
Dysregulation of growth factors is amongst the chang-
es that occur in cells and tissues in diabetes. As
growth factors commonly control essential biological
functions, it follows that they may be critical in caus-
ing the end-organ complications of diabetes [1]. Con-
sequently, identifying the key growth factor(s) that
cause a particular type and stage of diabetic tissue
damage is of potential importance in preventing and
treating diabetes complications.

In this context, connective tissue growth factor
(CTGF), also known as CCN2 [2], is a prime candi-
date. Following its identification in 1991, this 38-Mr
cysteine-rich secreted protein has been shown to ex-
hibit a broad spectrum of biological activities, often
specific to cell and tissue type. Many of the effects of
CTGF reflect cellular changes that, characteristically,
occur more frequently than normal in diabetic compli-
cations. The main effects of CTGF are the regulation
of extracellular matrix (ECM) accumulation [3], cell
hypertrophy and mitogenesis, and in some cases, ap-
optosis [4], cellular adhesion and chemotaxis [5], and
cell trans-differentiation [3]. The complex biological
process of angiogenesis can also be promoted by
CTGF [6].

CTGF gene expression and protein levels are up-
regulated by diabetes in tissues that are susceptible to
end-organ injury. The kidney has been the main focus
of CTGF research in diabetes. CTGF was found to be
increased both in rodent models of diabetic renal dis-
ease, in the glomerulus [7, 8] and the tubulo-interstiti-
um [9], and in human diabetes, in the same sites, in-
volving the resident cells of the kidney [10]. Increases
in CTGF renal expression correspond with the extent
of glomerulosclerosis and tubulo-interstitial fibrosis,
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The time has come to target connective tissue growth factor 
in diabetic complications 

leading to the hypothesis that CTGF contributes to
early mesangial matrix expansion and the later chang-
es of fibrosis in advanced diabetic nephropathy [10].

ECM expansion is a common feature in tissue af-
fected by diabetes. Indeed, we have recently shown
that CTGF is also increased in non-renal tissue. The
increases in CTGF correspond with pathological in-
creases in myocardial type III collagen in rodent dia-
betic cardiomyopathy [11]. In the diabetic apoE-defi-
cient mouse model of atheroma, CTGF mRNA and
protein levels are increased in the complex lesions at
the fibrous caps, where increases in ECM are also ob-
served [12]. In the eye of the diabetic rodent, CTGF is
up-regulated in the ganglion cell layer of the retina
[13]. These data suggest that CTGF may contribute to
microvascular and macrovascular complications in di-
abetes.

The main metabolic pathways implicated in micro-
vascular complications in diabetes cause an increase
in CTGF expression. Depending on the cell type, ele-
vated extracellular glucose, reactive oxygen species,
other growth factors implicated in diabetes, e.g. TGF-
β and vascular endothelial growth factor (VEGF) [14],
as well as advanced glycation end-products [15] and
the hexosamine pathway have all been identified as
inducers of CTGF expression. In some cases, relevant
response elements in the CTGF promoter that mediate
particular inciting agents have been resolved. Haemo-
dynamic factors that are increased in diabetes, such as
angiotensin II [16] and static pressure, interact with
the metabolic pathways in diabetes to increase renal
CTGF production. Interestingly, in some models, pro-
tein kinase C pathways down-regulate CTGF gene ex-
pression, whilst in other systems, overexpression of
protein kinase C can up-regulate CTGF [14]. Further-
more, pro-inflammatory cytokines may have the same
variable effect, depending upon the diabetic model
studied [14].



The cellular mechanism of the action of CTGF re-
mains to be fully clarified. CTGF specifically binds
integrin subtypes [2], and acts as a binding partner for
a variety of growth factors [17, 18]. In other studies,
CTGF was shown to bind to the promiscuous LDL-re-
ceptor-related protein [2]. CTGF is a modular protein
and its C-terminal fragments alone have been shown
to confer biological activity [2], whilst its heparin-
binding domain likely impacts upon its extracellular
localisation, cellular targeting and activity [2]. It is un-
clear whether CTGF functions primarily by signalling
through its own cell surface receptor, e.g. using inte-
grins, or whether its main mechanism is the regulation
of other growth factor effects. Since a receptor specif-
ic to CTGF has not yet been identified, diabetes re-
search currently needs to target this particular growth
factor.

Whilst the mechanism of CTGF action is not fully
understood, the finding that CTGF interacts with other
important growth factor systems provides further ar-
gument in favour of blocking CTGF in diabetes com-
plications. Neutralisation of TGF-β with antisense oli-
gonucleotides or neutralising antibodies prevented
structural changes of diabetic nephropathy in rodents
[19]. CTGF is not only up-regulated by TGF-β, it also
augments TGF-β bioactivity [17]. Blocking VEGF at-
tenuates proliferative and non-proliferative diabetic
retinopathy [20], and in retinal cells in culture, CTGF
is induced by VEGF and regulates VEGF bioactivity
[18]. These data suggest that by blocking CTGF
bioactivity, the TGF-β and VEGF systems, which
have already been described as critical in causing dia-
betic complications, will be modulated.

