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Abstract

Background: In Thailand, dengue fever is one of the most well-known public health problems. The objective of this
study was to examine the epidemiology of dengue and determine the seasonal pattern of dengue and its associate to
climate factors in Bangkok, Thailand, from 2003 to 2017.

Methods: The dengue cases in Bangkok were collected monthly during the study period. The time-series data were
extracted into the trend, seasonal, and random components using the seasonal decomposition procedure based on
loess. The Spearman correlation analysis and artificial neuron network (ANN) were used to determine the association
between climate variables (humidity, temperature, and rainfall) and dengue cases in Bangkok.

Results: The seasonal-decomposition procedure showed that the seasonal component was weaker than the trend
component for dengue cases during the study period. The Spearman correlation analysis showed that rainfall and
humidity played a role in dengue transmission with correlation efficiency equal to 0.396 and 0.388, respectively. ANN
showed that precipitation was the most crucial factor. The time series multivariate Poisson regression model revealed
that increasing 1% of rainfall corresponded to an increase of 3.3% in the dengue cases in Bangkok. There were three
models employed to forecast the dengue case, multivariate Poisson regression, ANN, and ARIMA. Each model
displayed different accuracy, and multivariate Poisson regression was the most accurate approach in this study.

Conclusion: This work demonstrates the significance of weather in dengue transmission in Bangkok and compares
the accuracy of the different mathematical approaches to predict the dengue case. A single model may insufficient to
forecast precisely a dengue outbreak, and climate factor may not only indicator of dengue transmissibility.
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Background
Dengue fever is one of the most common infectious dis-

eases in Thailand and one of the top threats to global pub-

lic health. Dengue virus is the cause of dengue fever. The

dengue virus is a single positive-stranded RNA virus of

the family Flaviviridae; genus Flavivirus. Approximately

a third of the world population are living in dengue-

endemic areas, the significant disease burden being in
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tropical and subtropical regions, which are mostly devel-

oping countries [1]. The symptoms of dengue fever indi-

viduals range from no signs, mild fever, high fever, pain

behind eyes, headache, vomiting, and muscle pains [2].

Severe cases can be massive bleeding, shock, and death.

Dengue symptoms can be classified into three categories

depending on the clinical syndromes, frommild to severe,

dengue fever (DF), dengue hemorrhagic fever (DHF) and

dengue shock syndrome (DSS). Dengue virus has four dif-

ferent serotypes (DENV 1-4) that can transmit to humans

[3]. Recovery from infection (primary infection) by one

serotype provides lifelong immunity against that serotype
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and temporary for the other. If persons get infected with

different serotypes (secondary infection), the risk of devel-

oping severe dengue is increasing.

The mosquito, Ae. aegypti and Ae. albopictus, are the

main vector of the dengue virus and mainly feed on

human blood [1]. Ae. aegypti habit in urban areas while

Ae. albopictus is in rural areas. There is no specific treat-

ment for dengue fever. The control methods are mainly

surveillance and elimination of mosquito. A commercial

dengue vaccine, known as CYT-TDV or Dengvaxia, is

available in some countries for people ages 9-45 years

old. However, the World Health Organization suggests

that the vaccine only be provided to persons who have

exposures previously to dengue virus [4]. The number of

Dengue cases is likely to increase in the future because

of several factors such as climate change, globalization,

development of the virus, insufficient political and eco-

nomic supports, and limited resources for effective con-

trol measures.

In Thailand, the first report of dengue infection in the

country was around 1949, and the first outbreak was

1958 [5]. The recent reports indicated that the significant

dengue-endemic occurs typically every 3-5 years [5]. In

the last decades, The Bureau of Epidemiology reported

that approximately 40,000-150,000 dengue cases per year

[5]. Kongsin et al. [6] estimated the total annual economic

burden of dengue in Thailand was 125-191 million US

dollars, which approximately 72% was the cost of dengue

illness and 28% was dengue control programs. In gen-

eral, the patterns and epidemiological characteristics of

dengue mostly depend on climate factors. Humidity, tem-

perature, and rainfall are the key factors [7, 8]. Phanitchat

et al. [9] reported that the dengue outbreaks coincide with

the rainy season andmaximum temperature in Khonkean,

Thailand. However, the patterns of dengue incidence also

depend on several factors, such as population density,

human movement, sanitation, and infrastructure. It is

essential to understand the pattern of dengue incidence

because it may assist the authorities to prepare and pre-

vent the outbreak.

