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THE TOEPLITZ PACKAGE USERS* GUIDE

0. B. Arushanian, M. K. Samarin, V. V. Voevodin, E. E. Tyrtyshnikov (USSR)
B, S. Garbow, J. M. Boyle, W. R. Cowell, K. W, Dritz (USA)

ABSTRACT

The TOEPLITZ package 1s a collection of Fortran subroutines
for the mumerical solution of systems of linear equations with
coefficlent matrices of Toeplitz or circulant form. This report
provides a description of the algorithms and software in the
package and includes program listings.

INTRCDUCTION

1. Overview of the TOEPLITZ Package

The TOEPLITZ package 1is a collection of Fortran subroutines for solving

linear systems
Ax = b,

where A is a Toeplitz matrix {see subsection 1.1 of Chapter 1), a circulant
matrix (see subsection 1.2 of Chapter 1), or has one of several block struc-
tures based on Toeplitz or circulant matrices. Included also is capabllity
for orthogonal factorization of a column—-circulant matrix (see subsection 1.4

of Chapter 1).

Such systems arise 1in problems of electrodynamics, acoustics, mathe-
matical statistics, algebra, in the numerical solution of integral equations
with a difference kernel, and in the theory of stationary time aseries and
signals (see, e.g., [5,7,9,17,20,25,26]). Circulant matrices play an impor-
tant role 1in the theory of circular convolutions [13]. Block-Toeplitz
matrices have recently begun to play a significant role as the applicability

of multichannel time series increases [22,30].

Although the theoretical and practical significance of Toeplitz matrices
was recognized early in this century [23,28,31], computational aspe tr were
no!. studied until more recently. The most influential and fundamental paper

on algorithmic aspects was Levinson's extension to the discrete case of



Wiener's basic work on filtering [19,29]. It was here that the technique of
bordering and recursion on the order of the system was first shown to be an
effective way to produce efficient algorithms for Toeplitz systems., Levin-
son's algorithm 1is an O(Mz) method for solving an order M positive-definite
symmetric Toeplitz system of equations. Trench later used the same ideas to
show how bordering could be exploited for general Toeplitz systems [24].
Trench's work was made more explicit and generalized by Zohar [32,33].

These O(Mz) algorithms for Toeplitz systems are currently the most
practical methods for such problems. They have simple descriptions as pro-
grams, they use simple storage and control structures, and ercor analyses are

available for some of them [8,10,11].

The algorithms in this package for circulant matrices appear to have been
known classically (see [13]). Toeplitz matrices of the second level are dis-

cussed in [4,21,22,27]; the algorithms are essentially the same as those in
this package.

Toeplitz matrices arising in time series and signal processing are quite
often covarlance matrices that occur in normal equations for linear least-
squares problems. The coefficient matrices 1in these problems often have
column-circulant structures that lend themselves to efficient methods for
problem solution by orthogonalization. These methods are usually called
“lattice methods"” in the signal processing iiterature [12,14,18]; one such

method [12] is implemented in the TOEPLITZ package.

The TOEPLITZ package has an intentional similarity to LINPACK [15] in the
format of the Fortran source, 1in the comments, and in the subroutine naming
conventions. All names consist of four, five, or six letters (depending on
the level of block structure of the matrix A) in the forms XSL#, XYSL#, or
XYZSL# for the system solving subroutines and CQR# for the orthogonal factor-
ization subroutines.” When A has no speclal block structure {(see Chapter 1),
the letter in the X position specifies the type of the matrix:

T Toeplitz
C Circulant.

*The one member not governed by the naming convention {8 the service
subroutine SALWC (SALWZ in double precision), called by most of the two-level
and all of the three-level system solving subroutines.



When A has a two-level block structure (see Chapter 2), the letters in the XY
positions specify the type of the matrix:

TG Block-Toeplitz where the blocks are generzl matrices

CT Block-circulant where the blocks are Toeplitz matrices

CC Block-circulant where the blocks themselves are circulant matrices
CG DBlock-circulant where the blocks are general matrices,

When A has a three~level block structure (see Chapter 3), the letters in the

XYZ positions specify the type of the matrix:
CTG Block-circulant where the blocks are two-level TG-type matrices
CCT Block—circulant where the blocks are two-level CT-type matrices
CCC Block-circulant where the blocks are two-level CC-type matrices
CCG Block-circulant where the blocks are two-lavel CG-type matrices.

By permuting corresponding rows and coluwuns, one can transform any two-
level XY-type matrix to YX-type (see Tyrtyshnikov [25]). Similarly, one can
interchange any two levels of a three-level XYZ-type matrix., These cir-
cumstances effectively extend the capabllity of the TOEPLITZ package to
additional matrix types,

The fixed letters SL indicate that the routine solves a linear system,
while the 1letters QR indicate that the routine performs an orthogonal

factorizatica.

The last letter 1in the # position specifies the matrix data type.
Standard Fortran allows the use of three such types:
S REAL
D DOUBLE PRECISION
c COMPLEX.,

In addition, some Fortran systems allow a double precision complex type:

Z DOUBLE COMPLEX,

2. The Leading Array Dimension Parameter

Those members of the TOEPLITZ package that process a two-dimensional
array include in their calling sequences the parameter LDA (or LDQ,LDS) to
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communicate the leading dimension of the array. 'Leading dimension'" refers to
the DIMENSION statement storage allocation for the array and should be distin-
guished from the order of the linear system. The Inclusion of this parameter
enables flexibility In processing systems of varying order without the bother
of changing the DIMENSION statement for the coefficlent matrix.

For example, if the array A has been declared "A(50,20)" in the DIMENS ION
statement, then simply enter the statement '"LDA = 50" into the body of the
program before the call to the TOEPLITZ package subroutine,

3. Development of the TOEPLITZ Package

In offering the TOEPLITZ package to the 1International computing
community, 1t is appropriate to note that this software is the result of
collaboration among scientists in the United States and the Soviet Union,
Hence, in addition to the intrinsic usefulness of the package, the software in
its present form demonstrates the possibilities iInherent in Soviet-American
collaboration in the development of sclentific software, The work was carried
out under the auspices of the agreement between the U,S.A. and the U,5.5.R. on
Sclentific and Technological Cooperation in the Fleld of Application of

Computers to Economics and Management, subtopic Mathematical Software.

This collaborative effort was Initiated at the Numerical Software Work-
shop which took place at the National Science Foundation (NSF) in Washington,
D.C. in December of 1975, The general framework of joint efforts was dis-
cussed during that workshop by D. Aufenkamp of NSF, W. Cody of the Applied
Mathematics Division, Argonne Naticnal Laboratory (AMD-ANL), and O. Arushanian
of the Science Research Computing Center, Moscow State University (SRCC-MSU),
then visiting Pennsylvania State University for the year. Further steps were
discussed during a meeting which took place at Penn State in February of 1976
fnvolving D, Aufenkamp (NSF), J. Boyle (AMD-ANL), W, Cowell (AMD-ANL), and
0. Arushanian (SRCC-MSU), and during a short visit by O. Arushanian to
J. Bunch, University of California at San Diego (UCSD). In accordance with
plans agreed upon during these meetings and approved in the meeting of coordi-
nators and experts on the topic "Theoretical Foundations of Software for
Application in Economics and Management" which took place in Moscow in June of
1976, long-term visits of American sclentists to the U.S.S.R. in 1976 and 1978
and of Soviet acientists to the U.S,A. in 1978 and 1979 were arranged to



exchange informationm and to carry out joint work on numerical software devel-
opment. These joint efforts came to be known as the SALAR (Soviet-American
Libraries and Algorithms Research) project. Results of accomplished works
have appeared in 25 papers (see [1] and [2])) and were precented at the IFIP
Congress in August of 1977 in Toronto, Canada (see [3]).

The contributions from the U.S.,A. side wera made by J. Boyle, K, Dritz,
W. Cowell, and B, Garbow of AMD-ANL (now redesignated MCS-ANL), J. Bunch of
UCSD, D. Sorensen (now of MCS-ANL), W. Miller (now of the University of Ari-
zona), and C, Moler of the University of New Mexico. The contributions from
the U.5.5.R. side were mace by V. Voevodin (now of the Academy of Sclences,
State Committee for Science and Technology), O. Arushanian, M. Samarin,
E. Nikolaev, V, Morozov, Y. Kuchevskly, E, Tyrtyshnikov, N, Bogomolov, and
V. Borisov of SRCC-MSU,

The SALAR project had a number of objectives. First of all, it repre-
sented joint research Into the methodology and practical aspects of producing
mathematical software, namely, numerical libraries and packages, This main
objective dictated the necessity of also investigating systems aspects of
mathematical software development, which include the study of transportability
problems, tailoring of programs to user requests, abstract formulation of
numerical algorithms, and program transformation and generation asystems.
Methodological questions assoclated with the joint systematization, testing,
and certification of mathematical software packages were also of great impor-
tance in the SALAR project, Research in numerical algorithms development was
conducted mostly in linear algebra on problems such as updating algorithms for

matrix decomposition and solving special types of linear systems.

The TOEPLITZ package was produced as a part of the SALAR project and can
be considered as a practical result of previous investigations. Tle routines
were orfiginally written fn 1978 at Moscow State University by E. Tyrtyshnikov
[25] on the basis of the theoretical rtesults of W. Trench [24] and
S. Voevodina [27], and on his own reses-ch., A preliminary version of the
users' guide was written by Soviet and American scientists during a visit to
Argonne National Laboratory {(U.S.A.) made by Soviet scientists 0. Arushanian
and M. Samarin (of SRCC-MSU) in 1979, Multiple versions of TOEPLITZ subrou-
tines and formatting of codes were obtained with the help of the TAMPR-syatem
[3], produced by J. Boyle and K. Dritz of AMD-ANL. Modifications, commenting,

11
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and test driver design were also accomplished during this Argonne visit.
Sclentific supervision over the development of the TOEPLITZ package at SRCC-
MSU was provided by V. Voevodin.

Further developmental work on the codes and preparation of this users'
gilde were accomplished at Argonne in 1982, ‘e added capability for ortho-
gonalization of column-circulant matrices derives from a new algorithm of
G. Cybenko [12] {(of Tufts University)}. Cybenko also suggested an 1improved
formulation of another of the algorithms, supplied background information
included in the "Overview" section of this guide, and pointed us to many of

the references.

In conclusior. we wish to acknowledge the support of the National Science
Foundation (U.S.A.} and the State Committee for Science and Technology
(U.S5.5.R.), executors of the Science and Technology Agreement. Speclal thanks
are due to D. Aufenkamp (U.S.A.), B. Rameev (UI.S.S.R.), and Y, Barahoshkin
{(U.S.5.R.) who created conditions in which our joint work could flourish., We
also express our great gratitude (. Judy Beumer (of MCS~ANL) who carefully
typed the manuscript for *i is users' guide.

4, Availability of the TOEPL'TZ Package

The TOEPLITZ package 1s available on tape from the following sources.

National Energy Software Center MSL, Inc.

Argonne National Laboratory or Sixth Floor, NBC Hdg.
9700 South Cass Avenue 7500 Bellaire BRlvd.
Argonne, IL 60439 Houston, T™ 77036-5085
Phone: (312) 972-7250 Phone: (713) 772-1927

The package 1includes both single precision and double precision versions of

the programs, and testing aids are also provided on the tape (see The TOEPLITZ

Package Implementation Guide, ANL-83-17).

