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1. Introduction 

The analysis of the timing of innovation posits a particular innovation (or 
sequence of innovations) and examines how the expected benefits, the cost of 
R&D and interactions among competing firms combine to determine the pattern 
of expenditure across firms and over time, the date of introduction, and the 
identity of the innovating firm. In the case of a sequence of innovations, the 
expected lifetime of a given innovation and the pattern of technological leader- 
ship are also determined endogenously. Given that an innovation has been 
perfected, the extent and timing of its dissemination into use may be examined. 
Again this may depend upon a number of factors, including the existence of rival 
firms and institutions which may facilitate or retard the dissemination of innova- 
tions. 

Section 2 addresses issues of innovation production in the context of symmet- 
ric noncooperative models. The important questions which have been examined 
in this context include: What is the aggregate noncooperative investment in 
research and development and how is it distributed across firms and across time? 
How many firms enter the face, and what is the resulting equilibrium date of 
innovation? The answers to these questions can then be compared with various 
benchmarks, such as their cooperative or surplus-maximizing counterparts. The 
typical outcome of these comparisons is that aggregate expenditure on R&D is 
too high relative to the cooperative optimum; there are too many firms and each 
invests too much. These problems can be attributed to two types of market 
failure. At each date, each firm considers only its own marginal benefit from 
investment and does not take into account the reduction it imposes on the 
expected value of the other firms' investments; consequently, each firm invests 
too much. Moreover, since entry into the race is unrestricted, it will continue 
until all expected profits are dissipated; entering firms do not take into account 
the loss of intertemporal efficiencies by rival firms when they decide to enter. 
Thus, the firms (collectively) forego intertemporal efficiencies which could be 
realized by investing at a lower rate over a longer planning horizon. By analogy 
to the problem of the commons, there is "over-grazing" in the industry. Compari- 
son with the surplus-maximizing investment is more difficult, since the innovator 
is typicaUy unable to appropriate the full surplus. This will tend to depress 
investment in research and development, making the comparison ambiguous. See 
Hirshleifer and Riley (1979) for a more complete discussion of this issue. 

Section 3 considers asymmetric models, in which the issues of primary interest 
have been the effects on investment incentives provided by current market power, 
anticipated future innovation, and the possession of a technological advantage 
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(e.g. being closer to completion). Results in this area seem particularly sensitive 
to the presence or absence of technological uncertainty in the production of the 
innovation. When innovation is uncertain, a firm which currently enjoys a large 
market share will invest at a lower rate than a potential entrant, for an 
innovation which promises the winner a large share of the market. When 
innovation is deterministic, the opposite is true. Moreover, this same dichotomy 
extends to the case of a sequence of drastic innovations. When innovation is 
stochastic, the role of technological leader tends to circulate around the industry, 
while deterministic innovation results in a single, persistent technological leader. 
The effect of anticipated future innovation will also differ in these two cases; in 
the former, it reduces the value of winning the current race, since today's winner 
is likely to lose the next race; in the latter case, winning today is all-important, 
since today's winner also wins all future races. In a multi-stage game, the impact 
of having a technological lead is, as one might expect, to increase that firm's 
likelihood of winning the overall race, all else equal. Indeed, with all else equal 
and deterministic innovation, a very small head start is sufficient to ensure that 
the leading firm will win. However, if all else is not equa l -  that is, one firm 
anticipates greater benefits or faces lower cos t s -  then an absolute disadvantage 
in terms of distance from completion will be overcome by the increased invest- 
ment occasioned by the lagging firm's greater desire or effectiveness. When 
invention is stochastic, although firms with a technological lead invest at a higher 
rate than their lagging rivals, a lucky laggard may still win the race. 

Section 4 investigates the extent of dissemination of the innovation, where this 
dissemination is achieved through licensing. Several recent papers have examined 
optimal fixed-fee licensing for a patentholder selling to an oligopolistic industry. 
This patentholder may be an independent researcher or a joint venture of a 
subset of the industry's firms. One robust finding is that, in the absence of 
involuntary spillovers, firms who are not members of the research joint venture 
are left worse oft as a result of innovation. In the case of an independent research 
lab, all members of the downstream industry are worse oft; the patentholder 
reaps more than the total cost savings attributable to the innovation. Research 
joint  ventures tend to restrict the dissemination of an innovation relative to an 
independent researcher; moreover, incentives to develop an innovation are weaker 
the larger is the joint venture. Thus, joint ventures would tend to restrict both the 
development and dissemination of an innovation. Of course, in evaluating the 
desirability of a joint venture, one would have to weigh against these restrictive 
tendencies any benefits (such as a reduction in the duplication of effort, or scale 
efficiencies) which might be generated. The motivation for licensing in these 
models is the cost savings which are generated by the use of the innovation, 
which can be at least partially appropriated by the patentholder, even under a 
less than optimal licensing agreement. When future technical advance is possible, 
another incentive for licensing arises; a firm with a superior technology can 
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license it to a rival firm in order to make further investment in R&D an 
unattractive strategy for the rival. Thus, the dissemination of the current technol- 
ogy (or the output of the current product) is enhanced at the expense of slower 
development of the next innovation. 

Section 5 examines the timing of the adoption Of an innovation, and sum- 
marizes recent work which provides alternative theoretical explanations for the 
observed diffusion of innovations into use. One explanation involves firms with 
differing initial priors about the profitability of the innovation. Information 
which accumulates over time is used to update these priors, and firms with more 
optimistic prior beliefs become "convinced" of an innovation's profitability 
sooner than those with less optimistic beliefs. The combination of adjustment 
costs which decline with the period of adjustment and benefits of adoption which 
decline with the number of other adopters (such as arise when firms enjoy some 
degree of market power) results in firms planning to adopt an innovation in 
sequence. Since each firm ignores the fact that its adoption decreases the value of 
adoption for all subsequent adopters, each firm adopts too early from the 
perspective of the industry as a whole; that is, industry profits would be higher if 
firms coordinated their adoption plans, resulting in a slower diffusion of the 
innovation. Similar results obtain for standard specifications of the social good. 
Finally, if a firm perceives network externalities (its own benefits from adoption 
increase with the number of other adopters), it may find it optimal to wait until 
its more eager colleagues have adopted it. In this case, it may be that "excess 
inertia" exists, so that despite the fact that all firms prefer life with the innovation 
to life without it, no one is sutticiently eager to initiate the adoption process. If 
the process is begun, however, the existence of network externalities generates a 
"bandwagon effect", since the value of adoption increases with the number of 
previous adopters. 

Throughout this chapter I will focus on recent theoretical work, which is 
primarily game theoretic in nature. Recent empirical work in this area is surveyed 
in Chapter 19 of this Handbook. For more comprehensive surveys, see the 
monographs by Kamien and Schwartz (1980) and Stoneman (1983). In brackets, 
I note the source of each proposition. However, since I have made some 
modifications and re-interpretations, do not take these references too literally. To 
find out what the authors really claimed (and how they proved it) see the original 
papers. 

An equally important - though less thoroughly investigated - aspect of techno- 
logical change is the extent of innovation. This is typically examined in the 
context of cost reduction [e.g. Dasgupta and Stiglitz (1980a), Flaherty (1980), 
Telser (1982), Reinganum (1982b, 1983a), Spence (1984), Tandon (1984) and 
Katz (1986)], although an alternative measure for product innovation is the 
extent of product diversity [e.g. Spence (1976), Dixit and Stiglitz (1977) and Judd 
(1985b)]. The issue of the extent of innovation will not be dealt with here, 
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primarily due to space constraints. Another relevant strand of the literature 
which will not be discussed here is the work on learning by doing [e.g. Arrow 
(1962b), Spence (1981) and Fudenberg and Tirole (1983)], in which cost reduc- 
tion is achieved as a result of production experience. 

The timing of innovation has been examined in two basic paradigms: (1) a 
deterministic "auction" model, which can be traced to Barzel (1968) and Scherer 
(1967) and appears subsequently in Dasgupta and Stiglitz (1980b), Gilbert and 
Newbery (1982) and Katz and Shapiro (1985b); and (2) a stochastic "racing" 
model, which was analyzed for the single-firm case by Lucas (1971), and Kamien 
and Schwartz (1971), and subsequently was generalized by Fethke and Birch 
(1982) and Grossman and Shapiro (1986). Kamien and Schwartz (1972) gener- 
alized the single-firm model to include a partial account of the effects of rivalry, 
and the stochastic racing model appears as a full equilibrium model in Loury 
(1979), Dasgupta and Stiglitz (1980b), Lee and Wilde (1980) and Reinganum 
(1981a, 1982a). Since both these paradigms have been used repeatedly to address 
problems of innovation timing and related issues, both will be described in some 
detail for the case of symmetric games of research and development. This will 
make it easier to address reläted issues such as pre-emptive innovation and the 
persistence of monopoly, and licensing and the diffusion of innovations, which 
rely to a considerable extent upon variations of these two basic paradigms. We 
will begin with the most restrictive environment, and relax assumptions as we go 
along. 

A third paradigm for examining investment in R&D is that used by Futia 
(1980), Hartwick (1982) and Rogerson (1982). This model assumes that there is 
one innovation per period and the innovator is determined as a random function 
of the firms' investments. For example, if firm i invests xi, it wins with 
probability Pi = x i / ~ x / .  Thus, the garne is not one of timing; it is rather a 
"contest" model. However, it does predict that firms overinvest in R&D and that 
each invests more the better is the patent protection. This sort of model has been 
examined in a laboratory experiment by Isaac and Reynolds (1985) who find that 
the experimental data are consistent with predicted Nash equilibrium play, and 
that the aforementioned predictions are indeed borne out in an experimental 
market. 

2. Symmetric models 

The first environment we wish to consider is one in which a particular invention 
is sought simultaneously by a number of identical potential inventors, which we 
will refer to as firms. The firm which produces the invention first is awarded a 
patent, which completely protects it from imitation or duplication. Invention is a 
costly activity, with the cost of invention by any given date being a decreasing 
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convex function of the time prior to invention. One justification for this cost 
function would be that the firm is optimally allocating its efforts on the invention 
throughout this period but suffers from classical diseconomies of scale; hence 
postponing the date of invention allows the firm to reduce its invention costs, but 
at a decreasing rate. For a computational example, see Kamien and Schwartz 
(1974); for additional arguments in favor of costs having this form, see Scherer 
(1967). 

An alternative but essentially equivalent formulation assumes that a commit- 
ment of funds today determines the eventual date of invention according to a 
decreasing and convex function. Since invention is completely deterministic, the 
firm which commits the greatest expenditure (today) will obtain the invention 
first. A simple formal model which summarizes this situation is the following 
"auct ion" model. Let P denote the value of winning to the inventor; by 
assumption, all others receive 0. Assume that P is constant, and that all firms 
use the same discount rate r. If firm i were to spend x i on research and 
development, it would complete the invention at date T /=  T(xi)  , where T(-) is 
decreasing and convex. A strategy for firm i is a bid x» and a Nash equilibrium 
is a vector of bids with the property that no firm wishes to unilaterally change its 
bid. The firm with the largest bid wins; if more than one firm wins, then the 
patent is awarded randomly among the winning firms. The key assumption about 
this model is that no real resources are expended until the winner is determined. 
That is, the firms "bid"  what they would spend, a winner is determined, and only 
the winning firm actually develops the invention (spends the amount of its bid). 
If real resources were committed, no Nash equilibrium exists in pure strategies; 
however, the result of Proposition 1 below can be sustained as a Stackelberg 

• equilibrium in which the firm with the highest bid moves first. 
Under these assumptions, firm i 's  payoff when the strategy (bid) vector is x is 

V i ( x )  = 

'pe-rT(xD _ x i ,  

1 
n - - ~ [ p e - r T ( x i ) - -  xi] ,  

O, 

if x~ > xt, for all j v~ i, 

if xz = xj > x~, 

for n ( x )  - 1 j ' s  and remaining k 's, 

if x, < x j, for some j v~ i. 

Proposition 1 [Dasgupta and Stiglitz (1980b)] 

A Nash equilibrium for this game involves two or more firms bidding x*, where 
x* is the largest value of x such that Pe  -rT(x) - x  = 0. Only one firm will 
actually invest x*, and all firms make zero profits in equilibrium. 



Ch. 14: The Timing of Innovation 855 

The intuition behind this result is clear; if any losing firm could pre-empt the 
winner and make positive profits, it would do so by bidding more. Hence, 
the winning firm must make zero profits given that it must spend its winning bid. 
The losing firms invest nothing and receive nothing. 

A joint venture involving all firms in the industry would involve a single firm 
investing an amount x** which maximizes Pe -rr(x~ - x .  To see that this 
involves less investment than under noncooperative play, it suffices to note that 
for x > x*, Pe  -rr(x~ - x < 0. Thus, x** < x*, with a strict inequality so long 
as there is any investment level which yields strictly positive profits. 

It was remarked earlier that a similar equilibrium configuration results if we 
specify one firm as a dominant firm, or first mover (Stackelberg leader). In this 
case, the dominant firm commits its expenditure at x*, knowing that only this 
will keep rival firms from out-investing it and succeeding earlier. The lesson of 
this model is that one need not actually observe a "race" in progress; potential 
competition may make one run equally hard. 

Alongside the auction model of invention is the second paradigm, in which the 
stochastic nature of invention is incorporated. In this framework, an investment 
of x i still buys firm i a date of success, say ri = ~-(xi), but now this date is 
regarded as random, indicating that success by any given date is only stochasti- 
cally related to expenditure. A strategy in this framework is an investment level 
x r In earlier work on the management of research and development, Lucas 
(1971) and Kamien and Schwartz (1971) employed relatively general distribution 
functions. However, the addition of strategic rivals required some simplifications 
of other aspects of the problem, leading authors of recent game theoretic models 
[e.g. Loury (1979), Dasgupta and Stiglitz (1980b) and Lee and Wilde (1980)] to 
adopt  the exponential distribution. That is, the probability that firm i is success- 
ful by date t is Pr(~-(xi)_< t} = 1 -  exp( -h (x i ) t ) ,  where h(xi) is twice 
differentiable, strictly increasing, and satisfies: 

(i) h(0) = 0 = lim h'(x),  
X ----~ OO 

(ii) h"(x)  > ( < ) 0  as x < ( > ) ~ ,  

(iii) h ( x ) / x  > (<_)h'(x) as x > (_<)Y, 

for some (Y, 2) such that 0 < Y < 2 < oo. 
Again let P denote the value of winning (assumed stationary) and r the 

common discount rate. Since success is not equivalent to winning, we need to 
compute the probability that firm i wins at any date t. Here the virtue of the 
exponential assumption becomes evident. Assuming that there are n firms whose 
processes are stochastically independent, the probability density that firm i wins 
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at t is 
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P r ( ' r ( x i )  ~ It, t + dt ]  and ~-(xk) > t for all k v~i} 

= h ( x i ) e x p ( -  E h ( x / ) t  } dt, 

where the summation is taken over j = 1, 2 . . . . .  n. For the exponential distribu- 
tion, the expected date of invention is simply 1/~h(xj ) .  Let a i = ~ , / , i  h(x/) 
denote the aggregate rival hazard rate. Since the garne is completely symmetric, 
we can write the payoff to any one firm as a function of its own investment x and 
the aggregate rival hazard rate a: 

fo °° V(x,  a) = P e - r ' h ( x ) e x p { - ( a  + h ( x ) ) t } d t -  x 

eh(x) 

a + h ( x )  + r 
- x .  ( 1 )  

A best response funetion for firm i to the aggregate rival hazard rate a is a 
function )~(.) such that for all a, V(2(a), a) > V(x, a) for all x. A symmetrie 
Nash equilibrium for a given number of firms n will be denoted x*(n) and 
satisfies the relation x* = 2(a*), where a* = (n - 1)h(x*). 

Proposition 2 [Loury (1979)] 

As the number  of firms in the industry increases, the equilibrium level of firm 
investment declines: dx*/dn < O. 

This also implies that the expected success time for each firm rises, since 
E,c i = 1/h(x*(n)). However, the time of invention, denoted z(n),  is the time of 
the first success: ~(n) = mini(~-i}. With more firms there are more chances for 
early success, even though each one is less likely to yield early success. Under the 
following stability condition, Loury shows that the expected time to invention, 
E~'(n) = 1/nh(x*(n)), falls with an increase in n. 

Assumption 1 

Assume that -h'(x*)2'(a*) < 1. 

