
The Time-Triggered System-on-a-Chip Architecture
Roman Obermaisser, Christian El Salloum, Bernhard Huber, Hermann Kopetz

Real-Time Systems Group
Vienna University of Technology, Austria

Email: romano@vmars.tuwien.ac.at

Abstract— It is the objective of the presented System-on-a-Chip
(SoC) architecture to provide a predictable integrated execution
environment for the component-based design of many different
types of embedded applications (e.g., automotive, avionics, con-
sumer electronics). At the core of this architecture is a time-
triggered network-on-a-chip for the predictable interconnection
of heterogeneous components. A component can be a self-
contained computer, including system and application software,
an FPGA, or a custom hardware unit. By providing a single
uniform interface to all types of components for the exchange of
messages, the architecture supports the component-based design
of large applications and enables the massive reuse of compo-
nents. The time-triggered network-on-a-chip offers inherent fault
isolation to facilitate the seamless integration of independently
developed components, possibly with different criticality levels.
Furthermore, mechanisms for integrated resource management
support dynamically changing resource requirements (e.g., dif-
ferent operational modes of an application), fault-tolerance, a
power-aware system behavior, and the implementation of fault-
handling by reconfiguration.

I. INTRODUCTION

During the past forty years, the semiconductor industry has
developed chips of breathtaking complexity, increasing the
number of transistors per chip to close to a billion. Fueled by
these spectacular improvements in the functionality of chips
and the cost-reduction of semiconductor devices, the field of
embedded computing has grown to become the most important
segment of the computer industry. However, the management
of the increasing complexity is becoming a key challenge in
the domain of embedded systems. The 2005 semiconductor
industry roadmap [1] considers system design complexity and
designer’s productivity as key challenges on the way to giga-
scale SoCs. This challenge can only be tackled if we lift the
design process to a higher level of abstraction.

Also, it is amazing that the basic computational model has
not changed significantly over the past forty years. According
to Pollack’s rule [2], the increase in performance of a sequen-
tial computer is only about the square root of the increase in
the number of devices, which implies that doubling the tran-
sistor count will lead to a performance improvement of about
40%. Fortunately, the inherent concurrency in a typical embed-
ded application (e.g., automotive electronics, avionics) offers
the potential to circumvent Pollack’s rule. If an application
can be partitioned into a set of nearly autonomous concurrent
functions, then a nearly linear performance improvement could
be achieved by assigning a dedicated processing element to
each of these concurrent functions. This architectural approach
is followed in a number of embedded SoCs: to partition the

SoC into a set of nearly autonomous possibly heterogeneous
Intellectual Property (IP)-blocks or micro components that
interact via an appropriate Network-on-a-Chip (NoC) [3].

It is the purpose of the paper to address these challenges
by introducing a novel system architecture for SoCs, which
offers a component-based design methodology for managing
the complexity of billion-of-transistors SoCs through the con-
sequent decoupling of the computational components from
the communication infrastructure. The introduced system ar-
chitecture provides an architectural framework that supports
composability [4], [5], i.e., the side-effect-free composition
of component services (based solely on interface specifica-
tions) to form larger systems-of-systems. For this purpose,
the computational components are interconnected through a
predictable and deterministic time-triggered NoC with inherent
fault isolation.

The contributions and key properties of the presented SoC
architecture are as follows:

a) Elevation of the level of design abstractions: In
order to manage the complexity of an evolving design at a
higher level of abstraction, we must conceptualize components
that form stable intermediate forms and exhibit aggregate
properties. If we can describe and specify these aggregate
properties on their own by an appropriate interface model,
then it is not required to understand the structure and the
interactions within the components in order to reason about
the interactions among components and the emerging system
properties. Furthermore, it is then possible to change and
enhance the implementation of the components in response to
technological developments without a redesign of the system
at this higher level of abstraction.

