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In 1967, a new era in endocrinology was born. A set of pulse

chase experiments performed by Steiner and Oyer (1) elegantly

showed, for the first time, that insulin was derived from a larger

precursor molecule, proinsulin. The radical revelation, that bio-

active peptides are derived from larger precursors, forever chan-

ged endocrinology and, from then on, the concept of hormone

precursors (or prohormones) has become a central dogma. Subse-

quently, the use of both traditional protein sequence studies and

recombinant DNA technology have provided definitive structures

for the precursors of all the known bioactive peptides as well as

identifying several previously unknown precursors, the function

of which are still not fully understood. In general, all these mol-

ecules contain within their sequence one or more copies of the

active peptide while some contain several different bioactive pep-

tides. In addition, they undergo a series of highly regulated

post-translational events that includes specific proteolytic cleav-

age and modifications such as amidation, acetylation and phoph-

orylation. These post-translational processing events are especially

interesting because there are a number of examples where the

extent of processing can yield very different bioactive peptides

from the same precursor. Probably the best example of this phe-

nomenon, and arguably the most studied prohormone, is the

ACTH precursor pro-opiomelanocortin (POMC). This short review

aims to highlight why it has been of such interest to

(neuro)endocrinologists and suggests that it still has a few more

secrets to yield.

Discovery of POMC

The discovery of POMC (Fig. 1) was preceded by a number of what,

at the time, appeared to be unrelated observations. Both ACTH and

a-melanocyte-stimulating hormone (a-MSH) had been purified and

sequenced from the pituitaries of various species. However, the fact

that a-MSH has the same amino acid sequence as the first 13 resi-

dues of ACTH was not seen to be of much significance until the

isolation of corticotrophin-like intermediate peptide (CLIP) (2), the

peptide that comprises the C-terminal of ACTH. This, together with

the identification of larger molecular weight forms of immunoreac-

tive ACTH (3, 4), began to suggest that ACTH and a-MSH were

indeed derived from the same molecule.

A further observation suggesting the existence of a common pre-

cursor to a number of pituitary hormones was that the sequence

of the newly-discovered pituitary peptide, b-endorphin (5, 6), which

had strong opiate-like activity, shared the same sequence as the

C-terminal of b-lipotrophin (b-LPH), another pituitary hormone

released under the same conditions as ACTH. It was subsequently

shown that b-LPH was expressed in the same pituitary cells as

a-MSH and CLIP (7).

In 1976, the first published report came that suggested ACTH

and b-LPH were derived from the same molecule (8) and 1 year

later, in two separate studies, Mains et al. (9) and Roberts and

Herbert (10) both demonstrated that ACTH and b-LPH were present

in a single molecule. Mains et al. (9) used a pulse chase approach
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with the mouse pituitary tumour cell line AtT-20 that secretes large

amounts of ACTH. They incubated the cells with radiolabelled amino

acids (the pulse) and then washed the radioactivity away after a

short period (the chase), thus labelling all proteins synthesised dur-

ing the period of the pulse. By taking the cells at different times

after the chase and immuno-precipitating the cellular protein using

either an ACTH or b-endorphin antiserum followed by electropho-

retic analysis using SDS-PAGE, they identified a common 31-kDa

protein that became progressively smaller with time after the pulse

until it became fully processed.

Roberts and Herbert (10) also used the AtT-20 cell line together

with a cell free translation system. Messenger RNA was purified

from the cells and expressed in the cell free system. In this way, a

28-kDa protein was identified that was recognised by both an ACTH

and b-endorphin antiserum.

Although these experiments provide conclusive evidence that

indeed ACTH and b-LPH were derived from the same protein, it

was not until 1979 when the cDNA encoding POMC was cloned,

from both the bovine intermediate lobe (11) and from the mouse

pituitary cell line AtT-20 (12), that the true structural relationship

between ACTH and b-LPH was revealed. Since then, the POMC gene

has been cloned and sequenced from a variety of organisms. In

every species examined, it has been found that there is a single

functional copy of the gene and the overall gene structure, with

the exception of the loss of c-MSH in the salmon (13), has

remained remarkably conserved throughout evolution. The precursor

molecule (pre-pro-opiomelanocortin) has a 26 amino acid signal

sequence followed by an N-terminal peptide (16K fragment or pro-

c-MSH) containing the first (c) MSH sequence (a peptide that had

previously not been identified). In the centre of the molecule is

ACTH, the sequence of which contains the second MSH sequence

(a-MSH). Finally, at the C-terminus, is b-LPH, the sequence of

which includes that for b-endorphin and the third (b) MSH

sequence. All the MSH peptides contain a common core sequence

of amino acids, MEHFRW (although, in c-MSH, the glutamic residue

is substituted by a glycine) and are collectively known as the mela-

nocortins. Dibasic amino acid residues (e.g. Arg-Lys, Arg-Arg, Lys-

Arg or Lys-Lys) flank all the bioactive peptides within POMC and

are cleaved by specific proteases to release the active peptides.