That  is, in equilibrium a marginal increase in investment by any single rival 
firm causes the investment of a given firm to fall by a smaller amount. To 
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understand this interpretation, suppose that one rival firm increases its invest- 
ment by dx; then da = h'(x*)dx, and the condition above says that - h ' ( x* )d2  
< h'(x*)dx,  or -d:~ < dx. 

Proposition 3 [Loury (1979)] 

Under Assumption 1, increasing the number of firms reduces the expected date 
of invention. 

Once equilibrium is characterized for an arbitrary number of firms, one can 
permit this number to be determined endogenously through entry (i.e. via a zero 
profit condition). It is easy to show that equilibrium expected profits decrease 
with increasing n; thus entry continues unless V(x*, a*) = O. 

Consider the alternative problem of firms investing cooperatively and sharing 
equally in the reward. There are several reasons why the solution to this problem 
does not coincide with the noncooperative equilibrium. First, the joint venture 
may not value the innovation at P; for exarnple, antitrust regulation may prevent 
the venture from extracting the innovation's full value; on the other hand, 
perhaps the members of the joint venture can do better than P by a creative use 
of market segmentation. Second, noncooperative firms may not operate at the 
jointly optimal scale, and finally, the noncooperative equilibrium with entry may 
not result in the jointly optimal number of firms. If we assume that each firm 
values the innovation at P (whether investment is done noncooperatively or 
cooperatively), and that the research joint venture can also restrict entry, then it 
can be shown that for a given number of noncooperative firms, each invests too 
much. Moreover, in a noncooperative equilibrium with unrestricted entry, there 
will be too many firms relative to the joint optimum. Combining these two results 
with the fact that dx*/dn < 0, while d(nx*)/dn > 0 implies that in a free-entry 
noncooperative equilibrium there is too much investment in aggregate terms 
(relative to the joint optimum). This aggregate investment is produced by too 
many firms operating at less than efficient scale. Cooperation would involve fewer 
firms operating at efficient scale, but investing less in aggregate terms. 

Proposition 4 [Loury (1979)] 

Suppose that the function V(x, (n - 1)h(x)) is a single-peaked (that is, increas- 
ing, then decreasing) function of x. Given a fixed number of firms, in industry 
equilibrium each firm invests more in R& D than is jointly optimal. 

Each firm ignores its impact on its rivals' payoffs; consequently there is an 
excessive duplication of effort in the noncooperative equilibrium. 
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Proposition 5 [Loury (1979)] 
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If ~ > 0, then unrestricted entry results in too many firms, each of which invests 
too iittle (relative to the cooperative optimum). 

Lee and Wilde (1980) argued that the formalism which assumed that research 
and development expenditures were committed up front was inappropriate; since 
expenditure actually occurs over time, firms can stop investing once someone has 
succeeded. Instead, they permitted firms to choose a research intensity; once this 
intensity is fixed, the firm must either sustain this level of investment or cease 
investment altogether. Thus, the probability of success by any date t is still 
exponential, but the parameter now depends upon the intensity of research, 
rather than the scale of the lab. The new formula for firm i 's payoff is: 

V i ( x )  = fo°°exp{ - E h ( x j ) } [ P e - ~ t h ( x i )  - x i ] d t -  F 

P h ( ~ ) -  x 

a + h ( x )  + r 
- F ,  ( 2 )  

where F denotes some possible fixed cost which is involved in entering the 
industry. 

Lee and Wilde showed that this modification can substantially alter some of 
the model's implicaUons. In particular, in equilibrium an increase in the number 
of rivals is associated with an increase in the intensity of research and develop- 
ment investment. 

The fact that in Nash equilibrium x * ( n ) =  2 ( a * ( n ) ) ,  where a*(n)  = 

(n - 1 ) h ( x * ( n ) ) ,  can be used to determine d x * / d n .  Under the following stabil- 
ity condition, Lee and Wilde show that a firm's noncooperative equilibrium 
research intensity is an increasing function of the number of firms. 

Assumpt ion 2 

Assume that 1 - (n - 1 )h ' ( x* )2 ' (a* )  > O. 

This requires that if a firm's competitors all increase their investments just 
enough to generate a unit increase in rivalry, then the remaining firm must 
respond with less than a full unit increase in investment. If all other firms 
increase their investment rates by the amount dx, the remaining firm must 
increase its investment rate by less than dx. To see this, note that an increase of 
dx  by all others implies da  = (n - 1 ) h ' ( x ) d x .  The requirement that 2 ' ( a )  < 
1 / ( n  - 1)h'(x) is then equivalent to d2 < d a / ( n  - 1)h'(x) or d~ < dx. 
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Under  Assumption 2, as the number of firms in the industry increases, the 
equilibrium rate of investment per firm increases; a fortiori the aggregate rate of 
investment increases. 

Since the expected invention date is 1/nh(x*(n)), an increase in the number of 
competing firms is associated with an earlier invention date on average; there are 
more firms, and each firm invests at a higher rate. Again it is easy to show that 
V(x*, a*) decreases with increasing n. Free entry then occurs until equilibrium 
expected profits are zero. 

Proposition 7 [Lee and Wilde (1980)] 

Suppose that the function V(x, (n - 1)h(x))  is a single-peaked (that is, increas- 
ing, then decreasing) function of x. Given a fixed number of firms, in industry 
equilibrium each firm invests at a higher rate than is jointly optimal. 

Proposition 8 [Lee and Wilde (1980)] 

If Y > 0, then unrestricted entry results in too many firms, each of which invests 
at too high a rate (relative to the cooperative solution). 

Although Lee and Wilde have shown that the noncooperative firm's research 
intensity is an increasing function of n, this does not directly contradict the 
Loury result. Instead, one would like to compare total expected investment in the 
Lee and Wilde model with total lump-sum investment in the Loury model. It 
turns out that no general ranking emerges, but plausible examples can be devised 
in which expected total investment declines with an increase in the number of 
competing firms. Thus, it is quite possible that these results are consis~ent. The 
remaining inconsistency is the effect of n on each noncooperative firm's expected 
success date; in Loury (1979), success by any one firm is delayed (on average) by 
an increase in n, while in Lee and Wilde (1980) it is hastened. However, the first 
success date is hastened by an increase in n in both models. Since this is the only 
observable indicator of success, from a positive perspective it is immaterial which 
of these two models is the more empirically representative. Similarly, if one were 
to interpret P as both the private and the social vahie of the innovation, then 
normative prescriptions are essentially the same for both models; restrict entry to 
the optimal number of firms, then adjust the patent value to eliminate over- 
investment. 

Mortensen (1982) has shown that one aspect of the externality which compet- 
ing firms impose on one another can be internalized by the following institution: 
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the winning firm receives the value P less a c0mpensation paid to each losing 
firm which is equal to the foregone value of continued play. This institution 
induces noncooperative firms to select the optimal cooperative investment level 
given the number of  f irms n. Since this institution raises individual firm profits 
relative to the noncooperative equilibrium without this institution, more firms 
would prefer to enter the industry when this institution is in place. Thus, the 
cooperating firms must also be able to limit entry in order to fully internalize the 
externality. Since the foregone value of continued play is stationary in this model, 
equilibrium under this institution is relatively easy to characterize. Although this 
argument works equaUy well for asymmetric firms, the case of symmetric firms is 
simpler to describe and has been independently and more extensively analyzed 
by Stewart (1983). 

Suppose that the winning firm receives the value P but must compensate the 
remaining n - 1 firms in the amount P(1 - o ) / ( n  - 1) each; thus the winning 
firm retains the amount oP. In this case, one ean write the expected profit to firm 
i if it invests at rate x while the aggregate rival hazard rate is a, as 

P [ o h ( x )  + a(1 - o ) / ( n  - 1)] - x 
V ( x ,  a )  = - F. (3) 

a + h ( x )  + r 

At a symmetric Nash equilibrium for this game, which we will denote by 
x*(n ,  o), it must be that 

OV(x*, a*) O h ( x * )  + r ) ( » , , h ' ( x * )  - 1) - ( e h ( x * )  - x * ) h ' ( x * )  

~« ( , , h ( ~ * )  + r )  ~ 

= 0. (4) 

For comparison, joint profts n V ( x ,  (n - 1)h(x)) are maximized for x**(n )  such 
that 

(r + nh(x**))(Ph'(x**)  - 1 )  - (Ph(x**)  - x**)nh'(x**) 
= o. (») 

( n h ( x * * )  + r) 2 

Thus, x*(n ,  o)  = x**(n)  if 

P h ' ( x * * ( n ) )  + n - 1 

o = o*(n)  - n P h ' ( x * * ( n ) )  

That is, there is a winner's share o*(n) which induces noncooperative firms to 
invest at the cooperative level. 
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If members of an industry can credibly set up such an institution for sharing 
the reward for innovation, then each member has incentives for (noncooper- 
atively) choosing the cooperative investment level. Stewart (1983) interprets this 
as a model of imperfect patent protection (as opposed to cooperative innovation), 
but in this case the reward is unlikely to be P; it is likely that because of 
nonappropriability, some of the value of the innovation will be dissipated. 

If one is willing to assume that the social value of the innovation is also P, then 
all of the above comparisons of noncooperative equilibrium and joint optimality 
are also applicable to the comparison between noncooperative equilibrium and 
social optimality. 

The excessive investment in research which is implied by these models arises 
out of two sources. First, each firm wants to win the race, while society typically 
has no particular preferences regarding the identity of the winner, so long as 
there is one; this results in too much investment for a given number of firms. 
Second, because there is unrestricted access to the common pool of undiscovered 
innovations, too many firms will compete. 

Reinganum (1981a, 1982a) undertook to generalize the earlier decision-theo- 
retic work of Kamien and Schwartz (1972) to include explicit game-theoretic 
interactions among rivals. To this end, she posited that firms are free to react 
instantaneously to a number of features of the economic environment,/including 
time, whether or not rival firms have already succeeded, their own and rival firms' 
accumulated investment. As in Lee and Wilde (1980), firms are assumed to be 
able to respond to a rival's success by ceasing investment; that is, we focus on the 
effects of flow expenditures upon the likelihood of success. However, unlike the 
Lee and Wilde formulation, the rate of expenditure is not restricted to be 
constant through time. Instead, firms may adjust the rate of expenditure in 
response to elapsed time and state variables which summarize ~ival progress. 
Reinganum (1982a) also considers the case of imperfect patent protection, which 
previous work eschewed. 

Assume that a given number of firms n äre competing to perfect a particular 
invention. Firm i succeeds if it perfects the invention, but firm i wins only if it 
succeeds before any other firm. If firm i wins, then firm i is designated the 
innovator and receives the "leader's" payoff PL. However, assume that immediate 
reverse engineering may be possible and thus rival firms may also receive some 
benefit when firm i wins; the rival firms receive the irnitator's or "follower's" 
payoff PF -< PL" Use of the terms "leader" and "follower" does not connote any 
behavioral differences. 

Each firm accumulates knowledge relevant to the innovation by:investing 
resources on knowledge acquisition. This knowledge accumulates according to 
the differential equation f i( t)  = ui(t, z(t)),  where zi(t ) denotes firm i 's knowl- 
edge stock at t, z ( t )  = (z l ( t )  . . . . .  zù(t)) and ui(t, z) denotes firm i 's rate of 
knowledge acquisition at (t, z). We assume that zi(O ) = 0. The date of successful 
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innovation is a random function of the amount of accumulated knowledge. 
Specifically, we assume that the probability of success given a knowledge stock of 
z or less is F ( z )  = 1 -  exp{ -hz} .  

Thus, the amount of knowledge needed to succeed is exponentially distributed 
with mean l /U .  Since knowledge is accumulated over time, the distribution of 
firm i 's  random success time t i is 

Pr{ t i <_ t )  = F ( z i ( t ) )  = 1 - e x p { - ~ z i ( «  ) }, 

and the conditional probability density of success, given no success to date is 

Pr{ti ~ (t,  t + dt] It i > t )  = •bli(t , z( t ) )  dt. 

Thus, the conditional density of success depends only upon current investment. 
In the stochastic racing papers discussed above the date of invention was 
assumed to be exponentially distributed. In the current model, the amount of 
time needed for success need not be exponentially distributed. It will be so, of 
course, in the case of a constant rate of investment. 

To complete the model, let c(u)  = (1/2)(u) 2 represent the cost of acquiring 
new knowledge at the rate u. Let [0, T] represent the planning horizon, and let r 
denote the discount rate. The assumption of a finite planning horizon is used 
primarily in order to aUow us to use dynamic programming "backward". It may 
also be representative of many research situations in which funding will be 
terminated if concrete results are not forthcoming by a given date. 

Previous studies have assumed that the patent value was constant independent 
of the date of success; more generally, one could argue that this patent value 
might grow over time as additional uses are discovered. Alternatively, some sort 
of exogenous obsolescence may be applicable, so that the patent value might 
decline over time. Thus, let g denote the rate of growth or decline of the patent 
value so that the values of winning and losing, respectively, at date t are (in 
present value terms) PL egt and PF egt. 

There are several possible formulations of strategies for differential games. The 
most commonly used are open-loop and feedback strategies. Open-loop strategies 
depend only upon the current date and the initial conditions of the problem. 
They may be obtained by applying standard optimal control arguments to the 
problem for each firm, and then solving the resulting linked systems of ordinary 
differential equations which characterize the equilibrium. Logically, open-loop 
strategies have the characteristic of precommitment; that is, orte solves the 
problem from the initial conditions taking the time path of others' strategies as 
given. Feedback strategies are decision rules which are permitted to depend upon 
the current date and state variables, but not on the initial conditions. They are 
obtained by solving the problem from arbitrary (date, state) pairs; that is, by 
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dynamic programming. Thus, feedback equilibria (Nash equilibria in feedback 
strategies) will embody the no-commitment assumption associated with subgame 
perfection [Selten (1975)]; noncredible threats about what a firm will do oft the 
equilibrium path are ruled out. In situations in which firms have the information 
and the flexibility envisioned here, feedback equilibrium is the preferred solution 
concept. Although we will show below that our assumption that the conditional 
density of success depends only on current investment renders this distinction 
moot  in this particular case, the method described below applies more generally. 

A strategy for firm i will be a function ui(t, z), where z denotes the vec- 
tor of state variables z = (z 1 . . . .  , zù). Given the strategy vector u(t, z ) =  
(ul( t ,  z) . . . .  , uù(t, z)), one can solve for the trajectories of the state variables by 
solving the system of ordinary differential equations: 

2 i = u i ( t , z ) ,  z,(0) = 0 ,  i =  1 , 2 , . . , n .  

Expected profits for firm i consist of three terms: costs are paid so long as no 
firm has yet succeeded. The probability that no firm has succeeded by t is 

Pr ( t i > t for all i } = exp ( - X 2 z i (t) }. 

If firm i wins at t, then it receives PL egt, while if firm i loses at t, it receives 
PF egt. The probability that firm i wins at t is 

Pr{ t e Œ ( t , t  + d t ] , t j  > t for all j }  = 2 t u i ( t , z ) e x p { - ~ ~ _ , z j ( t ) ) .  

If a~(t, z) - Y~j.« ~tuj(t, z) denotes the aggregate rival hazard rate at t, then 
the probability that firm i loses at t (i.e. the probability that any rival firm wins 
at t) is 

Pr{t  k ~ ( t , t  + dt] for any k 4= i, tj > t for all j )  

= a ~ ( t , z ) e x p ( - X ~ _ . z j ( t ) } .  

Combining these terms and discounting to the present implies that firm i 's  
payoff for any given strategy u, and aggregate rival hazard rate ai is 

J i ( u  i, ai) = f o T - r t 3 e x p { - - X ~ z j ) [ P L e g t X u i  + Pregtai - ( ] / 2 ) (u i )2 ld t .  

A Nash equilibrium is a vector of strategies u*(.,  .) such that, for i = 
1, 2 . . . . .  n, j i ( u * ,  a*)  > j i ( u  i, a*)  for all u i. 

Ideally we would like to solve this problem for arbitrary rates g of growth or 
decline in the patent value; failing this, we should at least select an interesting 
value for g. One interesting and computationally convenient value for g is g = r; 
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that is, the patent value grows at the rate of discount. The assumption of growth 
in the patent value seems plansible and, although this is an extremely high growth 
rate, it gives us an idea of the qualitative impact of patent val-ue growth upon 
equilibrium investment and does so in a tractable manner. Qualitative features of 
the equilibrium should be the same for lower rates of growth in the patent value. 
One can conjecture on the basis of these results about the impact of declining 
patent values as well. Thus, from here on we assume g = r. 

