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Abstract. This paper deals with the estimation of DSGE models when struc-

tural innovations have volatilities that are allowed to vary over time. In partic-

ular, we develop an e¢ cient algorithm for jointly inferring the model parame-

ters, underlying shocks and time varying volatilities. We apply our estimation

strategy to a large-scale model of the US business cycle and identify the main

determinants of the important shifts in the volatility of macroeconomic vari-

ables that has characterized the postwar period. We �nd that investment

speci�c technology shocks account for most of the sharp decline in volatility

of the last two decades.

1. Introduction

It has been well documented that the volatility of output, in�ation, interest

rates and many other macroeconomic variables of the U.S. economy has exhibited

a very high degree of time variation over the last �fty years (see, for instance,

Sims and Zha (2004) or Stock and Watson (2003a)). Perhaps, the most notorious

episode of substantial �uctuation of volatilities in recent U.S. economic history is

the �Great Moderation,�1 which corresponds to the sharp decline in the volatility

of output as well as other macroeconomic and �nancial variables since the mid

1980s. While substantial e¤orts have been devoted to determine the timing of

these volatility changes (see, among others, Kim and Nelson (1999), McConnell

and Perez-Quiros (2000), Stock and Watson (2002), Chauvet and Potter (2001),

Herrera and Pesavento (2005)), there have been surprisingly few studies attempting

to identify the structural disturbances responsible for all these volatility shifts.

In this paper we �ll this gap, by estimating a DSGE model in which the volatility

of the structural innovations is allowed to change over time. First, we describe an

Date : July 2005. We would like to thank seminar participants at the Sveridge Riksbank and

the 2005 International Conference on Computing in Economics and Finance. The views presented

in this paper are the authors�and do not necessarily re�ect those of the IMF or the IMF policy.
1The name Great Moderation is due to Stock and Watson (2002), although the phenomenon

was �rst noted by Kim and Nelson (1999) and McConnell and Perez-Quiros (2000).
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algorithm that allows for simultaneous inference on both the parameters and the

stochastic volatilities. Then, we apply our modeling and estimation strategy to a

large-scale business cycle model of the US economy. The theoretical framework

we adopt follows along the lines of Christiano, Eichenbaum, and Evans (2005) and

Smets and Wouters (2003) and has been shown to �t the U.S. data fairly well. The

model exhibits a number of real and nominal frictions, and various shocks with a

precise (although sometimes debatable) microeconomic interpretation. The novelty

of our set-up is that all of these shocks have a variance which is allowed to change

over time.

We believe that this is an interesting innovation because it allows us to identify

the sources of the changes in the volatility of the main macro variables in the

postwar period. Thereafter, we are able to shed light on the nature of the underlying

disturbances responsible for the Great Moderation and other �uctuations in the

volatility of the U.S. business cycle.

The main conclusions we reach in this study are the following. First, the ex-

ogenous structural disturbances to the US economy display a very large degree

of stochastic volatility. Nonetheless, the degree of variation in variances di¤ers

quite substantially across shocks, being more pronounced for technology shocks

and, particularly, monetary policy shocks. Consequently, while stochastic volatility

is present in all the endogenous observed variables of the model, di¤erent series

exhibit contrasting patterns of �uctuations in their variances.

Second, although disturbances have di¤erent prominence in accounting for the

Great Moderation across series, the decline in the volatility of output, investment

and consumption is largely driven by investment speci�c technology shocks. So our

results suggest that a fall in the variance of the relative price of consumption to

investment goods has played a prominent role in the lower volatility of the U.S.

business cycle of the last two decades.

From the methodological standpoint, this paper is related to the statistics litera-

ture on stochastic volatility models (for an overview, see Kim, Shephard, and Chib

(1998)) and, more generally, on partial non-Gaussian state-space models (Shephard

(1994)). Drawing from this literature, we develop an e¢ cient algorithm, based on

Bayesian Markov chain Monte Carlo (MCMC) methods, for the numerical evalu-

ation of the posterior of the parameters of interest. Methodologically, the paper
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closest to ours is Laforte (2005), although in Laforte (2005) the time varying vari-

ances are modeled as Markov switching processes as opposed to smoother processes,

as we do in this paper.

From the point of view of the application, this paper is related to the large

literature using estimated micro-founded models to understand the main sources of

U.S. business cycle �uctuations (see, for instance, Rotemberg and Woodford (1997),

Ireland (2004), Christiano, Eichenbaum, and Evans (2005), Smets and Wouters

(2003), Altig, Christiano, Eichenbaum, and Linde (2005)). However, we depart

from previous work in this area by allowing for time variation in the volatility of

the structural disturbances. Our approach is related to the fairly large literature

dealing with the estimation of vector autoregressions with heteroskedastic shocks

(see, for example, Bernanke and Mihov (1998), Cogley and Sargent (2003), Sims and

Zha (2004), Primiceri (2005) or Canova, Gambetti, and Pappa (2005)). In contrast

to this strand of work, one advantage of our approach is that a fully-�edged model

provides an easy interpretation for the structural disturbances hitting the economy.

The paper is organized as follows. Section 2 presents the class of models we will

deal with and outlines some methodological issues (the details are in the appendix).

Section 3 illustrates our application to the model of the US business cycle. Section 4

and 5 discuss the estimation results and address the causes of the Great Moderation.

Section 6 concludes with some �nal remark and priorities for future research.

2. Stochastic Volatility in DSGE Models

The general class of models we will work with is summarized by the following

system of equations:

(2.1) Et [f (yt+1; yt; yt�1; �t; �)] = 0,

where yt is a k�1 vector of states and endogenous variables, �t is an n�1 vector of
exogenous disturbances, � is a p�1 vector of structural parameters and Et denotes
the mathematical expectation operator, conditional on the information available at

time t. For example, (2.1) can be thought as a collection of constraints and �rst

order conditions derived from a micro-founded model of consumers and/or �rms

behavior. The novelty here is that the standard deviation of the elements of �t is

allowed to change over time. In particular, we make the assumption that

log �t � �̂t = �t"t

"t � N(0; In),
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where N indicates the normal distribution, In denotes an n � n identity matrix
and �t is a diagonal matrix with the n � 1 vector �t of time varying standard
deviations on the main diagonal. Following the stochastic volatility literature (see,

for instance, Kim, Shephard, and Chib (1998)), we assume that each element of �t

evolves (independently) according to the following stochastic processes:

log �i;t = (1� ��i) log �i + ��i log �i;t�1 + �i;t(2.2)

�i;t � N(0; s2i ) i = 1; :::; n.