The melanocortin receptors

The known roles of ACTH in steroid production from the adrenal

and a- and b-MSH in skin pigmentation suggested the existence of

at least two receptors specific for the melanocortin peptides. Using

a cloning strategy based on the sequence of known G-protein
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Fig. 1. Structure of the pro-opiomelanocotin gene and protein. The location of the various peptides together with the dibasic amino acid residue cleavage

sites and the areas conserved between species are shown. ACTH, adrenocorticotrophin; CLIP, corticotrophin-like intermediate peptide; LPH, lipotrophin; MSH,

melanocyte-stimulating hormone; POMC, pro-opiomelanocotin.
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coupled receptors, the first receptor specific for a-MSH was cloned

in 1992 (14, 15). In the following 2 years, a further four closely-

related receptors were identified and were subsequently named

melanocortin receptors 1–5 (MC1-5-R). All members of the family

are typical rhodopsin-like seven transmembrane spanning receptors

that couple through cAMP, although it has been demonstrated that

some members can use other signalling pathways (16, 17). The

MC1-R is expressed predominantly in the skin where it mediates

the effects of a-MSH on pigmentation. It is also expressed in cells

involved with the inflammatory response where it plays a role in

mediating the anti-inflammatory effects of a-MSH (14, 15). The

MC2-R is expressed in the adrenal cortex where it stimulates steroi-

dogenesis and is expressed also in the adipocytes of rodents where

it stimulates liploysis. It is unique amongst the family for being

highly specific for ACTH (15, 18). The MC3-R is expressed mainly in

the hypothalamus and also in gut, kidney and placenta. This recep-

tor is the only MCR with significant affinity for c-MSH, but can

also bind a-MSH and ACTH with approximately equal affinity (19).

This receptor plays a role in feeding behaviour by influencing fat

mass; its role in the periphery is still not clear. The MC4-R is

expressed mainly in the brain and spinal cord. Its principle ligand is

a-MSH (20) and it plays a key role in the regulation of appetite.

The MC5-R is expressed at low levels in a wide variety of tissues

with a-MSH showing the greatest binding affinity (21). Its function

remains obscure, although studies in the MC5-R null mouse have

implicated a role in exocrine gland function (22). There is currently

significant interest in the MC-Rs as drug targets for obesity, result-

ing in the development of a number of selective agonist and antag-

onists. A detailed review of these, together with the pharmacology

of the MC-Rs, can be found in MacNeil et al. (23).

Sites of expression of POMC and the concept of tissue
specific processing

The POMC gene is predominantly expressed in the anterior and

intermediate lobes of the pituitary and its mRNA has been detected

in several other tissues, including the brain, lymphocytes, skin, tes-

tis, thyroid, placenta, pancreas, gut, kidney adrenal and liver (24). It

is generally accepted that the vast majority of POMC peptides

found in the circulation are derived from the pituitary whereas, by

contrast, peptides produced in extra-pituitary tissues act in an

autocrine or paracrine fashion.

One consequence of producing peptides from a larger precursor

is that the precursor can be cleaved in a tissue specific manner to

give a different set of products depending in which tissue the pre-

cursor is synthesised. POMC is the classical example of this

so-called tissue specific processing and has been studied extensively.

Processing of POMC in the pituitary

POMC is expressed in both the anterior and intermediate lobes of

the pituitary. In the anterior lobe, it is produced in a sub-population

of cells called corticotrophs representing approximately 1% of the

total protein content whereas, in the intermediate lobe, it is

produced in cells called melanotrophs (Fig. 2). A clearly defined

intermediate lobe is not present in humans, where it regresses soon

after birth.