Comments and questions regarding the TOEPLITZ package should be directed
te

Burton S. Garbow

Mathematics and Computer Science Division
Argonne National Laboratory

9700 South Cass Avenue

Argonne, IL 60439

Phone: (312) 972-7184



CHAPTER 1l: TOEPLITZ AND CIRCULANT MATRICES

1. Stmicture and Representation

1.1. Toeplitz matrices (T-matrices)

A Toeplitz matrix, or T-matrix, A is a real or complex square matrix
whose elements along the main dfagonal and along each co-diagonal are equal;

thus A has the representation

/ aO al 32 . o+ . aM_l\
a_l 30 al « s s am_z

8_2 8_1 ao . s . aM_3

M1 A-Ma2 2443 0 0 30 } .

A T-matrix 1s completely specified by its first row and column.

In the TOEPLITZ package a T-matrix of order M is reprusented by a sing.y
subscripted array of 2*M-] elements which contalns the first row of the matcix

followed by its first column beginning with the second element:
30.81.32....,aM_l.a_l,a_z,---.a_H+l .

1.2. Circulant satrices (C—-ntriceql

A circulant matrix, or C-matrix, A is a T-matrix, limited here to complex

mode, with the further property that
8_y ™ ay_y » i =1,2,...,M-1 ;

thus A has the rapresentation

13
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]
=
i
—
o
o
-
[
0
b

al 82 83 . . 80 .

A C-matrix is completely specified by 1its first row; each further row may be
obtained from the previous one by a right cyclic shift.

In the TOEPLITZ package a C-matrix of order M is represented by a singly

subscripted array of M elements which contains the first row of the matrix:

80,81,82,...,8M_1 L]

1.3. General matrices (G-matrices)

A general real or complex square matrix

451 212 33 - - - M
31 432 43+ - .« 834
A= | a3 a3 a3z . .. agy

L } [ I I I I ) . ® « s s

\

will be called a G-matrix.

In the TOEPLITZ package a G-matrix of order M is represented by a singly
subscripted array of M#**2 eclements which contains the successive columns of

the matrix:
all ,821,83’ p e uo,aMl,812,322'832,100,3M2.| n-,"’.lM.aZM|a3H,-ao,am .

l.4. Column-circulant satrices

The designaticn "column-circulant" will be given to a real or complex
rectangular matrix A, with row order M at least equal to its column order L,
whose first column 1is specified and each further column obtained from its

predecessor by a downward cyclic shift; thue A has the representation



80  M-1 #M-2 * + * ML+
1 %0 M-1* ' AM-L42
22 41 0 - ¢ MeL43

8-1 8M-2 -3+ ¢ ¢ AWML .

In the TOEPLITZ package a column-circulant mavrix with M rows is

represen-ed by a singly subscripted array of M elements which contains the
first column of the matrix:

80,31,82,-.-,8M_1 -

2. Solution of Linear Equations with T-Matrices

2.1. Purpose

The TOEPLITZ subroutines in this section are designed to solve linear
algebraic equations with T-matrices. Usage will be described for the single
precision real version. Double precision, complex, and double precision
complex versions are also avallable. Indeed, the complex version i8 called in

solving two-level CT-matrix systems (see subsection 3.5 of Chapter 2).

2.2. Usage

Single precision real T-matrices. TSLS solves a linear system with a

real Toeplitz matrix. The calling sequence is

CALL TSLS(A,X,R,M) .,

On entry,

A is a singly subscripted array of 2*M-1 elements which contains the
first row of the T-matrix followed by its first columm beginning
with the second element. A is unaltered by TSLS.

15
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X is a singly subscripted array of M elements which contains the right
hand side of the system.

R is a singly subscripted array of 2*M-2 elements used for work space.

M 1s the order of A and the number of elements in X,

On return,

X contains the seclution of the system.

Double precision real T-matrices. The calling sequence of the double

precision real T-matrix subroutine TSLD is the same as that of TSLS with A, X,
and R DQU3LE PRECISION variables.

Single precision complex T-matrices. The calling sequence of the single

precision complex T-matrlix subroutine TSLC is the same as that of TSLS with A,
X, and R COMPLEX variables.

Double precision complex T-matrices. In those computing systems where it

is available, the calling sequence of the double precision complex T-matrix
subroutine TSLZ is the same as that of TSLS with A, X, and R DOUBLE COMPLEX

variables.

2.3. Example

The following program segment 1llustrates the use of the single precision
subroutine TSLS for real T-matrices. Examples of the use of TSLD, TSLC, and
TSLZ could be obtained by changing the subroutine name and type declaration,

The system is of order 4 with coefficienis as follows.

5 ! 2 3 11
A= =
6 5 1 2 14

7 6 5 1 ll9]
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REAL A(7),X(4),R(6)

INTEGER M,I

DATA A(L)/1.0/,A(2)/2.0/,A(3)/3.0/ ,A(4)/4.0/,
* A(5)/5.0/,A(6)/6.0/,A(7)/7.0/

DATA X(1)/10.0/,X(2)/11.0/,X(3)/14.0/ ,X(4)/19.0/
M= 4

CALL TSLS(A,X,R,M)

DO 101 =1, M

WRITE(..e,...) X(I)
10 CONTINUE
STOP
END

The solution of the system is

X = (1.0,1.0,1.0,1.0) .

2.4. Algorithm
The algorithm for the solution of a system of linear algebraic equations
Ax = b (n

with a T-matrix A of order M comprises a sequence of M steps. At the (k+l)-st

step the solution of the system

Ayp = dy (2)

is determined. Here

3 3o % lyo,k\ | bo‘

8.1 3p . - - A 1,k by
A= 3_2 a_l- s ak_z N yk = yz,k N dk = bz

Ak qxk+1t * @0 iyk,k \ by

The vector y, is calculated by recurrence from Yi-1° The final result of

the recurrent process is the solution of system (1), namely, x = YM-1°

At step 1, yg = bolao. At step k+1, let us consider the unknown vector
Y to be the sum of two vectors, one of which, augmented by a zero, was deter-
mined at the k-th step:
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’ 70,k \ Yo,k-ll 20,k
Y1,k Y1,k-1 %1,k
. = . + . (3)
Yk-1,k Yk-1,k~1 x-1,k
Yk, k 0 21k .

Substituting this sum finto equation (2) and taking into account that the

vector yp_j satisfies the equation

Ag_1¥ik-1 = dg-1 >

we see that the unknown vector zy, from (3) with elements

zO,k’zl,k"' "zk,k

is the solution of the system

Akzk = fk N
where

0
¢
' i

f, = . f =h - a .y .

k s - - —
0 k,k K 2=1 Lk-1,k-1
ek

Thus, the wvector Z) is the same as the last column of the matrix Ail milti-
plied by fk,k' Hence, for recurrent calculation of the vectors Y 1t is
sufficlent to evaluate recurrently the last column of the matrix A;l, or as
done here for further economy an appropriately chosen multiple of this

column. It 15 here that advantage 1s takun of the Toeplitz structure of A,

Let us denote by g, and hy the first and last columns, respectively, each
scaled by the as yet unspecified factor qp, of the matrix A;l:

89,k "o,k ‘ ,qk o |
g1,k Ry 0 0
By ~ A IR T B »oand Age = s Al =]}
Bk-1,k -1,k n 0
Bl .k Rk 0 , 9




It is clear that when

single element l/ao; we choose q = ap so that g5 = hy = 1.

k =

0 the unscaled vectors colincide and contain the

We will determine

g » . and q from Bx—1 hk—l' and Q1 using the following two sums:

0,k
1,k
gk- :

0

Er-1
0

|

where v and r

Since gy
At = &
Al = ThA

-1
-1

Br-1,k-1

By, k-1
E1,k-1

l

yk=1

gO,k-l‘
81,k-1

Bk-1 k-1
0

80,k-1
£1,k-1

These relationships reduce

unknown scalars:

qk-l + fzv

f1 + qk_lv

to

-0

o |
By k-1

Pe-2 k-1
Be-1,k-1

h2,k-1

M1kl

+ vAk

81 -1,k-1
0

+ A

the following equations

-1

By-2, k-1
hyoi,k-1

|

r + f2 =0

B LI R Y

o ooo--o

q

are unknown scalars which we are going to derive.

and hy are columns of the matrix A;l scaled by qp, then

|

k

D ere [an]

for determining the

(4)
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where

n
I
[k

k
8_gBk-g,k-1 * 27 221 Pl

=1

Solving equations (4) we find
Ll SPA R Sl PYL INRINE P N e SE YA R

Note that this algorithm for solving linear systems with T-matrices requires
that A, be non-singular for all k.

2.5. Programming details — subroutine TSLS!

The calling sequence of subroutine TSLS 1is consistent with those of the
other TOEPLITZ subroutines. However, it proves convenlent in the implementa-
tion to consider the input matrix as two arrays and to partition the work
space. Therefore, subroutine TSLS] was produced to directly implement the
algorithm, and subroutine TSLS merely acts as a user interface that calls

TSLS1. TSLS]l may be called directly by the user, if desired.
The calling sequence of subroutine TSLS1 1is
CALL TSLS1(Al,A2,B,X,Cl,C2,M) .

On entry,

Al is a singly subscripted array of M elements which contains the first
row of the T-matrix. Al is unaltered by TSLSI.

A2 is a singly subscripted array of M-l elements which contains the
first column of the T-matrix beginning with the second element. A2

is unaltered by TSLS1.

B is a singly subscripted array of M elements which contains the right
hand side of the system. B ls unaltered by TSLSI.

cl,C2 are singly subscripted arrays of M-1 elements used for work

space.

M is the order of the T-matrix and the number of elements in B and X.



On return,

X is a singly subscripted array of M elements which contains the

solution of the systew. X may colncide with B.

Subroutine TSLS1 has double precision, complex, and double precision
complex versions with names TSLDlI, TSLCl, and TSLZl, respectively, whose
calling sequences are the same as that of TSLSlI with Al, A2, B, Cl, C2, and X

variables of the corresponding type.

Towards timing estimation, n~te that the algorithm for solving linear

systems with T-matrices requires approximately G multiplications.

2.6. Additional information

The calling sequences of subroutines TSLS and TSLS1 for the solution of
linear systems with T-matrices 1imit the right hand sides to single column
vectors. There may be situations where the solutions of two or mor.: such
systems with the same coefficlent matrix are desired. In these situations,
modifications of the subroutines that would permit all solutions to be
obtained in a single step could markedly improve efficlency. Fortunately, the
algorithm organization for T-matrices enables such modifications to be made
with little effort,

Three changes need to be made: 1) The parameter list must be extended to
include the column order of ¥ and B, and the leading dimension for these newly
created two-dimensional arrays; 2) References to X and B must be rendered two-
dimensional; and 3) DO loops must be introduced for cycling over the columns
of X and B. Resulting forms of TSLS and TSLSlI are given below and can be
compared with the official versions listed in Appendix B; to facilitate the
comparison, the changes are indicated In lower case. The 1identical changes
could be made to the double precision, complex, and double precision complex

versions of these subroutines.
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SUBROUTINE TSLS(A,X,R,M,mcol,1ldx)
INTEGER M,mcol, 1dx
REAL A(1),X(ldx,mcol),R(1)

TSLS CALLS TSLS1i TO SOLVE THE REAL LINEAR SYSTEM
A* X=8B
WITH THE T - MATRIX A .