For this reason, we introduce in the proposed SoC architec-
ture the notion of a micro component, which can be considered
as a unit of abstraction that provides its functionality at a well-
defined message-based network interface to its partners [6].
The clear separation of the processing within a micro compo-
nent from the interactions among the micro components leads
to a communication-centric model that is highly appropriate
for many applications.

b) Predictability and determinism through encapsu-
lation: The SoC architecture offers a predictable on-chip
interconnect that is free of interference. Each micro component
is assigned dedicated slots in a time-triggered communication
schedule, which are protected from other micro components
through the communication system. Encapsulation results in
a complexity reduction, because the behavior of interfering



subsystems is more difficult to understand and to reason about
than the behavior of cleanly encapsulated subsystems. If we
want to reduce the cognitive complexity of a design, we have
to avoid system mechanisms that increase the cognitive load
required for understanding [7]. Also, the test and validation
effort for an encapsulated subsystem is smaller than the test
effort for interfering systems [8]. Finally, a deterministic
behavior of the components is required for the transparent
masking of hardware errors by Triple Modular Redundancy
(TMR) [9].

c) Global time base: In general, an SoC cannot be
assumed to provide a single clock signal for the entire chip.
The reasons why designers introduce multiple clock domains
include the handling of clock skew, the clocking down of
individual IP blocks as part of power management, or the
support for heterogeneous IP blocks with different speeds
(e.g., high-clocked special purpose hardware and a slower
general purpose CPU). Despite the existence of multiple clock
domains, the presented SoC architecture supports a global time
base through internal clock synchronization (i.e., within the
SoC) and external clock synchronization w.r.t. an SoC-external
reference time.

The resulting system-wide global time base allows the
temporal coordination of actions on the distributed micro
components within an SoC and in an ensemble of different
SoCs. Consequently, timestamps assigned at different micro
components can be related to each other. Due to the global
time base, timestamps are also meaningful outside the micro
component where the event has been observed.

d) Integrated resource management: The proposed SoC
architecture supports integrated resource management tak-
ing into account requirements w.r.t. communication resources
(e.g., bandwidth, latency, latency jitter), computational re-
sources (e.g., dynamic allocation of micro components to
application subsystems), and power (e.g., power limiter). Dy-
namic reconfiguration allows an efficient utilization of mutu-
ally exclusive resource demands, if it is a priori known that
the worst-case resource consumption in different subsystems
cannot occur simultaneously. Furthermore, in case a permanent
fault affects only individual micro components, dynamic re-
configuration can relocate the application functionality to spare
micro components in order to preserve the specified service of
the SoC. Additionally, it builds an important cornerstone for
the realization of power-aware systems [10]. Power manage-
ment is identified as one of the grand challenges in the SIA’s
semiconductor road map [1].

The paper is structured as follows. Section II is devoted
to related work on SoC architectures. The section focuses on
related work that also employs NoCs with a Time-Division
Multiple Access (TDMA) scheme in analogy to the SoC
architecture presented in this paper. Section III gives an
overview of the SoC architecture and identifies its constituting
elements: the time-triggered NoC, the micro components, the
architectural elements for dynamic reconfiguration, and the
gateways. Section IV focuses on the encapsulated communica-

tion system, which prevents unintended interference between
the micro components. The paper finishes with a conclusion
in Section V.

II. RELATED WORK

This section describes related work on SoC architectures
and the contributions of the proposed architecture compared to
existing solutions. We focus on related work that also employs
NoCs with a TDMA scheme in analogy to the SoC architecture
presented in this paper.

The Æthereal architecture [11] and the Sonics SiliconBack-
plane µNetwork [12] provide communication channels with
guarantees on minimum bandwidth and maximum latency by
using a TDMA scheme that is based on a table with a given
number of time slots (e.g., 128 slots). The main difference
between the TT-SoC architecture and the above mentioned
networks is the level of abstraction at the network interface.
Æthereal and the Sonics SiliconBackplane µNetwork provide
a shared memory abstraction to the attached IP cores via a
transaction based master/slave protocol as it used in OCP [13]
or AXI [14]. These protocols define low-level signals like
address signals, data signals, interrupt signals, reset signals
or clock signals which are typically found at the interfaces
of processors, memory subsystems, or bus bridges. In the
TT-SoC architecture we have raised the level of abstraction
by introducing the notion of a micro component which is
a self contained computational unit (e.g., a processor or an
FPGA with local memory) that provides its functionality over
a well defined message-based interface. Another important
difference lies in the way how, and for which purpose the
TDMA scheme is used. The major objective of Æthereal
and the Sonics SiliconBackplane µNetwork is to establish
resource guarantees with respect to bandwidth and latency.
In addition to guaranteeing bandwidth and bounded latency,
the TT-SoC architecture uses the TDMA scheme to schedule
periodic send instances of entire application-level messages.
The supported periods are in the range from a few nanoseconds
up to milliseconds or seconds. This allows us to perfectly align
the phase of the periodic send instances of application-level
messages to the phase of the periodic activation instances of
a time-triggered application (e.g., periodic dissemination of a
sensor value in a process controll application).