The objective of this study was to investigate the epi-

demiological pattern of dengue incidence in Bangkok,

Thailand, and also the effects of climate on dengue infec-

tion by using the data from 2003-2017 and the mathemat-

ical approach. The time-series models can evaluate trends

and seasonal patterns of dengue incidence and may apply

to predict future endemics. The seasonal-decomposition

procedure based on loess (STL) was employed to assess

the trend and seasonality of dengue fever. It is essen-

tial to use more than one approach to predict dengue

cases. In this study, we used three different methods;

Multivariate Poisson Regression model (MPR), Artificial

Neural Networks (ANN), and Autoregressive Integrated

Moving Average (ARIMA). Various studies [10–14] used

these methods to predict the dengue-endemics. MPR uses

climate factors as a dependent variable and number of

dengue cases as an independent variable. ANN uses com-

binations of independent variables (climate factors) to

calculate relationships with dependent variables (dengue

cases). ARIMA is a generalization of an autoregressive

moving average model and provides another approach

to time series forecasting. We used RStudio to stimu-

lated and calculated the results. A high dengue incidence

rate typically occurs every 3-5 years [5]. A period of 15

years would be sufficient to obtain the pattern of dengue

epidemiology.

Methods
Study area

Bangkok is the capital city of Thailand and the most pop-

ulous in the country. The city is the center for transporta-

tion, industry, finance, tourism, education, and trade.

The register population was 5.6 million in 2017, and the

population density was approximately 3500 per square

kilometer. In 2003-2017, the mean temperature was 29.8
◦C, average relative humidity was 72.9%, and the average

monthly rainfall was 150 mm.

Data collection

The Bureau of Epidemiology (BoE), Department of Dis-

ease Control, Ministry of Public Health of Thailand,

provided Dengue statistical data [5]. The local health ser-

vices submit the data to the central administration. The

BoE published the data on its website and within the

Annual Epidemiological Surveillance Reports (AESRs).

The dengue data from Thai national surveillance are pub-

lished monthly. The data consist of the number of dengue

cases, fatality, age, and type of dengue. The dengue inci-

dence number data set in this study can be found in the

Supplementary file, data set sheet, Table S4.

The Department of Meteorology, Ministry of the Digi-

tal Economy and Society, provided the climate data from

2003-2017 [15]. The data set consists of 180monthly mea-

surements or sets of mean temperature, mean relative

humidity, total rainfall, and the number of dengue cases.

The climate data set in this study can be found in the

Supplementary file, data set sheet, Table S1–S3.

Mathematical analysis

Decomposition

Several types of research include the natural sci-

ences, environmental science, and public health use the

seasonal-decomposition procedure based on loess (STL)

to analyse the time-series data. SLT filters the trend

and seasonal component from the time series data and

decomposes into three components: trend (the long term

and low-frequency variation in the data), seasonal (vari-

ation in the data within the same period), and random
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or remainder (the remaining variation in the data after

extracting trend and seasonal component). The advan-

tages of SLT are its simplicity, robustness of results,

and effective data visualization. The time-series data, the

trend, seasonal and random component were denoted

by Yt , Tt , St and Rt , respectively. The equation can be

described as follows.

Yt = Tt + St + Rt (1)

In this study, Yt is the number of dengue cases. t is time

in the unit of month. The numbers of dengue cases are

vastly different each year. In the outbreak year, the num-

bers may triple that of an average number of the whole

period. Therefore, it might lead to mistranslate the pat-

tern. It is essential to adjust the numbers of dengue cases

each year to the same magnitude. Consequently, we set

up the new parameter, adjusted dengue data, Y ∗
t , which is

defined as follows.