Observe that modeling the logarithm of �t, as opposed to the �t itself, ensures that

the standard deviation of the shocks remains positive at every point in time.

Our objective is characterizing the posterior distribution of the model structural

parameters (�) and the time varying volatility of the shocks (f�tgTt=1). Observe
that the model described by (2.1) is in general nonlinear and does not have a

closed-form solution. Therefore, the solution must be approximated. Notice also

that commonly used log-linearization methods would not serve our purposes, since

the time varying standard deviations would disappear in the log-linearized version

of the model. Moreover, log-linear methods would be accurate in this set-up only

if the variability of the standard deviations is small. Higher order approximations

would instead preserve the interaction term �t"t. However, they would also gen-

erate many additional nonlinear terms, considerably complicating the estimation.

For these reasons, we develop what we call a partially nonlinear approximation of

the model, which combines the appeal of both log-linearization and higher order

approximations. In particular, we approximate the solution of the model by the

partially nonlinear function

(2.3) ŷt = Aŷt�1 +B�̂t = Aŷt�1 +B�t"t,

where ŷt denotes log deviations from the non-stochastic steady state of the variable

y. (2.3) is a perfectly valid approximation of the model�s solution. Moreover, when

the standard deviations of the model disturbances are actually time varying, (2.3)

approximates the model�s solution better than standard log-linearization methods.

These results are proven in appendix A.
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3. The Model

We apply our method to a relatively large-scale model of the U.S. business cycle,

which has been shown to �t the data nearly as well as Bayesian vector autoregres-

sions (Smets and Wouters (2003)). The model is based on work by Christiano,

Eichenbaum, and Evans (2005) and we refer to them for some of the details. Our

brief illustration of the model follows closely Del Negro, Schorfheide, Smets, and

Wouters (2004).

3.1. Final goods producers. At every point in time t, perfectly competitive �rms

produce the �nal consumption good Yt, using the intermediate goods Yt(i), i 2 [0; 1]
and the production technology

Yt =

�Z 1

0

Yt(i)
1

1+�p;t di

�1+�p;t
.

�p;t follows the exogenous stochastic process

log �p;t = (1� �p) log �p + �p log �p;t�1 + �p;t"p;t,

where "p;t is i:i:d:N(0; 1) and �p;t evolves as in (2.2).

Pro�t maximization and zero pro�t condition for the �nal goods producers imply

the following relation between the price of the �nal good (Pt) and the prices of the

intermediate goods (Pt(i), i 2 [0; 1])

Pt =

�Z 1

0

Pt(i)
1

�p;t di

��p;t
,

and the following demand function for the intermediate good i:

Yt(i) =

�
Pt(i)

Pt

�� 1+�p;t
�p;t

Yt.

3.2. Intermediate goods producers. A monopolist �rm produces the interme-

diate good i using the following production function:

Yt(i) = max
�
A1��t Kt(i)

�Lt(i)
1�� �AtF ; 0

	
,

where, as usual, Kt(i) and Lt(i) denote respectively the capital and labor input

for the production of good i, F represents a �xed cost of production and At is an

exogenous stochastic process capturing the e¤ects of technology. In particular, we

model At as a unit root process, with a growth rate (zt � log At

At�1
) that follows

the exogenous process

zt = (1� �z)
 + �pzt�1 + �z;t"z;t,
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with the usual assumption about the properties of �z;t and "z;t. As in Calvo (1983),

a fraction �p of �rms cannot re-optimize their prices and, therefore, set their prices

following the indexation rule

Pt(i) = Pt�1(i)�
�p
t�1�

1��p ,

where �t is de�ned as Pt
Pt�1

and � denotes the steady state value of �t. Subject to

the usual cost minimization condition, re-optimizing �rms choose their price ( ~Pt(i))

by maximizing the present value of future pro�ts

Et

1X
s=0

�sp�
s�t+s

nh
~Pt(i)

�
�sj=0�

�p
t�1+j�

1��p
�i
Yt+s(t)� Pt+s

�
WtLt(i) +R

k
tKt(i)

�o
,

where �t+s is the marginal utility of consumption, Wt and Rkt denote respectively

the wage and the rental cost of capital.

3.3. Households. The �rms are owned by a continuum of households, indexed

by j 2 [0; 1]. As in Erceg, Henderson, and Levin (2000), while each household

is a monopolistic supplier of specialized labor (Lt(j)), a number of �employment

agencies�combines households�specialized labor into labor services available to the

intermediate �rms

Lt =

�Z 1

0

Lt(j)
1

1+�w dj

�1+�w
.

Pro�t maximization and zero pro�t condition for the perfectly competitive employ-

ment agencies imply the following relation between the wage paid by the interme-

diate �rms and the wage received by the supplier of specialized labor Lt(j)

Wt =

�Z 1

0

Wt(j)
1
�w dj

��w
,

and the following labor demand function for labor type j:

Lt(j) =

�
Wt(j)

Wt

�� 1+�w
�w

Lt.

Each household maximizes the utility function2

Et

1X
s=0

�sbt+s

�
log (Ct+s(j)� hCt+s�1(j))� 't+s

Lt+s(j)
1+�

1 + �

�
,

where Ct(j) is consumption, h is the �degree�of habit formation, 't is a preference

shock that a¤ects the marginal disutility of labor and bt is a �discount factor�shock

2We assume a cashless limit economy as described in Woodford (2003).
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a¤ecting both the marginal utility of consumption and the marginal disutility of

labor. These two shocks follow the stochastic processes

log bt = �b log bt�1 + �b;t"b;t

log't = (1� �') log'+ �' log't�1 + �';t"';t.