The processing in each of the lobes is quite different and has led

to the use of the term ‘tissue specific processing’ that describes the

concept of different secreted products being generated from the

same precursor. The processing of POMC in each of these tissues is

shown in Fig. 3 along with the melanocortin receptor subtypes

(MCX-R where X is a number from 1–5) responsible for the effects

of the processed peptides. An interesting observation is that the

processing of POMC in the pituitary is not 100% efficient, resulting

in significant amounts of intact precursor being released into the

circulation (25).

Anterior lobe

The AtT-20 cell line has been used extensively to characterise the

processing pattern in the anterior pituitary and has been a good

model, reflecting accurately the processing events that occur in

anterior pituitary corticotrophs (26). In these cells, processing of

POMC results in the generation of pro-c-MSH, ACTH and b-LPH,

with little processing to the smaller peptides. This pattern of pro-

cessing also occurs in the anterior pituitary (27–29), although a

significant proportion of the b-LPH is further cleaved to b-endor-

phin (30, 31). There is some evidence to suggest that, in the rat

and the sheep, a proportion of the ACTH is cleaved to a-MSH and

CLIP.

Intermediate lobe

Processing of POMC in the intermediate lobe is more extensive with

further cleavage of the peptides produced in the anterior lobe. ACTH

is cleaved to a-MSH and CLIP whereas b-LPH is virtually completely

processed to b-endorphin and c-LPH (28, 32). b-endorphin1-31 is

cleaved at the C-terminus to give b-endorphin1-27, b-endorphin1-26

AL

AL

IL

PL

Fig. 2. Section of a rat pituitary stained with an antibody to c-melanocyte-

stimulating hormone. Expression of pro-opiomelanocotin (POMC) can be

seen in numerous corticotroph cells scattered throughout the anterior lobe

(AL) whereas, in comparison, expression is more extensive in the intermedi-

ate lobe (IL), which is almost completely comprised of melanotroph cells. No

cells expressing POMC can be observed in the posterior lobe (PL).
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and a dipeptide glycylglutamine (31). The majority of the b-endor-

phin is N-acetylated (27, 33), which destroys its opiate activity (34).

The N-terminal fragment pro-c-MSH is also partially cleaved at an

Arg-Lys site to give N-POMC 1–49 and Lys-c3-MSH (35). This latter

peptide contains an additional dibasic site (although not in all spe-

cies) but does not appear to be cleaved to any significant extent.

Processing of POMC in other tissues

As previously stated, the mRNA of POMC can be detected in a

number of non-pituitary tissues, although, in many of these, the

transcripts are not full length and cannot be efficiently translated,

leading to extremely low levels of protein (36). However, there are

a number of exceptions to this where significant amounts of POMC

are produced. In general, processing in these tissues is similar to

that observed in the intermediate lobe of the pituitary, although

there are subtle differences between tissues.

Brain

It has been known for many years that the brain produced POMC-

derived peptides (37), although it was initially assumed these were

of pituitary origin. It is now known that this is not the case and

that POMC is expressed mainly in the hypothalamus, specifically

the arcurate nucleus, although it is expressed also at lower levels in

both the hippocampus and cortex (24, 38).

Processing in the brain is generally accepted to follow a pattern

similar to the intermediate lobe, although the majority of a-MSH

expressed in the hypothalamus is not acetylated (39). Interestingly,

in a more recent report, it has been suggested that there are signif-

icant amounts of the larger anterior lobe peptides (40). The physio-

logical role of POMC peptides in the brain is currently an area of

active research as it has been shown that a-MSH is central to the

regulation of appetite, being part of an endocrine feedback loop

with leptin (a hormone produced by adipocytes) together with the

MC3 and MC4 receptors (41). The complete architecture of this sys-

tem is still far from clear, but has clear potential as a therapeutic

target for the treatment of obesity.

Skin

The role of a-MSH and b-MSH in lower vertebrates, such as frogs,

has been known for many years where it causes darkening of the

skin to match the environmental background. Interestingly, frog

skin was used for many years as a sensitive bioassay for a-MSH

(42, 43). The role of pituitary-derived a-MSH in the pigmentation of

humans is not clear because, without an intermediate lobe, this

peptide cannot be found in the circulation, although, in conditions

resulting in overproduction of POMC such as Cushing’s syndrome,

Nelson’s syndrome or Addison’s disease, there is a distinct darken-

ing of the skin. There is local production of POMC and its peptides

in melanocytes, keratinocytes (44, 45) and dermal microvascular
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Fig. 3. Processing of pro-opiomelanocotin (POMC) in the anterior and intermediate lobes of the pituitary and the physiological roles of the resulting peptides.