Y ∗

t =
Yt

Ymax
(2)

where Ymax is a dengue case of the peak month of the year.

We assumed that the period of the dengue-endemic was

12 months; start from January to December. The adjusted

value allows us to investigate the pattern of the dengue

incidence by reducing the effects of outlier cases.

The variance of Yt can be described as follows;

Var(Yt) =Var(Tt) + Var(St) + Var(Rt) + Cov(Tt , St)

+ Cov(Tt ,Rt) + Cov(St ,Rt) (3)

The ratio of the variance of component and the variance

of data set was calculated as follows;

r =
Var(Ct)

Var(Yt)
(4)

where r is the value of the ratio, and Ct is the compo-

nent of seasonal decomposition. If r is close to one, the

component is the most important to the data set.

Multivariate poisson regression (MPR)

In this study, we applied the Spearman correlation analysis

to identify the relationship between the number of dengue

cases and mean temperature, rainfall, and humidity with

three-month lags in Bangkok. The three-month length is

sufficient to cover the life span of the mosquito, incu-

bation, and infectious period of the dengue virus in the

human body. We established a time-series Poisson regres-

sion model to determine the association between climate

factors and dengue cases in Bangkok. Typically, the Mul-

tivariate Poisson Regression model expresses the natural

logarithm of the outcome as a linear function of a set of

predictors can be described as follows;

ln(Yt) = β0 +

n∑

i=1

βixi + cYt−1 (5)

where ln(Yt) is the natural logarithm of predicted dengue

cases at time t; β0, βi and c are the constant. xi represent

climate variables.

Artificial neural networks (ANN)

The ANN models consisted of three layers; input layer,

hidden layer, and output layer. The key advantages of this

procedure are ANN can manage a large number of data

sets, extract complex nonlinear relationships, and detect

interactions between dependent and independent vari-

ables. The network model consisted of four parameters

in its input layer, namely rainfall, relative humidity, mean

temperature, and the number of dengue cases reported

last month. The output was the number of dengue cases.

The Arimamodels

An autoregressive integrated moving average (ARIMA)

model is a statistical analysis model that uses the time

series data to forecasts the possible outcome. A non-

seasonal ARIMA model is denoted ARIMA(p, d, q). The

non-negative integers, p is the number of autoregres-

sive terms. d is the number of times that the raw

observations are differenced. q is the number of lagged

forecast errors in the prediction equation. An exten-

sion of ARIMA models with the seasonal component is

SARIMA(p, d, q)(P,D,Q)m, where m is the number of

periods in each season, and P,D,Q are the autoregressive,

differencing, and moving average terms for the seasonal

part of the ARIMA model respectively.

The data set is divided into two different subsets called

train and test set. The main difference between train and

test sets is that the train data set is used in training the

neural networks, and the test data set is the unseen data

that is hidden to the network during training. In this study,

total data covered 15 years or 180 months period. The

training data set was 168 months period, and the rest 12

months were test set and used to verify the accuracy of

the model. The ratio of the selection in the number of data

was 0.93 (168/180), which means an excellent validation if

trained and successfully tested since the training data set

contains less data than the testing set.

Results
Figure 1a shows the reported dengue incidence rate in

Bangkok during the study period (2003-2017). The peak

of dengue-endemic occurred in November 2015, in which

the incidence rate was 147 per 100,000 and also the high-

est dengue-endemic year, with an incidence rate of 461

per 100,000. The lowest incidence rate was 2014 (83 per

100,000). The average annual dengue incidence rate was

172 (SD=93) per 100,000 population. The total number

of dengue cases was 146,180 cases, and the total number
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Fig. 1 a: The number of dengue incidence rate per 100,000 population in Bangkok from 2003 to 2017. b: Monthly box plot distribution of dengue
incidence rate

of fatalities was 91. Figure 1b shows the box plot of the

dengue incidence rate in Bangkok. The box encompasses

50% of the distribution, the line within the box is the

median value, borderlines are the first, and the third

quartile and small cycles are outliers. January, Septem-

ber, October, November, and December have outliers as

illustrated in the figure.