The household budget constraint is given by

Pt+sCt+s(j) + Pt+sIt+s(j) +Bt+s(j) � Rt+s�1Bt+s�1(j) +Qt+s�1(j) + �t+s +

+Wt+s(j)Lt+s(j) +R
k
t+s(j)ut+s(j) �Kt+s�1(j)� Pt+sa(ut+s(j)) �Kt+s�1(j),

where It(j) is investment, Bt(j) is holding of government bonds, Rt is the gross

nominal interest rate, Qt(j) is the net cash �ow from participating in state con-

tingent securities, �t is the per-capita pro�t that households get from owning the

�rms. Households own capital and choose the capital utilization rate which trans-

form physical capital ( �Kt(j)) in e¤ective capital

Kt(j) = ut(j) �Kt�1(j),

which is rented to �rms at the rate Rkt (j). The cost of capital utilization is

a(ut+s(j)) per unit of physical capital. As in Altig, Christiano, Eichenbaum, and

Linde (2005), we assume that ut = 1 and a(ut) = 0 in steady state. The usual

physical capital accumulation equation is described by

�Kt(j) = (1� �) �Kt�1(j) + �t

�
1� S

�
It(j)

It�1(j)

��
It(j),

where � denotes the depreciation rate and, as in Christiano, Eichenbaum, and

Evans (2005) and Altig, Christiano, Eichenbaum, and Linde (2005), the function S

captures the presence of adjustment costs in investment, with S0 = 0 and S00 > 0.

�t is a random shock to the price of investment relative to consumption and follows

the exogenous process

log�t = �� log�t�1 + ��;t"�;t.

As in Erceg, Henderson, and Levin (2000), a fraction �w of households cannot

re-optimize their wages and, therefore, set their wages following the indexation rule

Wt(j) =Wt�1(j) (�t�1e
zt�1)

�w (�e
)
1��w .

The remaining fraction of re-optimizing households set their wages by maximizing

Et

1X
s=0

�sw�
sbt+s

�
�'t+s

Lt+s(j)
1+�

1 + �

�
,
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subject to the labor demand function.

3.4. Monetary and Government Policies. Monetary policy sets short term

nominal interest rates following a Taylor type rule

Rt
R
=

�
Rt�1
R

��R "��t
�

��� � Yt
At

��Y #1��R
e�R;t"R;t ,

where R is the steady state for the nominal interest rate and "R;t is an i:i:d:N(0; 1)

monetary policy shock.

Fiscal policy is assumed to be fully Ricardian and public spending is given by

Gt =

�
1� 1

gt

�
Yt,

where gt is an exogenous disturbance following the stochastic process

log gt = (1� �g) log g + �g log gt�1 + �g;t"g;t.

3.5. Market Clearing. The resource constraint is given by

Ct + It +Gt + a(ut) �Kt�1 = Yt,

3.6. Steady State and Model Solution. Since the technology process At is

assumed to have a unit root, consumption, investment, capital, real wages and

output evolve along a stochastic growth path. Once the model is rewritten in

terms of detrended variables, we can compute the non-stochastic steady state and

employ the partially nonlinear method illustrated in section 2 and appendix A, to

approximate the model around the steady state. This delivers a partial non-linear

state space model of the kind described in Shephard (1994).

We conclude the discussion of the model by specifying the vector of observables,

completing the state space representation of our model:

(3.1) [� log Yt;� logCt;� log It; logLt;� log
Wt

Pt
; �t; Rt],

where � logXt denotes logXt � logXt�1.

4. Inference

4.1. The Data. We estimate the model using seven series of U.S. quarterly data,

as in Levin, Onatski, Williams, and Williams (2005) and Del Negro, Schorfheide,

Smets, and Wouters (2004). These series correspond to the ones reported in the

vector of observable variables of our model (3.1). Our dataset spans a sample from

1954QIII to 2004Q4. All data are extracted from Haver Analytics database (series
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mnemonics in parenthesis). Following Del Negro, Schorfheide, Smets, and Wouters

(2004), we construct real GDP by diving the nominal series (GDP) by population

(LF and LH) and the GDP De�ator (JGDP). Real series for consumption and

investment are obtained in the same manner, although consumption corresponds

only to personal consumption expenditures of non-durables (CN) and services (CS),

while investment is the sum of personal consumption expenditures of durables (CD)

and gross private domestic investment (I). Real wages corresponds to nominal com-

pensation per hour in the non-farm business sector (LXNFC) divided by the GDP

de�ator. Our measure of labor is given by the log of hours of all persons in non-farm

business sector (HNFBN) divided by population. The quarterly log di¤erence in

the GDP de�ator constitutes our measure of in�ation, while for nominal interest

rates we use the e¤ective Federal Funds rate. We do not demean or detrend any

series.

4.2. Bayesian Inference. Bayesian Markov chain Monte Carlo (MCMC) methods

are used to characterize the posterior distribution of the model�s structural para-

meters (�), the time varying volatility of the shocks (f�tgTt=1) and the coe¢ cients of
the volatility processes (

�
�; ��; s

2
�
). Observe that, dealing with unobservable com-

ponents, where the distinction between parameters and shocks is less clear than

in other situations, a Bayesian approach is the natural one. Moreover, Bayesian

methods deal e¢ ciently with the high dimension of the parameter space and the

nonlinearities of the model, splitting the original estimation problem in smaller and

simpler ones. In particular, MCMC is carried out in three steps. First, a Metropolis

step is used to draw from the posterior of the structural coe¢ cients �. Drawing the

sequence of time varying volatilities �T (conditional on �, �, �� and s
2) is instead

more involved and relies mostly on the method presented in Kim, Shephard, and

Chib (1998). It consists of transforming a nonlinear and non-Gaussian state space

form in a linear and approximately Gaussian one, which allows the use of simulation

smoothers like Carter and Kohn (1994) or Durbin and Koopman (2002). Simulat-

ing the conditional posterior of
�
�; ��; s

2
�
is standard, since it is the product of

independent normal-inverse-Gamma distributions. The details are left to appendix

B.

4.3. Priors. We �x a small number of the model parameters to values that are

very common in the existing literature. In particular, we set the steady state share

of capital income (�) to 0:3, the quarterly depreciation rate of capital (�) to 0:025
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and the steady state government spending to GDP ratio (1 � 1=g) to 0:22, which
corresponds to the average value of Gt=Yt in our sample. Moreover, in order to

reduce the number of free coe¢ cients, we set all the ���s to 1, which re�ects the

assumption that the volatilities follow geometric random walk processes.