The Cell Broadband Engine Architecture (CBEA) [15] is
a microprocessor architecture that has been jointly developed
by Sony, Toshiba, and IBM for game, media and broadband
systems. It encompasses a general-purpose processing unit
and eight specialized and identical processing units. A major
difference of the proposed time-tiggered SoC architecture in
comparison with the CBEA is the temporal predictability
resulting from the time-triggered control of the NoC. The
shared communication bus of the CBEA exhibits a variability
of the transmission latencies between 79.5 cycles and 939.5
cycles [16]. A further difference is the support for heteroge-
neous applications. The CBEA encompasses eight identical
synergistic processor units, which are optimized for appli-
cations based on Single Instruction, Multiple Data (SIMD)



Time-Triggered Network-on-Chip

TISS

Host

TISS

TTP

Host

TISS

Local
I/O

TTP

TISS

Host

Local I/O

TISS TISS TISS

Host

Local I/O

Host

Local I/O

Host

Local I/O

Trusted 
Network
Authority

(TNA)

Resource
Managem.
Authority

(RMA)

μC

Host

TISS

Local
I/O

CAN

TISS

Host

Local I/O

Local
I/O

μC μC μC

μC μC μC μCμC

Application Subsystem 0 Application Subsystem 1 Application Subsystem 2

Fig. 1. Structure of Time-Triggered SoC Architecture: trusted subsystem
(shaded) and non-trusted subsystem (hosts of micro components)

capability. The proposed time-triggered SoC architecture, on
the other hand, supports the integration of heterogeneous micro
components. For example, a micro component can be a general
purpose processor, an FPGA, or special purpose hardware.
Individual micro components can also reside within different
clock domains, whereas all synergistic processor units of the
CBEA belong to the same clock domain.

III. ARCHITECTURE OVERVIEW

The central element of the presented SoC architecture is
a time-triggered NoC that interconnects multiple, possibly
heterogeneous IP blocks called micro components (see Fig-
ure 1). The SoC introduces a trusted subsystem, which ensures
that a fault (e.g., a software fault) within the host of a
micro component cannot lead to a violation of the micro
component’s temporal interface specification in a way that
the communication between other micro components would
be disrupted. For this reason, the trusted subsystem prevents
a faulty micro component from sending messages during the
sending slots of any other micro component.

Furthermore, the time-triggered SoC architecture supports
integrated resource management. For this purpose, dedicated
architectural elements called the Trusted Network Authority
(TNA) and the Resource Management Authority (RMA) ac-
cept resource allocation requests from the micro compo-
nents and reconfigure the SoC, e.g., by dynamically updating
the time-triggered communication schedule of the NoC and
switching between power modes.

A. Micro Component

The introduced SoC can host multiple application subsys-
tems (possibly of different criticality levels), each of which
provides a part of the service of the overall system. An
example of an application subsystem in the automotive domain
would be a braking subsystem. A nearly autonomous and
possibly heterogeneous IP-block, which is used by a particular
application subsystem is denoted as a micro component.

A micro component is a self-contained computing element,
e.g., implemented as a general purpose processor or as special
purpose hardware. An application subsystem can be realized
on a single micro component or by using a group of possibly
heterogeneous micro components (either on one or multiple
interconnected SoCs).

The interaction between the micro components of an ap-
plication subsystem occurs solely through the exchange of
messages on the time-triggered NoC. Each micro component
is encapsulated, i.e., the behavior of a micro component
can neither disrupt the computations nor the communication
performed by other micro components. Encapsulation prevents
by design temporal interference (e.g., delaying messages or
computations in another micro component) and spatial in-
terference (e.g., overwriting a message produced by another
micro component). The only manner, in which a faulty micro
component can affect other micro components, is by providing
faulty input to other micro components of the application
subsystem via the sent messages.

Due to encapsulation, the SoC architecture supports the
detection and masking of such a failure of a micro com-
ponent using TMR. Encapsulation is necessary for ensuring
the independence of the replicas. Otherwise, a faulty micro
component could disrupt communication or communication
of the replicas, thus causing common mode failures.

