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The Gaussian wave packet method has been developed for the simulation of processes like
molecular collisions, photodissociation of molecules, and laser excitations of molecules. So far
a necessary condition for an accurate result is that the fragment states are propagated
accurately. We have considered one-dimensional bound states described by a Morse potential,
and carried out a systematic study of the ability of the Gaussian wave packet method to
propagate the stationary states. It is found that the complete set of equations of motion as
derived by the minimum error method (MEM) cannot be used in practical calculations
because of numerical problems. These are eliminated by the introduction of simplifications
such as the independent Gaussian approximation (IGA), where each wave packet is
propagated independently. The conditions for an accurate propagation within that assumption
are developed, and a simple method is devised to identify those states, which are propagated
accurately. This procedure may be used to investigate when the Gaussian wave packet method

is appropriate for the simulation of a given process.

1. INTRODUCTION

In the last few years new semiclassical methods, such as
the Wigner method’ and the Gaussian wave packet method,?
have been developed for propagating quantum states in time.
A common feature of the methods is that they give good
well-defined results for systems with harmonic interactions.
When anharmonic interactions are involved, the resulits of-
ten depend on the method used and disagree with exact re-
sults. The channel states or the states of the molecular frag-
ments in collision and dissociation processes usually include
bound states, which are of primary concern in this work. If
the propagation of those is inaccurate the final results are
poor and often ill defined,” since they, for example, may de-
pend on the duration of the propagation. Therefore, a neces-
sary condition for the application of a particular method to
the study a given process is that the propagation of the frag-
ment states is accurate. This condition is not sufficient for a
successful calculation, however, since the interaction poten-
tial between the fragments has not been included. Thus, it
will be very useful to conduct a systematic study of the abi-
lity of the various methods to give an accurate propagation
of bound states determined by realistic anharmonic poten-
tials. Since such studies have not been reported in the litera-
ture, we have studied two methods, the Gaussian wave pack-
et method and the Wigner method. In this paper the
Gaussian wave packet method is considered and in a sepa-
rate paper” a similar study has been reported for the Wigner
propagation method. The term “the Gaussian wave packet
method” is used as a generic name for various approaches to
the solution of the time-dependent Schrédinger equation all
based on an expansion of the wave function in Gaussian
wave packets. We have chosen to consider the bound states
of the Morse potential, because it is a simple realistic repre-
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sentation of the potential between two covalent bound
atoms. In addition, the Morse potential is very convenient to
use, because it may be specified by just one parameter A,
where the integer part of (4 + 0.5) is the number of bound
states, and because relevant matrix elements may be ex-
pressed analytically.

In 1968 Chesick® suggested, in analogy to electronic en-
ergy-state calculations, the use of a real Gaussian basis set to
obtain the wave functions and the energies of the stationary
states of a Morse oscillator. A normalized basis set of Gaus-
sian functions with the centers uniformly spaced along the
coordinate axis were used. The widths of the Gaussian func-
tions were all identical and chosen to be that of the ground-
state harmonic-oscillator function matching the curvature
of the Morse potential at the potential minimum. Earlier
treatments of the problem were based on expansions in a
harmonic oscillator basis set, and it was shown that the dis-
tributed Gaussian basis functions were more effective, in
particular for the higher vibrational states. Shore® followed
up the work of Chesick in 1973, where the numerical accura-
cy of the method were analyzed in further detail and com-
pared to other methods. In particular, the effects of over-
crowding were investigated. Addition of more Gaussian
functions to the basis set and simultaneous reduction of the
distance between adjacent functions causes a larger and larg-
er overlap between them. This makes the overlap matrix
more and more ill conditioned and inflates the numerical
errors in the computations. Thus, there exists an optimal
number of basis functions. The parameters of the Gaussian
basis sets were restrictive and not suitable for highly anhar-
monic potentials. Davis and Heller” considered a generaliza-
tion of the earlier treatments to a basis set of complex Gaus-
sian functions with centers distributed throughout the phase
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space. Hamilton and Light® showed in 1986 that the general-
ization to complex Gaussian functions is unneccesary, in
cases where all eigenstates and eigenvalues are wanted to
high precision. They considered a generalization of Chesick
and Shore’s basis set to nonuniformly spaced Gaussian func-
tions of different widths. The centers of the Gaussians are
distributed in a space limited by the turning points of the
classical motion for some energy, and the centers are spaced
more closely near the potential energy minimum reflecting
the larger kinetic energy in that region. By relating the width
of the Gaussian functions to the distance between the
centers, they reduced the inaccuracies due to the overcrowd-
ing in the basis set. This more flexible basis set allows an
excellent determination of the stationary states of a Morse
potential with a limited number of Gaussians in the basis set.

The idea of representing a stationary wave function by a
set of real Gaussian functions was extended by Heller? to the
study of time-dependent quantum-mechanical processes,
where the states are represented by a superposition of a set of
complex Gaussian wave packets (GWP). Each function is
characterized by several parameters (the position and the
momentum of the packet’s center, a complex width, and a
complex phase) and the time evolution of those determines
the wave function at time 2. The equations of motion for the
parameters are obtained under the assumption that the po-
tential around the instantaneous center of each GWP may be
approximated by a second order Taylor expansion of the
exact potential. This approximation is referred to as the local
harmonic approximation (LHA ). The method was success-
fully applied to a variety of time-dependent processes.™® A
common feature of these applications is that they deal with
the short time dynamics of localized states, where the ap-
proximations are justified.