The �rst three columns of table 1 report our priors for the remaining parameters

of the model. While most of these priors are relatively disperse and re�ect previous

results in the literature, a few of them deserve some further discussion. For all

but one persistence parameters we use a Beta prior, with mean 0:5 and standard

deviation 0:15. The exception is the persistence of the mark-up shock and the reason

is the weak identi�cation problem between this parameter and the one capturing

the degree of price indexation. We decided to impose a tighter prior on �p to avoid

convergence problems in our MCMC algorithm.

The priors on the standard deviations (s) of the innovations to the log-volatility

processes deserve some comment as well, as these coe¢ cients are new in the DSGE

literature. We chose to use an inverse-Gamma prior with mean equal to 0:012

for several reasons. First, assuming for simplicity that the log-volatilities behave

as random walks, this number implies an average variation of about 15 percent

over our sample of forty years. We regard this as a conservative estimate. Sec-

ond, in the context of time varying vector autoregressions, Primiceri (2005) has

experimented and tested several values and concluded that this value attained the

highest marginal likelihood. We assessed the sensitivity of the estimates to alterna-

tive speci�cations of the prior (especially for the variance of the innovation to the

log-volatilities) and found that these modi�cations had no important in�uence on

the results.

5. Estimation Results

5.1. Parameter estimates. The last three columns of table 1 summarize the pos-

terior distribution of the model coe¢ cients, reporting posterior medians, standard

deviations and 5th and 95th percentiles computed with the draws. All coe¢ cients

are quite precisely estimated and their estimate seem plausible. For example, the

estimates of the Calvo stickiness parameters for prices (�p) is approximately equal

to 2
3 , which is a value slightly below to the ones obtained by the previous literature

estimating DSGE models.3 This number seems still higher than what obtained

3See Altig, Christiano, Eichenbaum, and Linde (2005) for an example of a model generating

lower estimates of the price stickiness parameter.
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by micro studies (see, for instance, Bils and Klenow (2004)), but the presence of

indexation mechanisms (which assures that prices are actually changed in every pe-

riod) makes the results potentially consistent with the micro evidence on the high

frequency of price changes.

For comparison, table 1 also reports posterior medians, standard deviations, 5th

and 95th percentiles of a model estimated with time invariant volatilities. Notice

that, as should be expected, most of the coe¢ cient estimates are similar to the

time varying model, although there are some important exceptions. Most notably,

two of the coe¢ cients related to the labor market part of our framework change

importantly when stochastic volatility is allowed for. Speci�cally, the Calvo wage

stickiness parameter (�w) drops from 0:71 to 0:38 and the inverse Frisch elasticity of

labor supply (�) declines as well from 3:8 to 2:5. The higher elasticity of labor supply

and the more volatile behavior of wages are compensated by a smoother pattern

of the intra-temporal preference shock ('t), whose autocorrelation coe¢ cient is

estimated much higher in the stochastic volatility model.4 This suggests that not

accounting for stochastic might introduce some bias in the estimation.

5.2. Volatility estimates. Figure 1 presents the plots of the time varying stan-

dard deviations of the seven shocks of our models. Notice that the degree of stochas-

tic volatility varies substantially across shocks. Three of the disturbances seem to

have relatively constant standard deviations. This is the case for the price mark-up

shock (�p;t), and the two taste shocks (bt and 't). The evidence is very di¤er-

ent for the volatility of the remaining four shocks, which exhibit a very important

amount of time variation. The exogenous disturbance showing the highest degree

of time varying volatility is the monetary policy shock ("MP
t , �gure 1a), for which

the di¤erence between the lowest and the highest levels of the standard deviation

is about 500 percent. Observe that the �Volcker episode�5 is perfectly captured in

4It is worth pointing out that the posterior distribution of the time invariant model is bimodal.

The values reported in table 1 are relative to the global maximum. However, there exists a local

maximum for which the level of the log-posterior is only slightly lower (just by one point) and

the values of the coe¢ cients are much closer to the estimates of the time varying model. Notice

also that the time varying model does not exhibit the problem of the two modes, suggesting that

accounting for stochastic volatility might help solving some of the identi�cation problems, which

are common in thie class of models.
5The �Volcker episode�refers to the high volatility of interest rates in the 1979-1983 period, due

to the monetary targeting regime initiated by chaiman Paul Volcker in response to the dramatic

rise in U.S. in�ation in the 1970s.
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our estimates, as well as the reduction in the volatility of monetary policy shocks

during the Greenspan period.

Monetary policy shocks are not the only ones exhibiting time varying volatilities.

The standard deviation of technology shocks (zt, �gure 1b) seems to decrease by

almost 50 percent in the second part of the sample. This is potentially consistent

with the observed reduction in the volatility of GDP in the last two decades. A

similar pattern is followed by the volatility of the investment speci�c technology

shock (�t, �gure 1d) and the government spending shock (gt, �gure 1c), although

the fall in volatility at the beginning of the 1980s seems more dramatic in the case

of the investment speci�c technology shock.

One important component of our analysis (which will lead us to the next subsec-

tion, addressing the causes of the Great Moderation) is the variance decomposition.

We perform the variance decomposition exercise in the following way: given the es-

timated variances of the exogenous disturbances, we construct the implied variances

of the (endogenous) observable variables. Then, we re-compute the variances of the

observable variables, setting to zero the variance of each disturbance, one-at-a-time.

In this way we are able to investigate the contribution of each shock to the variance

of the endogenous variables.6 Observe that, since our variances are changing over

time, our variance decomposition is a time varying �object�. In order to save space,

we do not present the graph of the variance decomposition for all of the observables.

Instead, we have chosen to give a complete characterization only of the variance

decomposition for GDP. For the remaining series we only report the time varying

share of the variance explained by selected shocks.