Encapsulation is also a key mechanism for the correctness-
by-construction of application subsystems on an SoC. The SoC
architecture ensures that upon the incremental integration of
micro components, the prior services of the already existing
micro components are not invalidated by the new micro com-
ponents. This property, which is denoted as composability [5],
is required for the seamless integration of independently
developed application subsystems and micro components.

Also, encapsulation is of particular importance for the im-
plementation of SoCs encompassing application subsystems of
different criticality levels. In such a mixed criticality system, a
failure of micro components of a non safety-critical application
subsystem must not cause the failure of application subsystems
of higher criticality.

For the purpose of encapsulation, a micro component com-
prises two parts: a host and a so-called Trusted Interface
Subsystem (TISS). The host implements the application ser-
vices. Using the TISS, the time-triggered SoC architecture
provides a dedicated architectural element that protects the
access to the time-triggered NoC. Each TISS contains a
table which stores a priori knowledge concerning the global
points in time of all message receptions and transmissions
of the respective micro component. Since the table cannot
be modified by the host, a design fault or a hardware fault
restricted to the host of a micro component cannot affect the
exchange of messages by other micro components.

B. Requirements for the Time-Triggered Network-on-a-Chip

The time-triggered NoC interconnects the micro compo-
nents of an SoC. The purposes of the time-triggered NoC
encompass clock synchronization for the establishment of



A

B

C

D

E

A
period

1 Start of control cycle
A Observation of sensor input
2 Start of transmission of 

sensor data
B Transmission of input data
3 Start of processing of 

control algorithm
C Processing of control 

algorithm
4 Termination of processing
D Transmission of control 

value
5 Start of output to actuators
E Output operation at the 

actuator
6 Termination of output

operation

1
2

3

4

5
4

3

2

6

5

Fig. 2. Temporal Alignment in Control Loops. In this cyclic model of time,
the perimeter represents the period of the control application.

a global time base, as well as the predictable transport of
periodic and sporadic messages.

a) Clock Synchronization: The time-triggered NoC per-
forms clock synchronization in order to provide a global time
base for all micro components despite the existence of multiple
clock domains. The resulting system-wide global time base
allows the temporal coordination of actions on the distributed
micro components within an SoC and in an ensemble of
different SoCs. It is based on a 64 bit wide binary time
format, which has been standardized by the OMG in the smart
transducer interface standard [17].

b) Predictable Transport of Messages: Using TDMA,
the available bandwidth of the NoC is divided into periodic
conflict-free sending slots. We distinguish between two uti-
lizations of a periodic time-triggered sending slot by a micro
component. A sending slot can be used for the periodic
transmission of messages or the sporadic transmission of
messages. In the latter case, a message is only sent if the
sender must transmit a new event to the receiver.

The allocation of sending slots of the time-triggered NoC
to micro components occurs using a communication primitive
called pulsed data stream [18]. A pulsed data stream is a time-
triggered periodic unidirectional data stream that transports
data in pulses with a defined length from one sender to n a
priori identified receivers at a specified phase of every cycle
of a periodic control system.

The pulsed behavior of the communication network enables
the efficient transmission of large data in applications requiring
a temporal alignment of sender and receiver. Temporal align-
ment of sender and receiver is required in applications where
a short latency between sender and receiver is demanded. This
is typical for many real-time systems. For example, consider
a control loop realized by three micro components performing
sensor data acquisition (A), processing of the control algorithm
(C), and actuator operating (E) as it is schematically depicted
in Figure 2. In this application, temporal alignment between
sensor data transmission (B) and the start of the processing

of the control algorithm (cf. instant 3 in Figure 2) as well
as between the transmission of the control value (D) and the
start of actuator output (cf. instant 5) is vital to reduce the
end-to-end latency of the control loop, which is an important
quality characteristic of many real-time systems. By specifying
two pulsed data streams corresponding to (B) and (D) in
Figure 2, efficient, temporally aligned data transmission can
be achieved.

Contrary to the on-chip communication system of the in-
troduced SoC architecture, many existing NoCs provide only
a guaranteed bandwidth to the individual senders without
support for temporal alignment. The resulting consequences
are: (i) either the short latency cannot be guaranteed, (ii) a
high bandwidth has to be granted to the sender throughout the
entire period of the control cycle, although it is only required
for a short interval, or (iii) the communication system has to
be periodically reconfigured in order to free and re-allocate
the non-used communication resources.