To characterize the Nash equilibrium for this garne by using standard dynamic 
programming techniques, we must be concerned about two things: first, there 
should be a unique solution to the system ~ = u(t, z) through the boundary 
eondition z( t)  = z for each (t, z) ~ [0, T] x [0, oo)". Second, in order to assert 
the necessity of the partial differential equation of dynamic programming, we 
need the value functions to be continuously differentiable in (t, z). Both these 
requirements place restrictions upon the admissible set of strategies. It is rela- 
tively straighfforward to find sufficient restrictions upon the strategies to guaran- 
tee that a unique solution exists for the system ~ = u(t, z). However, weak 
suflicient conditions for the continuous differentiability of the equilibrium value 
functions are unknown at this time. Our method of dealing with this problem is 
to forge ahead assuming sufficient smoothness and to argue subsequently that the 
solution we obtain is in fact a Nash equilibrium for the specified garne. 

Proposition 9 [Reinganum (1982a)] 

A feedback Nash equilibrium strategy for each firm is 

2XPL(p  L - -  P F ) ( n  - -  1)e,'t 
u*( t ,  z; PL, Pv) = (2n - 1)P L - [PL + 2(n -- 1 )PF]exp (m( t ) } "  

The feedback Nash equilibrium payoff to each firm is 

2(P L - PF)PL(n -- 1) 

j i ( u * , a * )  = P L - -  (2n--  1)P L -  [P L +  2 ( n -  1)PF]exp(m(O)} '  

where ra(t) = (PL -- PF)( n -- 1);k2( e r t -  e"r) / r-  

Notice that due to the "memorylessness" property of the exponential distribu- 
tion of required knowledge- that is, the expected amount of additional knowl- 
edge given no success is independent of accumulated knowledge - the equilibrium 
strategies are independent of the state variables z. Since this is due to a special 
feature of the exponential distribution, it is not likely to carry over to games 
which involve alternative distribution functions. It is in some ways undesirable, 
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since no firm can gain a convincing lead on its rivals, but it also likely accounts 
for the relative tractability of this model. 

Proposition 10 [Reinganum (1982a)] 

For  PL > PF, an increase in PL stimulates each firm to acquire knowledge at a 
higher rate, while an increase in PF causes each firm to reduce its equilibrium 
rate of knowledge acquisition. 

For  the case of perfect patent protection, the equilibrium strategies are 

u : ( t ,  ~; P,O) = 
2X(n - 1 ) P e  't 

2n - 1 - e xp (  pX2(n  - 1)(e r ' -  e r r ) / r  } " 

Proposition 11 [Reinganum (1982a)] 

For  the case of perfect patent protection, an increase in n increases the equi- 
librium rate of investment for each firm. Therefore an increase in n unambigu- 
ously decreases the expected time till innovation. 

Next consider the limiting case PL = PF- In this case, 

2PF~ e rt 

u * ( t ,  z;  PF, PF) = 2 -- (2n -- 1)PF~2(e rt -- e r V ) / r  " 

When patent protection is imperfect, the impact of an increase in the number 
of rival firms is rauch more complicated. In this case, it seems plausible that the 
payoffs PL and PF should both depend upon n. The determination of PL(n) and 
P F ( n )  might be regarded as the outcome of a subsequent licensing or oligopoly 
garne. In order to determine the effect of increasing rivalry upon the equilibrium 
rate of investment, we now need to know the sign of 

d u *  Ou ? O u *  , O u *  , 

dn On -OB--FF PF( 

Under the most plausible circumstances, the sign of this expression is ambigu- 
ous, and will depend upon the specific nature of the institution or process which 
determines the relative payoffs to innovator and imitators (or licensor and 
licensees). For  illustrative purposes, we could consider the case in which rewards 
are completely nonappropriable and are generated by a symmetric Cournot 
oligopoly. If P is the value of a monopoly on the innovation, then P L ( n )  = 
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PF(n) = 4 P / ( n  + 1) 2. In this case, it is straightforward to show that increasing 
n results in a uniform decrease in the rate of investment; that is, d u * / d n  < 0 for 
all t. 

A rinal comparison highlights the importance of the extent of appropriability 
in the determination of equilibrium investment. In the model developed above, 
there are no fixed costs associated with entering the industry. Thus, if entry is 
unrestricted, the equilibrium number of firms will be infinite. When patent 
protection is perfect: 

lim u*( t ,  z; P,O) = PXe tl. 
n---~ oo 

On the other hand, when patent protection is completely ineffective, then both 
PL(n) and PF(n) approach 0 as n gets large. In this case, 

lim u*( t ,  z; PL(n) ,  PF(n))  = 0. 
n ----~ OO 

When patent protection is ineffective, no firm finds research and development 
a worthwhile undertaking. 

In a companion piece, Reinganum (1981a) compares noncooperative and 
cooperative investment, and considers another form of nonappropriability which 
is characterized by spillovers in knowledge. To focus on these issues, assume that 
n = 2 and that patent protection is perfect. 

Cooperation among firms involves coordinating research strategies, but it may 
also involve the cooperative exchange of knowledge. Thus, firms are able to 
operate on the lower portions of their cost curves while still generating the same 
aggregate amount of new knowledge. For cooperative firms, ~i = ui(t, z ) +  
yuj( t ,  z), where y represents the fraction of new knowledge which can be shared 
with rival firms; ,/ may be less than unity because some knowledge may not be 
transferable or there may be some duplication in the knowledge acquired. Since 
the problem is symmetric, we can ignore subscripts: z i = z, ui(t, z) = u(t, z), 
and ~i = ~ = (1 + y)u(t ,  z). The payoff to the joint venture is the sum of the 
individual firms' payoffs (with the understanding that d = (1 + y)u(t ,  z); knowl- 
edge as well as profits are shared). Thus, joint profits are 

J ( u )  = fore-2X~[2P)~u(, z) - e - " ( u ( t ,  z))2]dt. 

Proposition 12 [Reinganum (1981a)] 

The cooperative rate of knowledge acquisition is 

(1 + , / )P~e  r' 
u**(t ,  z )  = 

1 - PX2(1 + "/)2(e" - e ' r ) / r  " 
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The joint  payoff is 
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J(u**) = P - 
P 

1 - P)t2(1 + "/)2(1 - e ~ r ) / r  " 

In order to compare the timing of innovation under cooperative and noncoop- 
erative behavior, we need to compare the individual rates of knowledge acquisi- 
tion. For noncooperative and cooperative rivals these are, respectively,~ 

2PXe ~t 

u*(t, z) = 3 - exp{m( t )}  

and 

2**(t;  7) = (1 + 7)u**( t ,  z) = 
(l + y)2p~tert 

1 - (1 + y ) 2 m ( t )  ' 

where ra(t) = PX2(ert-  erT)/r. 

Proposition 13 [Reinganum (1981a)] 

For  7 = 0, u*(t, z) > 2(t; 0) = u**(t, z) with equality only at t = T. That is, 
noncooperative rivals will (on average) succeed sooner than cooperative firms 
who are unable to share knowledge. 

The cooperative rate of knowledge acquisition 2**(t; 7) is an increasing 
function of ,/, so for "y > 0, it is typically the case that the rate of knowledge 
acquisition is higher for noncooperative rivals over the first portion, but higher 
for cooperative rivals over the latter portion of the planning horizon. 

There are at least two ways in which a rival firm can benefit from a particular 
firm's investment in research and development. By imitating (or licensing) the 
innovation, the rival may be able to capture some of the benefits. However, even 
with perfect patent protection, the rival may benefit if some of the knowledge 
which is generated spills over to the rival firm. In this case, ~i = ui(t, z ) +  
Ouj(t, z), where O ~ [0,1] denotes the extent of knowledge spillovers. For sim- 
plicity, we will suppose that spillovers in knowledge are complete; anything 
learned by firm i is also learned by firm j.  Moreover, suppose that there is 
effectively no duplication. Then P = 1 and firm i 's  payoff is 

j i ( u )  = foTe-x(zl +z2)[ p~k(Ul n t- U2)- e-rt(l//2)(Ul)2]dl. 
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Analysis of this case proceeds as before, yielding the following results. 

Proposition 14 [Reinganum (1981a)] 

Let u*(t ,  z; p) denote the feedback Nash equilibrium strategies. For O = 1, 

PX e rt 
u * ( t , z ; 1 )  = 

1 - 3PX2(e r ' -  er~)/r" 

The feedback Nash equilibrium payoffs are 

P / 2  
J i (u* ( t ,  z; 1)) = P / 2  - 

1 - 3PX2(1 - C r ) / r  " 

Several comparisons are possible. The problem for a central planner is equiv- 
alent to that of a joint venture with the substitution of the social value Q for the 
private value P. Thus, the socially optimal path is as in Proposition 12 with Q 
substituted for P. 

Proposition 15 [Reinganum (1981a)] 

Suppose that the social value of the innovation Q exceeds P/2 ,  all knowledge is 
transferable (7 = 1) and spillovers are complete (O = 1). Then the noncooper- 
ative rate of knowledge acquisition is less than is socially optimal. Consequently, 
innovation will be delayed on average relative to the socially optimal date. 
Innovation by Nash rivals will occur later on average than the cooperative date. 

Recall that for the opposite extreme case (y = 0, O = 0), Nash rivals could be 
expected to innovate at an earlier date than cooperative firms. Thus, again we see 
the crucial effect of appropriability; that market structure which most promotes 
innovation depends critically upon the extent of spillovers. 

It is also interesting to note that the existence of spillovers need not adversely 
affect the timing of innovation under noncooperative play. While it is: true that 
each firm invests at a lower rate in the presence of spillovers, each also benefits 
from the investment of the other. For some parameter values, the existence of 
spillovers results in stochastically earlier innovation. 

3. Asymmetric models 

A topic of long-standing interest in industrial organization is the effect of current 
monopoly power upon a firm's incentives to engage in innovative activity [e.g. 
Schumpeter (1942)]. Arrow (1962a) argued that for a drastic innovation (one 
which leaves the inventor a monopolist), an incumbent monopolist would have 
less incentive to invent than would an inventor who currently has no share in the 
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market. Gilbert and Newbery (1982) use the auction model to examine this 
question when an incumbent firm is faced with potential entrants who also 
compete for the innovation. They assume that each competing firm enters a bid 
which represents the maximum amount that firm will spend on research and 
development. The firm which bids the most is conceded to be the winner, and is 
required to invest the amount of its bid. For simplicity, assume that if the current 
monopolist, or incumbent, fies with one or more potential entrants, then the 
patent  is awarded to the incumbent. If the incumbent wins with a bid of x» it 
receives p m e - r T ( x ' ) -  X i in present value terms, where T ( x i )  is the date of 
completion and p m is the capitalized value of the innovation if the relevant 
product  market is monopolized. If a potential entrant wins with a bid of xe, then 
the firms must share the market somehow. It is assumed that the entrant receives 
PCe -~r(xo) - x~, while the incumbent receives pie-rT(xe). In this case pe and pi  
represent the entrant's and incumbent's portions of the value of the innovation. 
Under  most plausible specifications, pm >_ p~ + pi; that is, there is some dis- 
sipation of rents when the market is noncooperatively shared rather than mo- 
nopolized. 

Proposition 16 [Gilbert and Newbery (1982)] 

If pm >__ pe  + pi,  then the current incumbent will win the bidding game with a 
bid of x*, where x* is the largest solution of 

p%-~T(~,) _ x = O. (6) 

Thus, a firm which currently enjoys monopoly power will pre-emptively patent 
the innovation and persist as a monopolist. 

Following the same line of argument as in Proposition 1, competing poten- 
tial entrants will bid up to x* as described above. If the incumbent is willing to 
bid at least x*, then it will win. By bidding less, the incumbent would receive 
pie-r~(x*); by matching the potential entrants' bid, the incumbent would receive 
p m e - r r ( x * ) -  x*. The latter option is preferred to the former if and only if 
pme-rr(x*) - x* >_ pie-~r(~*). Substituting from equation (6) for x*, this reduces 
to [pm _ p i  _ pe]e-rT(x*) > O. 

Thus, the incentive for pre-emptive patenting and persistent monopoly arises 
from the dissipation of industry profits which one anticipates will accompany a 
less concentrated market structure. Notice that the incumbent firm need not use 
the innovation (e.g. implement the new technology or produce the new product); 
even a product  or technology which is inferior to the incumbent's current one will 
elicit pre-emptive investment from the incumbent. In this case, one may find 
"sleeping patents", which are used solely to preserve the incumbent's monopoly 
position. While the use of inferior technologies is inefficient, so is monopoly; the 
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industry composed of two competing firms, one of which employs an inefficient 
technology, may be welfare-preferred to the more concentrated but cost-efficient 
industry. 

Gilbert and Newbery remarked that in the event that the above inequality is 
strict, an incumbent with a relative cost disadvantage in innovation would still 
pre-empt the potential entrant. Salant (1984) argued that this result is based on 
the assumption that there is no possibility of ex post licensing. If licensing is 
permitted, Salant shows that the firm which is most efficient at innovation will 
always win the patent, but may seil it to the other firm if the other firm is a more 
efficient producer. In any event, optimal licensing will still result in a mono- 
polized market. 

Katz and Shapiro (1987) examine pre-emption in a somewhat more general 
version of the auction model. They permit two active firms from the outset, and 
allow for the possibility of licensing or imitation following innovation. In 
addition, they envision an exogenous decline in the costs of developing an 
innovation due to ongoing and freely available basic research. Their analysis 
involves lengthy arguments, and we briefly summarize their model and results 
here. 

Let ~r~ denote firm i 's flow profits prior to development of the innovation. If 
firm i develops the innovation, its profits become qTi i and its rival's profits become 
~J. Let ~r t = ~ri i + ~r,) denote industry profits when firm i wins, and suppose 
without loss of generality that ~r 1 >_ ~r 2. 

Each firm has two incentives to innovate. First, firm i has an incentive to win 
because its profits (are assumed to) rise if it develops the innovation; that is, 
¢ri i > ~ró. Second, firm i has an incentive to win (to avoid losing) because its 
profits are (assumed to be) higher when it wins than when the rival wins; that is, 
~r/> ~rj. The former incentive, ~r / -  7rg, is the "stand-alone" incentive, while the 
latter incentive, ~r / -  ~rj, is a measure of the "incentive to pre-empt". Katz and 
Shapiro show that if firm 1 has both a larger stand-alone incentive and a larger 
incentive to pre-empt, then firm 1 will win the face. If firm 2 has the larger 
stand-alone incentive, but firm 1 has the larger incentive to pre-empt, then either 
firm may win. 

Reinganum (1983b) addresses the question of the effect of current monopoly 
profit upon an incumbent firm's incentives to invest in research and development 
in the context of the stochastic racing model. This is done to compare the results 
with those of Gilbert and Newbery for the auction model and to provide a 
theoretical explanation of some stylized facts about the sources of innovation. 

According to Scherer (1980, pp, 437-438): 

There is abundant evidence from case studies to support the view that actual 
and potential new entrants play a crucial role in stimulating technical progress, 
both as direct sources of innovation and as spurs to existing industry 



Ch. 14: The Timing of lnnovation 871 

members . . ,  new entrants contribute a disproportionately high share of all 
really revolutionary new industrial products and processes. 

Gilbert and Newbery's analysis captures some of this in the sense that 
potential entrants do act as a spur to the current incumbent; on the other hand, 
potential entrants do not contribute directly. In the context of the Lee and Wilde 
(1980) stochastic racing model, Reinganum (1983b) shows that when the first 
successful innovator captures a sufficiently high share of the post-innovation 
market, then in a Nash equilibrium the incumbent firm invests less on a given 
project than does the potential entrant, or chaUenger. Thus, the incumbent is less 
likely to be the innovator than is the challenger. 

The intuition for this result is straightforward, at least for the case in which the 
innovation is drastic; that is, when the innovator captures the entire post-innova- 
tion market. When innovation is uncertain, the incumbent firm receives flow 
profits before successful innovation. This period is of random length, but is 
stochastically shorter the more the incumbent (or the challenger) invests. The 
incumbent has relatively less incentive than the challenger to shorten the period 
of its incumbency. 