POMC peptides act mainly through a family of five G-protein coupled receptors known as the melanocortin receptors (MCX-R where X is a number from 1–5).

b-endorphin acts via the j and l opiate receptors and the receptor through which the N-terminal peptides stimulate adrenal mitogenesis remains to be iden-

tified. ACTH, adrenocorticotrophin; CLIP, corticotrophin-like intermediate peptide; LPH, lipotrophin; MSH, melanocyte-stimulating hormone.

Tissue-specific processing of pro-opiomelanocortin 695

ª 2008 The Author. Journal Compilation ª 2008 Blackwell Publishing Ltd, Journal of Neuroendocrinology, 20, 692–699



endothelial cells (46) with processing in an intermediate lobe pat-

tern. The synthesis and release of these peptides is regulated by

both cytokines and ultraviolet radiation, suggesting the existence of

an autocrine ⁄ paracrine role for POMC peptides in skin pigmentation

acting via the MC1 receptor (45, 46).

Lymphocytes

Lymphocytes and macrophages express a number of melanocortin

receptors (38, 47), as well as certain classes of opiate receptors,

and it has been known for a long time that POMC peptides can

influence immune function. The expression of POMC in lymphocytes

was discovered in the late 1970s due to ACTH-like bioactivity being

detected in lymphocyte-derived preparations of interferon-a (48),

although, due to the low expression levels, it took some consider-

able time to definitively show expression of POMC at both the

mRNA and protein level. Interestingly, processing of POMC in lym-

phocytes appears to be more like that observed in the anterior pitu-

itary with the generation of ACTH (49). The functional significance

of POMC expression in lymphocytes is still not entirely clear, and it

is generally asssumed that it forms part of a biochemical loop link-

ing the immune, nervous and endocrine systems (38, 48).

Placenta

In comparison to the pituitary, the placenta expresses the POMC

gene at a relatively low level, although the large mass of the pla-

centa means that it can secrete significant amounts of POMC-

derived peptides into the circulation. Processing of POMC in the

placenta is unique, and leads to the release of significant amounts

of both unprocessed and partially processed precursor, as well as

ACTH, b-LPH, a-MSH and b-endorphin (50, 51). Secretion levels are

relatively low throughout pregnancy and tend to rise towards term,

which leads to increased levels of ACTH, although these usually

remain within the normal range (52). The physiological role of

POMC derived from the placenta remains unknown, although it

was suggested recently that many placental peptides (including

POMC) are modified with phosphocholine, a molecule implicated in

immunomodulation (53).

Molecular basis of POMC tissue specific processing

As shown in Fig. 1, POMC is processed at pairs of basic amino

acids. Within the sequence of POMC, there are eight pairs and

one quadruplet. In the anterior pituitary, four Lys-Arg pairs are

cleaved whereas, in the intermediate lobe (and most of the other

tissues), all nine sites are cleaved. Despite the knowledge of the

necessity of dibasic residues at the cleavage sites, it took until

the 1990s to finally identify the enzymes responsible. The first

breakthrough came with the cloning of a yeast gene called KEX2

(54, 55). The product of the KEX2 gene, known as kexin is a pro-

tease that cleaves the yeast a factor mating pheromone. Cellular

expression of the gene demonstrated that the enzyme belongs to

the subtilisin family of Ca2+ dependent serine proteinases. KEX2

has the ability to selectively cleave a number of mammalian pro-

hormones and this led to the hypothesis that similar mammalian

counterparts existed.

The first mammalian gene to be identified as a potential process-

ing enzyme came as a consequence of computer alignment of the

amino acid sequences surrounding the serine and catalytically

important asparagine of kexin against known protein sequences. By

this method, a human gene of unknown function was identified,

named fur, that lies upstream from the tyrosine kinase fps ⁄ fes

proto-oncogene. The product of this gene, known as furin, was to

become the first mammalian processing enzyme identified (56).

Using the sequence of the two eukaryotic proteases and several

other subtilisin sequences, Smeekens and Steiner (57) designed

degenerate oligonucleotides corresponding to the conserved active

site. By utilising these in the polymerase chain reaction (PCR) with

cDNA isolated from a human insulinoma library as template, a frag-

ment was generated that was then used to probe that library.