Figure 2 presents the time varying shares of the variance of GDP growth due to

each exogenous disturbances. Consistently with Greenwood, Hercowitz, and Krusell

(1997) and Fisher (2005), the most important shock in explaining the variability

of GDP seems to be the investment speci�c technology shock (�gure 5d), which, at

least in the �rst part of the sample, explains about 40 percent of the variance of

GDP growth. However, the importance of the investment speci�c technology shock

declines over time. On average, neutral technology shocks and labor preference

shocks explain 20 percent of the variance of GDP each. This share seems to remain

relatively stable over time for the neutral technology shock (�gure 2b), while it

increases in the last two decades for the labor preference shock (�gure 2f). Other

6Of course there are alternative ways of doing a variance decomposition exercise and we are

busy trying these alternatives.
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shocks are less central. The limited importance of the monetary policy shock (�gure

2a) is striking and probably related to the observation that, in this class of models,

�exible price output seems to track quite closely actual output ( Walsh (2005)),

which represents a problem for current sticky price models.

Figure 3 presents the graphs of the time varying shares of the variance of the

other observable variables, explained by selected shocks. A major portion of the

variance of consumption is explained by the intertemporal shock to the discount

factor (�gure 3a). Although not fundamental for output, monetary policy, mark-up

shocks are quite important for the volatility of interest rates (�gure 3b) and in�ation

(�gure 3c). Moreover, as one would expect, the investment speci�c technology shock

and the labor preference shock explain most of the variability of investment (�gure

3d) and hours (�gure 3e) respectively, while the neutral technology shock accounts

for about 40 percent of the variance of real wages (�gure 3f).7

6. The Great Moderation

6.1. The Great Moderation and the role of investment speci�c technol-

ogy shocks. We now apply our method and our results to the Great Moderation

episode. In two very in�uential papers, Kim and Nelson (1999) and McConnell and

Perez-Quiros (2000) drew the attention on the dramatic reduction in the volatil-

ity of U.S. GDP, which has characterized the last two decades with respect to the

pre-1980s period.8 The change seems to be more abrupt than gradual (Kim and

Nelson (1999) and Stock and Watson (2002)) and the break date is estimated to

approximately correspond to 1984. In our sample, the standard deviation of GDP

growth over the 1984-2004 period is almost one half of the standard deviation com-

puted over the 1955-1983 sample. The literature has labeled this phenomenon as

the Great Moderation.

Clearly, a number of explanations have been provided and exhaustive reviews

can be found in Blanchard and Simon (2001), Stock and Watson (2002) and Stock

and Watson (2003a). Explanations of this phenomenon can be broadly bunched

as corresponding to simply good luck, technological progress (particularly in man-

aging inventories) or improvements in the conduct of monetary policy under the

7The complete set of variance decomposition graphs is available upon request.
8Stock and Watson (2003b) show a similar pattern for other G7 countries.



14 ALEJANDRO JUSTINIANO AND GIORGIO E. PRIMICERI

Volcker and Greenspan chaimanships. However, the evidence in favor of the tech-

nological progress and improved monetary policy hypotheses is rather tenuous (see,

for instance, Stock and Watson (2002) or Maccini and Pagan (2003)).

Therefore, the starting point of the analysis of the Great Moderation undertaken

in this paper is the very robust �nding of Stock and Watson (2002), Stock and

Watson (2003a) and Ahmed, Levin, and Wilson (2004), who conclude that �this

reduction in volatility is associated with an increase in the precision of forecasts of

output growth�(Stock and Watson (2002), p 42). Notice that our framework is a

natural candidate to understand the structural causes of the reduction in forecast

errors. In fact, our methodology allows for time varying volatilities and is based

on a fully-�edged model, which provides an easy interpretation for the structural

disturbances hitting the economy.

To assess the role played by each shock in the Great Moderation, we rely on

counterfactual simulations exercises. Our approach consists of using our model to

simulate the volatility of GDP growth under alternative paths for the volatility of

each structural disturbance. This counterfactual simulations can be interpreted as

the hypothetical pattern of the volatility of GDP growth in the period 1981-2004,

had the standard deviation of that particular structural shock only not changed

with respect to the 1981 level.

Figure 4 plots the volatility of GDP growth implied by our model. There are at

least two things to notice. First, although the evolution of the standard deviation of

GDP growth is very similar to the one obtained from an unrestricted, reduced form,

univariate AR(4) with stochastic volatility, we notice that the DSGE model some-

what overpredicts the level of the volatility. This problem is common to the time

invariant version of the model and is therefore indicative of di¢ culties in simultane-

ously matching the levels of persistence, comovements and volatilities observed in

the data, even with state of the art DSGE models (Del Negro, Schorfheide, Smets,

and Wouters (2004)). Second, nonetheless, the model captures remarkably well

the timing and the size of the Great Moderation, despite the abrupt nature of the

decline in volatility.

Figure 5 presents our counterfactual simulations. Our approach gives a very

strong conclusion about the causes of the Great Moderation. As apparent from

�gure 5d, the main explanation for the Great Moderation seems to be the sharp

reduction in the volatility of investment speci�c technology shocks. That is, had

the volatility of investment speci�c technology shocks remained at its 1981 level,
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then the standard deviation of GDP growth would have been much higher than the

realized one in the 1981-2004 period.

Observe that an alternative (isomorphic) interpretation of the investment speci�c

technology shocks is of shocks to the inverse price of e¢ cient units of investment in

terms of consumption goods.9 Although this variable is not used in our estimation,

data on the price of investment relative to consumption may serve as a proxy for

investment speci�c technology shocks. In order to verify that the reduction in the

volatility of investment speci�c technology shocks is not somewhat spurious and

speci�c to our model, we analyze the volatility of this relative price. In particular,

we construct the chain-weighted de�ators for our components of consumption (non-

durables and services) and investment (durables and total private investment) and

estimate an AR(4) process in the growth rate of this relative price, allowing for

stochastic volatility. Figure 6 plots the time varying standard deviation of the

AR(4) innovation and makes clear that this volatility has sharply decreased in the

second part of the postwar sample. We regard the fact that our model provides a

very similar insight (without using any data on the relative price of investment) as

a remarkable result.