A more general investigation of the Gaussian wave
packet method has been presented by Sawada er al.'® They
explored the use of the Gaussian wave packet representation
beyond the domain, where the approximations mentioned
above are justified. The equations of motion are obtained by
using the so-called minimum error method (MEM), which
is based on a variational principle applied to the wave func-
tion itself. Basically, the equations of motion are obtained
from a least-squares fit of the two terms in the time-depen-
dent Schrodinger equation. The MEM gives the best solu-
tion to the time-dependent Schrédinger equation at any time
with the given basis set. Compared to the variational princi-
ple used in the determination of the stationary states, the
principle used in the MEM is much stronger, since it applies
to the wave function and not only to the energy.

We have set up the MEM equations for any number of
GWP and investigated the time propagation of various
bound states of a series of different Morse potentials. The
quality of the propagation is monitored by the norm of the
state and the projection of the propagated state onto the ini-
tial state as a function of time. The former is used to test if the
propagation is unitary and the latter indicates how well the
state is represented by the given set of GWP, if the propaga-
tion is unitary. Although the MEM equations are exact, nu-
merical problems tend to limit their use in practical calcula-
tions, and it is shown that the performance of approximate

methods, where no numerical problems are present, depends
on how the initial set of GWP is chosen. They are chosen by
the method of Hamilton and Light,® and this new approach
gives a good starting point for an analysis of which states
may be propagated accurately.

In the next section we discuss the Morse potential and
show that it may be characterized by a single parameter A. In
Sec. III the MEM equations are presented and in Sec. IV the
representation of the stationary states is discussed. We have
supplemented the work of Hamilton and Light by a com-
parison of calculated and exact transition matrix elements
and extended it by including a variation of the widths of the
basis functions in the variational calculation. In Sec. V we
analyze the numerical problems, which severely limit the
practical use of the MEM. Furthermore, a series of states
belonging to different Morse oscillators have been propagat-
ed using the IGA, and the results are used to deduce a crite-
ria for which states of a given Morse oscillator may be propa-
gated accurately using the IGA. In Sec. VI we give a
summary and compare the propagation of Morse states us-
ing IGA with thawed Gaussians (as described in Sec. V) and
with frozen Gaussians.

il. THE MORSE POTENTIAL
The potential
v(r) = D {1 —exp[ — B(r—ry) 1} 2.1

suggested by Morse'? in 1929 is a useful model for the inter-
action between the atoms in a diatomic molecule. 7 is the
distance between the atoms, D, the dissociation energy of
the molecule, B a scale factor, and 7, the equilibrium dis-
tance. The Schrédinger equation for the stationary wave
functions ¢ is for the problem we are considering:

A 2
__% iyg +D,{1—exp| —5<y—-yo)1}2¢=-::2¢,2)

where 7 has been replaced by y to emphasize the one-dimen-
sional aspect. u is the reduced mass of the diatom and if we
introduce new variables

2
U= 7B X
2u
Eq. (2.2) has the form
a2¢' 2 —x3y2
- +A(l—e Y Y=¢y (2.4)
ox
with
g2 D 2D,
U ﬁ2ﬁ2
and
E 2uE

Equation (2.4) shows that all systems with identical A have
the same set of stationary states. Analytical solutions'>'* for
both € and ¥ in Eq. (2.4) have been obtained, and the ener-
gies are given by
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FIG. 1. A universal plot of the Morse potential v(x). The dashed curve is
the harmonic potential, which matches the potential at the minimum of the
potential. x, U, A are defined in Egs. (2.3) and (2.5). The insert is an en-
largement of the region, where anharmonic parts of the potential begin to be
significant.

€, =24 [(n +0.5) — %(n + 0.5)2],

n=0,1,23,..,(41 —0.5). (2.6)

The maximum energy of a bound state is €,,,,, = D./U and
from Eq. (2.6) we see that nmax = (4 — 0.5). Thus, the
number of bound states is simply given as the largest integer,
which is less than or equal to (4 + 0.5). Introduction of Eq.
(2.3) into Eq. (2.1) gives
v(x) _ 4o —xy2
U Af(l—e™™)

and shows that all Morse potentials may be represented by a
single graph

(2.7a)

J

N
V(xt) = > gz(x1),
B=1

gp(x,t) = eXp[%[aB (x —Rp)*+ Pp(x—Rp) + 1’3]]

Hansen, Henriksen, and Billing: States of a Morse ocsillator

v(x)

A

UA? ¢
The harmonic potential, which matches the Morse potential
at the energy minimum has the simple form

V(X)) har )
=X
UA?

The two curves [ Egs. (2.7b) and (2.7¢) ] are shown in Fig.1
and may be used to give a qualitative idea of the anharmoni-
city of a given energy state. Herzberg' has collected the
spectroscopic data for many diatomic molecules and derived
the Morse potential parameters, which are given in table 39
in his book. For convenience we give the relation between A
and the parameters @, and (x,w, ) used in Herzberg’s table

_e_x)z. (2.7b)

(2.7¢)

2 (x0,)
Finally, we shall give an analytical expression'* for the tran-

sition matrix elements between the eigenstates of a Morse
oscillator, {(m|x|n), which in terms of the A parameter is

(2.8)

(=1r—m+!
n—mQl—n—m-—1)
« nQ2A—n—1)!

m(2A —m — 1)!