Decomposition

We created the adjusted data from the raw data by using

Eq. (2). Figure 2 shows STL plot of two data sets, raw

and adjusted data. Figure 2a shows SLT of the raw data

set. There is a prominent high peak in the figure because

the massive outbreak of dengue occurred in 2015. The

trend and random component also clearly display this

peak. Figure 2b displays the STL of the adjusted data. The

maximum value of the dengue incidence rate was one.

Therefore, extremely high peak or outlier incidence was

limited to one. The configuration of the components of

both data set is different, as can be seen in the figure.

In this study, we evaluated the component that was

the most critical component factor for the dengue-

endemic in Bangkok. The ratio (r) values between the

variance of each component and the variance of the

data were calculated. For the raw data set, the ratio is

0.208, 0.281, and 0.443 for seasonal, trend, and random

components, respectively. For the adjusted data set, the

ratio is 0.455, 0.167, and 0.361 for seasonal, trend, and
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Fig. 2 The decomposition plot of the time-series dengue case in Bangkok from 2003 to September 2017. a) The decomposition plot of raw data set;
b) The decomposition plot of adjusted data set; The other layers show the decomposed components, representing the seasonal, trend, and random
component, respectively

random components, respectively. Adjusted dengue inci-

dence data in the first and second quarters of the year are

right-skewed distribution, as illustrated in Fig. 3. The left-

skewed distribution is in the third and fourth quarters of

the year.

Multivariate poisson regression model (MPR)

Table 1 shows the Spearman correlation analysis of

the relationship between dengue cases (2003-2017) and

climate variables with a time-lag of zero to three months.

The positive regression was observed in humidity and
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Fig. 3 Histogram of adjusted dengue incidence data, Y∗
t in Bangkok from 2003 to 2017, classified by quarterly

precipitation, while the mean temperature was negative

regression during the study period. The MPR model (lag

1-3 months) with the autoregressive term was estab-

lished in this study by using the monthly climate data

of Bangkok. The time lag 0 was excluded because the

objective of the model aimed to predict the future number

of dengue cases. The period 2003-2016 was the training

set (168 samples), and 2017 was the test set (12 sam-

ples). After fitting the models for the training set, we

used the model to predict the monthly dengue cases and

Table 1 Results of Spearman’s coefficient of rank correlation for time-lag effects, coefficient value, importance of independent variables

Climate variable Time-Lag MPR ANN

Correlation Coefficient Importance Normalized

(× 10−3) Importance (%)

Relative Humidity (%) 0 0.224 NA 0.228 68.1

1 0.380** 9.167 0.069 68.1

2 0.388** 1.735 0.093 91.6

3 0.268** -1.168 0.056 54.8

Rainfall (mm) 0 0.125 NA 0.162 82.8

1 0.373** 1.333 0.087 85.9

2 0.396** 0.651 0.102 100

3 0.245* 0.200 0.083 81.7

Temperature (C◦) 0 -0.150 NA -0.096 62.2

1 -0.077 -71.801 0.069 68.3

2 0.144 11.606 0.079 77.9

3 0.271* 5.869 0.059 58.2

The correlation of variables with intercept 1.11 × 10−3 and coefficient for previous case is 0.443× 10−3 . Spearman rank correlation and Pearson correlation analyses were
performed with temperature and rainfall respectively.
*: p-value< 0.05, **: p-value< 0.01
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compared to the test set. Table 1 displays the coefficient of

the parameters and Fig. 4 illustrates the predicted dengue

incidence cases.The correlation graph can be found in the

correlation sheet in Supplementary file.

Artificial neuron network (ANN)

The ANN with one hidden layer and nine neurons was

employed in this study. The number of neurons provided

the least errors in this data set. The predictor impor-

tance number indicates the relative importance of each

predictor or variable in estimating the model. The impor-

tance of an independent variable is a measure of how

much the network’s model-predicted value changes for

different values of the independent variable. Normalized

importance is simply the importance values divided by the

largest importance values and expressed as percentages.

The results show that the importance of independent

variables of climate factors to dengue cases. The highest

was rainfall with two-month lag time, followed by relative

humidity with the same lag time as display in Table 1. The

predicted number of test values, as shown in Fig. 4.