This model provides a framework in which equilibrium play generates the 
stylized facts mentioned above: potential entrants stimulate progress both through 
their own investment and by provoking incumbents to invest more. In equi- 
librium, potential entrants contribute a disproportionate share of large innova- 
tions. 

To illustrate this model and its results, consider a cost-reducing innovation in 
an industry with constant returns to scale. Let ~ denote the incumbent firm's 
current unit costs, and let c be the unit cost associated with the new technology. 
Let R be the current flow rate of profit; let H(c)  denote the present value of 
monopoly profits under the new technology, which is also the value of the reward 
to the incumbent if it invents the new technology; finally, let~ri(c ) and ~rc(C ) 
denote the present value of Coumot-Nash profits to the incumbent and chal- 
lenger, respectively, if the challenger invents the new technology and the in- 
cumbent retains use of the current technology. 

We will assume that the functions H(.) ,  ~ri(- ) and ~rc(- ) are continuous and 
piecewise continuously differentiable; H( . )  and qrc(.) are nonincreasing, while 
~q(. ) is nondecreasing. The innovation will be termed drastic if c _< c °, where c o 
is the largest value of c such that ~ri(c ) = 0. That is, c o is the largest tmit cost for 
the challenger which induces the incumbent to leave the post-innovation product 
market. 

The assumption of constant retums to scale is important because it ensures 
that output is zero when profits are zero. Thus, for drastic innovations, the 
challenger becomes a monopolist and H(c)  = ~rc(C ). Note that H(c)  > ~ri(c ) + 
~rc(c ) with a strict inequality whenever the innovation is not drastic. The 
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assumption that c < ? ensures that H(c )  > R/r;  that is, the present value of 
post-innovation monopoly profits exceeds the present value of pre-innovation 
monopoly profits. Moreover, R / r  > ~ri(c ) for all c < ~; this follows from the 
fact that R / r  = H(~) > ~ri(~ ) >_ ~rt(c ) for c < ~. 

Let x i, i = I, C denote the rate of investment for the incumbent and the 
challenger, respectively. This generates the hazard rate h(xi)  for firm i. Let ai, 
i = I, C denote the rival hazard rate for firm i; for instance, a I = h(xc) .  For 
simplicity we will assume that the hazard function h(-)  is twice continuously 
differentiable with h '( .)  > O, h"(.)  < O, h(O) = O, and satisfies the condiuons 
l imx~ 0 h'(x)  = ~ and limx__, ~ h'(x) = O. 

Assuming that patent protection is perfect, the race terminates with the first 
success. The expected profit to the incumbent as a function of its own investment 
rate and its rival's hazard rate is 

VI(xl, al) = f°Ce-rte-(h(xl)+aE)t[h(xi)1-1(c) + ai~q(« ) + R -  xl]dt 
~0 

h(x i )17(c  ) + aiTq(c ) + R - x I 

r + h(xx)  + a I 

The challenger's payoff is analogous: 

fo °C V C ( x c ,  ac)  : e - r te - (h (xc )+ac) ' [h (Xc)qrC(C)  -- xc]dt 

h ( x c ) ~ c ( c )  - x c  

r + h ( x c )  + a c 

The differences between these payoffs are due to the fact that the incumbent 
receives a flow payoff of R so long as no one has succeeded, and the incumbent 
receives a (possibly positive) payoff Iri(c ) if the challenger wins. 

As usual, a strategy for firm i is an investment rate xi; a best response function 
for firm i is a function :~i(a) such that for all a, V i ( x i ( a ) ,  a) >_ Vi(xi, a) for all 
x r A Nash equilibrium is a pair (x~', x~)  such that x~' = 2i(a{'  ), where 
a~' = h (x~) ,  and x~ = :~c(a~), where a~ = h(x~) .  That is, each fii:m plays a 
best response against the other's strategy. 

Proposition 17 [Reinganurn (1983b)] 

There exists a Nash equilibrium pair (xi*(c, R), x~(c,  R)); x*(c,  R)  is continu- 
ous in ( c, R)  for i = C, I. 
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Proposition 18 [Reinganum (1983b)] 
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The incumbent's best response function is upward-sloping; thus the existence of 
the challenger provokes the incumbent to invest more than it otherwise would. 
If the innovation is drastic and R > 0, then in a Nash equilibrium the incumbent 
invests less than the challenger. That is, x{'(c, R) < x~(c, R). 

An immediate corollary of Proposition 18 and the continuity of the Nash 
equilibrium strategies in the parameters (c, R) is that if R > 0, then there exists 
an open neighborhood of c o (which may depend on R), denoted N(c°; R), such 
that if the technology is not drastic, but c ~ N(c°; R), then x~'(c, R) < x~(c, R). 
That is, there is a set of nondrastic innovations for which the incumbent firm will 
still invest less than the challenger. Since the incumbent invests less than the 
challenger, the challenger is more likely to win the asymmetric patent race. Thus, 
one would empirically observe that challengers contribute disproportionately 
more large innovations. 

This model has been extended to an arbitrary number of firms and a sequence 
of innovations in Reinganum (1985), in order to generate a model of the 
Schumpeterian "process of creative destruction". For simplicity, we assume that 
each innovation is drastic. Then the model remains symmetric among all chal- 
lengers. 

Consider a market in which an incumbent monopolist competes with n - 1 
identical challengers for a new innovation. The firms are assumed to be symmet- 
ric in all other respects; that is, they face the same innovation production 
possibilities. Each innovative success initiates a new stage; within each stage 
firms compete for the next generation. The game with t stages to go is con- 
structed recursively from shorter horizon games under the assumption of sub- 
game perfect Nash equilibrium play. 

Nash equilibria are found to be symmetric among the challengers, with each 
challenger investing more than the incumbent. Thus, the incumbent firm enjoys 
temporary monopoly power, but is soon overthrown by a more inventive chal- 
lenger. 

The basic model is now familiar. It is essentially that of Lee and Wilde, except 
that we now specify the values of winning and losing the current race as vWand 
v L, respectively. These represent the values of continuing on in a Nash equi- 
librium fashion when one fewer innovations remain. The values are ultimately 
endogenous to the model, but at each stage they may be treated parametrically 
because they are independent of actions taken in the current stage. 

Thus, for any given stage, the game is summarized by n, the number of 
competing firms; x i, the investment rate of firm i; F, a fixed cost of entry; h(.),  
the hazard function; R, the current profit flow to the incumbent; r, the common 
discount rate; and v w and v L, the continuation values. 
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Let a i = ~ j , i  h ( x j )  be the aggregate rival hazard rate. Again the payoff  to 
firm i can be written as a function of  its own research intensity x~ and its 
aggregate rival hazard rate a r Suppose, without  loss of  generality, that  firm 1 is 
the incumbent .  Then 

V l ( X l ,  a l )  = e-r 'e - (h(x l )+~' ) t [h(x l )v  w + alv L + R -  x l ] d t -  F 

h ( X l ) V  w + alv L + R - x I 
- -  F .  

r + h ( x l )  + a 1 

The payoffs to the challengers are analogous except that they accrue no flow 
profits. For  i = 2, 3 , . . ,  n, 

V i ( x i ,  a i ) =  fo°°e-r 'e-(h(x ')+ai)t[h(xi)v w + ai v L -  x i ] d t -  F 

h ( x i ) v  w + ai OL - x i 

r + h ( x i )  + a i 

Our  induct ion hypothesis is that v w > v L. We shall show that if this hypothesis 
is true for some stage, then it is also true for the previous stage. In  the last stage, 
only one innovat ion remains, so v w = R o / r ,  where R o is the flow rate of  profit 
on  the last innovation, and v L = 0. Thus, the hypothesis is true for the last stage. 

Assumption 3 

There exists x ° such that for each challenger i, V i ( x  °, a)  + F >_ O L for all a. 
This reduces to: there exists x ° such that h ( x ° ) ( v  w - v L) - x ° >_ rv L. 

Assumpt ion  3 says that there always exists an investment level for a challenger 
for which gross profits exceed the value of losing immediately. Note  that 
Assumpt ion  3 holds trivially at the last stage, in which v L = 0. Since v w and v L 
are parameters  for the current stage, the assumed existence of such an x ° is a 
res t r icäon on the function h( .) .  

Proposition 19 [Reinganum (1985)] 

The  Nash  equilibrium in the current stage is symmetric among the challengers; 
that  is, x*  - x c for all i ~ 1. The incumbent  invests less than each challenger in 
the current  stage. That  is, x~* - x I < x c. 

This proposi t ion highlights the dynamic evolution of the market.  The current 
incumbent ,  since it invests at a lower rate, is least likely to win the current race. 
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Thus, the industry is characterized by a turnover of the technological leadership 
rather than a single continuing leader. It is in this sense that the equilibrium 
process resembles Schumpeter's "process of creative destruction". 

Proposi t ion 20 [Reinganum (1985)] 

Let V I and V c denote the equilibrium expected profit for the incumbent and 
each challenger, respectively. Then each firm would prefer to be the incumbent in 
the current stage than a challenger. That is V ~ > V c. 

Under  the hypothesis that v w > D L, we have deduced that V I > V c. But these 
are simply the continuation values for the previous stage. This completes the 
induction argument. 

In this model the length of the current s t a g e - a n d  hence the reward to the 
incumbent over the current stage - is affected by each firm's investment. Since the 
challenger firms do not forfeit any current stream of profit by inventing, they 
have a greater marginal incentive to invest in research and development. We 
accorded the incumbent no advantage which was due to incumbency per se. If 
the incumbent were to enjoy (for example) a marginal cost advantage in the 
conduct of research, the conjecture is that the incumbent might then invest more. 
Thus, a sufficiently large incumbent advantage may reverse the main result of this 
model. However, by focusing on the no-advantage case, we are able to isolate this 
inertial tendency of the incumbent to invest less than each challenger. 

Vickers (1984) has addressed similar questions with a sequence of process 
innovations in the context of the auction model. In particular, he wants to 
discover how the product market structure evolves over time; does one firm 
become increasingly dominant by winning most or all of the races, or is there a 
process of "act ion-reaction",  in which market leadership is constantly changing 
hands? Using a two-firm model, he finds that when the product market is very 
competitive (e.g. Bertrand) then there is increasing dominance; but when it is not 
very competitive (e.g. Cournot) then there is action-reaction. 

Vickers assumes a sequence of not-so-drastic innovations, so that the profit 
flows of the two firms typically depend upon the levels of technology represented 
by each firm's most recent patent. There are T periods in the garne and we label 
them backwards; at t, there are t periods (and hence t innovations) to go. Each 
innovation is associated with a cost level % with Cl < e2 < " '"  < Cr. At the 
beginning of period t there is a race for the innovation with cost level et, which 
takes the form of a simple auction in which the winner pays its bid (or 
alternatively, the maximum bid the loser would have been willing to make) and 
the loser does not forego its bid. Let ~r(s, t) denote the flow profit (gross of 
research and development expenses) of a firm with cost level c, when its riyal has 
cost level c t. This function is assumed to be non-negataive for s and t, decreasing 



876 J.F. Reinganum 

in s and increasing in t. Let H(s,  t) = ~r(s, t) + ~r(t, s)  be joint profits. For 
simplicity, firms are assumed not to discount the future. 

Proposition 21 [Vickers (1984)] 

If H(t ,  t + 1) > H(t ,  t + k)  for all t, k, then the evolution of the market has an 
' action-reaction" character; that is, firms alternate being the technological 
leader. 

The reverse of the hypothesis of Proposition 21 is not sufficient to cause 
increasing dominance (that is, for the same firm to win all races). However, the 
following proposition gives a sufficient condition for increasing dominance. 

Proposition 22 [Vickers (1984)] 

If ~r(s + k, s) = 0 for all s and k > 1, then the evolution has an increasing 
dominance character; that is, the same firm wins every race. 

Note that this result is for drastic innovations; thus this result and that of 
Reinganum (1985) parallel the results of Gilbert and Newbery (1982) and 
Reinganum (1983b) for a sequence of innovations. The use of the auction model 
again gives opposite results from the stochastic racing model. To understand why 
we obtain these disparate results, it is useful to recall the incentives for invest- 
ment described by Katz and Shapiro (1987); the stand-alone incentive repre- 
sents the difference between the firm's profits after versus before it innovates, 
while the incentive to pre-empt represents the difference between the firm's 
profits if it innovates instead of its rival. In the deterministic model, so long as 
the stand-alone incentive is non-negative, the incentive to pre-empt dominates 
the firm's decision (and an incumbent monopolist has a greater incentive to 
pre-empt than does a challenger). But when the date of rival success is drawn 
from a continuous distribution as in the stochastic racing model, concern about 
pre-emption is much less acute. Moreover, for drastic innovations, the pre- 
emption incentive is the same for both firms (both get monopoly profits if 
successful and nothing if unsuccessful), while the stand-alone incentive is greater 
for the chaUenger. Even for less drastic innovations, in which the pre-emption 
incentive is greater for the incumbent, the fact that pre-emption is only prob- 
abilistic means that both incentives come into play, with the result that for some 
less than drastic innovations, it is the greater stand-alone incentive for the 
challenger which carries the day. 

The papers discussed so far in this section involved asymmetrically .placed 
firms. However, the differences among firms did not confer an ex ante advantage 
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upon any particular firm. That is, for a given level of investment in research and 
development, all firms were equally likely to become the winner. Differences in 
incentives generated ex post advantages, since in equilibrium firms chose to 
invest different amounts on innovative activity. The papers to be discussed in the 
remainder of this section describe models in which the nature of the asymmetry 
confers a strategic advantage upon one firm. These are essentially multi-stage 
models which culminate in a single innovation; however, a firm's position at an 
intermediate stage affects the effectiveness of its investment in research and 
development. Thus, at any intermediate stage (in which firms' positions differ) 
firms are not equally likely to become the winner even if they (from now on) 
invest the same amount. 

Fudenberg et al. (1983) and Harris and Vickers (1985) have devised very 
similar models of such a multi-stage race. In Fudenberg et al. (1983), firms are 
envisioned as suffering from information and /o r  response lags regarding the 
research activities of their rivals. Lack of information or the inability to respond 
quickly allows firms that are only slightly behind to catch up before the leading 
firm can act to prevent it. The existence of these lags effectively makes time 
discrete for this model. In period t, firms are informed about their rivals' research 
activities up through period t - 1. Invention is assumed to occur as soon as one 
firm has accumulated enough knowledge, as measured by total research and 
development spending. Firms may elect to learn at a high or a low rate in each 
period, and the costs of learning are strictly convex. Within the current period, 
each firm must choose its rate of knowledge acquisition without knowing its 
rival's choice. 

They find that firms will choose the high rate only if they are sufficiently close 
together in terms of accumulated experience. If a firm lags by a sufficiently large 
amount, then it drops out of the race, allowing the remaining firm to proceed at 
the low rate. As the information lag becomes arbitrarily short, the lagging firm 
drops out immediately; only if the firms remain tied is there any Competition. 
Thus, if firms begin with equal experience there is a short intense battle followed 
by the emergence of a single firm. If firms begin with unequal experience, the firm 
which is at an initial disadvantage simply never enters the race. They go on to 
show that as the length of the period of information lag decreases, the lag in 
experience for which the follower still competes also decreases. In the limit as the 
period length approaches zero, an arbitrarily small headstart in terms of knowl- 
edge is sufficient to cause the lagging firm to drop out immediately. 

A somewhat more general version of this model appears in Harris and Vickers 
(1985). In Fudenberg et al. (1983), both players valued the patent equally, and 
both faced the same cost conditions. Thus, distance from completion could be 
measured as the difference between accumulated knowledge and required knowl- 
edge. Harris and Vickers allow firms to place different values on the reward and 
to face different cost functions. They too find that if one player is rar enough 
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ahead, then the other gives up. However, being "rar enough ahead" in this oase is 
not measured in terms of literal distance; it depends upon the value placed on 
winning and the costs of achieving a win. The Harils and Vickers (1985) model is 
also cast in discrete time, but players are assumed to move in alternate periods. 
In the limit as the length of the period approaches zero, the firm which has the 
opportunity to move first pre-empts the other completely. The equilibrium is 
somewhat easier to characterize due to the alternating moves assumption (there 
will be no mixed strategies). 

Four significant factors combine to determine which player has a strategic 
advantage. First, firms may differ in their valuations of the patent. Second, they 
may discount the future to different degrees. Third, firms may differ in the 
efficiency (i.e. the cost) of performing research and development. Finally, firms 
may differ in the amount of knowledge and experience they have already 
acquired. 