ON ENTRY
A REAL(2*M ~ 1)
THE FIRST ROW OF THE T - MATRIX FOLLOWED BY ITS
FIRST COLUMN BEGINNING WITH THE SECOND ELEMENT .
ON RETURN A IS UNALTERED .
X REAL(M,mcol)
THE RIGHT HAND SIDNE matrix B .
R REAL(2*M - 2)
A WORK VECTOR .
M INTEGER
THE ORDER OF THE MATRIX A .
mcol irteger
the number of columns of the matrices x and b .
1dx integer
the leading dimension of the array x .
ON RETURN
X THE SCLUTION matrix .

SUBROUTINES AND FUNCTIONS

TOEPLITZ PACKAGE ... TSLS1
CALL SUBROUTINE TSLS1
CALL TSLS1(a,A(M4+1),X,X,R,R(1),M,mcol, 1dx)
RETUKN
END
SUBROUTINE TSLS1(Al,A2,B,X,C1,C2,M,mcol,ldx)
INTEGER M,mcol, idx
REAL Al1(M),A2(1),B(1ldx mcol),X(1ldx,mcol),C1(1),C2(1)
TSLS1 SOLVES THE REAL LINEAR SYSTEM
A*X=08
WITH THE T - MATRIX A .
ON ENTRY

Al REAL(M)
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THE FIRST R."! .k THE T - MATRIX 4 .
ON RETURN Al IS UNALTERED .

A2 REAL(M - 1)
THE FIRST COLUMN OF THE T - MATRIX A
BEGINNING WITH THE SECOND ELEMENT .
ON RETURN A2 IS UNALTERED .

B REAL(M,mcol)
THE RIGHT HAND SIDE matrix .
ON RETURN B IS UNALTERED .

C1 REAL(M - 1)
A WORK VECTOR .

c2 REAL(M - 1)
A WORK VECTOR .

M INTEGER
THE ORDER OF THE MATRIL A .

mcol integer

the number of columns of the matrices x and b .

1dx integer
the leading dimension of the arrays x and b .

ON RETURN

X REAL(M,mcol)
THE SOLUTION matrix. X MAY COINCIDE WITH B .

INTERNAL VARTABLES

INTEGER I1,I2,j,N,N1,N2
REAL R1,R2,R3,R5,R6

SOLVE THE SYSTEM WITH THE PRINCIPAL MINOR OF ORDER 1 .
Rl = Al(1)
do 5 j =1, mecol
X(1,35) = B(1,j)/R1
continue
IF (M .EQ. 1) GO TO 80

RECURRENT PROCESS FOR SOLVING THE SYSTEM
WITH THE T - MATRIX FOR N =2, M .

DO 70 N =2, M

COMPUTE MULTIPLES OF THE FIRST AND LAST COLUMNS OF
THE INVERSE OF THE PRINCIPAL MINOR OF ORDER N .

Nl=N-1
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v NeNeNe]

10
20

30
40

50

60

63
70
80

N2 =N - 2
R5 = A2(N1)
R6 = A1(N)
IF (N .EQ. 2) GO TO 20
C1{(N1) = R2
DO 10 I1 =
I2 =N - I1
RS = R5 + A2(I1)*C1(I2)
R6 = R6 + A1(I1+1)*C2(I1)
CONTINUE
CONTINUE
R2 = -RS/R1
R3 = -R6/R1
R1 = R1 + RS5*R3
IF (N .EQ. 2) GO TO 40
R6 = C2(1)
C2(N1) = 0.0EO
DO 30 I = 2, N1

1, N2

RS = C2(Il)
C2(I1) = C1(I1)*R3 + Ré
Ci(I1) = C1(I1) + R6¥R2
R6 = RS
CONTINUE
CONTINUE
€2(1) = R3

COMPUTE THE SOLUTION OF THE SYSTEM WITH THE
PRINCIPAL MINOR OF ORDER N .

do 65 j = 1, mcol
R5 = 0.0QE0
DO 50 I1 =1, N1
I2 =N - 11
R5 = R5 + A2(I1)*X(12,})
CONTINUE
R6 = (B(N,j) - R5)/R1
DO 60 I1 =1, Nl
X(I1,3) = X(I1,j) + C2(I1)*Ré
CONTINUE
X(N,j) = Ré6
continue
CONTINUE
CONTINUE
RETURN
END



3. Solution of Linear Equations with C-Matrices

3.1. Purpose

The TOEPLITZ subroutine in this section 1is designed to solve Ilinear
algebralc equations with C-matrices; it is limited to complex matrices because
the algorithm employs complex arithmetic, Users with real circulant matrices
can eilther declare them complex or consider them simply T-matrices and employ
the subroutines of section 2. Running times as real T-matrices are shorter,
but the unitary transformations employed in the algorithm described below for
C-matrices offer greater stability. A double precision version of the sub-

routine is also available,

}.2. Usage

Single precision C-matrices. CSLC solves a linear system with a conplex

circulant matrix., The calling sequence 1s
CALL CSLC(A,X,R,M) .,

On entry,

A is a singly subscripted array of M elements which contains the first
row of the C-matrix. A is unaltered by CSLC.

X is a singly subscripted array of M elements which contains the right
hand side of the system.

R is a singly subscripted array of M elements used for work space,

M is the order of A and the number of clements in X,

On return,

X containe the solution of the system.

Double precision C-matrices. In those computing systems where it is

available, the ca’ling sequence of the double precision C-matrix subroutine
CSLZ ie the same as that of CSLC with A, X, and R DOUBLE COMPLEX variables.
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3.3. Example

The following program segment illustrat=s the use of the single precision
subroutine CSLC for C-matrices. An example c¢f the use of CSLZ could be
obtained by changing the subroutine name and type declaration. The system is

of order 4 with rcefficients as follows.

I+1 2421 3431 4+4d 10+101
4441 144 2421 3434 10+101
A= X =
3+31 4441 1M 2421 10+101
12+21 I3 441 141 10+101

COMPLEX A(4),X(4),R(4)
INTEGER M,I
DATA A(1)/(1.0,1.0)/,A(2)/(2.0,2.0)/,A(3)/(3.0,3.0)/,
* A(4)/(4.0,4.0)/
DATA X(1)/(10.0,10.0)/,X(2)/(10.0,10.0)/,X(3)/(10.0,10.0)/,
* X(4)/(10.0,10.0)/
M= 4
CALL CSLC(A,X,R,M)
D) 10 I = 1, M
WRITE(...,...) X(I)
10 CONTINUE
STOP
END

The solution of the system is

X = ((1.0,0.0),¢1.0,0.0),(1.0,0.0},(1.0,0.0)) .

3.4. Algorithm

The algdxithm for solving a system of linear algebralc equations
Ax = b (1)

with a C-matrix A of order M proceeds from a similarity transformation of A to
a diagonal matrix

D = Q*AQ , :

where Q is unitary, (The symbol * denotes conjugate transpose.) The elements

of Q are inverse discrete Fourler transformations defined as

(1-1)+(3-1)
4y = E /N,



where E = exp(Zﬂ/:T/M). The solution x of the system (1) is then determined

as
-1 %
x=QD "Qb . (2}
The diagonal elements d,j of D can be calculated as simply

M
dyy =M Zl 3%5-1

3

i=1,2,...,M.

In other words, 1f d is a column vactor composed of the diagonal elemunts
dll'd22’°"’dMM of D, and a 1s a column vector composed of the elements

agrdaeersdy_| of the first row of A, then these vectors are related by

d = /M Qa .

3.5. Propgramming details

In the implementation of subroutine CSLC, instead of Q the matrix Q = /M 0

is used, and formula (2) of subsection 3.4 becomes
R T
x = O TbM .

The vector ¢ composed of the diagonal elements dy; of D is then calculated
more simply as

d =Qa.

Towards timing estimation, note that the algorithm for solving linear systems

with C-matrices requires approximately 3M2 multiplications.

3.6. Additional information

The calling sequence of subroutine CSLC for the solution of linear sys-
tems with C-matrices limits the right hand side to a single column vector.
There may be situations where the solutions of two or more such sysrems with
the same coefficlent matrix are desired. 1In these situatlions, modifications
of the subroutine that would permit all solutions to be obtalned iIn a single
step could markedly improve efficiency. Unlike TSLS and TSLSl discussed in
subsection 2.6, CSLC admits no simple modification for this purpose; however,
subroutine SALWC could be used instead.
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Subrouéine SALWC is discussed in subsection 3.5 of Chapter ?2 —-- 1t 1is
called as a 'service subroutine in the solution of second- and third-level
matrix systéms. SALWC 1is similar to CSLC; its different organization, how-
ever, enablés it to be separately useful, although somewhat awkward, for the
solution of iC-matrix systems with multiple right hand sides. 1Its use requires
three calls with some arithmetic in-between, the presentation of the transpose
of the right hand side matrix, and additional work space; also, unlike CSLC,

it overwrites the coefficient array.

The fol&owing program segment illustrates the use of SALWC for C-matrix
systems of Qrder M with MROW right hand sides {(refer to subsection 3.5 of
i
Chapter 2 for a description of the SALWC calling sequence).

COMPLEX A(M),X(LDX,M),R1(M),R2(M)

RM 5 FLOAT(M)
CALL) SALWC(A,R1,R2,1,M,1,~1)
CALL' SALWC(X,R1,R2 ,MROW,M,LDX,1)
DO 10J =1, M
DO 51 =1, MROW
X(1,J) = X(1,J)/A(J)/RM
5 CONTINUE
10 CONTINUE
CALL SALWC(X,R1,R2,MROW,M,LDX,-1)

The dominanﬂ_term in the multiplication count for the above segment 1is
Mz'(2'MROW+l), while for MROW calls of CSLC it is 3M2-MR0W. Comparing these
quantities leads to the expectation that when MROW is 1 the two algorithas
should be about equally fast, and as MROW increases a savings of up to 1/3
should be possible with the above segment. For double precision, substitute
SALWZ,

4. Solutio~ of Linear Equations with G-Matrices

4.1. Purpose

Capability to solve 1linear algebraic equations with G-matrices 1is
required for processing second- and third-level Toeplitz- and circularc-type
matrices described in Chapters 2 and 3. The avallability of the LINPACK



package makes 1t unnecessary to duplicate effort to provide this capability;
the TOEPLITZ package simply invokes that subget of LINPACK which treats
general square matrices. Usage will be briefly described for the single
precision real version; double precision, complex, and double precision
complex versions are al-~ available. F-ferral to the LINPACK Users' Guide
[15] is recommended for fuller discussion than will be given here, including
algorithm descriptions and programming details.

4.2, Usage

Single precision real G-matrices. SGEFA and SGESL together solve a

linear system Ax = b with a real generul matrix A; SGEFA computes the LU
factorization of A and SGESL uses the factorization to solve the linear

system.
The calling sequence for SGEFA is
CALL SGEFA(A,LDA,M,PVT,INFO) .

On entry,

A is a doubly subscripted M by M array which contains the G-matrix.
LDA 1s the leading dimenslon of the array A.
M is the order of A and the number of elements in PVT,

On return,
A contains information from the LU factorization.

PVT 1is a singly subscripted array of M elements which contains informa-
tion to be transmitted to SGESL about the pivoting strategy used in
the factorization. Note: In the LINPACK package PVI is specified
as an Iintecger array. For use in the TOEPLITZ package, PVT has the
variable type of A; thils simplifies the partition of the work space.