ARIMAmodel

We used the natural logarithm of dengue incidence

for 2003-2016 as a test set. The best fit model was

SARIMA(1, 0, 2)(1, 1, 2)12. In this time series, there was a

strong seasonal component (1,1,2) and with the seasonal

component (1,0,2), considered a mixed model.

Performance of models

Figure 4a displays the plot between actual and predicted

the number of dengue cases from the methods in the train

Fig. 4 a: The dengue incidence rate per 100,000 population between real number in 2004-2016, the train set. b: The actual number in 2017 and the
predicted number (MDR, ANN, and ARIMA), the test set
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set. The number of dengue cases in 2017 was used as a ref-

erence to test the accuracy of the results. Figure 4b shows

a comparison between real data and predicted value. To

obtain the most accurate method, we used several ways

to evaluate the results. The correlation coefficient, Mean

Absolute Error (MAE), Root-Mean-Square Error (RMSE),

and Mean Absolute Percentage Error (MAPE) were a

measure of prediction accuracy of a forecasting method

that employed in this study. The MPR model achieved

0.87, 2.69, 3.37, and 26.41 for the correlation coeffi-

cient, MAE, RMSE, and MAPE, respectively. The ANN

obtained 0.69, 4.07, 5.53, and 39.12 for the correlation

coefficient, MAE, RMSE, andMAPE, respectively. Finally,

the ARIMA was 0.90, 3.83, 6.49, and 26.45 for the corre-

lation coefficient, MAE, RMSE, and MAPE, respectively.

The results have shown that the MPR model has lower

errors in every measurement compare to the others. The

summary of the model comparison displays in Table 2.

The total number of dengue cases in 2017 in Bangkok

was 8781. The MPR, ANN, and ARIMA predicted the

numbers of dengue cases were 8929, 7317, and 10038,

respectively.

Discussion
The objective of this study was to evaluate the pattern of

dengue incidence and the association between the num-

ber of dengue cases and climate factors in Bangkok (2003-

2017). The unusual dengue-endemic was November 2015,

which was nearly ten times the average number of dengue

incidence rates in the study period, which may cause a

significant error for prediction. Several outliers appeared

in a boxplot. The outlier value may alter the accuracy of

the model [14]. The adjusted data set assists us in explor-

ing the pattern of the peak of the dengue incidence by

reducing the effects of outlier value.

In this study, none of the elements has a ratio of variance

exceed 0.5. Therefore, none of the components controls

the pattern of dengue incidence of Bangkok. The ratio

value (r) has shown that the random component was the

most important to the raw data set. This result explains

the appearance of outlier dengue cases. The seasonal com-

ponent was the most crucial component of the adjusted

data set. The peak of dengue cases may occur at vary-

ing times each year. Although the histogram of adjusted

dengue incidence rate (Fig. 3) indicates that the peak time

of dengue incidence in Bangkok is likely to be in the last

quarter of the year.

Table 2 Model Comparison

Model Correlation Coefficient MAE RMSE MAPE

MPR 0.87 2.69 3.37 26.41

ANN 0.69 4.07 5.53 39.12

ARIMA 0.90 3.83 6.49 26.45

Climate variables affect the mosquito population

dynamics and disease transmission ability. In this study,

theMPR andANNmodel suggested that relative humidity

and rainfall contribute to the impact on dengue trans-

mission in Bangkok. The highest correlation was rela-

tive humidity with a two-month time lag, and the high-

est ANN importance was rainfall with also two-month

time lag. Similar results also found in previous studies

[8, 16, 17]. There was a difference in the distribution of

dengue fever within and between provinces in Thailand

[18, 19]. Increasing temperature contribute to a minor

negative association because the mean temperature in

Bangkok was relatively constant throughout the year. The

average temperature during the study period was 29.8◦C

(SD=1.29), which was close to the optimal temperature

for dengue transmission, 29.3◦C [7]. The high tempera-

ture may decrease vector populations in warmer regions

that are currently close to the limit for the mosquito to

survive [20].