A full-length cDNA was identified that encoded a protease that

became known as PC2. Concurrently Seidah et al. (58, 59) used a

similar procedure with the sequence of furin and a mouse pituitary

library identified two cDNA clones that were to become known as

PC2 and PC1.

Elegant studies performed in vitro using cell based assays and

recombinant enzymes (60–64), together with studies looking at PC1

(65) and PC2 (66) knockout animals, have revealed the molecular
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basis of the tissue specific processing observed in the anterior and

intermediate lobes. In the anterior lobe, PC1 is the predominant

enzyme present, which, due to its more limited proteolytic activity,

results in the generation of ACTH. However, in the intermediate

lobe, both PC1 and PC2 are present and their co-ordinate actions

result in the generation of the smaller POMC peptides (50, 51).

Cleavage occurs in a specific order (Fig. 4) with some of the dibasic

sites being more labile than others (54). Accordingly, the age of a

specific secretory granule has an influence on the proportion of the

various peptides, with older granules containing more extensively

processed peptides than younger granules.

Post-secretional processing of POMC peptides

A number of elegant studies undertaken in the early 1980s dem-

onstrated that peptides derived from the N-terminal of pro-c-

MSH, lacking the c-MSH sequence are involved with the mainte-

nance of adrenal cortex size and have the ability to promote

adrenal mitogenesis (67–69). Since these peptides were not prod-

ucts of anterior pituitary processing, it was proposed that circu-

lating pro-c-MSH was cleaved, most likely at the adrenal itself.

More recently, a putative serine protease has been cloned from

the adrenal that is up-regulated during adrenal growth. Initial

studies using synthetic substrates suggest that it could potentially

cleave pro-c-MSH to generate a 52 residue N-terminal fragment,

which could then potentially stimulate adrenal mitogenesis (70).

The generation of this fragment, independent of the pituitary, rep-

resents another level of regulation of POMC peptide function giv-

ing adrenal size independence from the demands of

steroidogenesis.

Summary

Most peptide hormones are produced as inactive precursor mole-

cules that are subsequently cleaved at dibasic residues to release

the active peptides. As the first multi-hormone to be discovered

over 30 years ago, POMC has been extensively studied and charac-

terised. Expressed mainly in the anterior and intermediate lobes of

the pituitary, it is also expressed and processed in a number of

central and peripheral tissues. POMC is the precursor to a number

of bioactive peptide hormones, the exact combination produced

being dependent on the tissue in which it is expressed. This ‘tissue

specific’ processing results in a huge diversity of biological actions

from a single molecule that has been of keen interest to endocri-

nologists since POMC was discovered. However, we are still some

way off fully understanding the biology of POMC and its peptides

and, as a consequence, there is still plenty to keep endocrinologists

occupied for several more years to come.
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44 Schauer E, Trautinger F, Köck A, Schwarz A, Bhardwaj R, Simon M, Ansel

JC, Schwarz T, Luger TA. Proopiomelanocortin-derived peptides are syn-

thesized and released by human keratinocytes. J Clin Invest 1994; 93:

2258–2262.

45 Wintzen M, Yaar M, Burbach JP, Gilchrest BA. Proopiomelanocortin gene

product regulation in keratinocytes. J Invest Dermatol 1996; 106: 673–

678.

46 Scholzen TE, Kalden DH, Brzoska T, Fisbeck T, Fastrich M, Schiller M,

Böhm M, Schwarz T, Armstrong CA, Ansel JC, Luger TA. Expression of

proopiomelanocortin peptides in human dermal microvascular endothe-

lial cells: evidence for a regulation by ultraviolet light and interleukin-1.

J Invest Dermatol 2000; 115: 1021–1028.

47 Catania A. The melanocortin system in leukocyte biology. J Leukoc Biol

2007; 81: 383–392.

48 Blalock JE. Proopiomelanocortin and the immune-neuroendocrine con-

nection. Ann N Y Acad Sci 1999; 885: 161–172.

49 Lyons PD, Blalock JE. Pro-opiomelanocortin gene expression and protein

processing in rat mononuclear leukocytes. J Neuroimmunol 1997; 78:

47–56.

50 Grigorakis SI, Anastasiou E, Dai K, Souvatzoglou A, Alevizaki M. Three

mRNA transcripts of the proopiomelanocortin gene in human placenta

at term. Eur J Endocrinol 2000; 142: 533–536.

51 Raffin-Sanson ML, Massias JF, Ankotche A, Coste J, de Keyzer Y, Oliver
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