INFG is an 1integer which if nonzero warns of singularity of A. Note:
Nonsingularity of A and indeed all its principal minors is funda-
mental for use of the TOEPLITZ package; no interrogation of INFO is

made anywhere,
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The calling sequence for SGESL is
CALL SGESL(A,LDA,M,PVT,X,JOB) ,

On entry,

A is a doubly subscripted M by M array which contains the information
from the factorization stored by SGEFA.

LDA 1is the leading dimension of the array A.
M is the order of A and the number of elements in X and PVT.

PVT 1is a singly subscripted array of M elements which contains the pivot
information stored by SGEFA,

X 1s a singly subscripted array of M elements which contains the right
hand side of the system.

JOB 1s an integer which specifies the system to be solved. 1If JOB is
zero, the system Ax = b is solved., If JOB 1s nonzero, the system
ATx = b is solved. Note: 1In its vse with the TOEPLITZ package, JOB
is always zero.
On return,

X contains the solution of the system.

Double precision real G-matrices. The calling sequences of the double

precision real G-matrix subroutines DGEFA and DGESL are the same as those of

SGEFA and SGESL with A, X, and PVT DOUBLE PRECISION variables.

Single precision complex G-matrices. The calling sequences of the single

precision complex G-matrix subroutines CGEFA and CGESL are the same as those
of SGEFA and SGESL with A, X, and PVT COMPLEX variables.

Double precision complex G-matrices. In those computing systems where

they are available, the calling sequences of the double precision complex
G-zatrix subroutines ZGEFA and ZGESL are the same as those of SGEFA and SGESL
with A, X, and PVT DOUBLE COMPLEX variables.



5. Orthogonal Factorization of Colummn~Circulant Matrices

5.1. Purpose

Given an M by L column—-circulant matrix A, the TOEPLITZ subroutines in
this section determine an M by L matrix Q with orthonormal columns and an
upper triangular matrix S of order L such that AS = Q. The AS = Q factoriza-
tion can be transformed to the more familiar A = QR factorization by inverting
5, L.e., R = 51, Usage will be de ‘ribed here for the single precision real
version. Double precision, complex, and double precision complex versions are

also availlable,

5.2. Usage

Single precision real column-circulant matrices. CQRS performs the

orthogonal factorization AS = Q of a real column—circulant matrix A. The

calling sequence 1s
CALL CQRS({A,Q,S,M,L,LDQ,LDS) .

On entry,

A is a singly subscripted array of M elements which centains the first

column of the column-circulant matrix. A is unaltered by CQRS,

M is the number of rows of the matrices A and Q. M must be at ‘east

equal to L.

L is the number of columns of the matrices A and Q and the order of

the upper triangular matrix S.
LDQ 1s the leading dimension of the array Q.
LDS 1s the leading dimeusion of the array S.
On return,

Q is a doubly subscripted M by L array which contains the factor with

orthonormal columns,
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5 is a doubly subgscripted L by L array which contains the upper
triangular factor. Elements below the main diagonal of S are not

accessed.

Double precision real column-circulant matrices. The calling sequence of

the double precision real column—circulant orthogonal factorization subroutine
CQRD is the same as that of CQRS with A, Q, and S DOUBLE PRECISION variabl~s,

Single precision complex column—circulant matrices. The calling sequence

of the single precision complex column-circulant orthogonal factorization
subroutine CQRC 1{is the same as that of CQRS with A, Q, and § COMPLEX

variables.

Double precision complex column-circulant matrices. In those computing

systems where it 1s available, the calling sequence of the double precision
complex column—-circulant orthogonal factorization subroutine CQRZ is the same

as that of CQRS with A, Q, and S TCOUBLE COMPLEX variablcs.

5.3. Example

The fcllowing program segment illustrates the use of the single precision
subroutine for orthogonal factorization of real column-circulant matrices;
factors Q and S are recturned satisfying AS = Q. Examples of the use of CQRD,
CQRC, and CQRZ could be obtained by changing the subroutine name and type
declaration., The matrix Is 4 by 3 with coefficients as follows.

1 4 3

2 1 4
A=

3 2 1

4 3 2

REAL A(4),Q(4,3),5(3,3)

INTEGER M,L,LDQ,LDS,I,J

DATA A(1)/1.0/,A(2)/2.0/,A(3)/3.0/,A(4)/4.0/
M =4

L =3

LDQ = 4

LDS = 3

CALL CQRS(A,Q,S,M,L,LDQ,LDS)



DOI0L =1, M
WRITE(..+,...) (Q(I,J),J=1,L)
10 CONTINUE
DO 201 =1, L
WRITE(...,...) (S(I,J),J=1,L)
20 CONTINUE
STOP
END

The factors  and S are

1/¥30 16/Y270 10//7344 1/¥30 -4/¥270 -7/V7344
2//30 -3//270 78/Y7344
Q = S = 0 5/Y270 -16/V/7344

3/Y30 -2/Y270 -26/Y7344%

4/Y30 -1/¥270 —22//7344‘ 0 0 27 /Y7344

S.4. Algorichm

The algorithm description can be found in [l12]. Note that usage of this
algorithm for orthogonal factorization of column-circulant matrices requires

that the matrix have full rank L.

5.5. Programming details

The algorithm for the orthogono»l factorization of an M by L column-
circulant matrix requires approximately 6ML+L2 multiplications,






CHAPTER 2: TOEPLITZ- AND CIRCUTANT-TYPE MATRICES OF THE SECOND LEVEL

1. Structure and Representation

lele Overview

A matrix
Ay Apg Ay e e Ay
Ajy Agp Agy e o s Ay |
Ao e
Azl A3y A3y . . . Agp

ALl Ay Ay e s e Ay

with L elements in a row (or column) where the elements Aij are blocks of
order M is called a two-level matrix. L 1is called the first-level order and M
becomes the second-level order of the matrix A. The order N of A is then the

product of the orders of its levels: N = L*M,

We wil: call the two-level matrix (1) an XY-type If A considered as a
block matrix 1s an X-type and each of its blocks Aij is a Y- type. As X- and
Y~-types in the TOEPLITZ package we consider T-, C-, and G-uairices defined in
section 1 of Chapter 1. Examples of two-level matrices can be found below and

in subsections 2.3, 3.3, 4.3, and 5.3 of this chapter.

By permuting corresponding rows and columns, we can transform any XY-type

to YX-type (see Tyrtyshnikov [25])). PFor example, the TC-matrix
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with L=2, M=3 can be permuted to the CT-matrix

with L=3, M=2 by interchanging row and column pairs (1,6) and (3,4). This

circumstance allows us to limit consideration to one of each XY- YX-type pair.

The scheme for compact representation of two-level matrices 1s the
following. TLet A be of XY-type with first-level orler L and second-level
order M. Furthermore, let L be the number of elements required in the compact
representation of X and M be the number of elements required in the compact
representation of Y. Recall that for T-, C- and G-matrices of order M as
described in section 1 of Chapter 1 the values of M are, respectively, 2%M-1,
M, and M**2, In the TOEPLITZ package such a two-level matrix 1s represented
by a doubly subscripted M by L array. The blocks in the array are indexed
by the second subscript and ordered in accordance with the X-type compact
representation. In turn, the elements in a block are Iindexed by the first
subscript and ordered 1in accordance with the ©block's Y-type compact

representation,

1.2. TG-matrices

A matrix

AO Al A? L] L] L] Al‘_ l

Ay Ag A e Ay
Ay ALl Ayg . Mg

Ao+l AoLe2 ALase + 0 Ag




is called a TG-matrix 1f Ai and A-i’ 1=0,1,2,...,L-1, are G-matrices of order
M (see subsection 1.3 of Chapter 1).

In the TOEPLITZ package this TG-matrix 1s represented by a doubly sub-
scripted M**2 by 2*L-1 array in which the blocks are ordered in the following

way:

AO,AI’Az’...'AL-].’A-I’A-'Z'...’A-L"'I -

l1.3. CT—matrices

A complex matrix

AO Al Az L] . L] AL_ 1
AL_l AO A l . . . AL_Z

A= (2)
Ay Ay Ay . . . Ag

is called a CT-matrix if Ai, i=0,1,2,...,L-1, are T-matrices of order M (see
subsection 1.1 of Chapter 1).

In the TOEPLITZ package this CT-matrix Iis represented by a doubly sub-
scripted 2*M-1 by L array in which the blocka are ordered In the following

way:

AO,AI.AZ,UOO‘AL_l -

l.4. CC-watrices

A matrix of form (2) 1s called a CC-matrix if Ay, 1=0,1,2,...,L-1, are

C -matrices of order M (see subsection 1.2 of Chapter 1l).

In the TOEPLITZ package this CC-matrix 1s represented by a doubly eub-
scripted M by L array in which the blocks are ordered in the following way:

AO'AI’AZ..."AL-‘ .
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l1.5. OG—matrices

A matrix of form (2) is called a CG-matrix if Ay, 1=0,1,2,...,L-1, are

G-matrices of order M (see subsection 1.3 of Chapter 1).

In the TOEPLITZ package this CG-matrix is represented by a doubly sub-
scripted M**2 by L array in which the blocks are ordered in the following way:

AgrAysAg,seee Ar g

1.6, Other types of two-level matrices

GT-, TC-, and GC-matrices, defined in analogous ways, can be permuted,
respectively, to TG-, CT-, and CG-matrices {see example in subsection 1.1l).
Therefore, the TOEPLITZ package does not 1Include subroutines for solving
linear systems with two-level matrices of these types., At the present time
no algorithm 1s known that capitalizes effectively on the structure of

TT-matrices, 80 TT-matrices should be treated as TG-matrices.

2. Solution of Linear Equations with TG-matrices

2.1. PuEEone

The TOEPLITZ subroutines 1In this sectlion are designed to solve linear
algebralc equations with TG-mactrices, that 1s, block-Toeplitz matrices whose
blocks are G-matrices. Usage will be described for the single precision real
version., Double precision, complex, and double precision complex versions are
also avallable. 1Indeed, the complex version 1s called in solving three-level

CTG-matrix systems (see subsection 2.5 of Chapter 3).

2.2. Usage

Single precision real TG-matrices. TGSLS solves a linear system with a

real block-Toeplitz matrix whose blocks are G-matrices. The calling sequence
is

CALL TCSLS(A,X,R,M,L,LDA) .



On entry,
A 1s a doubly subscripted M**2 Ly 2*L-1 array which contalns the
TG-matrix in the form described in subsection 1.2, A 1s unaltered

by TGSLS,

X is a singly subscripted array of M*L elements which contains the
right hand side of the system.

R is a singly subscripted array of 2*MA*2*[4+3*M**2+M elements used for
work space,

M is the order of each G-matrix block of A,

L 1s the number of blocks in each row or column of A,

LDA 1is the leading dimension of the array A.

On return,

X contains the solution of the system.

Double precision real TG-matrices, The calling sequence of the double

precision real TG-matrix subroutine TGSLD is the same as that of TGSLS with A,
X, and R DOUBLE PRECISION variables.

Single precision complex TG-matrices. The calling sequence of the single

precision complex TG-matrix subroutine TGSLC is the same as that of TGSLS with
A, X, and R COMPLEX variables.

Double precision complex TG-matrices. T ..ose computing systems where

it 1is available, the calling sequence of the double precision complex
TG-matrix subroutine TGSLZ is the same as that of TGSLS with A, X, and R
DOUBLE COMPLEX variables.

2.3. Example

The following program segment illustrates the ure of the single precision
subroutine TGSLS for real TG-matrices. Examples of the use of TGSLD, TGSLC,
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and TGSLZ could be obtained by changing the subroutine name and type declara-

tion. The system is of order 4 with coefficlents as follows.