Rainfall generally increases the breeding sites for

mosquitoes; its impact on dengue transmissibility was

moderate in this study. There are plenty of human-

made water containers such as jars, drums, pools, dis-

carded tires that are mostly independent of rainfall in

Bangkok. They become breeding sites for mosquito in the

urban area. Also, stagnant water and poor sanitary and

hygiene practices may make suitable breeding sites for the

mosquitoes. In contrast, heavy rainfall may wash away

breeding sites, interrupt the development of mosquito

eggs or larvae [21]. The seasonal pattern indicates that the

peak of the dengue-endemic in Bangkok usually occurs

in November during the study period, which is generally

outside the rainy season.

Typically, humidity increases the survival rate of

mosquito and daily biting rates [22]. However, humid-

ity above 79% may reduce the population of mosquito

due to complex interactions between climate factors [23].

In Bangkok, the average humidity was 72.9% (SD=5.5)

during the study period. Therefore, the humidity level in

Bangkok is still in the condition that increases dengue

transmission ability.

The models may be employed to predict the effect of

the climate factors on the number of dengue cases. We

used the most accurate MPR model to inspect the impact

of changing the variables on the prevalence number. The

MPR model showed that 1% rise of rainfall corresponded

to an increase of 3.3% in the monthly incidence rate of

dengue while 1% rise of humidity increase of 0.7% of

dengue case in the model. However, a 1% rise of tem-

perature corresponded to a decrease of 1.6% of dengue

case.

Besides climate, there are many factors to consider.

Several studies suggested that climate variables may con-

tribute a minor effect to dengue transmission [13, 24].
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In Singapore, urbanization is one of the main reasons

for rapid dengue growth in the past 40 years [25]. Lee

et al. calculated that none of the climate variables was

a significant factor in the dengue transmission model

for Ho Chi Minh City [11]. Johansson et al. stated that

climate data did slightly improve the accuracy of the

seasonal autoregressive dengue models for Mexico [13].

Female mosquitoes and seasons strongly correlated with

the number of dengue cases in some provinces in Thai-

land [26]. Bangkok is one of the densest cities in the

world, and it is likely to affect the pattern of dengue

fever. Li et al. [27] found that urbanization may increase

the abundance and survival rate of mosquitoes, which

can increase the transmission ability and the number of

infections.

There were several limitations to this study. Firstly,

the actual dengue infection could be underestimated

because persons who diagnosed with only mild or asymp-

totic symptoms usually not seek medical care. The real

number maybe 4-6 times of reported cases [28]. Sec-

ondly, Bangkok is the center of economy and educa-

tion. Every day, millions of persons travel to Bangkok

in the morning and leave in the evening or early night.

Some of the patients may be infected in Bangkok but

obtained medical care somewhere else, which is hard to

identify the place of infection. Therefore, human move-

ment, urbanization, and transportations are essential fac-

tors to determine the dynamics of dengue transmission

[29]. The non-climate variables may be added to the

models if the data is available in the future. Another

significant limitation is the effect of mosquito control

programs excludes from the models. This factor may

provide information on the potential of campaigns on

the mosquito population control and may be useful in

future researches. Instead of monthly data, the weekly or

biweekly data may provide more detail about the non-

linear association between climate factors and dengue

cases. However, BoE stores onlymonthly data on its online

database.

Three models in this study displayed a different level

of accuracy when compared to the test set. ANN showed

a poor performance in predicting dengue cases compare

to MPR in this study. The error in ARIMA was slightly

above MPR. The results indicate that a single model may

insufficient to predict the number of dengue because there

are several factors that direct and indirect effects the

transmission ability. This study provided three different

approaches to forecast the number of dengue cases in

Bangkok.

Conclusion
The results have shown that the pattern of dengue in

Bangkok relies only partially on the seasonal compo-

nent. Rainfall and humidity have an impact on dengue

transmissibility in Bangkok with a positive association.

It is strongly recommended to add more variables to

increase accuracy. These findings may be useful for devel-

oping climate models for dengue outbreak early warning

method for Bangkok and the rest of the country.
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