(ml|x|n) =

172

XA =2n—1)Y(2A —-2m —1)

n>m. (2.9)

This expression is used in Sec. IV to test the calculated wave
functions of the Morse oscillator.

lil. THE MINIMUM ERROR METHOD AND
APPROXIMATIONS

The time-dependent wave function is written as a sum of
N Gaussian wave packets:

3.0

= exp[ —_ —;?[Im(ab)(x —Rp)*+ Im(yB)]}exp[-é-[Re(aB)(x —R;)2 4+ Pg(x—Rp) + Re(yB)]]

=gp[%5p(D];

where R ; and P, are the average position and momentum of
wave packet B. This is readily verified by forming the expec-
tation values of the position and momentum operators. ap
and yp are the complex width and phase parameters, and N
is the number of basis functions in the set. £, (¢) = [az(2),
Ry (1), Ps (1), y5(1)] is a short notation for the six param-
eters of a wave packet with the jth member specified as §5;.

|

The wave function (3.1) is introduced in the time-dependent
Schrddinger equation

iﬁ—a\p = HY¥

3.2
£y (3.2a)

with the Hamiltonian H given by [see Eq. (2.4)]
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az
H= ——4+1%1—
pw 5+ A%

-5 (3.2b)
The equations of motion'® for the &, parameters are deter-
mined by first forming the sum over all points x of the
squared difference between the two terms in Eq. (3.2a),

o= [ -mg3(ay) e - mgm]
(Rl

and then finding the minimum of o with respect to all the
time derivatives, & - This gives at any time the best solution
of Eq. (3.2a) with the given basis set. For the practical deri-
vation of the equations of motion it is noted that some of the
parameters, &p;, are complex (az,yp) and some are real
(Rg,Pg). Differentiation with respect to a real parameter is
straightforward, and if the parameter is complex one may
choose to consider say the complex conjugate £ %; as the in-
dependent variable, and we find the equations:

§ 5 15 @ complex parameter:

2= [ alr() s (G e

og
+ lﬁ(tsé'g,) HEA: gA] =0, (3.3a)
&g is a real parameter:
do (7 ogx 6gA).*]
5y | f"{Re[ﬁz(agm )22(6;, &
+Re[1ﬁ( )HZgA” = Q. (3.3b)

Developments of the equations in (3.3) lead to the matrix
equation

CX=V. (3.4)

C is a 3#3 block matrix, where each block is a N*N matrix
and the elements in each block are given by

C(4,2;B,2) C(4,2B0) C(4,2;B,1)
C=|C(4,0;B2) C(4,0;B0) C(4,0;8,1)],
C4,1;B2) C(4,1,B0) (C(4,1;4,1)

A,B=1,2,3,..,N (3.5a)
with
C(4,m;Bm) = ((x — R,)"(x —Rp)"g%gs)-

X is a 3*1 block matrix, where each block is a N *1 matrix
with the elements in each block given by

a, +2d5/u
X=7./A —iﬁaA//‘—‘PARA +P§a/2ﬂ »
P, +2a,(P,/u—R,)

A=123,..,N. (3.5b)

V is a 31 block matrix, where each block is a N *1 matrix,
and the elements in each block are given by

Pea.2:1,0) + -

—(4,0,1,0) + -

(4,1;1,0) + -+
A=123,..N

+ V(4,2,N,0)
+ V(4,0,N,0) ],
+ V(4,1;,N,0)

(3.5¢)
with
V(4,mBm) = ((x — R,)"(x — Rp)"g%vgs).

All matrix elements are expressed analytically and the X
vector is easily obtained from Eq. (3.4) by inverting the
complex matrix C. Since most standard integration routines
require an expression for the time derivatives of each param-
eter, it is necessary to perform some simple manipulations on
the X vector in order to isolate all time derivatives before a
standard integration routine, here a Runge Kutta fifth order
scheme, is adopted. Heller” has pointed out that the a% terms
in the first block of the X vector causes numerical difficulties
and that the stability of the calculations is improved if a, is
replaced by the complex variables Q, and Z, defined by

a,=050,/Z,,

=Q,/1,
such that the equation

a, + 2d%/u = (right-hand side)
is replaced by two equations

Z,=Q,/u,

Q, = 2(right-hand side)Z,,. (3.6b)
This substitution is used in our calculations and increases the
number of coupled differential equations from six to eight
per wave packet.