1 3 5 7 16
2 4 6 8 20
A= X=
9 11 1 3 24
10 12 2 4 ‘ 28
!

REAL A(4,3),X(4),R(30)
INTEGER M,L,LDA,I,J
DATA A(1,1)/1.0/,A(2,1)/2.0/.4(3,1)/3.0/,A(4,1)/4.0/,
* A(1,2)/5.0/,A(2,2)/6.0/,A(3,2)/7.0/,A(4,2)/8.0/,
* A(l,3)/9.0/,A(2,3)/10.0/,A(3,3)/11.0/,A(4,3)/12.0/
DATA X(1)/16.0/,X(2)/20.0/,X(3)/24.0/,X(4)/28.0/
M=
L =
LDA 4
CALL TSLS(A,X,R,M,L,LDA)
J = M*L
DO 10T =1, J
WRITE(+.s,0ss) X(I)
10 CONTINUE
STOP
END

N8R

The solurinn of the system is

X =(.0,1.0,1.0,1.0) .

2.4, Algorithn

The algorithm for solving a linear system
Ax = b (1)

with the TG-matrix



Aq A

ALl Ay

Ay A,
A

(3

. . A—L_ 1
c o Al
A

11_3

L+ Aepr Al o 0 A

where Ai and A—i’ i=0,1,2,...,L-1, are G-matrices of order M, is the block

analogue of the algorithm for solving linear systems with T-matrices {see sub-

section Z.+ o1 C

Let us Introduce the following notation:

Ay

Ay

where Yi ko 1=0,1,...,k, are vectors of M elements,

hapter 1).

[
o

Agyl - -

step-by-step recurrent solution of systems

ey =

for k=0,1,2,...

dy
-1,

solution of the given system (1):

X = YL_I .

At step 1, Yo =

follows.,

which,

step:
Y0,k
Y1,k
Yk-1,k
Yk, k

-1
AO do.

Yo,k-1

Y1,k-1

Yk-1,k=1

The final

result of the

Yo,k

Y1k

Ik, k

recurrent

Dy w41

The algorithm ceonsists of

(2)

process is the

At step k+1, the vector Y 1s calculated fron Yk-1 as
Let us consider the vector y, to be the sum of two vectors, one of

augmented by a zero vector of M elements, was determined at the k-th

(3)
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Substituting this sum into equation (2) and taking 1into account that the
vector ¥y _ satisfies the equation

Cy—1¥k~1 = dk-1 >
we see that the unknown vector 2y from (3) consisting of component wvectors

Z0 k%] koot Zk ok each ¢ M elements is the solution of the system
1 4 b 3

Cr2y = £y »
where
0 |,
k*M
0 b
K*M+]
X . k
o N A ‘ 221 - k-2,k-1
0 b
KAM+M-2
£ b
[ k,k k*M+M-1

Thus, the vector 2z, is a linear combination of the last M columns of the
matrix CEI, and the elements of the veclor fk,k are the coefficients of that
linear combinat‘on. Hence, for recurrent calculation of the vectors y, it is
sufilcient to evaluate recurrently the last block column of the matrix Cﬁl, or
as done here for furthar economy an appropriately chosen block multiple of
this block column. It is here that advantage 1is taken of the block-Toeplitz
structure of A,

Let us denote by G, and Hy the first and last block columns, respectively

scaled by M-order matrices Py and Qi » of the matrix CEI:

Go,k Hy k
Gy Hiw
G‘k- E ’ Hk- . ’
Cr-1,k He 1,k
Gy k He ok




and

following two sums:

%o
Gy

G -

where V and R are unknown M by M matrices which we are going to derive.

Since G, and H, are block columns of the matrix C{l scaled by P, and Q,

respectively, then

Gy = GOy

0

yk=1

k-1
. +

1,k-1

Go, k-1

Gy k-1

Gx-1,k-1
0

0

Hy k-1

Hy 2 k-1

He1,k-1

0

-&-Ck .

)

It 18 clear that when k = 0 the unscaled block columns coinecide and contain
the single block Aal; we choose Py = Qp = Ay so that G,
determine Gk’ Hk’ Pr» and Qe from Gk—l’ Hk—l’ Pk—l’ and Qk-l using the

Hy k-1

He_2 k-1

Hk—l 'k-l

]

<

S e
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G1 k-1 Hy x-1 0
Cr-1,k-1 He o k-1 0
0 He oy k-1 Qe

These relationships reduce to the following equations for determining the un-

known matrices:

Py + FpV = P PR + Fp = 0 "
F1+Qk_lv=0 F1R+Qk-1=Q'k’
where
k k
Fy = 221 Adfkmr k-1 P2t 121 At k-1

Solving systems (4) we find

_ -1 L -1

V= Q) Fp s R==(By) By,
_ ) -1

P = Ppy ~ FolQey) “F

Q = Qg - F (B 7IF,

Note that this algorithm for solving linear systems with TG-matrices requires
that C, be non-singular for all k.

2.5. Programming details — subroutine TGSLS1

Subroutine TGSLS merely acts as an Iinterface to subroutine TGSLS1, in the
manner of TSLS and TSLS1 for T-matrices as explained in subsection 2.5 of
Chapter 1.

The calling sequence of subroutine TGSLS1 is

CALL TGSLS1(al,A2,B,X,C1,C2,R1,R2,R3,R5,R6,R,M,L,LDA) .



On entry,

Al is a doubly subscripted M**2 by L array which contains the first row
of blocks of the TG-matrix. Al 1s unaltered by TGSLSI1,.

A2 is a2 doubly subscripted M**2 by L-1 array which contains the first
column of blocks of the TG-matrix beginning with the second block.

A2 is unaltered by TGSLSI.

B is a singly subscripted array of M*L elements which contains the
right hand side of the system. B 1Is unaltered by TGSLS1.

Ccl1,C2 are triply subscripted arrays with dimension (M,M,L-1} used for

work space,

R1,R2,R3,R5,R6 are doubly subscripted arrays with dimension (M,M) used

for work space.

R is a singly subscripted array of M elements used for work space.

M is the order of each G-matrix block of the TG-matrix.

L is the number of blocks in each row or column of the TG-matrix.

LDA 1s the leading dimension of the arrays Al and A2,

On return,

X is a singly subscripted array of M*L elements which contains the

solution of the system. X may colncide with B.

For solving G-matrix systems 1in accordance with the algorithm described
in subsection 2.4, TGSLS]l calls the LINPACK subroutines 3SGEFA and SGESL (see
section 4 of Chapter 1).

Vector operations are facilitated by calls to the LINPACK BLA subroutine
SAXPY. This subroutine 18 coc'd cfficiently but there is a c.3t assoclated
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with communication to it; this cost can become relatively large when computa-
tion within SAXPY itself 1s small and the further computations of TGSLS1 are
highly optimized by the compiler. Therefore, when the number of vector
components (M for two-level TG-matrices) 1s small and the compiler 1s capable
of a high level of optimization, it may be more efficlent to perform the
vector computations in-line 1instead of repeatedly calling SAXPY. (It 1is of
interest to note that in TGSLCl, overhead assoclated with the use of the
corresponding LINPACK BLA subroutine CAXF: is much less significant in the
presence of the slower complex arithmeci:.) To facilitate = possible change
to in-line computation, directions are provided through code comments in
subroutine TGSLS1 (and also TGSLDl, TGSLCl, and TGSLZ1).

For solving systems with double precision, .omplex, and double precision
complex TG-matrices, versions corresponding to TGSLSl are avallable with names
TGSLDl, TGSLC1, and TGSLZ1l, respectively. These in turn call the correspond-
ing versions of the LINPACK subroutines.

The algorithm implemented in subroutine TGSLSl requires approximately
23.2 multiplications.

3. Solution of Linear Equations with CT-matrices

3.1. Purpose

The TOEPLITZ subroutine 1im this sectlior 1s designed to solve linear
algebralic equations with CT-matrices, that 1is, complex block-circulant

matrices whose blocks are T-matrices. s double precision version of the

subroutine 15 also available.

3.2, Usage

Single precision CT-matrices. CTSLC solves a linear system with a

complex block-circulant matrix whose blocks are T-matrices. The calling

gequence 1s

CALL CTSLC(A,X,R,M,L,LDA} .



On entry,

A

LDA

On return,

X

is a doubly subscripted 2*M-1 by L array which contains the
CT-matrix in the form described in subsection 1.3. A is destroyed
by CTSLC.

is a singly subscripted array of M+*L elements which contains the
cight hand side of the syst. m.

is a singly subscripted array of max(2*M-2,2*L) elements used for

work space,
is the order of each T-matrix block of A,
15 the number of hlocks in each row or column of A,

is the leading dim:2nsion of the array A.

contalins the solution of the system.

Double precision CT-matrices. 1In those computing systems where it is

available,

the calling sequence of the double precision CT-matrix subroutine

CTSLZ is the same as that of CTSLC with A, X, and R DOUBLE COMPLEX variables.

3.3. Example

The following program segment illustrates the use of the single precision

subroutine CTSLC for CT-matrices. An example of the use of CTSLZ could be

obtained by changing the subroutine name and type declaration. The systen is

_of order 4 with coefficients as follows.

1+ 2421 2421 3+31 8 + 81

3431 1+ 4+41 2+21 10 + 104
AT 2421 3434 1+1 2424 . 8+ 81

4+41  2+24 3+31 141 10 + 101




COMPLEX A(3,2),X(4),R(4)

INTEGER M,L,LDA,1,J

DATA A(1,1)/(1.0,1.0)/,A(2,1)/(2.0,2.0)/,A(3,1)/(3.0.3.0)/,
* A(1,2)/(2.0,2.0)/,A(2,2)/(3.0,3.0)/,A(3,2)/(4.0,4.0)/
DATA X(1)/(8.0,8.0)/,X(2)/(10.0,10.0)/,X(3)/(8.0,8.0)/,
* X(4)/(10.0,10.0)/

U roro

3
L CTSLC(A,X,R,M,L,LDA)
M*L
DOI0T =1, J
WRITE( .00, ee0) X(I)
10 CONTINUE
STOP
END

M
L
L
c
J

B

The solution of the system is

X = ((1.0,0.0),(.0,0.0),(1.0,0.0),(1.0,0.0}) .

3.4, Algorithn

o

The algorithm for solving a linear system
Ax = b (1)

with the CT-matrix

where Ai, i=0,1,2,...,L-1, are T-matrices of order M, proceeds from a

similarity transformation of A to a block-diagonal matrix
D = Q*AQ

in which each diagonal block is a T-matrix. (The symbol * denotes conjugate
transpose.) G 1s a two-level matrix with first-level order L and second-level
order M whose blocks are scalar matrices; the matrix of the scalars themselves

is unitary.
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Block Qij of Q is defined as

Y, A s T

where £ = exp(2m/=1/L) and 1 is the identity matrix of order M. However, as

for C-matrices (see section 3 of Chapter 1), it 1is more efficlent to use

instead the matrix
Q=/Lq.

Thus the solution x of the system (1) can be found by the following steps:

a) Transform the matrix A to the block-diagonal matrix

D= 6'*;‘:6/L .

b} Transform the right hand side

—
y=Qb.

¢) Solve the system

Dz =y .

d) Transform the vector z back to

x = Qz/L .
Note that since A is a CT-matrix, its transformation to D becomes simply

where Dyq is the i-th diagonal block of D and Aj-l i the block with index j-1
at the top of A, Furthermore, since D is block-diagonal each block of which

is a T-matrix, the system (1) reduces to L systems with T-matrices.