A pulsed data stream is specified using the 3-tuple
〈pulse period, pulse phase, duration〉 (cf. Figure 3). These
three parameters determine the allocation of TDMA slots to
the micro component that sends the pulsed data stream. A
pulsed data stream consists of periodic pulses with a defined
pulse period and a defined pulse phase. Our design restricts the
pulse periods of a pulsed data stream to 32 different periods
corresponding to negative powers of two of the second, i.e., a
period can be 1 second, 1/2 second, 1/4 second, 1/8 second
and so forth. This restriction is introduced in order to reduce
the complexity of the NoC and the computation of the time-
triggered schedule significantly. The pulse phase, denotes the
offset to the start instant of the pulse from the start of the
pulse’s period.

A pulse consists of at least one fragment of variable size.
Successive fragments of one pulse are not required to be
transmitted in a dense sequence on the NoC, i.e., fragments of
one pulse can be interleaved by fragments of other pulses. The
time between the instant of transmission of the first fragment
and the instant of transmission of the last fragment of a pulse
is denoted as the duration of the pulse. Each fragment is
further decomposed into a set of atomic (fix-sized) flits. A
flit is the basic entity that can be transmitted over the time-
triggered NoC and occupies one TMDA slot. However, the
fragmentation of pulses into fragments, as well as the further
fragmentation of fragments into flits is abstracted from the host
within the TISS. This reduces the complexity of the application
design, as it must only be dealt with periodic pulses of pulsed
data streams.

For an exemplary pulsed data stream, Figure 3 depicts the
allocation of TDMA slots, which are occupied by the flits of
variable sized fragments of a pulse.

C. Architectural Elements for Resource Management

The purpose of the integrated resource management in
the SoC architecture is to dynamically assign computational
resources (i.e., micro components) to application subsystems



fragment 2

pulse period

pulse duration

activity inactivity activity inactivity

pulse phase

epoch of 
global time

inactivity

fragm. 1 fragment 3

TDMA slot containing a flit 
of fragment 2
TDMA slot containing a flit 
of fragment 3

unused TDMA slot

TDMA slot containing a flit 
of fragment 1

Fig. 3. Pulsed Data Stream

and to grant communication resources and power to individual
micro components.

We distinguish two fundamentally different types of applica-
tion subsystems: safety-critical and non safety-critical applica-
tion subsystems. While safety-critical application subsystems
need to be certified to the highest criticality classes (e.g., class
A according to DO-178B), non safety-critical applications
subsystems, on the other hand, do not have such stringent
certification requirements. In general, these two types of
applications subsystems will involve fundamentally different
design paradigms. The focus of safety-critical applications lies
on simplicity and determinism in order to facilitate thorough
verification and validation. In contrast, non safety-critical
applications can provide more complex application services
(e.g., need to deal with insufficient a priori knowledge about
the environment) and dynamism to handle the challenges of
evolving application scenarios and changing environments.

The TTSoC architecture follows this bivalent distinction
of application subsystems and provides two distinct architec-
tural elements for enabling integrated resource management,
namely the Trusted Network Authority (TNA) and the Re-
source Management Authority (RMA). The RMA computes
new resource allocations for the non safety-critical application
subsystems, while the TNA ensures that the new resource
allocations have no adverse effect on the behavior of the
safety-critical application subsystems. As depicted in Figure 1
the TNA is part of the trusted subsystem of the SoC, whereas
the RMA is not. By splitting the entire resource management
into two separate parts, where only one is part of the trusted
subsystem, the certification of the time-triggered SoC is sig-
nificantly simplified, since the checking of the correctness of
a resource allocation through the TNA is significantly simpler
than its generation at the RMA.

c) Resource Management Authority (RMA): The RMA
is responsible for scheduling the available resources and cre-
ating the allocation of the micro components. For this purpose
the RMA exploits application-specific knowledge (e.g., com-
munication topology) and system knowledge (e.g., temporal
properties of the time-triggered NoC). However, the RMA is
not able to change the configuration of the SoC directly, i.e., to
update the configuration of the affected TISSs.

d) Trusted Network Authority (TNA): The TNA acts
as a guard for the reconfiguration activities performed by
the RMA. Therefore, the TNA detects potential collisions on
the time-triggered NoC or violations on resource reservations.