To illustrate the relations between the MEM equations

and the LHA equations let us consider just one wave packet.
From Eq. (3.4) we find

(3.6a)

R,=P/pu,
_V(L51L0)  (g,|dv/dx|g,)
ERrIRER I (gilg))
= —2d/u

€(1,2;,1,0) ¥(1,0;1,0) — €(1,0;,1,0) ¥(1,2;1,0)

C(1,0;1,0)C(1,2;1,2) — C(1,2;1,0)C(1,2;1,0)°
3.7)

vi = ifia,/p + P1/2u

C(1,2;1,0)¥(1,2;1,0) — C(1,2;1,2) ¥(1,0;1,0)

C(1,0;1,0)C(1,2;1,2) — €(1,2;1,0)C(1,2;1,0)
which shows that the equations of motion for the center of
the wave packet are as given by Ehrenfest’s theorem.'® If the
potential v(x) is expanded to second order in a Taylor series
around R,, we obtain Heller’s equations of motion, where
the center of the GWP follows a classical trajectory. It is of
interest to note that Heller implied the relation dR,/dt
= P, /u and showed that a classical trajectory resulted,
whereas the MEM gives this result directly.

The complete set of equations in Eq. (3.4) has not been
used in practical calculations.'! Various approximations are
introduced to reduce the complexity of the equations and to
eliminate a numerical problem. In the independent Gaussian
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approximation (IGA) all coupling terms in C and V be-
tween different Gaussians are set to zero and each wave
packet is propagated independently of the others following
the equations of motion given in Eq. (3.7). Another way is to
freeze the complex width parameters and not let them
change in time. The relations between the various approxi-
mations and Heller’s equations are discussed in detail in
Ref. 10.

IV. THE STATIONARY STATES OF THE MORSE
OSCILLATOR

Numerous ways have been used to determine the pa-
rameters of the Gaussian functions representing the initial
stationary states to be propagated. We have found the meth-
od of Hamilton and Light® very useful because it is a good
starting point in the development of a criteria for an accurate
propagation using some of the approximations mentioned
above. Since the method has not been used before in conjunc-
tion with the GWP approach and constitutes a good basis for
the discussion in Sec. V, it is reviewed briefly.

The wave functions for the bound states are real and
represented by a basis set of the form

N
Y(x) = Y cpgp(x),
B=1

g5 (x) =CXP[—%Im(aB)(X—RB)2], (4.1)

g = exp[—é Re(yB)]*exp[ ——}i—lm(yB)].

The expansion coefficients ¢, are determined by the well-
known Rayleigh-Ritz variational method.'® The complex
exponent only determines the sign, that is, Re(y)/#fi = O or
. The other parameters in Eq. (3.1) are zero for the initial
state. A bound state wave function with quantum number »
has n nodes and requires accordingly at least (n+ 1) or
more basis set functions gz (x), each characterized by two
parameters Im(az) and Ry, to give the right number of
nodes. The bound states are localized in space, and the turn-
ing points of the classical motion for a given energy are a
good measure of the localization. A simple and direct way of
choosing the positions and widths of the Gaussians would be
to space them uniformly between the turning points for some
energy and let the widths of the Gaussians be the distance
between neighboring Gaussians. If all bound states are of
interest, the turning points are chosen for an energy close to
the dissociation energy for the potential. If however, only
states up to a certain energy are of interest, the choice of the
turning points is ambigous. It will be natural to use an energy
equal to or larger than the one specified, since the localiza-
tion of the states becomes more pronounced as the energy
drops. Hamilton and Light refined the method outlined
above by noting that the distance between the nodes near the
center of the Morse potential is smaller than in other regions
reflecting the larger kinetic energy in the central region.
Therefore, a better representation of the states is achieved if
the Gaussians are spaced more densely in that region than in
the outer regions. A semiclassical determination of the node
positions may be obtained from the classical action integral'’

1
nt—=
> (4.2)

m

! f “dx[[E, — V(x) | 2m/ R

=M—}

where x _, x_ are the left and right turning points of the
classical motion for quantum state # with energy E, . M is the
minimum number of basis functions required ( =n + 1).
The position x; of the first Gaussian is chosen such that

1 J‘ = 1
| dx=— 4.3
Tdx 4 (4.32)
The position x, of the next Gaussian is chosen by
%yamzl (4.3b)
T Jx,

and so on. When more than the minimum number of basis
set functions are used, say A, the right-hand sides of Eq.
(4.3) are just scaled by the factor (M — 0.5)/(N —0.5).
The widths of the Gaussians are chosen from the expressions

Im(q))  C?
i (p—x)?

Im(q;) _ C? , 1<j<h, (4.4)
7 [0 —X_1)/2]

Im(ay) C?
# Gy —%y-1)?

where C is a constant usually set to one. They are directly
related to the distance between the centers of the Gaussians
and chosen in that way to reduce the effect of overcrowding
in the set.

Hamilton and Light have analyzed their results by com-
paring the calculated energies with the exact energies (2.6).
They find that the best results for states up to a given quan-
tum number n are obtained with a basis set, which has about
twice the number of basis functions required distributed
between the turning points of the classical motion for the
energy of quantum state n. Addition of more Gaussians
tends to reduce the accuracy due to the overcrowding and a
reduction in the number of Gaussians also tends to reduce
the accuracy due to an insufficient flexibility of the basis set.
Another important finding is that the results are relatively
insensitive to smaller changes in the position and width pa-
rameters. This is seen, for example, by comparing with the
results based on the more primitive scheme outlined above,
where the Gaussians are spaced uniformly between the turn-
ing points.