6.2. Robustness issues. In this subsection we perform robustness checks on our

important �nding that the Great Moderation seems to be driven by the decline

in volatility of investment speci�c technology shocks. In particular, we perform

some simple experiments in the context of our model which suggest that the lower

variability of U.S. output is di¢ cult to explain even when considering changes in

the systematic part of monetary policy or when using series that abstract from the

role of inventories. We believe that these observations echo �ndings elsewhere in

the literature using other methods and models. More importantly, for our purposes,

when these variants are considered in all cases the decline in the variability of GDP

growth is once again largely attributed to a reduction in the volatility of investment

speci�c technology shocks.

Our strategy to address the importance of the changes in the systematic part

of monetary policy consists of estimating our model (without stochastic volatility)

on two separate subsamples, 1953-1979:II and 1983-2004:III. Notice that, following

Hanson (2003), we exclude the 1979:III-1982:IV period from the estimation since

monetary policy during this period may not be correctly characterized by a Taylor

9See Fisher (2005) for an explanation of this alternative interpretation.
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rule.10 Table 2 presents posterior modes and standard deviations of the coe¢ cients

estimated over these two periods. Notice that there are some di¤erences in the

coe¢ cient estimates, particularly, consistently with evidence presented earlier, in

the standard deviation of the shocks. In addition, table 3 highlights that, in line

with the reduction in stochastic volatility, the unconditional standard deviation of

output growth in the second subsample relative to the �rst is 0:52.

In the context of our model this discrepancy can potentially be explained by

three di¤erent sets of parameters: the monetary policy coe¢ cients, the remaining

structural parameters and the variances of the shocks. With regard to the �rst

possible explanation, notice that, as expected, monetary policy in the second sub-

sample seems to have been more responsive to in�ation. To assess the role of these

change in the systematic part of policy on the volatility of output, table 3 presents

the relative standard deviation of GDP growth when the coe¢ cients of the Taylor

rule estimated in the second subsample replace the correspondent coe¢ cients in

the �rst subsample. In order to gauge the second possible explanation, table 3

also presents the relative volatility of GDP growth when a similar counterfactual

exercise is performed by replacing all coe¢ cients (other than the volatilities) from

the second sub-sample. Table 3 makes clear that neither changes in the systematic

part of monetary policy nor the remaining structural coe¢ cients of the model seem

to account for the decline in volatility of output. This result is in line with Sims

and Zha (2004), Hanson (2003), Leduc and Sill (2003), Primiceri (2005), Ahmed,

Levin, and Wilson (2004).

With regard to the role of inventories in explaining the Great Moderation, we

proceed with the rather simple exercise of constructing series of investment and,

therefore, output that abstract from inventories. This approach corresponds with

the measurement of investment series in some business cycle quantitative studies

(for example, Fisher (2005)). Furthermore the rationale for subtracting inventories

from output, as opposed to working with the series for inventories themselves, arises

from the ambiguity of whether inventories bu¤er or rather amplify the economic

�uctuations.11 That is, it remains unclear whether an increase in the volatility of

10To further check the robustness of this experiment, we have also estimated the model from

1979:III to 2004:III allowing for stochastic volatility in order to capture the large degree of vari-

ability of interest rates during this period. Our results are una¤ected by this modi�cation.
11Kahn and McConnell (2002), for instance, argue that while in theory inventories should

bu¤er production from �uctuations in sales, in practice the opposite occurs as inventories and

sales comove in the same direction.
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inventories would map into a rise or a decline of the volatility of output. Our aim

here is simply to check whether when removing inventories the Great Moderation

is still evident and, furthermore, whether our conclusions regarding the importance

of investment speci�c technology shocks in accounting for this episode still hold.

Using this new series for investment and output (obtained by chain weighting)

we re-estimate the model with stochastic volatility over the full sample. Figure 7

presents counterfactual exercises constructed in a similar way to section 6.1, using

the new coe¢ cient and volatility estimates. In this case, the moderation in the

variability of output growth is still evident although the decline is somewhat more

prolonged as opposed to abrupt. Moreover, monetary policy shocks seem to be

slightly more important than in the baseline case. Notice, however, that the role of

investment speci�c technology shocks in accounting for the decline in the volatility

of output growth remains for the most part unaltered. We conclude from this

exercise that, while inventories may be important for understanding the sharp drop

in the variability of output growth, it would seem that additional explanations are

needed to address the Great Moderation (see also Stock and Watson (2002) and

Maccini and Pagan (2003)). In this respect, and consistently once again with our

previous �ndings, our results point to the predominant role of investment speci�c

technology shocks.

7. Concluding Remarks

In this paper we have estimated a large scale DSGE model of the US business

cycle, allowing for the volatility of the structural innovations to change over time.

We have found that the volatility of several shocks have changed dramatically in the

postwar period. However, the sharp reduction in the standard deviation of GDP

growth that has characterized the last twenty years can be explained mostly due to

the decline in the variability of a single disturbance: the investment speci�c tech-

nology shock. This crucial disturbance has the equivalent interpretation of shock

to the inverse price of e¢ cient units of investment in terms of consumption goods

and, indeed, this series has exhibited a substantial moderation in its variability, in

accordance with the predictions of our the model.

Our results provide guidance for future research on the volatility of the U.S.

business cycle, suggesting that a fruitful avenue would be to model the variability

of disturbances a¤ecting the relative price of investment goods. Particularly im-

portant seems to be o¤ering a structural interpretation for the sharp reduction in
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the volatility of these shocks. Although beyond the scope of this paper, we just

note that explanations based on increased access to credit markets (Campbell and

Hercowitz (2004)) and a decline in investment �nancial frictions (like the ones mod-

eled in Bernanke, Gertler, and Gilchrist (1999) or Iacoviello (2005)) are potentially

consistent with the decline in the volatility of the relative price of investment.

Appendix A. Partially non-linear approximation

This is a sketch of the proof that the partially nonlinear approximation is a valid

approximation of the model�s solution. To simplify the notation, here we work

with linearizations (as opposed to log-linearizations). Consider the general class of

models described by the following system of rational expectation equations:

Et [F (yt+1; yt; "t; �t)] = 0,(A.1)

"t � N(0; I)

where we have the assumption that each element of �t evolves as in (2.2). Let�s

de�ne

(A.2) �t � �t � "t;

with ���denoting the element-by-element product between two vectors. The proof
involves two steps: �rst, we show that the �rst order approximation of the solution

(policy rule) as a function of �t (as opposed to "t) does not include �t. Second, we

show that the �rst order approximation of the solution as a function of �t is not

worse (might be better) than the (usual) �rst order approximation of the solution

as a function of "t.