If an erroneous resource schedule is detected, the current
configuration remains unchanged and the new schedule is
rejected. In case the schedule is correct, the TNA updates
the configuration of the micro components. Since the TNA
is part of the trusted subsystem it is permitted to reconfigure
the micro components via the TISSs.

As a first step, we are focusing on dynamic resource
management of communication resources, where the topology
and Quality of Service (QoS) parameters (e.g., latency and
bandwidth) of pulsed data streams are subject of reconfig-
uration. The topology of a particular pulsed data stream is
determined by the set of TISSs, which processes the pulsed
data stream. The QoS parameters of a pulsed data stream are
affected by its pulse period, phase and duration.

D. Gateways

The proposed SoC architecture supports gateways for ac-
cessing chip-external networks (e.g., TTP [19], TTE [20] and
CAN [21] in Figure 1). The benefits of gateways include the
interoperability with public networks, such as the Internet,
and the ability to interconnect multiple SoCs to a distributed
system. The realization of a distributed system enables ap-
plications based on the SoC architecture for ultra-dependable
systems. In ultra-dependable systems, a maximum failure rate
of 10−9 critical failures per hour is demanded [22]. Today’s
technology does not support the manufacturing of chips with
failure rates low enough to meet these reliability requirements.
Since components failure rates are usually in the order of 10−5

to 10−6 (e.g., [23] uses a large statistical basis and reports
100 to 500 failures out of 1 Million Electronic Control Units
(ECUs) in 10 years), ultra-dependable applications require the
system as a whole to be more reliable than any one of its
components. This can only be achieved by utilizing fault-
tolerant strategies that enable the continued operation of the
system in the presence of component failures.

In case the chip-external network is also time-triggered
(e.g., TTP [19], TTE [20]), the TDMA scheme of the NoC can
be synchronized with the TDMA scheme of the chip-external
network. The periods and phases of the relayed pulsed data
streams on the NoC can be aligned with the transmission start
instants of the messages on the time-triggered chip-external
network. Consequently, a message that is sent on the chip-
external network is delivered to the micro components within
a bounded delay with minimum jitter (only depending on the
granularity of the global time base). The alignment between
pulsed data streams and messages on time-triggered networks
ensures that replicated SoCs perceive a message at the same
time, i.e., within the same inactivity interval of the global
sparse time base [24]. This property is significant for achieving
replica determinism [9] as required for active redundancy
based on exact voting. Without synchronization between the
NoC and the chip-external network, there could always occur a
scenario in which one SoC forwards the message to the micro
components in one period of the pulsed data stream, while
another SoC would forward the message in the next period.



Furthermore, the introduced gateways provide the SoC with
an externally synchronized time base. For example, the global
time base of the SoC can be synchronized to GPS. Conse-
quently, a timestamp assigned to an event is also meaningful
outside the SoC. Furthermore, the global time base enables
a global coordination of activities spanning multiple SoCs
(e.g., output to actuators at same global point in time).

IV. ENCAPSULATED COMMUNICATION SERVICE

As mentioned already in the introduction, one major ob-
jective of the time-triggered SoC architecture is to facilitate
independent development of subsystems by the use of encap-
sulation mechanisms that prevent any unindented interference
between these subsystems. On micro component level, encap-
sulation is naturally achieved by the physical separation of
the individual micro components. On the next higher level
where subsystems are formed by multiple micro components
interacting which each other via the exchange of messages,
encapsulation is required with respect to the communication
infrastructure that interconnects these micro components. For
this purpose, the time-triggered SoC architecture provides so-
called encapsulated communication channels.

A. Encapsulated Communication Channels

The term encapsulated communication channel denotes an
unidirectional channel that transports messages at predefined
points in time from a single source to one or more destinations.
A message corresponds to one pulse in a pulsed data stream.

The endpoints of an encapsulated communication channel
are called ports. We distinguish between output ports which
are located at the source - where the messages are produced
- and input ports which are located at the destinations where
the messages are consumed. A single micro component can
be attached to multiple encapsulated communication channels,
and thus can have multiple input and output ports. The
topology of an encapsulated communication channel is defined
by the number of destinations (i.e. the number of input ports)
and by the assignment of the source and the destinations to
specific micro components. Since the number of destinations
of an encapsulated communication channel is variable, single-
cast, multi-cast and broad-cast topologies are supported.