We have supplemented the investigations of the method
to include the quality of the wave functions by calculating
transition matrix elements of the types (n|x|m) and
(n|x*|m) and compare them with analytical results (2.9)
and numerical integrations based on the analytical expres-
sions for the wave functions. A Morse oscillator with A = 10
has been chosen for the comparisons and with a ground state
energy of about 0.1 in the units used in Fig. 1, all states are
seen to have a strong anharmonic character. In Table I the
exact energies are compared with calculated energies using
basis sets with, respectively, 10, 20, and 30 Gaussians. Since
all ten bound states are of interest a minimum of ten Gaus-
sians are required and the turning points are defined by the
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TABLE 1. The calculated energies of a Morse oscillator with A = 10 and
with the Gaussian functions distributed between the turning points of the
classical motion for the energy of the n =9 state. Results for different
numbers, ngaus, of basis functions are compared to the exact results. £o? is
the sum of the squared difference between exact and calculated results.

e" 6’!
n exact ngaus = 10 ngaus = 20 ngaus = 30
0 9.750 00 9.780 54 9.751 70 9.750 50
1 27.7500 27.7823 27.7524 27.7524
2 43.750 0 439226 43.756 0 43.757 4
3 57.7500 58.802 1 57.762 5 57.7672
4 69.7500 722124 69.770 8 69.781 4
5 79.750 0 83.3543 79.776 9 79.795 8
6 87.7500 91.7189 87.779 3 87.804 6
7 93.750 0 97.2301 93.778 2 93.8029
8 97.7500 99.8253 97.786 2 97.790 8
9 99.7500 109.968 99.781 5 99.805 1
37 156.57 5.31-03 1.39 - 02

energy of quantum state n = 9. At the bottom of the table the
sum of the squared differences between exact and calculated
energies is given and used as an indication of the overall
agreement. The best results are obtained with a basis set of 20
Gaussians, which is twice the required number, and our
findings are in agreement with Hamilton and Light.The re-
sults for the transition elements in Tables II and III show
good agreement between the exact or numerical results and
the results obtained with the 20 Gaussians supporting the
general conclusions of Hamilton and Light. The deviations
are usual much less than 1% and only for the small matrix
elements, which are very sensitive to numerical errors, they
become up to 5%. The pattern is the same for other matrix
elements. The importance of the choice of turning points is
illustrated by the results in Table IV, where the energy of
quantum state n = 3 has been used to define them. The basis
set has eight Gaussians which is the minimum number for a
representation of the first eight bound states. The situation
for the first four bound states in Table IV is equivalent to the
ngaus = 20 case in Table I, and we also note that the accura-

cy of the results are similar. For the upper four bound states
the results are very poor also when compared to the
ngaus = 10 case in Table I. The reason is that the lower
bound states are more localized than the higher states, and
with a basis set confined between the turning points for the
energy of the n = 3 state, the representation of the higher
states becomes very poor. Similarly, the representation of
the low quantum states becomes poor if a given number of
basis functions are distributed between the turning points for
an energy, which is much higher than the energy of those
states.

Our extension of the work of Hamilton and Light con-
sists in a variational determination of the eigenstates with
some of the basis function parameters varying, like it is done
in electron structure calculations. We have restricted our-
selves to vary the C parameter in Eq. (4.4), which controls
the width of the Gaussians. The results are presented in Ta-
ble V where we have listed the energies calculated with the
standard value of C ( = 1) and with the optimized value of C
( =0.211 95). The smaller C means broader Gaussians with
a larger overlap. As expected the overall agreement is im-
proved, but the rather large change in C also emphasizes the
relative insensitivity to changes in the basis set parameters.
Since the improvements are not dramatic and unimportant
for our analysis, we have used Hamilton and Light’s method
with C = 1 in our computations.

V. THE PROPAGATION OF THE STATIONARY STATES

It was noted in Sec. III that for each Gaussian in the
basis set we have to solve eight coupled differential equa-
tions, and from the analysis in the preceding section it is
evident that the number of equations even for the lowest
bound states becomes rather large. The numerical problems
are related to the inversion of the C matrix in Eq. (3.7) at
each time step. Heather and Metiu'® have already addressed
that problem. They monitored the overlap matrix (the cen-
tral block in the C matrix) and found that one of the eigen-
values became extremely small before the inversion failed
and the computation stopped. This indicates that a linear
dependence between the basis set functions develops during
the propagation. We studied the problem in a calculation of a

TABLE II. Comparison of matrix elements {#|x|m) for the A = 10 Morse oscillator. The analytical results are obtained from Eq. (2.9), and the numerical
results are based on the analytic expressions for the wave function. The Gaussian wave packets are distributed between the turning points of the classical
motion for the energy of the n = 9 state. Results for the different number of basis functions, ngaus, are shown.