A.1. Step 1: The �rst order approximation of the solution (policy rule)

as a function of �t (as opposed to "t) does not include �t. Given (A.2), we

can reparameterize (A.1) as a function of �t and �t as follows:

(A.3) Et [f (yt+1; yt; �t; �t)] = 0,

where it is easy to see that the functions f(�) and F (�) are the same. Suppose that
(A.3) admits a unique solution in the neighborhood of the non-stochastic steady

state (described by f (y; y; 0; 0) = 0). The solution has the general form

(A.4) yt = g(�t; �t),
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Let�s now characterize the �rst order approximation of (A.4). Plug (A.4) into (A.3),

obtaining

(A.5) Et
�
f
�
g(�t+1; �t+1); g(�t; �t); �t; �t

��
= 0

Take a �rst order Taylor expansion of f in (A.5)

Et
�
f1g1�t+1 + f1g2�t+1 + f2g1�t + f2g2�t + f3�t + f4�t

�
� 0,

where fj denotes the partial derivative of f with respect to its jth argument. Since

"t and �t never enter (A.1) separately, f4 = 0. This implies that g2 = 0, which

proves our result. This implies that a �rst order expansion of (A.4) would be equal

to

yt = g1�t + o(jj�t; �tjj).

It is also easy to see that the �rst order approximation of the solution as a function

of �t has the same form as the (usual) �rst order approximation of the solution

as a function of "t. In fact, if we plug yt = h("t; �t) into (A.1) and take a Taylor

expansion, we obtain

Et [f1h1"t+1 + f1h2�t+1 + f2h1"t + f2h2�t + f3"t + f4�t] � 0.

Notice that f4 = 0 also in this case. This implies that h2 = 0 and h1 must solve

f2h1 + f3 = 0, exactly like g1 has to solve f2g1 + f3 = 0 (so g1 must equal h1).

A.2. Step 2: The �rst order approximation of the solution as a function of

�t is not worse (might be better) that the (usual) �rst order approxima-

tion of the solution as a function of "t. We aim at approximating the locally

unique solution in the neighborhood of the non-stochastic steady state. Consider

again the system of equations given by the solution (A.4) and the law of motion

for the elements of �t, given by (2.2). Rewrite (2.2) as

log ~�i;t = ��i log ~�i;t�1 + �i;t

~�i;t =
�i;t
�i
.

Therefore, (A.4) becomes

(A.6) yt = g(�~�t � "t| {z }
�t| {z }
�t

; �~�t)
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Following Kim et al. (2004), we can take a �rst order expansion of (A.6) with

respect to the �rst and second arguments, obtaining

yt = g1��t + op(jj�jj),

which states that the �rst order approximation is valid as long as the average

standard deviation of the shocks is not too large.

For comparison, suppose to approximate the solution in the usual way (as a

function of "t). In this case we would obtain

yt = g1�"t + op(jj�; sjj),

which states that for the approximation to be valid not only we need the average

standard deviation of the shocks to be small, but also the volatility of the time

varying standard deviations to be small.

Appendix B. The estimation algorithm

B.1. The Standard Case: Homoskedastic Disturbances. For the model with-

out stochastic volatility, the estimation algorithm is simply a random walk Metrop-

olis MCMC procedure, as suggested originally by Schorfheide (2000). To initialize

the chains we compute the posterior ordinate for 5; 000 draws from the priors, se-

lect the ten points attaining the highest posterior density and use a maximization

algorithm (Chris Sims�csminwel) to �nd the posterior mode. Having observed that

all chains lead to the same mode, the inverse Hessian at the peak is used as the vari-

ance of a proposal density for generating draws with the random walk metropolis.

We initialize multiple chains by scaling the inverse Hessian upwards and drawing

randomly from a normal centered at the mode. The variance-covariance matrix of

the proposal density is adjusted to attain an acceptance rate close to 0:25, as it

is usually suggested. Trace plots, kernel estimates as well as the variants of the

potential scale-reduction factors proposed by Brooks and Gelman (1998) are used

to gauge the convergence of the algorithm.

B.2. Stochastic Volatility. When the structural shocks exhibit stochastic volatil-

ity, this algorithm must be modi�ed to account for inference on the unobserved sto-

chastic volatilities. A Metropolis within Gibbs MCMC algorithm allows us to itera-

tively draw from the posterior densities of the DSGE model�s parameters, stochastic

volatilities and associated innovation variances. As discussed below, generating a
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draw for the stochastic volatilities entails using a normal mixture approximation

and sampling a set of latent indicators for the components of this mixture.

To illustrate the steps involved in sampling from the di¤erent blocks, let the

vector � collect all parameters of the DSGE model (other than the standard devi-

ations of the structural disturbances of the time invariant model) and notice that

the solution of the linearized DSGE model leads to a state-space representation of

the form

xt = Dyt(B.1)

yt = A(�)yt�1 +B(�)�t(B.2)

where xt and yt represent the observable variables and the endogenous / state

variables respectively. (B.2) is the same equation as in (2.3), but we have dropped

the �hats� to simplify the notation. As discussed in section A the novelty of our

framework is that the vector of structural innovations �t (dimension n�1) is allowed
to have a time varying variance covariance matrix. Indexing each structural shock

by i, the stochastic volatilities for each shocks are modelled as

�i;t = �i;t"i;t(B.3)

log �i;t = (1� ��i) log �i + ��i log �i;t�1 + �i;t(B.4)

"i;t � N(0; 1)(B.5)

�i;t � N(0; s2i ) i = 1; :::; n.

Let the vector ht, with entry i given by hi;t = log �i;t, collect the log volatilities

for all shocks at time t and stack the whole sample of stochastic volatilities into

the matrix HT = [h1; h2; :::; ht; :::; hT ]
0. Finally, we denote the sample of structural

shocks as �T = [�1;�2; :::; �t; :::; �T ]
0.