Formally, two players, denoted A and B, are competing for a single prize. They 
value the pilze at PA and PB, respectively, with Pi > 0 for i = A, B. At the 
beginning of the game, A and B are distances x 0 and Yo from the finish line (i.e. 
A requires x 0 more units of knowledge, B requires Y0 more units of knowledge). 
Firm A is assumed to move first, then firm B, and so on. The first firm to reach 0 
wirts the pilze. Progress toward the goal depends upon the amount a firm invests 
in each period. In particular, if firm i invests z he moves a distance of wi(z  ) 
toward the goal, where wi(O ) = 0 and wi( . )  is continuous and strictly increasing. 
Thus, after firm A has made his k th  investment ak, the positions are X2k_ 1 = 

x2~_ 2 -- WA(a«) and Y2~-I = Y2k-2" After firm B has made his k th  investment 
bh, the positions are X2k = X2k_ i and Y2k = Y2k- i  -- wB(bl,)- Let N denote the 
smallest integer such that either x N < 0 or YN < 0; t h u s  N is endogenously 
determined. The pilze is awarded to the firm which first reaches 0; since firms 
move alternately, they will not reach 0 simultaneously. If no firm ever reaches 0, 
then no firm wins the pilze. Ler OB and 0A denote the firms' discount rates. If A 
wins the prize with his k th  investment, he receives o~-iPA v '~  i - i  - -  Z«i= 1 pÄ~ a i ,  where 
a~ is understood to drop to zero after one firm wins. If A does not win the prize, 

~-~~ i -  1 a its payoff is - ~ i = l P a  ~. Firm B's payoff is analogously defined. 
A strategy for firm i is an infinite sequence of investment levels which may be 

chosen contingent upon the sequence of previous bids. The notion of equilibrium 
to be employed is subgame perfect Nash equilibrium [Selten (1975)]. A strategy 
pair is a subgame  perfect  equilibrium if its restriction to any subgameis a Nash 
equilibilum. The following convention will be maintained: if a player is indiffer- 
ent between winning the pilze with an overall payoff of zero and not winning the 
pilze, then he will choose to win the pilze. 

Harris and Vickers define a sequence of critical distances from the finish line 
for A and B, denoted by (Cù}~= 0 and ( D n ) n ~ = o  . Heuristically, C i is the 
maximum distance that A can cover with one bid and obtain a non-negative 
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payoff overall. C 2 is the maximum distance that A can cover subject to covering 
at least C2 - C1 with his first bid, and obtain a non-negative payoff overall. Cù is 
the maximum distance that A can cover with a sequence of hOrt-negative 
investments, subject to moving within Cù_ 1 with the first investment, and without 
spending more than the present value of the prize. 

The sequence (Cù} has the following properties: (1) the sequence {Cù) is 
nondecreasing; (2) if (Cù) ever fails to be strictly increasing it remains constant 
thereafter; and (3) it is possible for A to cover distance h and obtain a 
non-negative payoff overall if and only if h < Cù for some n. For the formal 
definition of these sequences and the proof that they have these properties, the 
reader is referred to Harris and Vickers. 

Proposi t ion 23 [Harris and Vickers (1985)] 

Suppose that A and Bare  respectively at distances x and y from the finish line. 
Then in perfect equilibrium, there are four mutually exclusive and exhaustive 
possibilities. 

(i) For some n > 1, x < C n and y > Dn. Then firm A wins; his investments 
are those he would make in the absence of rivalry from firm B; firm B always 
invests 0. The point (x, y)  belongs to A's "safety zone". 

(ii) For  some n > 1, x > Cù and y < D n. Then firm B wins; his investments 
are those he would make absent any rivalry from firm A; firm A always invests 0. 
The point (x, y )  belongs to B's "safety zone". 

(iii) For some n > O, Cn < x < Cn+ 1 and D n < y  < D~+v Then i f i t  is firm A's 
turn to move, firm A wins; his investments are those he would make if (absent 
rivalry) he were required to move to within C n of the finish line with his first 
investment; B always invests 0. Conversely, if it is firm B's turn to move, then 
firm B wins; his investments are those which he would make if (absent rivalry) he 
were required to move to within D n of the finish line with his first investment; A 
always invests 0. The point (x, y)  belongs to a "trigger zone". 

(iv) For all n > 0, x > Cù and y > Dù; then neither firm wirts and both always 
invest 0. 

It is apparent that the equilibrium outcome depends upon the initial point 
(Xo, Y0)- To show that it also depends upon the other parameters of the model, 
Harris and Vickers show that Cù is strictly increasing in PA for n > 1 and that Cù 
is increasing in Pn for n _> 2. 

Again it is possible to determine what happens to this equilibrium as the 
reaction times shrink. In the limit, the trigger zone eollapses to a curve; the safety 
zones for A and B lie on opposite sides of this curve. The fact that the curve 
depends upon more than just the distance to the finish line (e.g. the valuations, 
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discount factors and cost functions) implies that this curve need not be the 45 ° 
line. Harris and Vickers give a specific example in which it is linear, but does not 
have unitary slope. 

In either the discrete game or the limiting case, the equilibrium has similar 
features. If the game begins in one firm's safety zone, then the winner is already 
determined and that firm proceeds as though no rival existed; the rival invests 
nothing. If the game begins in a trigger zone, then the firm which is accorded the 
first move jumps immediately to its safety zone, after which it proceeds as though 
no rival existed and again the rival invests nothing. 

Park (1984) and Grossman and Shapiro (1987) have analyzed a two-stage 
version of Lee and Wilde (1980) in order to investigate the impact of position 
(leading or lagging) upon equilibilum investment. They assume two stages with 
identical (stochastic) technologies for producing success. Completion of the 
intermediate stage does not result in a prize, but brings one closer to it; the first 
firm to complete both stages wins a pilze worth P. The stationarity of the 
problem implies that one need only characterize four investment levels: the 
symmetric equilibrium investment level when both firms have completed 0 stages, 
denoted X0o; the investment levels for the case where (say) firm 1 has completed 
the first stage and firm 2 has not, denoted Xl0 and Xol, respectively; and the 
symmetilc equifibrium investment level when both firms have completed the first 
stage, denoted x n. Let V00, V10, V0a and V n denote the corresponding Nash 
equilibrium profits. 

By dynamic programming backward, one can characterize the subgame perfect 
Nash equilibrium rates of investment. Consider first the case where both firms 
have completed the first stage, but neither has completed the second stage. This is 
identical to the original Lee and Wilde (1980) case; the payoff to each firm can be 
written: 

h ( x ) P - x  
V11(X, a)  = 

r + h ( x )  + a '  

where a represents the rival firm's hazard rate. 
Consider next the case in which firm 1 has succeeded with the first stage, but 

firm 2 has not. Since the same hazard function h (.) applies, we can write profits 
to firm 1 and 2, respectively, as 

h ( x ) P  + a V  n - x 
v~°(x ,  a )  = 

r + h ( x )  + a 

and 

h ( x ) V 1 1  - x 
v°'(~, a) = 

r + h ( x )  + a" 
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Finally, consider the case in which no firm has yet succeeded with the first 
stage. Each firm's expected payoff can be written: 

V ° ° ( x ,  a )  : 
h ( x ) V l o  -}- aVol - x 

r + h ( x )  + a 

Proposition 24 [Grossman and Shapiro (1987)] 

The rate of investment when both have succeeded in the first stage exceeds that 
of the leading firm which exceeds that of the lagging firm when only one firm has 
succeeded in the first stage; that is, xll > xl0 > x01. Moreover, the rate of 
investment when both firms have succeeded with the first stage exceeds that when 
neither has succeeded; that is, xll > X0o. The relationships between x m and x00 
and that between Xox and x0o are ambiguous. 

The reason for the residual ambiguity is that success by one firm in the first 
stage has two effects. The lagging firm may reduce its rate of expenditure; this 
diminished rivalry induces the leading firm to reduce its expenditures as weil. On 
the other hand, the fact that it is now closer to the prize causes the leading firm to 
increase its rate of expenditure. Success by its rival in the first stage would tend 
to cause the (now) lagging firm to reduce its investment rate, but an increase in 
the (now) leading firm's expenditure (due to its being closer to the prize) would 
tend to spur investment by the lagging firm. Simulations reported by Grossman 
and Shapiro indicated that the likely response to success by one firm in the first 
stage is for the leading firm to increase, and the lagging firm to decrease, its rate 
of expenditure. 

Judd (1984) has formulated a more general version of the stochastic racing 
game of Lee and Wilde (1980) and Reinganum (1981a, 1982a)~to include 
elements of feedback (recall that while Reinganum's method permitted feedback, 
the particular specification of the research and development process rendered the 
value of the state variable unimportant). The basic framework is that of 
Reinganum (1981a) with the exception that knowledge accumulates and depreci- 
ate# according to the equation i t = ~u i - -  ~ Z  i and the hazard rate is au~ + flz~. If 
fl > 0, firms' investment in R&D today increases their own current and future 
probabilities of success, and builds a stock of experience which may cause the 
rival firm to decrease its rate of investment tomorrow. Judd solves this problem 
for small values of the prize P by using perturbation methods and finds that 
indeed each firm's rate of investment does depend negatively upon its rival's 
accumulated experience. 

The model in Judd (1985a) has the characteristic that firms have no exogenous 
strategic advantages (such as first moves or initial experience), but strategic 
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advantages are acquired endogenously over time through acquired knowledge 
and intermediate successes. This model incorporates uncertainty of two types, 
orte of which can be characterized as "more risky" than the other. Thus, i t  allows 
one to examine whether rivalry in research and development causeS firms to 
invest in projects which are insufficiently or excessively risky. 

Assuming that the prize and social benefits are small or that the rate of time 
preference is large (enough to make approximations valid), Judd finds that if the 
pilze equals the social benefit, then firms invest relatively too much in the riskier 
discovery process. Despite this, it is optimal to allow competition to proceed until 
one firm has completely finished rather than to award the prize to the leader at 
some eadier juncture; moreover, the prize ought to be nearly equal to the social 
benefit. He also characterizes the dependence of investment on the current 
positions. It turns out that if one player advances, the other reduces its effort on 
the riskier project, but may increase its effort on the less risky project. The 
description and manipulation of the formal model is somewhat tedious, and the 
reader is referred to Judd (1985a) for proofs. 

Suppose two firms compete for a particular innovation. The position of firm 1 
is denoted by a nonpositive scalar x (frm 2's position is denoted y), the absolute 
value of which could be regarded as the extent of additional knowledge required 
for success. There are two parallel projects in which the firm can invest in 
attempting to complete the innovation. The first is characterized by gradualjumps 
which have a probability of F(a) of hitting zero (if a is the firm's current 
position) and otherwise have a probability f(s, a)ds of landing in the interval 
(s,s + ds). There is also a more risky process which never lands at an inter- 
mediate value, but hits 0 with probability G(a) if a is the current position. This 
process is characterized by leaps, and is a more risky process than the one that 
involves gradual jumps. The firms choose intensities at which to operate these 
processes; these intensities affect the likefihood, but not the magnitude of the 
resulting jumps. The symbols x and y denote the state variable for firms 1 and 2, 
respectively; u dt  denotes the probability that the gradual jump process results in 
a jump of x if firm 1 chooses u; v dt is the probability of a jump of y if firm 2 
chooses v. Let f(s, a)ds denote the probability of a jump from a to (s, s + ds) 
if a gradual jump occurs; f(s, a) = 0 if s < a (firms only improve their posi- 
tions). If a '  > a, then f(s, a') first-order stochastically dominates f(s,  a). F(a) 
denotes the probability that the gradual jump process hits 0 from a given that a 
gradual jump occurs; F(a) is increasing in a and is positive everywhere: 

F ( a ) -  1 - üm f~ f ( s ,a )ds .  
~5--,0 J a 

Let wG(x)dt symbolize the probability that firm 1 leaps to 0, where firm 1 
chooses w; zG(y)dt is the probability that firm 2 leaps to 0, where firm 2 
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chooses z. G(-) is positive everywhere. Firm l 's  costs are au2/2 +/3w2/2, where 
a and/3  are positive scalars. Similarly, firm 2's costs are av2/2 +/3z2/2. P > 0 
represents the prize to the winner, and O > 0 is the common discount rate. 
Throughout Judd (1985a) uses infinitesimal notation; we will follow his conven- 

tion here. 
Consider first the research intensities of a joint venture between the two firms. 

In this case, the joint value function W(x, y) satisfies the following dynamic 
programming equation: 

W(x, y) = u,o,w, { - ( a u 2 / 2  + av2/2 + Ôw2/2 + Ôz2/2)dt  

+ v d t ( 1  - p d t ) [ f ° W ( x , s ) f ( s ,  y )ds  + PF(y)] 
[ y  

+P(1  - pdt)[wG(x)  + zC(y)]dt  

+(1 - pd t ) [1  - (u + o + wG(x) + zG(y) )d t ]W(x ,  y ) ) .  

(7) 

To interpret this, the value of being at state (x, y) is the value of choosing 
(u, v, w, z) optimally for the next dt, and then continuing optimally. The choice 
of (u, o, w, z) incurs the costs on the first line; with probability u dt firm 1 
experiences a gradual jump, which has an associated expected present value (this 
term appears on the second line above); similarly, with probability v dt, firm 2 
experiences a gradual jump, which has an associated expected present value 
(third line); there is also a probability wG(x) + zG(y) that one of the firms will 
leap to success and an associated present value (fourth line); finally, there is a 
probability that neither firm experiences any advance at all, which event has 
expected present value (1 - p dt)W(x, y). The probability that both firms expe- 
rience gradual jumps and /or  leaps is of order (dt) 2 and can safely be ignored. 

Proposition 25 [Judd (1985a)] 

There exists a unique solution W(x, y) to the joint research problem, and 
W(x, y) is C ° in P and p -1 . 
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Consider now a noncooperative version of this garne. Assume that the position 
vector (x, y )  is common knowledge. Then firms choose their research intensities 
contingent upon their current positions. Thus, the equilibrium concept used here 
is that of feedback equilibrium. Only symmetric equilibrium is considered. Let 
V(x, y) represent firm l 's  value function and V(y, x) represent firm 2's value 
function. The equation of dynamic programming for firm 1 is 

V(x, y) = max ( - [au2/2 + flw2/2] dt 
bl~ W 

+ u dt(1 - o d t )  V(s, y ) f ( s ,  x) ds+ PF(x) 
J 

+ v d t ( 1  - odt)  V (x , s ) f ( s ,  y )ds  

+ P ( 1  - o dt)wG(x) dt 

+(1 - od t ) [1  - (u + v + wG(x) + zG(y))dt]V(x, y)}. 
(8) 

Proposition 26 [Judd (1985a)] 

There exists a P > 0 such that for P ~ [0, P], there is a symmetric feedback 
equilibrium value function V(x, y) which is C ~ in P and 0 -1. 

Proposition 27 [Judd (1985a)] 

Noncooperative equilibrium play results in overinvestment relative to the joint 
optimum. Moreover, this excess is greater the closer is either firm to success. If P 
is small, joint profits would be increased if resources were shifted from the risky 
"leap" process to the less risky "jump" process. Thus, noncooperative firms 
undertake more risk than is jointly optimal. 

If one can legitimately interpret P as the social value of the innovation, then 
the same proposition describes the relationship between the noncooperative 
equilibrium and the social optimum. 

4. Licensing 

In the work discussed above, the value of a patent was taken as given. But. how is 
this value determined? Arrow (1962a) described the value of a patent on a 
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cost-reducing innovation as the revenue which an innovator could acquire by 
licensing the innovation to producing firms. He compared the value of licensing 
the innovation to a single producer versus members of a competitive industry, 
and found that the competitive environment yielded more revenue (even absent 
problems of bilateral monopoly, which might be expected to further rednce the 
value of licensing to a single producer). Thus, a competitive product market 
offered greater incentives for suppliers of innovations. 

Kamien and Tauman (1984, 1986) performed a similar analysis when the 
downstream product market is oligopolistic, and members make their decisions 
to license in a strategic manner. By the term "firm" we refer only to producing 
firms; the patent holder is understood to be an independent researcher, not a 
current member of the industry. Assuming that firms are initially identical, with 
constant marginal costs c and a linear industry demand curve p = 1 -  bq, 
Kamien and Tauman determined the maximum value to the patent holder from 
licensing a cost-reducing innovation to the industry. Given a license contract, 
which consists of a fixed fee and a linear royalty rate, the firms play a simulta- 
neous-move garne, where their strategies are either to license the innovation, or to 
forego licensing. The patent holder offers a licensing contract to maximize his 
profits, taking into account how the contract affects the subsequent Nash 
equilibrium among the firms. 