GWP
n m Analytic Numerical nguas = 10 nguas = 20 nguas = 30
0 0 ce 7.784 — 02 7.798 — 02 7.785 - 02 7.786 — 02
1 0 2.291 - 01 2.291 — 01 2.308 — Ot 2.291 — 01 2.290 — 01
2 0 3.797 — 02 3.797 - 02 3912 -02 3.799 — 02 3.799 — 02
3 0 1.052 — 02 1.052 - 02 1.157 -02 1.054 — 02 1.055 — 02
4 0 3.870—-03 3.868 — 03 4.944 — 03 3.895 — 03 3.902 — 03
5 0 1.732 - 03 1.730 - 03 2.609 — 03 1.756 — 03 1.765 — 03
6 0 8.976 — 04 8.949 — 04 1.459 — 03 9.178 — 04 9.286 — 04
7 0 5.169 — 04 5.143 — 04 6.958 — 04 5332 -4 5.441 — 04
8 0 3.121 - 04 3.098 — 04 3.066 — 04 3.237—-04 3333 -04
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TABLE IIL. Comparison of matrix elements {n|x*|m) for the A =10
Morse oscillator. The numerical results are based on the analytical expres-
sions for the wave function. The Gaussian wave packets are distributed be-
tween the turning points of the classical motion for the energy of the n =9
state. Results for different number of basis functions, ngaus, are shown.

Hansen, Henriksen, and Billing: States of a Morse ocsillator

TABLE V. The calculated energies of a Morse oscillator with A = 10 and
with 20 Gaussians distributed between the turning points of the classical
motion for the energy of the n = 9 state. Results for an optimized value of
C =0.211 95 are compared to the results for the chosen value of C = 1. 2¢*
has the same meaning as in Table I.

GWP
n m Numerical nguas=10 ngaus=20 ngaus =30
0 0 6.010—-02 6.114—-02 6.010—-02 6.010—-02
1 0 6111 —-02 6.018—02 6.112—02 6.115—-02
2 0 6.134 —02 6.087—02 6.113-02 6.128—02
3 0 263002 347202 2620—02 2.617—02
4 0 1.170-02 1.093—-02 1.173—-02 1.171-02
5 0 5.855—03 5.536—03 588803 588203
6 0 3253 —-03 2768—-03 3.287—-03 3.289-—-03
7 0 1959 —-03 9.105—04 1.988—03 1.996-—-03
8 0 1214—-03 8.739-—-05 1.237—-03 1.245-03

A = 10 Morse oscillator with four Gaussians in the basis set
distributed between the turning points of the classical mo-
tion for the n = 3 energy. The representations of the n =0
and n = 1 states are, accordingly, accurate and less accurate
for the n = 2 and n = 3 states. Each of the four states were
propagated and the results are shown in Table VI. We have
listed the time when the computations failed due to a singu-
lar inverse C matrix. It happened at different times for the
first three bound states but not for the » = 3 state even when
the propagation was extended in time to the equivalent of
four oscillation periods. The different behavior of the n =3
and the n = 0,1,2 states is related to the number of Gaussians
in the basis set. The n = 3 state is represented by the mini-
mum number of Gaussians and none of these become negli-
gible during the propagation. The other states are represent-
ed by more than the minimum number of Gaussians, and
during the propagation some of these may fit the wave func-
tion in such a way that others become negligible causing one
or more of the rows in C to be zero. This poses a serious
problem for the application of the MEM. On one hand, it is
necessary to use a basis set with at least twice the minimum
number of basis functions to get a good representation of a
state. On the other hand, the propagation of states with more
than the minimum number of basis functions runs into nu-
merical problems sooner or later making it impossible, for

TABLEIV. The calculated energies of a Morse oscillator with 4 = 10 and
with the Gaussian functions distributed between the turning points of the
classical motion for the energy of the n = 3 state. Results for eight Gaus-
sians in the basis set are compared to the exact results.

€, €n

n exact ngaus = 8
0 9.750 00 9.752 12
1 27.7500 27.766 2
2 43.7500 43.790 2
3 57.7500 57.9295
4 69.750 0 71.594 7
5 79.7500 90.144 5
6 87.7500 119.365

7 93.7500 171.148

6" E’l e’l
n exact C=1.0 C=0.21195
0 9.750 00 9.751 70 9.750 06
1 27.7500 27.752 4 27.750 3
2 43.7500 43.756 0 43.750 4
3 57.7500 57.762 5 57.7504
4 69.7500 69.770 8 69.751 8
5 79.7500 79.776 9 79.756 8
6 87.7500 87.7793 87.763 6
7 93.7500 93.778 2 93.767 7
8 97.7500 97.786 2 97.7803
9 99.7500 99.7815 99.806 0
37 531-03 2.66 — 03

example, to study excitations of the oscillator. The primary
importance of the MEM is that it gives an exact set of equa-
tions of motion for the parameters of the Gaussians and that
all approximative methods may be understood as special
cases of these equations.

Previous work by Heather and Metiu'® indicated that
couplings between packets can be important. However, their
conclusions were based on a single specific Morse oscillator.
It is therefore important for the practical applications of the
wave packet method to analyze in a more systematic. way the
conditions for the approximative methods to be valid. We
have focused on the IGA, since it is the least restrictive as-
sumption, and developed a criteria which may be used to
find those states of a given Morse oscillator that may be
propagated with a reasonable accuracy by the IGA. The
propagation is monitored by the norm of the state and the
projection of the propagated state on the initial state. Since
the quantum mechanical propagator is unitary, the former
quantity is equal to one at all times for a proper propagation
and the latter also equals one if the propagation is unitary
and the representation of the state is accurate. Thus, devia-
tions from one in the norm may be used to detect deficiencies
in the propagation, whereas deviations from one in the pro-
jection indicate deficiencies in the representation of the state
only when the propagation is unitary. In all our calculations
with the complete MEM equations the norm is conserved

TABLE V1. The time 7 for a stop in the exact propagation of states n by the
MEM due to asingular C ~! matrix in Eq. (3.4) fora A = 10 Morse oscilla-
tor with four Gaussians distributed between the turning points of the classi-
cal motion for the energy of the n = 3 state. Only the propagation of the
n = 3 state never failed. 7,, is the oscillation time for the corresponding har-
monic oscillator.