Suppose that the MCMC algorithm has completed iteration g (> 0); producing

samples �(g); HT;(g) and V (g):of the parameters of interest (individual elements of

a vector are indexed by i while (g) indicates the current state of the chain). In

iteration g + 1, the following �ve steps are used to generate a set of new draws.

B.2.1. Step 1: Draw the structural shocks �T;(g+1). In order to generate a new sam-

ple of the stochastic volatilities we must �rst obtain a new draw of the structural
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shocks. This can be done easily using the e¢ cient simulation smoother for dis-

turbances developed by Durbin and Koopman (2002). The simulation smoother is

applied to the state space representation given by (B.1) and (B.2).

B.2.2. Step 3: Draw the stochastic volatilities HT;(g+1). With a draw of �T

in hand the system of nonlinear measurement equations in (B.3) for each structural

shock, can be easily converted in a linear one, by squaring and taking logarithms

of every element. Due to the fact that the squared shocks �2i;t can be very small,

an o¤set constant is used to make the estimation procedure more robust. Dropping

the iteration indicators momentarily for ease of notation, this leads to the following

approximating state space form:

~�i;t = 2hi;t + ei;t(B.6)

hi;t = hi;t�1 + �i;t.(B.7)

where ~�i;t = log[(�i;t)
2 + c]; c is the o¤set constant (set to 0:001); ei;t = log("2i;t).

Observe that the e�s and the ��s are not correlated. The resulting system has a

linear, but non-Gaussian state space form, because the innovations in the mea-

surement equations are distributed as a log�2(1). In order to further transform

the system in a Gaussian one, a mixture of normals approximation of the log �2

distribution is used, as described in Kim, Shephard, and Chib (1998). Under the

assumption of orthogonality across the "�s (recall the variance covariance matrix of

the "�s is the identity matrix) this implies that the variance covariance matrix of

the v�s is also diagonal, allowing to use the same (independent) mixture of normals

approximation for any for each innovation:

f(ei;t) =
KX
k=1

qkfN (ei;tjsi;t = k), i = 1; :::; n

where si;t is the indicator variable selecting which member of the mixture of nor-

mals has to be used at time t for the innovation i, qk = Pr(si;t = k) and fN (�)
denotes the pdf of a normal distribution. Kim, Shephard, and Chib (1998) select

a mixture of 7 normal densities (K = 7) with component probabilities qk, means

mk � 1:2704, and variances r2k, j = 1; :::; 7, chosen to match a number of moments
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of the log�2(1) distribution. For completeness the constants are reported below

fqj ;mj ; r
2
jg below.12

! qj = Pr(! = j) mj r2j

1 0.00730 -10.12999 5.79596

2 0.10556 -3.97281 2.61369

3 0.00002 -8.56686 5.17950

4 0.04395 2.77786 0.16735

5 0.34001 0.61942 0.64009

6 0.24566 1.79518 0.34023

7 0.25750 -1.08819 1.26261

Source: Kim, Shephard and Chib (1998).

Conditional on ST;(g), the system has an approximate linear and Gaussian

state space form. Therefore a new draw for the complete history of the volatil-

ity HT;(g+1)can be obtained recursively with the standard Gibbs sampling for state

space forms using, for instance, the forward-backward recursion of Carter and Kohn

(1994).

B.2.3. Step 3: Draw the indicators of the mixture approximation sT;(g+1). A new

sample of the indicators, si;(g+1)t , for the mixture is obtained conditional on �T;(g+1)

and HT;(g+1) by independently sampling each from the discrete density de�ned by

Pr(s
(g+1)
i;t = j j ~�(g+1)i;t ; h

(g+1)
i;t ) _ qjfN (~�(g+1)i;t j2h(g+1)i;t +mj�1:2704; r2j ), j = 1; :::; 7

Consistent with notation above, collect the indicators for which component of the

mixture of the normal approximation to use for each structural shock and time

period into a stacked matrix sT;(g+1) = [s(g+1)1 ; s
(g+1)
2 ; :::; s

(g+1)
t ; :::; s

(g+1)
T ]0

B.2.4. Step 4: Draw the coe¢ cients of the stochastic volatility processes.

Having generated a sample HT;(g+1), the vector
h
�
(g+1)
i ; �

(g+1)
�i ; s

2 (g+1)
i

i
, i =

1; :::; n, can be generated easily from the usual Normal inverse-Gamma distribu-

tion.

B.2.5. Step 5: Draw the DSGE parameters �(g+1). As in the time invariant al-

gorithm, a new candidate parameter �� is drawn from a proposal density. However,

in this case, the computation of the likelihood used to construct the probability

12We neglect the reweighting procedure used in Kim, Shephard, and Chib (1998) to correct

the minor approximation error.
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of acceptance depends on HT;(g+1). More formally the candidate draw is accepted

with probability

a = min

(
1;

L(Y T j��;HT;(g+1))�(��)

L(Y T j�(g) ;HT;(g+1))�(�(g))

)
,

where L(�) and �(�) denote the likelihood and the prior distribution respectively.
These �ve steps are repeated N times, across multiple chains. As in the case of

the time invariant model, we apply a battery of diagnostics to gauge the convergence

of the chains.
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Figure 1: Stochastic Volatiliy of the DSGE Model Shocks
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Figure 2: Variance Decomposition for Output Growth 1/

1/  For variance decompositions, medians need not add up to exactly one, but means do 
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Figure 3: Selected Variance Decomposition (VD)  for Other Series 
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Figure 4: DSGE Time-Varying Standard Deviation of Output Growth 
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Figure 5:  Actual and counterfactual standard deviation (std) for output growth 

Counterfactual std obtained by fixing for the remainder of the sample the std of each shock, one at a time,         to the 
average level of the time variying standard deviations in 1980 (MA4)
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Figure 6: Time-Varying Standard Deviation Relative Price of Investment to Consumption 
Obtained using an AR(4) with stochastic volatility 
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Figure 7:  Actual and counterfactual standard deviation (std) for output growth exlcuding stocks

Counterfactual std obtained by fixing for the remainder of the sample the std of each shock, one at a time,         to the 
average level of the time variying standard deviations in 1980 (MA4)
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