The general game, which involves both a fixed fee and a linear royalty rate, is 
denoted game G. They examine two restrictions of the general game: G~, in 
which the royalty rate is constrained to be zero, while the fixed fee is subject to 
choice; and G2, in which the fixed fee is constrained to be zero, and the royalty 
rate is subject to choice. Their results are summarized in the three propositions 
below [Kamien, Tauman and Zang (1985) extend this analysis of licensing to the 
context of product innovation]. 

Proposition 28 [Kamien and Tauman (1984)] 

(a) For any finite number n of firms, G 1 yields a higher payoff to the patent 
holder than G2, and consumers benefit more under G 1 than under G E. Firms 
make no more profit under G1, and no less profit under GE, than they did prior to 
the innovation. (b) The equilibrium of G 1 results in a monopoly if and only if the 
innovation is drastic. (A drastic innovation is here defined as one in which the 
monopoly price with the new technology does not exceed the competitive price 
under the old technology.) (c) If the innovation is not drastic, then in the limit (as 
the number of firms increases without bound), the patent holder makes the same 
profit in both G~ and G2; this profit is equal to the magnitude of the cost 
reduction times the original competitive output. 

Since the garne G permits the use of both a fixed fee and a royalty rate, the 
innovator must do at least weakly better under G than under either G 1 or G 2. 
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Proposition 29 [Kamien and Tauman (1984)] 
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(a) The equilibrium of G results in a monopoly if and only if the innovation is 
drastic. In this case, the profit is the difference between monopoly profit under 
the new technology and the licensee's oligopoly profit under the old technology. 
(b) If the innovation is not drastic, then the number of licensees is never below 
(n + 2)/2. (c) In the fimit (as the number of firms increases without bound), the 
profit of the patent holder in G coincides with his profits in G 1 and G E, 

Finally, it is possible to compare the output levels, market prices and firms' 
profits before and after the innovation. 

Proposition 30 [Kamien and Tauman (1984)] 

In the (subgame) perfect Nash equilibrium of G: (a) total output increases and 
the market price falls as a result of the innovation; and (b) each firm is worse oft 
relative to its proft prior to the innovation unless the patent is drastic and then 
only the monopoly breaks even. 

Two key features of the Kamien and Tauman analysis are modified in Katz 
and Shapiro (1986). First, in Kamien and Tauman's model, the patent holder 
effectively posts a contract, which firms can either accept or reject. That is, it 
offers a pair consisting of a fixed fee and a royalty rate, and any firm which is 
willing to accept those terms may acquire a license. Of course, the optimal 
contract takes into account the subsequent equilibrium behavior of the potential 
buyers; that is, the patent holder computes its (equilibrium) demand function for 
licenses, and chooses its preferred point on that schedule. Second, in Kamien and 
Tauman (1984, 1986), the patent holder is understood to be an independent 
researcher. 

Restricting attention to fixed fee contracts, Katz and Shapiro (1986) argue 
that when firms' demands for licenses are interdependent a superior selling 
strategy for an independent researcher involves offering a restricted number of 
licenses for auction with a minimum required bid. They also consider the optimal 
distribution strategy (within this class of auction-type strategies) for research 
joint ventures of arbitrary size. They find that dissemination of the technology is 
greater the smaller is the joint venture. Subsequently they examine the seller's 
incentives to develop the innovation given the feasibility of licensing. Again all 
downstream firms who are not members of the joint venture are worse oft as a 
result of innovation. 

Consider the case of a research lab which has developed an innovation whieh is 
potentially useful to the n member firms of a particular industry. Assume that 
each firm has need for a single license, and all n firms are identical. 
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Given this symmetry, firms' identities are irrelevant; the information which is 
relevant to the payoffs of the patent holder and the firms is the number of firms 
which will obtain a license. Let k denote the number of firms which obtain a 
license. Let W ( k )  represent the profits of a firm that obtains a license when a 
total of k firms have done so, and let L ( k )  denote the profits of a firm that does 
not obtain a license when a total of k firms have obtained licenses. These profits 
are gross of any licensing fees, which are assumed to be lump sums independent 
of subsequent output levels. 

Assumption 4 

(a) L ( k )  < L ( k  - 1) and (b) L ( k )  < W(k), for k = 1,2 . . . .  , n - 1. 

That  is, a firm that has not obtained a license is worse oft the greater is the 
number of firms which have obtained licenses and, given that k firms obtain 
licenses, profits are greater for those who have than for those who have not 
obtained a license. 

The set of selling strategies open to the patent holder is the set of multiple-object 
sealed-bid first-price auctions with a minimum bid. That is, the patent holder 
makes available k licenses, but requires a minimum bid of b. Each firm may 
submit a single bid b/ (to prevent anti-competitive hoarding, which might be 
individually profitable); the licenses go to the firms with the k highest bids 
(provided the bid is at least b) at the bid values, and any ties are broken at 
random. Thus, a sales policy can be summafized by a pair (k, _b). Katz and 
Shapiro refer to a policy of the form (k, 0) as a quantity strategy and one of the 
form (n, _b) as a price strategy. 

For  a given policy (k, b), we need to characterize the Nash equilibrium of the 
bidding game for the n firms. Firm i 's  willingness to pay clearly depends upon 
what it expects other firms to do. However, since there is complete and perfect 
information in this game, it is clear that in any bidding equilibrium all licensees 
pay the same price; if two licensees paid different prices, the one paying more 
could have lowered its bid and still received a license. 

Consider first the case in which the patent holder is an independent research 
lab. If k < n licenses are sold under the quantity strategy (k, 0), then each firm 
knows that k licenses will be distributed, independent of his own actions. Then 
bidding for the licenses will drive the winning bid to W ( k )  - L ( k ) .  The use of a 
price mechanism (n, b) implies that each firm knows that one fewer licenses will 
be distributed if that firm refrains from buying one. In this case, the highest price 
obtainable for k licenses is W ( k )  - L ( k  - 1) < W ( k )  - L ( k ) .  Thus, a pure 
price strategy is strictly inferior to a pure quantity strategy when fewer tlaan n 
licenses are sold and L ( . )  is strictly decreasing. 
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When n licenses are offered, a positive minimum bid is necessary since each 
firm will bid at most b. To further characterize the outcome in this case, define 
the value of obtaining a license, given that k - 1 other firms also obtain licenses, 
to be V ( k )  = W ( k )  - L ( k  - 1). Suppose that V ( k )  decreases with k; in this 
case, each firm finds a license less valuable the greater the number of other firms 
which are licensed. This would be typical of a cost-reducing innovation in a 
simple Cournot model with linear demand and constant marginal costs. If the 
patent holder licenses all firms, each firm compares W ( n )  to L ( n  - 1). The 
highest minimum bid which will still sell n licenses is _b = V(n).  

Proposition 31 [Katz and Shapiro (1986)] 

If V(.) is strictly decreasing, then the optimal selling strategy (within the 
specified class) has one of two forms: (a) (k, 0), where k < n and the winning bid 
is W ( k )  - L(k) ;  or (b) (n, b), where b = V(n).  

An alternative form of market organization would involve a number of firms 
maintaining a research lab as a joint venture. Call members of the joint venture 
insiders and nonmembers outsiders. Insiders now face a tradeoff between profits 
they receive from licensing the innovation to competitors and the profits they 
receive from production. Thus, a research joint venture is likely to have reduced 
incentives to license the innovation. Assume that the research joint venture has 
available the same class of licensing policies (k, _b) but is also free to distribute 
licenses at no cost to some or all of its members. Suppose that m firms 
participate and share equally in the profits of the research joint venture. In this 
case, all members share the same objective function and are thus unanimous 
regarding the preferred licensing policy. 

If k licenses are issued, and k go to insiders, then profits to the insiders are 
l c W ( k )  + (m  - [c )L(k )  + R, where R is revenue raised by licensing to out- 
siders. For given values of k and /~, the joint venture will try to maximize R. 
From Proposition 31 we know that i f k  < n licenses are distributed, the venture 
can extract a maximum of W ( k ) -  L ( k )  per license sold to outsiders, so 
R = (k - ~:)[W(k) - L(k)].  Thus, insider profit is k [ W ( k )  - L(k)]  + t aL ( k ) .  

This is independent of k, since (in equilibrium) the marginal revenue from a 
license equals the venture's opportunity cost. 

Let R ° ( k )  denote the licensing revenues that an independent researcher earns 
when it sells k licenses. When k < n licenses are issued, R ° ( k )  = k [ W ( k )  - 

L(k)] .  For the joint venture of size m, R ' ( k )  = k [ W ( k )  - L(k)]  + t a L ( k ) ,  or 
R m ( k )  = R ° ( k )  + m L ( k ) .  If the joint venture were to issue licenses to all firms, 
and V(.) is strictly decreasing, then total insider profit is Rm(n)  = m W ( n )  + 

(n - m ) [ W ( n )  - L ( n  - 1)], since the minimum bid which induces all outsiders 
to buy is [W(n) - L ( n  - 1)]. 
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Proposition 32 [Katz and Shapiro (1986)] 
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Suppose that V(.) is strictly decreasing. The m-firm joint venture's optimal 
selling strategy (within the specified class) has one of two forms: (a) (k, 0), where 
k < n and the winning bid is W ( k )  - L(k) ;  or (b) (n, _b), where the winning bid 
is _b = W ( n )  - L ( n  - 1). 

Let k m denote the number of licenses issued by the m-firm venture, where 
m = 0, 1, 2 , . . ,  n; that is, k m maximizes R m ( k ) .  To determine whether or not to 
issue an additional license, the m-firm venture examines: 

A R m ( k )  =- R m ( k )  - R m ( k  - 1) 

= [ R ° ( k ) -  R°(k - 1)] + m [ L ( k ) -  L ( k -  1)]. 

For two ventures of sizes m and m - 1, respectively, A R m ( k )  - A R m - l ( k )  = 

L ( k )  - L ( k  - 1) _< 0, so the m-firm venture has less incentive to sell the k th  
license than does the ( m -  1)-firm venture. If the m-firm venture issues n 
licenses, the comparison is between A R m ( n )  and A R m - l ( n ) .  If V(-) is strictly 
decreasing, then Proposition 32 may be applied to obtain R m ( n ) =  R ° ( n ) +  
m L ( n -  1), and A R m ( n ) =  A R ° ( n ) ,  which is independent of m. Thus, the 
incentives of the independent researcher and the m-firm joint venture coincide 
for the n th license. 

Proposition 33 [Katz and Shapiro (1986)] 

Suppose that V(-) is strictly decreasing. Then an (m - 1)-firm venture issues at 
least as many licenses as does an m-firm venture, for m = 1, 2 . . . . .  n. 

Thus, research joint ventures tend to restrict the distribution of licenses relative 
to an independent researcher, and the extent of the restriction increases with the 
size of the venture. Moreover, an outsider cannot be bettet oft (and is strictly 
worse oft whenever m > 0 and L ( . )  is strictly decreasing) as a result of the 
innovation. To see why, suppose k m < n. In equilibrium, an outsider is indiffer- 
ent about buying a license, and thus has profits of L ( k  m) < L(O). If k m = n, 

then _b > W ( n )  - L ( m )  since this would induce all outsiders to obtain a license. 
Thus, an outsider has net profits that are no greater than W ( n )  - [W(n) - L(m)]  
_< L(O). 

Now consider a research lab (either independent or a joint venture) deciding 
whether or not to develop the innovation. If we identify a researcher's incentive 
to develop the innovation with its profits from licensing and production net of its 
previous profits from produetion, then for an m-firm venture this incentive is 
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Rm( k m) - Rm(O) = Rm( k ' ') - taL(O) (note that this formula is equally valid for 
m = 0). 

Proposition 34 [Katz and Shapiro (1986)] 

Suppose that V(-) is strictly decreasing. Then an m-firm venture has greater 
incentives to develop the innovation than has an (m - 1)-firm venture. 

In another paper, Katz and Shapiro (1985b) examine Nash equilibrium licens- 
ing and development behavior in a two-firm industry. One goal of this paper is to 
determine how the pattern of licensing depends upon the magnitude of the 
innovation. Assuming fixed fee licensing, they find that major innovations will 
not be licensed, but minor innovations will be licensed if firms are approximately 
equally efficient prior to innovation. If at least one firm would exclude the other 
(by refusing to license the innovation), then licensing will not occur because, in 
equilibrium, an excluding firm will be the innovator. 

The aforementioned papers deal with a case in which no further innovation is 
anticipated; if another technology with equal or lower costs is possible, then an 
additional incentive to license the current innovation arises. Gallini (1984) has 
shown that an incumbent firm may choose to license a potential entrant to use its 
technology in order to forestall innovation by the entrant. That is, it will offer to 
share its market in order to make further innovation less attractive to the 
potential entrant. 

Consider a homogeneous good market which consists of a single incumbent 
firm and a single potential entrant. These firms (and only these firms) may 
compete in the research and development of new production technologies. For 
simplicity, suppose that the incumbent currently has constant unit cost of c 3 and 
that two other cost levels exist: c 2 and c~ with c~ < c 2 < c 3. However, there may 
be a large number of technologies associated with each of these cost levels; thus 
discovery and patenting of a c 2 technology does not preclude the rival from 
discovering another route to the same cost. Research and development is there- 
lore represented as sampling with replacement from a known discrete distribu- 
tion over the cost levels •cl, c2, c3}, with Pi denoting the probability that a 
technology with unit cost ci is observed on any one draw. The results of each 
draw are revealed to both firms, but a patent prevents firms from immediately 
imitating the rival's technology. Each technology is assumed to be drastic in 
relation to the one with next highest cost; thus if one firm has c 3 and the other 
c»  the low-cost firm is the current incumbent and is free to price its output at the 
monopoly price. Finally, production takes place once research and development 
has ceased. 

The analysis begins with one incumbent firm, which possesses a technology 
with unit costs of c 2 and one potential entrant, which currently has unit costs of 
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c3; thus the entrant must discover a c 2 or c I technology to enter. The incumbent 
taust decide whether to license its c 2 technology to the potential entrant, thus 
granting it a permanent share Of the market. It is assumed that when firms have 
the same costs, they share cooperative profits equally (an equivalent analysis 
applies if they are noncooperative in the product market). Let 17i denote industry 
profits if both firms have cost c» i = 1, 2. If a license is agreed upon, research is 
terminated; if not, the firms decide noncooperatively and simultaneously whether 
or not to engage in further research. Their actions are to continue (C) or to 
terminate ( T )  research. 

Under  the following assumption, the discovery of a cl teclmology makes 
further research unprofitable for the rival firm. Thus, one only needs to determine 
when the current (i.e. c2) technology will be licensed to induce a rival to 
terminate research. The c I technology would never be licensed; because the 
innovation is drastic and firms have constant unit costs, there are no efficiency 
gains to having more than one firm producing at the same time with the same 
technology. Thus, all research terminates with the discovery of a c~ technology. 

Assumption 5 

Assume that p1171/2 - D < 0, where D represents the cost per observation. 

Suppose that if the entrant discovers a c 2 technology, then it would prefer to 
produce in this market and share the cooperative profits rather than to continue 
researching alone until a c I technology is discovered. 

Assumption 6 

Assume that H J 2  > 171 - D /pp  

In this case, the entrant expects more from continuing research alone than does 
the incumbent (since the incumbent only benefits from discovering a c 1 technol- 
ogy, while the entrant benefits from discovering either a c a or a c a technology). 
Moreover, the entrant has less incentive to stop research when its rival continues 
than does the incumbent. 