State Stop time
n T/T)
0 22
1 12
2 0.2
3 “ .
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and equals one even for strongly anharmonic states showing
that the propagation is very accurate.

Let us consider a basis set with N Gaussians. For wave
packet 4 the expectation value of the energy is found to be
la,|?

€, =P, 4 ———
! . Im(a,)

+ A1 +exp[ —2R, + 1/2Im(a,)]
—2exp[ — R, + 1/8Im(a,) ]}

2
|a,| (5.1

- 6-,«1,(:hﬁlssica] + Im(aA) .
The potential energy is averaged over the wave packet and is
only strictly the Morse energy when Im(a,, ) — «, the classi-
cal limit. In the IGA each wave packet is propagated inde-
pendently, and the energy €, is conserved, whereas the clas-
sical energy is seen to vary because a,, varies. The center of
the packet oscillates and is confined by the turning points of
the classical motion determined by €, and the width pul-
sates. When it increases [Im(a, ) — 0] energy leaks from the
pure quantum energy [second term in Eq. (5.1)] into the
classical energy, where it appears as kinetic and potential
energy. Upon reduction of the width energy leaks the oppo-
site way. At time t=0, P, and Re(a,) equal zero as dis-
cussed in the previous section and Eq. (5.1) reduces to

€,=Im(a,) +A*{1 +exp[ —2R, + 1/2Im(a,)]
—2exp[ — R, + 1/81Im(a,)]}. (5.2)

The total energy of each packet is easily determined from
this expression once the position and width have been cho-

TABLE VII. The energies of the individual wave packets for a 4 = 80
Morse oscillator as a function of the number, ngaus, of basis set functions,
which are distributed uniformly between the turning points of the classical
motion for two different energies.

Turning points Number of
based on the Gaussians
€/2? ngaus

Wave packet
energy
€4/47

0.04 4 0.0388
0.0190
0.0220

0.0418

6 0.0616
0.0428
0.0356
0.0380
0.0481
0.0646

0.07 4 0.0490
0.0146
0.0216

0.0560

6 0.0662
0.0328
0.0213
0.0269
0.0452
0.0732
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sen, and the results for a A = 80 Morse oscillator are shown
in Table VII. For simplicity the Gaussians have been spaced
uniformly between the turning points of the classical motion
for a given energy, although the more sophisticated method
by Hamilton and Light has been used in the actual calcula-
tions, but this difference is unimportant for the present anal-
ysis. It is seen that for a given set of turning points (given
€/A%) the wave packet energy increases as the number of
Gaussians, ngaus, is increased. This is expected from Eq.
(5.2) since the width of the Gaussians decreases [Im(a,)
increases]. Also, for a given number of Gaussians, the ener-
gy of the outer wave packets increases as we change from one
set of turning points to a new set at a higher energy. This
simply reflects the higher potential energy. In Fig. 2 is shown

€/A2
A

0.10

100

0.08 4

0.06

0.04 S

T —
s] 2 4 6 8 {0 12 14 16 ngaus

80 100

0.00

T T T T T T T T
0 2 4 8 8 i0 12 14 i6 ngaus

FIG. 2. The largest energy of a wave packet in a basis set as a function of the
number, ngaus, of wave packets, which are uniformly spaced between the
turning points of the classical motion for an energy of, respectively,
€/A42=0.04 (a) and /4 ? = 0.07 (b). The results for a series of Morse oscil-
lators with different A values are shown.
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the maximum energy of a wave packet in a basis set as a
function of the number of Gaussians in the set for a series of
different Morse oscillators. The Gaussians are uniformly
distributed between the turning points at the energies €/4°
= 0.04 and 0.07, respectively, and the widths are deter-
mined from Eq. (4.4) with C = 1. During the propagation
the width of the Gaussians pulsates and as an extremum it
may be infinite, and all the energy may be stored as potential
energy. If this potential energy only differs slightly from the
associated harmonic energy (Fig. 1) the IGA gives exact

results. Therefore, the IGA gives accurate results for states
that are represented by a set of Gaussians, whose initial ener-
gies are in a region where the Morse potential is harmonic or
nearly harmonic. Figure 1 may be used to estimate the maxi-
mum value of € ,/A°. Already at a value of 0.1 the difference
between the Morse potential and the harmonic potential is
considerable and by trial we have found that the energy
should not be larger than about 0.04 to obtain an accuracy of
a few percent. This conclusion is based on the results shown
in Table VII1. We have considered a series of Morse oscilla-

TABLE VIII. The results of the IGA propagation of a series of different Morse oscillators A and different states n. See the text for a further explanation.