In order to prevent any unintended interference between
subsystems, the time-triggered SoC architecture ensures tem-
poral and spatial partitioning [25] with respect to encap-
sulated communication channels. Communication activities
in a given encapsulated communication channel are neither
visible nor have any effect (e.g. performance penalty) on
the exchange of messages in any other encapsulated com-
munication channel. It is guaranteed, that the only micro
component that can send messages over a given encapsulated
communication channel is the micro component that is defined
as the source of that encapsulated communication channel (i.e.
the micro component where the output port of the encapsulated
communication channel is located).

Temporal and spatial partitioning of encapsulated commu-
nication channels is enforced by the TISS which is located

between the host of a micro component and the time-triggered
NoC (see Figure 1). The TISS acts as a guardian for the
shared time-triggered NoC by accessing the time-triggered
NoC exclusively at a priori known points in time according
to the TDMA scheme. Therefore, a specific pulsed data
stream, which defines a set of TDMA send slots, is assigned
to each encapsulated communication channel. The TISS of
each micro component incorporates its own dedicated time-
triggered message schedule - the so-called Message Descriptor
List (MEDL) - which holds the information about the periodic
points in time when a fragment of a given pulsed data stream
should be sent or received by the TISS.

In order to guarantee that the encapsulation properties of
the communication service are not violated in the presence
of a design fault or a hardware fault within the host, the
implementation of the TISS ensures, that the host cannot alter
the internal time-triggered schedule of the TISS. As already
mentioned in Section III the TISS itself is part of the trusted
subsystem and is considered to by free of design faults.

V. CONCLUSION

In order to manage the complexity of an evolving design at a
higher level of abstraction, we must conceptualize components
that form stable intermediate forms and exhibit aggregate
properties. If we can describe and specify these aggregate
properties on their own by an appropriate interface model,
then it is not required to understand the structure and the
interactions within the components in order to reason about
the interactions among components and the emerging system
properties. Furthermore it is then possible to change and
enhance the implementation of the components in response to
technological developments without a redesign of the system
at this higher level of abstraction.

For this reason, we have introduced in the presented SoC
architecture the notion of a micro component, which can be
considered a unit of abstraction that provides its functional-
ity at a well-defined message-based network interface to its
partners [6]. The clear separation of the processing within
a micro component from the interactions among the micro
components leads to a communication-centric model that is
highly appropriate for many applications and thus can lead to
a substantial reduction of the complexity of a design at the
system level.

The contributions of the proposed time-triggered SoC ar-
chitecture include the realization of a predictable and de-
terministic on-chip network with inherent fault isolation and
a global time base. The proposed solution is fundamentally
different to the prevalent trend of asynchronous on-chip in-
terconnects. Also, the proposed Time-Triggered System-on-
a-Chip (TTSoC) architecture provides significant contribu-
tions compared to existing synchronous on-chip intercon-
nects (e.g., Æthereal, Sonics). The TTSoC architecture uses
a TDMA scheme to schedule periodic send instances of
entire application-level messages. The supported periods are
in the range from a few nanoseconds up to milliseconds or
seconds. This allows us to perfectly align the phase of the



periodic send instances of application-level messages to the
phase of the periodic activation instances of a time-triggered
application (e.g., periodic dissemination of a sensor value
in a process controll application). In addition, a global time
base is provided at the application level in order to facilitate
the temporal coordination of subsystems distributed across
multiple micro components. The global time base, which is
internally synchronized (between the micro components of an
SoC with different clock domains) and externally synchronized
(with the SoC environment).

With its inherent fault isolation capabilities, the time-
triggered SoC is an effective solution for mixed criticality
systems. A mixed criticality system is characterized by the
coexistence of safety-critical micro components (e.g., X-by-
wire functionality, active safety-functions in a car) and micro
components with a lower level of criticality (e.g., multime-
dia, comfort functionality in a car). The trusted subsystem
(i.e., TISSs, time-triggered NoC, TNA) ensures that a design
fault (e.g., a software fault) within a given micro component
cannot lead to a violation of the micro component’s tempo-
ral interface specification in a way that the communication
between other micro components would be disrupted. It is
prevented by design that a faulty micro component sends mes-
sages during the sending slots of any other micro component.

ACKNOWLEDGMENT

This work has been supported in part by the European IST
project ARTIST2 under project No. IST-004527 and the FIT-
IT (Research Programme initiatiated by the Austrian Federal
Ministry of Transport, Innovation, and Technology (BMVIT))
project TT-SoC under grant number 813299/7852.