For  licensing to be an equilibrium, each firm's profit must be as great as it 
could achieve in a game without licensing. This is because by not offering or by 
rejecting a license, either firm can bring about this outcome. Refer to the 
equilibrium in the game with no licensing as the alternative equilibrium. Let R~j 
and R E denote the payoffs to the incumbent and entrant, respectively, when the 
pair of ac t ions / j  with i, j ~ { C, T } are taken, assuming that the firms continue 
on in a Nash equilibrium fashion. If a c I technology has been discovered, both 
firms terminate research by Assumption 5. Thus, for cost pairs of the form 
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(C 1, Cj), j = 1, 2, 3 or (c 2, q),  the equilibrium action pair is TT. At (c2, c2), TT is 
always a Nash equilibrium because Assumption 6 implies that if the incumbent 
terminates, the entrant would prefer to terminate rather than to continue re- 
searching alone; because the incumbent's incentives to continue researching alone 
are always weaker than the entrant's, if the entrant terminates at (c2, c2), then the 
incumbent will do so as well. However, if a firm continues to search at this cost 
pair, then its rival can stop and receive 0 or compete for a c 1 technology and 
receive (in expected value) R' = H1/2 - D/px(2 - Pl)- If R' > 0, then CC will 
also be a Nash equilibrium at (c2, tE). TT is Pareto superior to CC and is 
selected as the relevant equilibrium at this point, but the alternative selection 
would yield the same results. 

Now it is possible to describe the payoffs from various strategy pairs at (c a c3). 
If both firms terminate, R~T = //2 and REr = O. If both continue, 

p1(2 - p1)H1/2 + p2(1 - p l ) H : / 2  - D 
RIc« = RE« = 

1 - ( 1 - p a ) p 3  

If the incumbent continues but the entrant terminates, 

p2H2 plH1 + p2H2/2 - D 
R ~ c -  2 ( 1 - p 3 )  and RE, c =  1- -p3  

Finally, if the incumbent terminates and the entrant continues, R~r  = / / 1 -  
D / p  1 and REr = 0. Note that CT cannot be an equilibrium because this requires 
R~r  > H2, which contradicts Assumption 6. The remaining three pairs of actions 
can be alternative equilibria for some parameter values. 

A licensing equilibrium requires that there must exist a share of profits using 
the current technology such that both firms earn at least as much as they would 
in the alternative equilibrium. Moreover, each firm must receive as much under 
the licensing agreement as it would receive from continuing research alone 
(otherwise it will subsequently deviate from the agreement not to continue 
research). These two conditions will be met if the cooperative profits from the c 2 
technology are at least as large as the sum of the firms' maximum profits from the 
alternative equifibrium or from continuing research alone. Let R~ denote the 
alternative equilibrium payoff to agent i, i = I, E. Then a licensing equilibrium 
requires that 

17 2 >_ max( RIß, R~r } + max{ RE, RZrc }. (9) 

When the alternative equilibrium is TT, then no license will be offered. When the 
alternative equilibrium is CC, equation (9) reduces to /-/2 ~ RIcT q'- RETc or 
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/-/2 ~> 2 [ / - / 1 -  D / p l ] ,  which  is always true under Assumption 6. W h e n  the  
alternative equilibrium is TC, there are two possibilities. If RIrc -> RIc» then 
equation (9) becomes H 2 >_ RIc  + R E  = 1-I 1 - -D/p1,  which always holds. If 
R I c  < Rtcr, then licensing requires H 2 > 2[/-/1 - D/p1] as above. Assume that 
licensing always occurs when firms are indifferent. 

Thus under Assumption 6, a licensing contract will always be struck to 
terminate research that would take place absent licensing. From the incumbent's 
perspective, licensing protects against the risk of discovery of a lower cost 
technology by the entrant. Moreover, resources which would have been devoted 
to research (by the entrant and possibly also by the incumbent) are saved. 

One can relax Assumption 6 so that both firms have an incentive to continue 
research until a c 1 technology is obtained. 

Assumption 7 

Assume that H2/2  < H 1 - D / p  1. 

Under  this complementary assumption, both firms face the same incentives to 
continue and terminate research. In this case, in order for a licensing equilibrium 
to exist, it must be that H 2 > 2[H 1 - D/p1]; but this contradicts Assumption 7. 
Thus, in this case there will be no equilibrium with licensing. 

Gallini and Winter (1985) extend the analysis of this strategic incentive for 
licensing to more general environments including nondrastic innovations. They 
find that licensing encourages additional research when the firms' current produc- 
tion costs are close and discourages further research when current production 
costs are relatively far apart. This is because there are two effects of licensing. 
First, having developed a superior technology, a firm can license it to its rival; 
this is the incentive which was pointed out by Salant (1984) in the context of 
Gilbert and Newbery's preemption model, and it is greatest when current costs 
are close together. Second, when costs are far apart the low cost firm has an 
incentive to offer a license to the high tost  firm in order to make further research 
by the high-cost firm unattractive; this minimizes the erosion of the low-cost 
firm's market share while economizing on development expenditures. 

5. Adoption and diffusion of innovations 

In the previous section the extent of licensing was examined, but in a timeless 
framework; all licensing was assumed to be completed at once. However, an 
important  empirical observation regarding the adoption of innovations is that 
adoption is typically delayed and that firms do not adopt an innovation simul- 
tanously. Instead, innovations "diffuse" into use over time. 
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The general pattern for economic models of diffusion is concisely described by 
David (1969, ch. II, p. 10): 

whenever or wherever some stimulus variate takes on a value exceeding a 
critical level, the subject of the stimulation responds by instantly determining 
to adopt the innovation in question. The reasons such decisions are not arrived 
at simultaneously by the entire population of potential adopters lies in the fact 
that at any given point of time either the "stimulus variate" or the "critical 
level" required to elicit an adoption is described by a distribution of values, 
and not a unique value appropriate to all members of the population. Hence, 
at any point in time following the advent of an innovation, the critical response 
level has been surpassed only in the cases of some among the whole population 
of potential adopters. Through some exogenous or endogenous process, how- 
ever, the relative positions of stimulus variate and critical response level are 
altered as time passes, bringing a growing proportion of the population across 
the "threshold" into the group of actual users of the innovation. 

The heterogeneity posited here may involve any firm characteristic which is 
relevant to the adoption decision. For instance, David (1969) offers both theoreti- 
cal and empirical arguments in favor of the use of firm size. Other explanations, 
such as differential access to information regarding the innovation's profitability 
and/or  managerial willingness to take risk, are also common. A combination of 
these two latter features generates the diffusion of innovation described in Jensen 
(1982), which provides a formal model of the type described by David. 

When an innovation is first announced, a firm may be uncertain regarding its 
profitability should it adopt the innovation. However, this uncertainty may be 
reduced over time as information regarding the innovation accumulates. Jensen's 
formal model assumes that at any decision point in time, the firm has two 
options: it can adopt the innovation, which involves a fixed cost and is irreversi- 
bie; or it can wait. If the firm waits, then it receives additional information 
regarding the innovation's profitability, but of course it foregoes for one period 
any profit it might have made by adopting the innovation. The firm begins with a 
prior estimate of the likelihood that the innovation will be profitable, and 
"learns" over time, updating its estimate in a Bayesian fashion. Thus, the firm's 
decision problem can be modelled as an optimal stopping problem. An optimal 
adoption rule has the following form: if the posterior estimate of the likelihood 
that the innovation would be profitable is sufficiently high, adopt; otherwise, 
wait. If an industry consists of firms who differ in their initial assessments of the 
innovation, then they will typically reach this critical level of estimated profitabil- 
ity at different times. Thus, the innovation will be observed to diffuse into use. 

Suppose that a rinn is currently at equilibrium in its industry; normalize its 
current profits to zero for simplicity. Suppose that an alternative production 
process (an innovation) is exogenously developed and may be acquired at a cost 



Ch. 14: The Timing of Innovation 895 

of C. This process has some stochastic features in the sense that with probability 
0 the firm earns (in present value terms) R 1 = rl/(1 - 13), where r i is the rate of 
flow profit and /3 is the discount factor; with probäbility 1 - 0 the firm earns 
R o = r0/(1 - / 3 ) .  It is assumed that R 0 < R v Thus, 1 - 0 might be interpreted 
as the fraction of "down time" associäted with the process. The parameter 0 is 
unknown to the firm, but it is known to be one of two possible values, 01 o r  02, 

with 1 > 01 > 02 > 0. Assume that 

O l R  1 n t- (1 - 0 1 ) R  0 - C > 0 > 0 2 R  1 -1- (1 - 0 2 ) R  0 - C ,  (10 )  

so that if 0 = 01, the innovation can be classified as "profitable", while if 0 = 0» 
the innovation can be termed "unprofitable". If the firm does not adopt the 
innovation in period i, it is assumed to receive a costless signal, representable as 
a Bernoulli random variable Z» which takes on the value 1 if the information is 
favorable and 0 if it is unfavorable. The probäbility that Z t = 1 is the unknown 
parameter 0. 

Given a sequence Z 1 , . . ,  Zù, the firm can construct an estimate of the 
parameter 0 as follows. If p is the firm's prior probabirity that 0 = 0» then its 
estimate of 0 is 

q ( p )  - p O  1 + (1 - p)O» (11) 

Its posterior probability that 0 = 01 is h l (p )  - p O a / q ( p )  if the observation is 
favorable and ho(P) - p ( 1  - 01)/(1 - q(p)) if the observation is unfavorable. 
Assuming that the firm's initial prior probability that 0 = 01 is g, then after n 
observations, k of which were favorable, the firm's posterior probability that 
0 = 01 is 

p ( n , k , g )  - [1 + (02/01)~((1 - 02)/(1 - 01))"-k(1 -- g ) / g ] - l .  (12) 

Beginning from the initial prior g, the state variable for the decision process is 
p(n, k, g), the firm's current probabilistic berief that the innovation is profitable. 
Assuming that an infinite number of decision periods exists, then V(p), the 
maximum expected return when the current state is p, is defined as the solution 
to the following functional equation of dynamic programming: 

V ( p )  = m a x { V a ( p ) ,  VW(p)) ,  (13) 

where the expected value of adoption is 

Va(p)  - q ( p ) R  1 + (1 - q ( p ) ) R  o - C, (14) 
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and the expected value of waiting one period and continuing optimally is 

VW(p) -= f l[q(p)V(hl(p)  ) + (1 - q(p))V(ho(p))]. (15) 

Proposition 35 [Jensen (1982)] 

There exists a unique p* ~ (0,1) such that Va(p) -~ VW(p) if and only if 
p ~p* .  

Thus, the optimal adoption rule is to adopt the innovation at the first date n 
for which p(n, k, g) >_ p*. Moreover, the probability of adoption at or before a 
given stage N is an increasing function of g, k, q, r 0 and fl and is a decreasing 
function of C. 

It is also easy to see that immediate adoption may not be optimal, but a 
profitable innovation will eventually be adopted with probability 1 if g :~ 0. If 
g < p*, then the firm will wait at least one period to gather additional informa- 
tion about the innovation's profitability. However, by the law of large numbers, 
the Bayesian estimate of 0 will eventually converge to its true value. If this is 01, 
then the firm will eventually adopt the innovation. 

A firm is more likely to adopt by a given date the more favorable is its initial 
assessment of the innovation; thus a firm which begins by being sufficiently 
skeptical will delay adoption; if it is willing to learn, however, it will not forego a 
profitable innovation indefinitely. Clearly, the analogous result for unprofitable 
innovations is not true; some unprofitable innovations will be adopted due to 
optimistic initial beliefs or the receipt of favorable information. The length of the 
delay prior to adoption will be shorter (on average) the more optimistic the initial 
belief, the more favorable the information received, the higher the discount 
factor, and the higher the rate of flow profts; the length of delay will be greater 
(on average) the higher are the adoption costs. 

Suppose now that there is an industry composed of a continuum of these firms; 
each receives the same information about the innovation, but they may begin 
with different prior beliefs about it. In this case, firms with different prior befiefs 
will adopt the innovation at different times. The traditional S-shaped diffusion 
curve can be obtained by means of appropriate assumptions regarding the 
distribution of prior beliefs within the industry. 

McCardle (1985) has generalized this model to include explicit costs of 
information gathering. When information is costly, a firm may elect to reject the 
innovation (i.e. terminate sampling without adopting). In this case, the optimal 
decision function is "cone-shaped'. That is, for sufficiently high posterior beliefs, 
the firm stops sampling and adopts the innovation; for sufficiently low posterior 
beliefs, it stops sampling and rejects the innovation; finally, for intermediate 
beliefs, it continues sampling. Jensen (1984a, 1984b) has also considered alterna- 
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tive specifications of sampling costs, as well as asymmetry in information 
processing capacity [Jensen (1984c)]. Mamer and McCardle (1985) extend the 
results of McCardle (1985) to a two-firm garne in which the firms receive private 
signals at a fixed tost per signal. Roberts and Weitzman (1981) present a 
single-agent sequential decision model which is applicable to the innovation 
adoption problem and which uses a more general specification of uncertainty. 

One difficulty with this formulation is that no firm anticipates any future 
technological improvements. Balcer and Lippman (1984) develop a one-firm 
model of the timing of adoption assuming that the firm has perfect information 
regarding the current best available technology, but is uncertain about the rate 
and magnitude of future improvements. They find that there is a critical techno- 
logical lag beyond which the firm immediately adopts the best available technol- 
ogy; otherwise, it postpones adoption. The critical lag length increases with the 
anticipated rate of future innovation. 

Another difficulty is that no firm perceives the impact of other firms' adoption 
decisions upon its own profits. Reinganum (1981b, 1981c) has argued that no 
ex ante heterogeneity among firms, not any imperfect information regarding the 
innovation's profitability, is necessary to obtain diffusion of an innovation; under 
some circumstances, a certain amount of rationality and foresight on the part of 
firms is sufficient. In particular, suppose that an industry of n identical firms 
produces and markets a homogeneous good in a Cournot-Nash manner. When a 
cost-reducing, capital-embodied process innovation is announced, each firm must 
decide when to adopt it, accounting for the costs and benefits of the innovation 
itself, and for the effects of rival firms' adoption decisions. It is assumed that each 
firm must commit itself to an adoption date at once and without knowledge of its 
rival's decisions. The justification for this assumption is that adoption of a 
process innovation is a time-consuming activitity, with installation and adjust- 
ment costs a function of the planned adjustment path. Thus, the choice of an 
"adoption date" really represents a time at which adoption will be completed 
(assuming it begins immediately); it may be very costly to alter the planned path 
of adjustment once it has been selected. That is, the whole path of adjustment, 
not just a delivery date, would have to be changed. We assume that such 
alterations of plans are prohibitively costly. 

Let %(m) be the rate of profit flow to firm i when m firms have adopted the 
innovation, but firm i has not. Next ler ~rl(m ) be the flow of profit to firm i when 
m firms have adopted and i is among them. We assume that %(m) and ~rl(m ) 
are known with certainty. 

Assumption 8 

Profit rates are non-negative, and the increase in profit rates due to adopting 
( m -  1)th is greater than due to adopting mth. That is, % ( m -  1)>_ 0 
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and ~rl(m ) > 0 with ~rl(m - 1) - qro(m - 2) > Irl(m ) - ~r0(m - 1) > 0 for all 
m _ ~ ~ n .  

Let ~~ denote firm i 's  adoption date and ler P(~'i) represent the combined 
purchase price plus adjustment costs (in present value terms) required to bring 
the new technology on line by date % The function p ( .)  is assumed to be twice 
differentiable and convex. 

Assumption 9 

(a) l i m t ~ o p ( t  ) = - l i m t ~ o p ' ( t  ) = oo; (b) l imt~o~p ' ( t  ) > 0; (c) p" ( t )  > 
re-rt[~rl(1) - ~r0(0)] for all t. 

In keeping with the adjustment costs story, Assumption 9(a) implies that 
instantaneous adjustment is prohibitively costly, but costs drop oft sharply as the 
adjustment period is lengthened. Assumption 9(b) states that there is an "efficient 
scale" or cost-minimizing period of adjustment; finally, Assumption 9(c) states 
that adjustment costs increase at a sufficiently fast rate as the adjustment period 
is compressed. This assumption ensures that firm i 's  objective function will be 
(locally) strictly concave in its choice variable. 

Let ~- = ( ' t l , . . . ,  ~,) denote the vector of adoption times in increasing order of 
adoption and let ~'-i denote this vector without the /th element % Thus, 
~" = (% ~'-i)- Let Vi(~ -) be t h e / t h  adopter's profit (in present value terms) when 
the vector of adoption dates is ~-. Then 

i - 1  
v i ( T )  = E f_T"+l ' / r0 (m)e  rtdt + 

m = 0  ~'m 

n ~m+l 
E f rq(m)  e - r td t  - P(~,) ,  

m =/  "rm 

where T O - 0 and Tù + 1 --- oB. 