3.5. Pro‘rl-lng details —— subroutine SALNC

The implementation of subroutine CTSLC corresponds to the algorithm des-
- —
cribed in subsection 3.4. All needed operations with matrices Q and Q are

implemented by the service subroutine SALWC. The structure of these matrices
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and the compact form of input representation are such that, from the peint of
view of programming, these operations (or more properly Q and Q*) can be con-
sidered respectively as Iinverse and direct discrete Fourier transformations

upon a set of row vectors in a certain rectangular matrix.
The calling sequence of subroutine SALWC is
CALL SALWC(A,R1,R2,M,L,LDA,JOB) .,

On entry,

A is a doubly subscripted M by L array which contains the matrix upon

whose rows the Fourier transformation will be performed.

R1,R2 are singly subscripted arrays of L elements used for work space,

M is the number of rows of A.
L is the number of columns of A.
LDA 1is the leading dimension of the array A.

JOB indicates what is to be computed. 1If JOB is 1, the direct Fourier
transformation will be performed and if JOB 18 -1, the inverse

Fourier transformation will be performed.

On return,
A contains the transformed rows of the matrix.

For solving the L systems with T-matrices, first-level subroutines TSLC
and TSLCl are called. For solving systems with double precision CT-matrices

(using CTSLZ), the double precision subroutine SALWZ is called, as well as
TSLZ and TSLZ1.

The overall algorithm implemented in subroutine CTSLC requires approxi-
mately 4ML2+3M2L muleiplfcations — 4MLZ fn SALWC and 3M%L in TSLCI.



4, Solution of Linear Equations with CC—matrices

4.1. Purpose

The TOEPLITZ subroutine in this section is designed to solve linear alge-
braic equations with CC-matrices, that 1s, complex block-circulant matrices
whose blocks themselves are circulant matrices. A double precision version of

the subroutine is also available.

4.2. Usage

Single precision CC-matrices. CCSLC solves a linear system with a

complex block-circulant matrix whose blocks are C-matrices. The calling

sequence 1is
CALL CCSLC(A,X,R,M,L,LDA) ,
On .ntry,
A is a doubly subscripted M by L array which contains the CC-matrix of
the system Iin the form described in subsection 1.,4. A 18 destroyed

by CCSLC.

X 1s a singly subscripted array of M*L elements which contains the
right hand side of the system.

R is a singly subscripted array of max(M,2*L) elements used for work

space.

M is the order of each u-matrix block of A.

L is the number of blocks in each row or column of A,

LDA 1is the leading dimension of the array A.

On return,

X contains the solution of the system.

51
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Double precision CC-matrices. TIn those computing systems where it 1is

available, the calling sequence of the double precision CC-matrix subroutine

CCSLZ is the same as that of CCSLC with A, X, and R DOUBLE COMPLEX variables.

4.3, Example

The fonllowing program segment 1llustrates the use of the single przcision
subroutine CCSLC for CC-matrices. An example of the use of CCSLZ could be
obtained by changing the subroutine name and type declaratiorn, The system is

of order 4 with coefficients as follows,

1+1 2+21 2421 4441 9 + 91
2+21i 1+1 4441 2421 9 + 91
b 2421 4444 I+ 2421 . 9 + 9%
4+41 2421 2+21 1+1 9 + 91

COMPLEX A(2,2),X(4),R(4)
INTEGER M,L,LDA,I,J
DATA A(1,1)/(1.0,1.0)/,A(2,1)/(2.0,2.0)/,
* A(1,2)/(2.0,2.0/,A(2,2)/(4.0,4.0)/
DATA X(1)/(9.0,9.0)/,X(2)/(9.0,9.0)/,
* X(3)/(9.0,9.0)/,X(4)/(9.0,9.0)/
M= 2
L =2
LDA = 2
CALL CCSLC(A,X,R,M,L,LDA)
J = M*L
DO 10 I =1, J
WRITE(.u.,...) X(I)
10 CONTINUE
STOP
END

The sclution of the system is

X = ((.0,0.0),(.0,0.0),(1.0,0.0),(1.0,0.0)) .

4.4 Algorithm

The algorithm used in subroutine CCSLC is the same as that described in
subsection 3.4 for CT-matrices except that the solution of C-matrix rather

than T-matrix systems 1s involved.



#.5. Programming details

Programming details of subroutine CCSLC are as for CTSLC (see subsection
3.5) except that subroutine CSLC is called 1instead of subroutines TSLC and
TSLCl; the number of mltiplications 1s approximately 3ML2+3M2L - 3ML2 in
SALWC and 3MZL in CSLC.

5. Solution of Linear Equations with CG—matrices

5.1. Purpose

The TOEPLITZ subroutine 1In thils section is designed to solve linear
algebraic equations with CG-matrices, that 1is, complex block-circulant
matrices whose blocks are general matrices, A double precision version of the

subroutine is also available,

5.2. Usage

Single precision CG-matrices. CGSLC solves a linear system with a

complex block-circulant matrix whose blocks are G-matrices, The calling

sequence 1s
CALL CGSLC(A,X,R,M,L,LDA) .

On entry,
A is a doubly subscripted M**2 by L array which contains the CG matrix
of the system 1in the form described 1in subsection 1.5. A is

destroyed by CGSLC,

X is a singly subscripted array of M*L elements which contains the
right hand side of the saystem.

R is a singly subscripted array of max(M,2*L) elements used for work
space.,

M is the order of each G-matrix block of A,
L is the number of blocks in each row or column of A.

LDA 48 the leading dimension of the array A,



54

On return,

X contains the solution of the system.

Double precision CG-matrices. In those computing systems where it 1is

available, the calling sequence of the double precision CG-matrix subroutine

CGSLZ is the same as that ¢f CGSLC with A, X, and R DOUBLE COMFLEX variables.

5.3. Example

The following program segment illustrates the use of the singie precision
subroutine CGSLC for CG-matrices. An example of the use of CGSLZ could be
obtained by changing the subroutine name and type declaration, The system 1s

of order 4 with coefficlents as follows.

I+ 3+341 5+51 7471 16 + 161
2421 4441 6+61 8+81 20 + 201
he 5+51 7+ 1+1 3+34 . 16 + 161
6+61 B+31 2+21 4441 20 + 201

COMPLEX A(4,2),X(4),R(4)
INTEGER M,L,LDA,I,J
DATA A(1,1)/(1.0,1.0)/,A(2,1)/(2.0,2.0)/,A(3,1)/(3.0,3.0)/,
* A(4,1)3/(4.0,4,0)/ ,A(01,2)/(5.6,5.0)/,A(2,2)/(6.0,6.0)/,
* A(3,2)/(7.0,7.0)/,A(4,2)/(8.0,8.0)/
DATA X(1)/(16.0,16.0)/,X(2)/(20.0,20.0)/,%X(3)/(16.0,16.0)/,
* X(4)/(20.0,20.0)/
M= 2
L =2
LDA = 4
CALL CGSLC(A,X,R,M,L,LDA)
J = MAL
DO 10 I =1, J
WRITE(.su,...) X(I)
10 CONTINUE

STOP
END

The solution of the system ia

X = ((.0,0.0),(1.0,0.0),(1.0,0.0),(1.0,0.0)) .



5.4. Algorithm
The algorithm used in subroutine CGSLC is the same as that described in
subsection 3.4 for CT-matrices except that the solution of G-matrix rather

than T-matrix systems 1s involved.

5.5. Programming details

Programming detallr o’ subroutine CGSLC are as for CTSLC (see subsection
3.5) except that LINPACK subroutines CGEFA and CGESL (see section 4 of Chapter
1) are called instead of subroutines TSLC and TSLCl; the number of multiplica-
tions is M2L2+M3L/3 plus terms of lesser degree —- HZL?‘ a1 SALWC (first call),

H3L/3 in CGEFA, and lesser amounts in CGESL and further calls of SALWC.



CHAPTER 3: TOFPLITZ- AND CIRCULANT-TYPE MATRICES OF THE THIRD LEVEL

1. Structure and Representation

l.1. Overview

A matrix

Al A Ajg e oo Ay
21 fg2 Agg e ¢« Agyg

A3) A3y A3 . . . Agy

with K elements in a row (or column) where the elements Aij are two-lavel
matrices (see Chapter 2) with Tirst-level order L and second-level order M is
called a three-level matrix., K is called the first-level order, L becomes the
second-level order, and M becomes the third-level order of the matrix A. The

order N of A is then the product of the orders of its levels: N = K*L*M,

We will call the three-level matrix (1) an XYZ-type if A considered as a
block matrix is an X-type and each of its blocks Aij is a YZ-type (see section
1 of Chapter 2). As X-, Y-, and Z-types in the TOEPLITZ package we consider
T-, C-, and G-matrices defined in section 1 of Chapter 1. FExamples of three-
level matrices can be found in subsections 2.3, 3.3, 4.3, and 5.3 of this

chapter.

By permuting corresponding rows and columns, we can transform an XYZ-type
to any of types X7Y, YXZ, YZX, ZXY, or ZYX (see Tyrty.hnikov ([25]). This
circumstance allows us to limit consideration to a few among the possible

three-level types.

The scheme for compact representation of three-level matrices is the
following. Let A be of XYZ-type with level orders K, L, and M, respective-
ly. Furthermcre, let K be the number of elements required in the compact
representation of X, and M*L be the number of elements required in the compact

representation of a YZ-type with level orders L and M, Recail that for TG-,
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CT-, CC—-, and CG-matrices described in section 1 of Chapter 2 the values of
MAL are, respectively, M¥*2%(2%L-1), (2*M-1)*L, M*L, and M**2*L,, Ir the
TOEPLITZ package such a three-level matrix 1s represented by a doubly sub-
scripted MaL, by K array. The blocks in the array are indexed by the second
subscript and ordered in accordance with the X-type compact representation.
In turn, the elements in a block are indexed by the first subseript and
ordered in accordance with the block's YZ-type compact representation packed

linearly by columns,

l.2., CIG-matrices

A complex matrix

A= (2)

is called a CTG-matrix 1f Ai’ i=0,1,2,...,K-1, are TG-matrices of first-level

order L and second-level order M (see subsection 1.2 of Chapter 2).

L. the TOQEPLITZ package this CTG-matrix 1s represented by a doubly sub-
scripted M**2%(2%L-1) by K array in which the first-level blocks are ordered

in the following way:
AO’AI’AZ’...’AK-]. .

Each block A; is a TG-matrix packed linearly by columns.

1.3. CCT-matriecng

A matrix of form (2) 1s called a CCT-matrix if Ay, 1=0,1,2,...,K-1, are
CT-matrices of first-level order L. and second-level order M (see subsection

1.3 of Chapter 2).

In the TOEPLITZ package this CCT-matrix is represented by a doubly
subscripted (2*M-1)*L by K array. The storage arrangement for the CCT-matrix
is as for the CTG-matrix except that each block Ai is a CT-matrix.



1.4. CCC-matrices

A matrix of form (2) 1Is called a CCC-matrix 1f Ajs i=0,1,2,...,K-1, are
CC-matrices of first-level order L and second-level order M (see subsection

l.4 of Chapter 2).

In the TOEPLITZ package this CCC-matrix 1s represeated by a doubly
subscripted M*L by K array. The storage arrangement for the CCC-matrix 1s as

for the CTG-matrix except that each block A; is a CC-matrix.