The arguments for the involvement of CTGF in di-
abetic complications are thus potent, in terms of the
known bioactivities of CTGF, its up-regulation in dia-
betes, and its interaction with other key growth fac-
tors. Remarkably however, no in vivo studies have yet
reported whether specifically blocking CTGF prevents
any form of diabetes-related end-organ pathology.
Studies in human primary cell cultures show that
CTGF mediates, at least in part, the effect of advanced
glycation end-products [21] and high glucose [22] on
cell matrix accumulation. The finding that CTGF ex-
pression is inhibited in vivo in diabetic models where
tissue complications are prevented, such as in neph-
ropathy treated with the advanced glycation formation
inhibitor, aminoguanidine [15], in diabetic atheroma
and retinopathy treated by ACE inhibition [12, 13],
and in diabetic cardiomyopathy treated with the ad-
vanced glycation cross link breaker, ALT-711 [11],
provides convincing circumstantial evidence that
CTGF mediates the effects of advanced glycation end-
products and angiotensin II on end-organ injury in di-
abetes.

Potential methods to block CTGF include the inhi-
bition of its gene and protein expression, and the neu-
tralisation of the effects of the active protein. Tools

that are efficient in blocking CTGF in vitro include
antisense oligonucleotides [23], adenoviral CTGF an-
tisense constructs [6] to inhibit CTGF transcription,
and anti-CTGF neutralising antibodies [21], which
thereby block protein bioactivity. Whilst tissue and
cell type targeting can be difficult to achieve, such
tools used in vivo should show whether blocking
CTGF is effective in preventing diabetic tissue dam-
age. If the animal studies are successful, tools such as
humanised neutralising antibodies, CTGF antisense in
adeno-associated or slow viruses, siRNA, and small
peptides may provide blocking methods that are more
complete, and that minimise vector-related non-spe-
cific immune responses. In the future, small non-pep-
tides may also be of value, to inhibit receptor func-
tion. Such approaches may ultimately be useful in
clinical studies in humans.

A serious concern is that the growth factors to be in-
hibited for prevention of diabetes complications may
be essential for normal biological functions. CTGF
may have some advantage over other growth factors in
this respect. TGF-β has important functions in immune
surveillance and suppression, and in inhibiting epithe-
lial cell proliferation, in addition to its role in ECM
regulation [24]. Indeed, TGF-β knock-out animals die
from immune system overactivity [25]. In parallel,
VEGF isoforms are thought to have an important func-
tion in normal retinal development [20]. Whilst CTGF
can augment the bioactivity of TGF-β in terms of its
effects on ECM, it has not been shown to suppress im-
mune function. Furthermore, at normal tissue levels,
CTGF has minimal effects on epithelial cell growth,
consistent with the view that CTGF may be a more
specific target for diabetic complications than TGF-β
[25]. It is also possible that blocking CTGF will atten-
uate the adverse effects of VEGF bioactivity in diabet-
ic retinopathy, but will not completely block VEGF
function in normal biological processes. Since CTGF
gene deletion/knock-out mice die at birth from respira-
tory failure secondary to cartilage maldevelopment, it
may be preferable for CTGF to be inhibited in a man-
ner that is specific to tissue and time. In addition,
CTGF is thought to have an important developmental
role for the kidneys [4], bones and cartilage [26], and
is active in wound healing [27].

As well as being a therapeutic target, CTGF may be
a valuable marker for detecting early diabetic compli-
cations. Urinary CTGF excretion in people with dia-
betes increases in parallel with progressive renal dys-
function [28, 29]. Apparently robust CTGF assays ex-
ist, and it is hoped that a commercial assay will soon
be available. Intriguingly, CTGF steady-state mRNA
levels in renal biopsies of patients with Type 1 diabe-
tes may be able to predict which individuals will de-
velop diabetic complications over time, even in the
absence of abnormal histopathology at the time of the
initial biopsy [30]. Thus, measurement of CTGF in
tissue samples and biological fluids may prove useful
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in predicting imminent and progressive diabetic com-
plications, and in monitoring response to therapy.

This body of data collectively implicates CTGF in
diabetic complications, not only in the kidney but also
in non-renal tissue. However, the data are circumstan-
tial, and in order to make progress in this field, obser-
vations of direct CTGF inhibition in animal models of
diabetes are required. Such findings should resolve the
issue of whether directly modulating this growth fac-
tor can safely retard, reverse or prevent diabetic com-
plications (Fig. 1).
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