Max. €,/4° State
in the propagated Ae, Max. deviation in
A ngaus basis set (percent) (P(0)|¥(1) {¥(0)|W(D))}|?
[Fig. 2(a)] n (percent) (percent)
20 2 0.080 0 34 20.5 12.5
40 2 0.035 0 13.5 2.0 5.0
4 0.088 0 5.0 70.0 20.5
1 15.8 90.0 98.0
60 4 0.054 0 0.35 30.5 15.0
1 22 20.0 40.5
80 4 0.042 0 0.01 10.5 5.0
1 0.26 3.0 15.0
6 0.065 0 0.3 60.5 20.5
1 1.26 12.0 40.0
2 5.35 70.0 80.0
100 4 0.036 0 0.19 3.0 20
1 0.60 2.0 10.0
6 0.053 0 0.05 20.05 12.5
1 0.11 10.0 15.0
2 1.16 15.5 40.0
140 4 0.032 0 0.70 0.0 0.0
1 0.87 1.0 2.5
6 0.042 0 0.47 5.0 35
1 0.16 0.5 5.0
2 0.47 0.0 16.0
8 0.0525 0 0.44 25.0 12.0
1 0.11 10.0 30.5
2 0.26 7.0 25.0
10 0.065 0 0.46 60.0 20.5
1 0.18 11.0 50.0
2 0.44 12.5 50.5
180 4 0.0295 0 2.97 0.0 0.1
6 0.037 0 0.93 2.0 1.0
1 0.10 1.0 20
2 0.43 1.0 12.5
8 0.045 0 0.89 10.0 5.5
1 0.01 5.0 8.5
2 0.02 25 14.0
10 0.053 0 0.88 15.5 8.0
1 0.01 8.5 20.5
2 0.0 8.0 40.5
3 0.28 10.5 40.0
220 4 0.028 0 6.79 0.0 20
1 2.75 1.0 8.0
6 0.035 0 0.99 0.0 0.0
1 0.23 1.5 2.5
2 0.5 3.0 10.0
8 0.041 0 0.91 3.0 20
1 0.03 1.0 8.0
2 0.07 3.0 12.0
10 0.047 0 0.90 10.0 8.5
1 0.02 2.0 20.0
2 0.04 3.5 25.5
3 0.09 20 30.0
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FIG. 3. The energies of the first bound states n of different Morse oscillators
A. The units are defined in Egs. (2.3) and (2.5).

tors with A values from 20 to 220 to cover a wide range of
diatomic molecules. In the first column, the various A values
are listed. The number of Gaussian functions, ngaus, is given
in the next column and chosen under considerations of the
conclusions in the previous section and in view of the ener-
gies of the individual Gaussians. The maximum energy of a
wave packet in the given basis set (see Table VII) is listed in
the third column and the states, which are propagated, are
listed in column 4. The quality of the basis set is listed in
column 5 as the deviation of the calculated energy from the
theoretical energy for the various states in column 4. The
results are given in the last columns, where the maximum
deviation from one of the norm and the projection on the
initial state has been recorded. All states were propagated for
a time equal to four times the vibrational period of the corre-
sponding harmonic oscillator. The table shows that the pro-
jections of the propagated state on the initial state are rather
accurate for states which are well represented with the given
basis set and propagated accurately.

VI. SUMMARY

The time propagation of the stationary states of a Morse
oscillator by the Gaussian wave packet method is very accu-
rate, when the exact equations of motion as derived by the
MEM, is used. Numerical problems, however, limits the u-
tility of these equations severely. Only states represented by
a basis set, which has just the minimum number of Gaus-
sians necessary to give the correct number of nodes, are pro-
pagated without numerical problems. This number of basis
functions is, however, too small for an accurate representa-
tion of the state, which requires about twice as many basis
functions. There does not appear to be a simple way to get

around this problem, and it may be concluded that the MEM
is difficult to apply in practical calculations. For harmonic
potentials the IGA is exact, and for the Morse potential re-
sults with an accuracy of a few percent were obtained for
states, which can be represented by Gaussians distributed
between the turning points of the classical motion for an
energy of 0.04 or smaller in the units on Fig. 1. The energies
of the different stationary states of various Morse potentials
are shown in Fig. 3 as a function of 4. The graph may be used
to find those states which have an energy equal to or smaller
than 0.04. For a A = 100 Morse potential it is only the
ground state and the first excited state and for a A = 200
potential only the first three or four bound states. This is a
very small fraction of the total number of bound states and a
serious limitation in particular for processes where the exci-
tation of the higher vibrational levels are important. The
utility of the IGA is limited to processes, which only involves
the first few bound states of the potential, and cannot be used
in studies involving the higher vibrational states and disso-
ciations. The calculations leading to the results in Table VIII
were repeated with the widths of the Gaussians frozen
(IFA) and the results were in general poorer due to the
reduced flexibility of the basis set. This does not exclude the
possibility of finding examples where the IFA leads to better
results as reported by Skojde and Truhlar.'' However, it is
our finding that this is an exception rather than the rule.
Thus, the primary importance of the Gaussian wave packet
method seems to be that it offers a useful insight in the differ-
ence between classical and quantum dynamics and only in
situations where the states are very localized or the process is
very fast, it may be used in practical calculations unless other
propagation schemes are developed.
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