1.5. COG—matrices

A matrix of form (2) 1is called a CCG-matrix if Ai, i=0,1,2,...,K-1, ara
CG-matrices of first-level order L and second-level order M (see subksection

1.5 of Chapter 2).

In the TOEPLITZ package this CCG-matrix 1s represented by a doubly
subscripted M**2*L by K array. The storage arrangement for the CCG-matrix is

as for the CTG-matrix except that each block Ay is a CG-matrix.

1.6. Other types of three-level matrices

CGT~, TCG-, TGC~, GCT-, GTC-, CTC~, TCC~, CGC~, and GCC-matrices, defined
in analogous ways, can be transformed to the types discussed in subsections
1.2-1.5 by permuting corresponding laevels. Therefore, the TOEPLITZ package
does not include subroutines tor solving linear systems with three-level
matrices of these types. At the present time no algorithm is known that
capitalizes erffectively on the structure of linear systems with three-level

matrices more than one of whose levels 1s of T~ or G-type.

2. Solution of Linear Equations with CTG—matrices

2.1. Purpose

The TQEPLITZ subroutine in this sectlon 1is designed to solve linear alge-
braic equations with CTG-watrices, that 1s, complex block-circulant matrices

whose blocks are TG-matrices. A double precision version is also available,
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2.2. Usage

Single precision CTIG-matrices. CTGSLC solves a linear system with a

CTG-matrix. The calling sequence 1is

On entry,

o

LDA

On return,

X

CALL CTGSLC(A,X,R,M,L,K,LDA) .

is a doubly subscripted M**2*(2*1-1) by K array which contains the
CTG~matrix in the form described in subsection 1.2. A 1s destroyed
by CTGSLC,

is a singly subscripted array of M*L*K elements which contains the
right hand side of the system.

is a singly subscripted array of max(2*Mk*2*L+3*M*x*24M 2%K) elements

uscd for work space.

1s thr order of each inner G-matrix block of A.

is the number of inner blocks in each row or colum of the

TG-matrices which comprise the outer blocks of A.

is the number of outer blocks in each row or colummn of A,

is the leading dimension of the array A.

contains the solution of the system.

Double precision CTG-matrices. In those computing systdms where it 1is

availlable,
CTGSLZ 1is

varilables.

the calling sequence of the double precision CTG-matrix subroutine

the same as that of CTGSLC with A, X, and R DOUBLE COMPLEX



2.3. Example

The following program segment illustrates the use of the single precision

subroutine CTGSLC for CTG-matrices.

obtained by changing the subroutine name and type declaration,

of order 8 with coefficients as fullows,

COMPLEX A(12,2),X(8),R(30)
INTEGER M,L,K,LDA,I,J

DATA A(1,1)/(1.0,1.0)/,A(2,1)/(2.0,2.0)/,A(3,1)/(3.0,3.0)/,
A(4,1)/(4.0,4.0)/,A(5,1)/(5.0,5.0)/,A(6,1)/(6.0,6.0)/,
A(7,1)/(7.0,7.0)/,A(8,1)/(8.0,8.0)/,A(9,1)/(9.G,9.0)/,

N ¥ ¥ ¥ ¥

DATA

*

bl i« 4

s B R

1+1 3+34 5451 7+74 134131 154154 (174174 194191
2421 4o 6+6i 8+81 14+141 16+161|18+18i 20+201
94+9i 114114 141 3431 (214214 23+231|13+131 154151
104101 124121 2421 4441 | 224221 244241 14+141 16+161
A =

134131 15+151 [17+174i 19+19i} 141 3+34 5454 7+74
14+141 16+161 |18+181 204204 2421 4441 6+61  8+84
214211 234231 [13+134 15+154] 9491 11+114| 1+ 3+31
224221 244241 | 14+141 164164104101 124124} 2421 4+41 /

An example of the use of CTGSLZ could be

The system is

80+801

B8+881

36+961

104+1041

80+804

88+881

96+961
\104+104

-

A(10,1)/(10.0,10.0)/,AC11,1)/(11.0,11.0)/,A(12,1)/(12.0,12.0)/,
A(1,2)Y/(13.0,13.0)/,A(2,2)/(14.0,14.0)/,A(3,2)/(15.0,15.0)/,
A(4,2)/(16.0,16.0)/,A(5,2)/(17.0,17.0)/,A(6,2)/(18.0,18.0)/,
A(7,2)/(19.0,19.0)/,A(8,2)/(20.0,20.0)/,A(9,2)/(21.0,21.0)/,
A(10,2)/(22.0,22.0)/,A(11,2)/(23.0,23.0)/,A(12,2)/(24.0,24.0)/

X(1)/(80.0,80.0)/,X(2)/(88.0,88.0)/,X(3)/(96.0,96.0)/,

X(4)/{104.0,104,0)/,X(5)/(80.0,80.0)/,X(6)/(88.0,88.0)/,
X(7)/(96.0,96.0)/,X(8)/(104.0,104.0)/

2
2

LDA = ]2
CALL CTGSLC(a,X,R,M,L,K,LDA)

J = MRL*K

bO10I=1,1J

WRITE(...,...) X{I)

10 CONTINUE
STOP
END
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The solution of the system 1is

The algorithm for solving a linear system
Ax = b (1
with the CTG-matrix
AO Al AZ . . L] AK_ 1
AK-I AO Al * L] L] AK_Z

Ag_o AK—I Ag » - - AK—B

= 0+ » . e . B r e

Al A2 A3 o e s AO

where Ay, 1=0,1,2,...,K-1, are TG-matrices of first-level order L and second-
level order M, is analogous to that described in subsection 3.4 of Chapter 2
for CT-matrices. It proceeds from a similarity transformation of A to a

block-diagonal matrix

D = Q*AQ
in which each diagonal block is a TG-matrix. (The symbol * denotes conjugate
transpose.} 0 is a two-level matrix with first-level order X and second-level

order L*M whose blocks are scalar matrices; the matrix of the scalars

themselves 1s unitary.

Blcck Qij of Q is defined as

Yy~ gD 0Dy,

where E = exp(2n/=1/K) and I 1s the identity matrix of order L*M, However, as
for C-matrices (see section 3 of Chapter 1), 1t is more efficlent to use

instead the matrix

a-liQo



Thus the solution x of the system (1) can be found by the following steps:

a) Transform the matrix A to the block-diagonal matrix

—k
D = Q AQ/K .

b} Transform the right hand side

_*
y=0Qb .

¢} Solve the system

DZ=Y0

d) Transform the vector z back to

X = 62/K .
Note that since A is a CTG-matrix, its transformation to D becomes simply
K_
D, = jzl QA >
where D;; is the 1i-th diagonal block of D and Aj—l is the outer tlock with
index j-1 at the top of A, Furthermore, since D is block-diagonal each block

of which is a TG-matrix, the system (1) reduces to K systems with TG-matrices,

2.5. Progral-igg,details

The implementation of subroutine CTGSLC corresponds to the algorithm
described in subsection 2.4, All needed operations with matrices Q and 6* are
implemented by the service subroutina SALWC described in subsection 3.5 of
Chapter 2. For solving the K systems with TG-matrices, second-level
subroutines TGSLC and TGSLC] are caliled,

For solving systems with double precision CTG-matrices (using CTGSLZ),
corresponding versions of subroutines TGSLC, TGSLCl, and SALWC are called,
namely, TGSLZ, TGSLZl, and SALWZ.

The number of multiplications in executing subroutine CTGSLC is M3L%K +
am21.42 plus terms of lesser degree.
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3. Solution of Linear Equations with CCT-matrices

3.1. Purpose

The TOEPLITZ subroutine in this section 1s designed to solve linear alge-
braic equations with CCT-matrices, that 1is, complex block-circulant matrices

whose blocks are CT-matrices. A double precision version 1s also available.

3.2. Usage

Single precision CCT-matrices. CCTSLC solves a linear system with a

CCT-matrix. The calling sequence is
CALL CCTSLC(A,X,R,M,L,K,LDA) .
On entry,
A is a doubly subscripted (2*M-1)*L by K array which contains the
CCT-matrix in the form described in subsection 1.3. A is destroyed

by CCTSLC.

X is a singly subscripted array of M*L*K elements which contains the
right hand side of the system.

R is a singly subscripted array of max({(2*M-2,2*L,2*%K) elements used

for work space,

M is the order of each inner T-matrix block of A,

L is the number of 1inner blocks 1in each row or column of the

CT-matrices which comprise the outer blocks of A.

.4 i8 the number of outer blocks in each row or column of A.

LDPA 1s the leading dimension of the array A.

On return,

X contains the solution of the system.



Double preclsion CCT-patrices. In those computing systems where it is

available, the calling sequence of the double precision CCT-matrix subroutine
CCTSLZ is the same as that of CCTSLC with A, X, and R DOUBLE COMPLEX

variables.

3.3. Example

The following program segment 1llustrates the use of the single precision
subroutine CCTSLC for CCT-matrices. An example of the use of CCTSLZ could be
obtained by changing the subroutine name and type declaration. The system 1s

of order B with coefficients as follows.

14+1 2+21 444 5451 T+71 8+81 [10+101 11+111i {48+481\
3431 1H 6+61  4+41 | 9491 7+7i [12+121 10+104 52+521
4441 5451 1+1 2421 (104101 114111y 7+74 8+8i1 48+481
6+61 4441 3+31 1+ 124121 104101 9#9i 7+71 524521
t e .:;Ti 8481 [10+101 11+114{ 1+1 2421 | 4441 5451 . A8+484
9491 7471 [124121 104104 3431 144 b+61  4+41 52+521
1041014 114114 7474 8481 | 4+41  S5+51 | 1+i 2421 48+481
124121 104101 | 9494  7+71 | 6+64  4+41 | 3+31 1+ \52+521/

COMPLEX A(6,2),X(8),R(4)
INTEGER M,L,K,LDA,I,J
DATA A(1,1)/(1.0,1.0)/,A(2,1)/(2.0,2.0)/,A(3,1)/(3.0,3.0)/,
* A(4,1)/(4.0,4.0)/,A(5,1)/(5.0,5.0)/,A(6,1)/(5.0,6.0)/,
* A(1,2)/(7.0,7.0)/,A(2,2)/(8.0,8.0)/,A(3,2)/(9.0,9.0)/,
* A(4,2)/{10.0,10.0)/,A(5,2)/(11.0,11.0)/,A(6,2)/(12,0,12.0)/
DATA X(1)/(48.0,48.0)/,%X(2)/(52.0,52.0)/,
* X(3)/(48.0,48.0)/,X(4)/(52.0,52.0)/,
* X(5)/(48.0,48.0)/,X(6)/(52.0,52.0)/,
* X(7)/(48.0,48.0)/,X(8)/(52.0,52.0)/

R~
H 0
NN R

LDA = 6
CALL CCTSLC(A,X,R,M,L,K,LDA)
J = M*L*K
p0O10I =1, J
WRITE(...,...) X(I)
10 CONTINUE
STOP
END
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The solutlion of the system is

X = (1.0,0.0),(1.0,0.0),(1.0,0.0),(1.0,0.0),
(1.0,0.0),(1.0,0.0),(1.0,0.0),(1.0,0.0)) .

3.4. Algorithm

The algorithm used in subroutine CCTSLC is the same as that described in
subsection 2.4 for CTG-matrices except that the solution of CT-matrix rather

than TG-matrix systems is involved.

