mesh does not align itself with the
discontinuity. We are currently investigating a hybrid formulation that applies, on an element-by-
element basis, either the curl-equation formulation or a wave equation formulation. Details on such a
formulation are forthcoming.
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APPENDIX A. NODAL DGM OPERATORS

The purpose of this appendix is to provide details for deriving the tested DGM formulations for the wave
equations. We introduce the differentiation operator Dn

ζ defined such that Dn
ζ En

ξ gives the coefficients

for the local function ∂Eξ/∂ζ in Vn. It is straightforward to show that [1]

(Dn
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and it follows that the coefficients for the curl of the electric field can be computed as
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This operator can be used to compute the flux terms in (28) that depend on the curl of �Esct. Similarly,

the integrals
∫

ψ∇ × �Esctdv required for computing (7), where ψ takes on all expansion functions ℓn
m,

can be written as:
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where it can be shown that MnDn

ζ = Sn
ζ [1]. In (8), the stiffness terms for the electric field wave

equation involve
∫

ψ∇× (µ−1∇× �Esct)dv. It follows from (A2) that the coefficients for the curl-curl of
the electric field in Vn are (suppressing n on Dζ):
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and it follows that the tested values can be computed as:
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Expanding the right-hand-side of this expression gives the leading matrix in (14).
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