REFERENCES

[1] Semiconductor Industry Association (SIA). International technology
roadmap for semiconductors. Technical report, 2005.

[2] P. Gelsinger. Microprocessors for the new millenium, chal-
lenges,opportunities, and new frontiers. In Proc. of the Solid State
Circuit Conference. IEEE Press, 2001.

[3] W. Wolf. The future of multiprocessors systems on chips. In Proc. of
the Design Automation conference. IEEE Press, 2004.

[4] H. Kopetz and R. Obermaisser. Temporal composability. Computing &
Control Engineering Journal, 13:156–162, August 2002.

[5] J. Sifakis. A framework for component-based construction. In Proc. of
3rd IEEE Int. Conference on Software Engineering and Formal Methods
(SEFM05), pages 293–300, September 2005.

[6] C. Jones et al. DSOS conceptual model. Technical Report Techn. Report
CS-TR-782, University of Newcastle, 2003.

[7] P.J. Feltovic, R. Coulson, and R. Spiro. Learners’ misunderstandidng of
important and difficult concepts. Smart Machines in Education, pages
354–380, 2001. AAAI Press.

[8] J. Owens. GPUs: Engines for future high-performance computing.
Technical report, Lincoln Labs, Boston, September 2004.

[9] S. Poledna. Replica determinism in distributed real-time systems: A
brief survey. Real-Time Systems, 6:289–316, 1994.

[10] O.S. Unsal and I. Koren. System-level power-aware design techniques
in real-time systems. Proceedings of the IEEE, 91(7):1055–1069, 2003.

[11] K. Goossens, J. Dielissen, and A. Radulescu. The aethereal network on
chip: Concepts, architectures, and implementations. IEEE Design and
Test of Computers, 22(5):414–421, 2005.

[12] Sonics. Sonics unetwork technical overview (www.sonicsinc.com),
2002.

[13] OCP-IP Association. Open core protocol specification 2.1, 2005.
[14] ARM. Axi protocol specification, 2004.

[15] IBM, Sony, and Toshiba. Cell broadband engine architecture. Technical
report, October 2006.

[16] T.W. Ainsworth amd T.M. Pinkston. On characterizing performance
of the cell broadband engine element interconnect bus. In Proc. of the
First International Symposium on Networks-on-Chip, pages 18–29, May
2007.

[17] OMG. Smart Transducers Interface. Specification ptc/2002-05-01,
Object Management Group, May 2002. Available at http://www.
omg.org/.

[18] H. Kopetz. Pulsed data streams. In IFIP TC 10 Working Conference
on Distributed and Parallel Embedded Systems (DIPES 2006), pages
105–124, Braga, Portugal, October 2006. Springer.

[19] H. Kopetz and G. Grünsteidl. TTP – a protocol for fault-tolerant real-
time systems. Computer, 27(1):14–23, January 1994. Vienna University
of Technology, Real-Time Systems Group.

[20] H. Kopetz, A. Ademaj, P. Grillinger, and K. Steinhammer. The Time-
Triggered Ethernet (TTE) design. Proc. of 8th IEEE Int. Symposium on
Object-oriented Real-time distributed Computing (ISORC), May 2005.

[21] Robert Bosch Gmbh, Stuttgart, Germany. CAN Specification, Version
2.0, 1991.

[22] N. Suri, C.J. Walter, and M.M. Hugue. Advances In Ultra-Dependable
Distributed Systems, chapter 1. IEEE Computer Society Press, 10662
Los Vaqueros Circle, P.O. Box 3014, Los Alamitos, CA 90720-1264,
1995.

[23] B. Pauli, A. Meyna, and P. Heitmann. Reliability of electronic
components and control units in motor vehicle applications. In VDI
Berichte 1415, Electronic Systems for Vehicles, pages 1009–1024. Verein
Deutscher Ingenieure, 1998.

[24] H. Kopetz. Sparse time versus dense time in distributed real-time
systems. In Proc. of 12th Int. Conference on Distributed Computing
Systems, Japan, June 1992.

[25] J. Rushby. Partitioning for avionics architectures: Requirements, mech-
anisms, and assurance. NASA Contractor Report CR-1999-209347,
NASA Langley Research Center, June 1999.