Proposition 36 [Reinganum (1981c)] 

The n-tuple of adoption dates z* defined by system (16) is a Nash equilibrium 
and "ri*_ 1 < ~'i* < "r'i+» i = 1,2, . . . ,  n: 

OVi/Ori = [Iro(i - 1) - rq ( i ) ]e  "~'* - p'(ri* ) = O. (16) 

Thus, an equilibrium for this game is asymmetric, implying a "diffusion" of 
innovation over time, despite the facts that information is perfect and the firms 
are identical. 
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Reinganum's work focused on situations in which a firm was committed to its 
adoption date, regardless of any subsequent information it might receive regard- 
ing the adoption decisions of rival firms. This seems plausible under the adjust- 
ment costs interpretation given above. However, in many instances firms will be 
able to respond to the actions of rival firms without significant lags or associated 
costs of changing plans. Judd (1983) and Fudenberg and Tirole (1985) have 
examined this situation, and find that the pattern of adoption will still be 
characterized by diffusion, but that firms will be forced to adopt the innovation 
faster due to the threat of pre-emption by rival firms. In some cases, there may 
also exist a continuum of simultaneous adoption equilibria. 

Fudenberg and Tirole (1985) show that, for the model described above, a firm's 
equilibrium payoff declines monotonically with its rank in the order of adoption. 
Judd (1983) argues that if firms are able to respond to the choices and/or actions 
of rival firms, such a situation cannot occur in equilibrium. Instead, firms would 
compete to be the first firm, knowing that rival firms would adjust their adoption 
plans in response. In order to characterize equilibrium when firms are able to 
respond quicldy to rivals' behavior it is necessary to give an explicitly dynamic 
description of strategies. Following Judd (1983), ler di(t, k) be the decision rule 
for firm i; it specifies whether or not firm i adopts the innovation at t if k other 
firms have already done so; thus di(t, k) = 1 if firm i decides to adopt the 
innovation, and di(t , k) = 0 if firm i decides not to adopt the innovation at t. A 
decision rule {di}n=l is a (subgame perfect) equilibrium if and only if at each t, 
di maximizes the profits of firm i given the decision rules of the other firms and 
the value of k at t. 

For simplicity, Judd makes the following assumptions [these turn out to 
.involve some loss of generality, as shown by Fudenberg and Tirole (1985)]. He 
assumes that time is discrete, and that firms move in alternate periodS (since 
periods are of very short duration, approximately simultaneous adoption is 
possible). Let us denote the subgame perfect equilibrium by (T~* }7=1, and let 
Vi(Ti *, T*~) denote firm i's payoff, where T/* denotes the equilibrium adoption 
time for firm i assuming that equilibrium adoption decision rules are used. 
Suppose without loss of generality that the /th firm is also the /th adopter. 
Assuming that optimal continuation play is independent of the identities of those 
firms who have already adopted, it can be shown that all firms must make the 
same profit in equilibrium; that is, Vi(T *) = VJ(T*) for all i and j. To see this, 
suppose otherwise; suppose that Vi(T *) > VJ(T *) for some i ~ j. If i < j (that 
is, i adopts before j),  then j cannot be using an optimal decision rule, because j 
could essentially "become" i by adopting slightly before i, causing firms i, i + 
1 . . . . .  n to respond optimally, and leaving j with profits arbitrarily close to 
Vi(T*). If i > j (that is, j adopts before i), firm j could postpone adoption and 
again receive almost W(T*) by just pre-empting firm i. The adoption dates can 
be computed by backwards induction. 
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Proposition 37 [Judd (1983)] 

J.F. Reinganurn 

There is a unique set of (subgame perfect) equilibrium innovation times { T~* } 7= 1, 
and T/* < ~-~* for all i. 

Thus, the innovation still diffuses into use, but its diffusion is more rapid when 
firms are able to respond quickly to rivals' actions than when they are unable to 
respond. 

Fudenberg and Tirole (1985) show that the assumption of discrete time is not 
without loss of generality. In their continuous time model (the analysis of which 
necessitates the use of some quite technical arguments), there may also exist a 
continuum of equilibria involving simultaneous adoption. These equilibria can be 
Pareto ranked, with later adoption being preferred. Finally, if one is free to 
assign different continuation values (that is, different subgame equilibria) to 
different adoption histories, then profits need not be equalized across all firms 
when n > 2. 

Quirmbach (1986) has analyzed the case of coordinated adoption behavior in 
the framework of Reinganum (1981b, 1981c), and finds that diffusion is char- 
acteristic of optimal adoption under a variety of alternative objective functions. 
The key elements which combine to generate diffusion are (1) declining incremen- 
tal benefits for later adopters, and (2) declining adoption costs. Thus, although 
there is no ex ante heterogeneity among firms, these characteristics of the market 
(along with firms' abilities to perceive them) generate ex post heterogeneity in the 
form of diffusion. For example, consider the case of coordinated adoption by all 
n members of the industry. Assuming noncooperative production, joint industry 
profits can be written: 

W(e~) : Y=0 m m q r l ( m )  + (n - m ) % ( m ) ] e - r ' d t -  m=l P(~'m), 

where again % = 0 and Th+ 1 ------ ~.  Recall Assumption 8; defining A~r(m)=- 
~ ' l ( m )  - -  ~ o ( m  --  1) ,  Assumption 8 says that A~r(m - 1) > A~r(m) > 0; that is, 
the incremental benefit of adoption declines with the number of previous adopters. 
For the cooperative firms, the analogs to Assumptions 8 and 9 are as follows. 

Assumption 10 

AB(m - 1) > AB(m) > O, where 

a ß ( m )  - [m~x(m) + (n - m ) % ( m ) ]  

- [ ( m  - 1 ) l h ( m  - 1) + (n  - m + 1 ) % ( m  - 1 ) ] .  
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Assumption 11 

901 

(a) fimt_~op(t ) = -l imt_~op'(t  ) = oo; (b) limt_~ ~ p'(t) > 0; (c) p"(t)  > 
re-rt[AB(1)] for all t. 

Given these assumptions, we can characterize the jointly optimal adoption 
dates (~,°}i"__ 1 by differentiating W(~) to obtain, for i = 1,2 . . . . .  n: 

OW("I'O)/oTi = - -AB(i)e  -r '° -- p'(  ri °) = 0. (17) 

Proposition 38 [Quirmbach (1986)] 

The cooperative optimum is characterized by a diffusion of innovation which is 
uniformly slower than the noncooperative diffusion; that is, ~-i ° > Ti°l and 
~-i ° > Ti*, for i = 1, 2 . . . . .  n. 

The innovations envisioned above were those which exerted negative externali- 
ties upon the remaining members of the industry. However, in some cases the 
adoption of an innovation confers positive externalities upon all users. Examples 
include communications systems which allow agents to converse with one another, 
provided both employ compatible systems, and products such as video cassette 
players (or personal computers) where more movies (or software) will be avail- 
able if more units are in operation. Unlike innovations which exert negative 
externalities on rival firms, these innovations suffer from an individual's .unwill- 
ingness to adopt unilaterally; expectations about whether others will follow are 
crucial to the behavior of initial adopters. An interesting recent contribution to 
the literature on this subject is Farrell and Saloner (1985); for related work, see 
Dybvig and Spatt (1983) and Katz and Shapiro (1985a). 

Consider an industry composed of two firms. When an innovation, consisting 
of a new standard, is announced, firms noncooperatively decide whether to adopt 
it. Adoption is considered to be an irreversible decision. For firm j ,  dehne 
B/(1, Y) to be the net benefit to firm j of unilaterally switching from the old 
standard X to the new standard Y. B/(2, Y) is the net benefit to j if both firms 
switch to Y. Status quo profits are normalized to zero so that firm j will be in 
favor of a change by the entire industry if and only if B/(2, Y) > 0. Let Bi(1 , X) 
denote j ' s  payoff if j unilaterally remains with the old standard X, while the 
other firm switches to the new standard Y. By the normalization assumption 
B/(2, X) = 0. The assumption that adoption of the new standard confers positive 
externalities upon other adopters is formalized below. 

Assumption 12 

For k = X or Y, Bj(1, k ) <  Bj(2, k). That is, whatever choice j makes, he 
prefers to have the other firm make the same choice. 
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Proposition 39 [Farrell and Saloner (1985)] 

J.F. Reinganum 

Suppose that Bi(2, Y) > B~(2, X) and Bi(2, Y) > Bi(l, X) for some i and j ~ i. 
Then the unique perfect equilibrium involves all firms switching. 

To see why, assume that there are two decision periods. Since the firms have 
complete information, each firm can foresee whether or not the other firm will 
follow; thus if Bi(2, Y) > Bi(2, X) and Bi(2, Y) > Bi(l, X) for j ~ i and i = 1 
or 2, then the unique (subgame perfect) equilibrium involves all firms switching. 
This is because the firm which satisfies the hypotheses can ensure adoption by 
adopting unilaterally in the first period, knowing that the other firm will follow. 

Since the assumption that Bi(2, Y) > Bi(l, X) is weaker than the assumption 
that Bi(2, Y) > Bi(2, X), an immediate corollary of Proposition 39 is that if 
Bi(2, Y) > Bi(2, X) for j = 1, 2, then the unique perfect equilibrium involves all 
firms switching. Thus, firms need not be unanimous in their desire for the entire 
industry to adopt the new standard; it suffices for firm j to prefer company at 
the new standard than to maintain the old one alone. 

Suppose now that each firm is uncertain about the other firm's evaluation of 
the new standard. This evaluation is simply indexed by a superscript i denoting 
the other firm's "type",  with higher values of i indicating stronger preferences for 
the new standard Y. Let Bi(l, k) denote the net benefits to the firm of type i 
from maintaining the standard k alone, and Bi(2, k) the net benefits to the firm 
of type i from having the industry standardized at k, for k = X or Y. The 
distribution of types is assumed to be uniform on the interval [0, 1]. 

There are again two decision periods, and each firm can switch (irreversibly) 
either in period 1 or in period 2. In the first period, each firm must decide 
whether or not to switch based on its own type; in the second period, each firm 
must decide whether or not to switch based on its own type and the actions taken 
in period 1. 

Assumption 13 

Bi(2, k) > Bi(l, k), k = X, Y. That is, networks are beneficial. 

Assumption 14 

Bi(2, Y) and Bi(l, Y) are continuous and strictly increasing in i; that is, higher 
types are uniformly more eager to switch to Y. 

Assumption 15 

Bi(l ,  Y) > 0 and B°(2, Y) < B°(1, Y). At least one type is willing to switch 
unilaterally, and at least orte type is willing to remain alone at the old standard. 
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Given Assumption 15 and incomplete information regarding the other firm's 
type, a firm which switches early cannot be assured that the other firm will 
follow. For intermediate values of i, the firm's decision will depend nontrivially 
upon the decision of its predecessor. 

Assumption 16 

B'(2, Y) - B'(1, X) is monotone increasing in i. Thus, if a type i firm would 
prefer an industry switch to Y to remaining alone at X, so would any type i' > i. 

Definition 

A bandwagon strategy for a firm is defined by a pair (i*, i) with i* > i such that 
(a) if i > i*, the firm switches in period 1; 
(b) if i* > i > i, the firm does not switch in period 1, and switches in period 2 

if and only if the other firm switched in period 1; 
(c) if i < i, the firm never switches. 

A bandwagon equilibrium is defined to be a subgame perfect Bayesian Nash 
equilibrium in which each firm plays a bandwagon strategy. Farrell and Saloner 
characterize symmetric bandwagon equilibria; that is, those for which the pair 
(i*, i) is the same for both firms. They show that there is a unique such 
equilibrium, and that there are no equilibria which are not bandwagon equilibria. 

Proposition 40 [Farrell and Saloner (1985)] 

A unique symmetric bandwagon equilibrium exists. 

The equilibrium in this game has two essential features: one is that it exhibits 
"bandwagon effects"; that is, some firm types would move early in hopes of 
inducing the other firm to follow (even though they would not prefer to switch 
unilaterally; that is, B~(1, Y) < 0). Conversely, some firms who prefer the com- 
bined switch (B~(2, Y) > 0) but are of types i < i* will wait until the other firm 
has switched before switching themselves. If both firms fall into this set, then the 
industry remains at the old standard, even though both firms prefer the combined 
switch to the new one, and even though such a switch would occur if information 
were complete. As Farrell and Saloner (p. 16) picturesquely put it, "both  firms 
are fence-sitters, happy to jump on the bandwagon if it gets rolling but insuffi- 
ciently keen to set it rolling themselves". There will be some combinations of firm 
types such that the sum of benefits is positive, yet the switch will not be made, 
and other combinations for which the sum of benefits is negative and the switch 
will be made (because one firm favors the switch enough to adopt unilaterally, 
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and the other prefers company at the new standard to maintaining the old one 
alone). 

6. Conclusions 

From the collection of symmetric models discussed in Section 2, we come away 
with an appreciation of the extent to which rivalry and appropriability interact to 
determine the incentives for individual firm investment in research and develop- 
ment. For instance, we have seen that whether or not entry results in increased or 
decreased investment by a given firm can depend critically upon the extent to 
which the rewards to innovation are appropriable. Similarly, when rewards are 
suIticiently appropriable, firms will overinvest relative to the cooperative opti- 
mum; on the other hand, when rewards are sufficiently inappropriable, firms will 
underinvest relative to that benchmark. 

The models in Section 3 focused upon situations in which firms are asymmetri- 
cally placed. This asymmetry might be inherited, as in the incumbent/challenger 
models, or it might have developed over time as a consequence of intermediate 
successes. In comparing the auction and stochastic racing paradigms, we found 
that the associated equilibria were sometimes qualitatively different. In view of 
the possible differences in results, it seems important to choose the appropriate 
paradigm. The stochastic racing model seems to more accurately capture what we 
think of as research or "invention"; an activity that might or might not yield a 
worthwhile end-product, and one that may take more or less time and money 
than expected. The auction model may well be preferred for the case of develop- 
ment or new product introduction, in which any substantial technological uncer- 
tainties have already been resolved. Both research and development are signifi- 
cant aspects of innovative activity, and although the dividing line between them 
is by no means clear, some attempt should be made to match the appropriate 
paradigm to the specific application. 

The models described in Section 4 examined restricted forms of licensing 
(primarily fixed-fee contracts) in the context of oligopolistic production. Under 
this assumption, it is generally concluded that firms who are not members of the 
venture which holds the patent are worse oft as a consequence of the innovation, 
whether or not they obtain a license to use it. Thus, one incentive for licensing is 
this redistribution of wealth away from nonmembers to members. When ad- 
ditional research may yield an equivalent or bettet innovation, another incentive 
to license arises. In this situation, it may be optimal to license a drastic 
innovation to a potential entrant so as to decrease incentives for future research. 

In Section 5 we described models of the diffusion of innovation over time. 
Although an information-based model of diffusion has definite appeal in terms of 
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realism, imperfect information is by no means necessary to explain why an 
innovation might diffuse relatively slowly into use. In the case of an innovation 
which is known to be profitable, the trick is to discover why firms might delay 
adoption. The key determinants prove to be declining adoption costs and the 
pereeption that the benefits of adoption decline with the number of previous 
adopters. This latter perception stems from strategie interactions in the product 
market; for example, oligopoly or multi-plant monopoly. It is interesting that a 
similar diffusion curve can be derived for the case of an innovation with positive 
external effects. When the value of adoption increases with the number of 
previous adopters, early adopters stimulate the subsequent diffusion of the 
innovation. 

Most of this work has treated the process of research and development and the 
dissemination of its outcome as two separate issues. Invoking subgame perfection 
and dynamic programming suggests that this separation is legifimate and that 
one may fruitfully combine the results of these separate analyses. If various sorts 
of long-term commitments are possible, however, this approach will rule out 
some potentially interesting strategic features of the problem. For instance, a firm 
which could make credible a policy of never licensing to R & D  rivals might be 
able to restrict the competition it faces in R&D. In this case, a model which 
simultaneously addresses both aspects of innovative activity would be required. 

One important goal of future research should be to develop testable models of 
industry equilibrium behavior. The papers summarized here have used stark 
models in order to identify the significant characteristics of firms, markets and 
innovations which are likely to affect incentives to invest and /o r  adopt. But since 
it is largely restricted to these special cases (e.g. deterministic innovations, drastic 
innovations, two firms, symmetrie firms), this work has not yet had a significant 
impact on the applied literature in industrial organization; its usefulness for 
policy purposes should also be considered limited. For these purposes, one needs 
a predictive model which eneompasses the full range of firm, industry and 
innovation characteristics. 
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