3.5. Programming details

Programming details of subroutine CCTSLC are as for CTGSLC (see subsec-
tion 2.5) except that subroutine CTSLC 1is called instead of subroutines TGSLC
and TGSLCl; the number of multiplications 1s approximately AMLK 2+4ML 2K+ 3M2 LK.

4. Solution of Linear Equations with CCC-matrices

4,1. Purpose

The TOEPLITZ subroutine in this section 1s designed to solve linear alge-
bralc equations with CCC-matrices, that 1is, complex block-circulant matrices

whose blocks are CC-matrices., A double prerision version 1s also available.

4.2, Usage

Single precision CCC-matrices. CCSLC solves a linear system with a

CCC-matrix., The calling sequence is
CALL CCCSLC(A,X,R,M,L,K,LDA) .

On entry,

A is a doubly subscripted M*L by K array which contains the CCC-matrix
in the form descrited in subsection 1.4. A is destroyed by CCCSLC.

X is a singly subscripted array of M*L*K elements which contains the
right hand side of the system,



R i{s a siugly subscripted array of max(M,2*L,2*K) elements used for

work space.

M 1s the order of each inner C-matrix block of A.

L is the number of 1inner blocks in each row or colum of the
CC-matrices which comprise the outer blocks of A.

K i3 the number of outer blocks 1n each row or column of A,

LPA 1is the leading dimension of the array A.

On return,

X contains the solution of the system.

Double precision CCC-matrices. In those computing systems whnre it is

avallable, the calling sequence of the double precision CCC—matrix subroutine
CCCSLZ 1is the same as that of CCCSLC with A, X, and R DOUBLE COMPLEX

variahles.

4.3. Example

The following program segment {llustrates the use of the single precision
subroutine CCCSLC for CCC-matrices. An example of the use of CCCSLZ could be
obtained by changing the subroutine name and type declaration. The system is

of order 8 with coefficlents as follows.

141 2424 | 3431 4+41 | S#51 6+61 | 7471 8481 {36+361
2424 141 | 4441 3431 [ 6+61 S+51 | 8481 7+71 36+361
3431 hHL | 1+ 2424 | 7470 8481 | S+5L 6461 364361
A+61 3434 | 2421 14+ | B+B1 7474 | 6461 S5+51 364364
he S+51 6+61 | 7471 8481 | 141 2421 | 3431 4+41 * 36+361
6+61 5451 | 8481 7471 | 2421 M1 | 4+41 3434 36+361
474 B4B1 | 5451 6461 | 3431 4Hel | 1+t 2428 36+361
B+81 T+71 | 6464 S5+51 | 441 3431 | 2421 ' 14 / \36+3611
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COMPLEX A(4,2),X(8),R{4)

INTEGER M,L,K,LDA,1,J

DATA A(1,1)/(1.0,1.0)/,A(2,1)/(2.0,2.0)/,A(3,1)/(3.0,3.0)/,
* A(4,1)/(4.0,4.0)/,A(1,2)/(5.0,5.0)/,A(2,2)/(6.0,6.0)/,
* A(3,2)/(7.0,7.0)/,A(4,2)/(8.0,8.0)/

DATA X(1)/(36.0,36.0)/,X(2)/(36.0,36.0),X(3)/(36.0,36.0)/,

* X(4)/(36.0,36.0)/,X(5)/(36.0,36.0),X(6)/(36.0,36.0)/,
* X(7)/(36.0,36.0)/,X(8)/(36.0,36.0)/
M=2
L =2
K=2
LDA = 4
CaLL CCCSLC(A,X,R,M,L,K,LDA)
J = M*L*K
DO 10T =1,J
WRITE(..0,...) X(1)
10 CONTINUE
STOP
END

The solution of the system is

4.4, Algorithn

The algorithm used in subroutine CCCSLC is the same as that described in
subsection 2.4 for CTG-matrices except that the solution of CC-matrix rather
than TG-matrix systems is involved.

4.5. Programming details

Programming details of subroutine CCCSLC are as for CIGSLC (see subsec-
tion 2.5) except that subroutine CCSLC 1s called iustead of subroutines TGSLC
and TGSLCl; the number of multiplications is approximately 3MLK2+3ML2K+3M2LK.

5. Solution of Linear Equations with COG—matrices

5.1. Purpose

The TOEPLITZ subroutine in this section is designed to solve linear alge-
braic equations with CCG-matrices, that 1s, complex block-circulant matrices

whose blocks are CG-matrices. A double precision version is also available,



5.2. Usage

Single precision CCG-matrices. CCGSLC solves a linear system with a

CCG~matrix. The calling sequence is
CALL CCGSLC(A,X,R,M,L,K,LDA) .

On entry,

A is a doubly subscripted M**2%L, by K array which contains the
CCG-matrix in the form described in subsection 1.5. A 1s destroyed
by CCGSLC.

X is a singly subscripted array of M*L*K elements which contains the
right hand side of the system.

R is a singly subscripted array of max(M,2*%L,2*K) elements used for

work space.

M ig the order of each inner G-matrix block of A.

L is the number of i1nner blocks in each row or columm of the

CG-matrices which comprise the outer blocks of A.

X is the number of outer blocks in each row or column of A,

LDA 1is the leading dimension of the array A.

On return,

X contains the solution of the system.

Double precision CCG-matrices. 1In those computing systems where it 1is

available, the calling sequence of the double precision CCG-matrix subroutine
CCGSLZ 13 the same as that of COCGSLC with A, X, and R DOUBLE COMPLEX

varlables.
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5.3. Example

The following program segment 1llustrates the use of the single precision

subroutine CCGSLC for CCG-matrices.

obtained by changing the subroutine name and type declaration.

of order 8 with coefficlents as follows,

|

1+1 3431 | 5454 9491 114+114[134+134 154151
2421 4+41 | 6+61 10+101 12+121|14+141 l6+161
5+51 7+71 1+1 134134 154151} 9+91 ll+11i
6+61  8+81 2421 144141 16+161[10+101 124121
he 9491  11+114|13+131 154151 1+1 3+31 | 5451 7+71
104101 12+12i]14-41 2+21 4441 | 6461 8481
134131 15+151) 9491 5+51 71 1+ 3+31
14+141 16+16110+101 12+121| 6+61i  8+81 2421 4441

10

COMPLEX A(8,2),X(8),R(4)

INTEGER M,L,K,LDA,T J

An example of the use of CCGSLZ could be

The system 1s

’6A+641‘
724721
6U-+641
724721
64+641

724721

\64+641

72+721‘

DATA A(1,1)/(1.0,1.0)/,A(2,1)/(2.0,2.0)/,A(3,1)/(3.,,3.0)/,

* % ¥ ¥ ¥

DATA X(1)/(64.0,64.0)/,X(2)/(72.0,72.0)/,

*

X(3)/(64.0,64.0)/,X(4)/(72.0,72.0})/,

* X(5)/(64.0,64,0)/,X(6)/(72.0,72.0)/,
* X(7)/(64.0,64.0),,4(8)/(72.0,72.0)/

M
L

H oo

K

LDA = 8

CALL CCGSLC’A,X,R,M,L,K,LDA)

J = MXL*K
DO 10 I =1, J

WRITE(...,...) X(I)

CONTINUE
STOP
END

A(4,1)/(4.0,4.0)/,A(5,1)/(5.0,5.0)/,A(6,1)/(6.0,6.0)/,
A(7,1)/(7.0,7.0)/,A(8,1)/(8.0,8.0)7,A(1,2)/(9.0,9.0)}/,
A(2,2)/(10,0,10.0)/,A(3,2)/(11.0,11.0)/,A(4,2)/(12.0,12.0)/,
A(5,2)/(13.0,13.0)/,A(6,2)/(14.0,14.0)/,A(7,2)/(15.0,15.0)/,
A(8,2)/(16.0,18 0)/



The solution of the system 1is

5.4 Algorithm

The algorithm used in subroutine CCGSLC is the same as that dessribed in
subsection 2.4 for CTG-matrices except that the solution of CG-matrix rather

“itan TG-matrix systems is involved.

5.5. Programming detalls

Programming detalls of subroutine CCGSLC are as for CTGSLC (sem subsec-
tion 2.5) except that subroutine CGSLC is called instead of subroutines TGSLC
and TGSLCl; the number oif multiplications 1s HZLK2+M2L2K+M3LK/3 plus terms of

lesser degree,
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APPENDIX A. TABLES OF EXECUTION TIMES

We provide here three tables of sample execution times for the TOEPLITZ
package subroutines. The first two tables report times for the single
precision and double precision versions, respectively, on the VAX 11/780; the
third table reports times for the single precision version on the IBM 3033.
The VAX compllations were made with the Foriran 77 compliler running under
UNIX; the IBM compilations were made with the Fortran H Extended (Enhznced)
compiler running under MVS. Using these tables and the approximate
multiplication counts given 1in the discussivns of the algorithms 1in the
previous chapters, it should be possible to extrapolate execution times for

probleme of different dimensions.
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SUMMARY OF EXECUTION TIMES FOR THE
SINGLE PRECISION TOEPLITZ SUBROUTINES ON THE VAX 11/780

SUBROUTINE 3td 1 EyEL ond [ EyEL 15t LEVEL TIME (sec.)
TSLS (TSLS1) 100 0.35
TSLC (TSLCL) 100 1.6
CSLC 100 1.2
CQRS 100(rows ) 20{columns) C.25
CQrRC 100(rows) 20(columns) 0.83
TGSLS (TGSLS1) 10 10 5.9
TGSLS (IN-LINE SAXPY) 10 10 6.7
TGSLC (TGSLC1) 10 10 14.5
TGSLC (IN-LINE CAXPY) 10 10 16.6
CTSLC 20 20 2.7
CCSLC 20 20 2.2
CGSLC 20 20 13.5
CTGSLC 6 6 6 9.2
CCTSLC 8 8 8 2.5
CCCSLC 8 8 3 2.0

CCGSLC 8 8 8 5.7




SUMMARY OF EXECUTION TIMES FOR THE
DOUBLE PRECISION TOEPLITZ SUBROUTINES ON THE VAX 11/780

SUBROUTINE 374 LeveL 2P LEVEL  15' LEVEL = TIME (sec.)
TSLD (TSLDL) 100 0.52
TSLZ (TSLZI) 100 2.5
CSLZ 100 1.9
CQRD 100(rows) 20(columns) 0.38
CQrRZ 100{rows) 20(columns)} 1.6
TGSLD (TGSLD1) 10 10 8.5
TGSLZ {TGSLZI) 10 10 27.3
CTSLZ 20 20 4.0
cesLz 20 20 3.3
CGSLZ 20 20 22.2
CTGSLZ 6 6 6 14.8
CCTSLZ 8 8 8 3.7
CCCSLZ 8 8 8 3.2

CCGSLZ 8 8 8 9.4
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SUMMARY OF EXECUTION TIMES FOR THE
SINGLE PRECISION TQEPLITZ SUBROUTINES ON THE IBH 3033

24 1 EyEL

SUBROUTINE 15% LEVEL TIME (sec.)
TSLS (TSLS!) 100 .028
200 .11
300 .25
400 A4
500 .69
TSLC (TSLC1) 100 .19
CSLC 100 .18
200 .70
300 1.6
400 2.8
500 4.3
TGSLS (TGSLSI) 10 10 47
TGSLS (IN-LINE SAXPY) 10 10 .27
TGSLC (TGSLCI) 10 10 1.5
TGSLC (IN-LINE CAXPY) 10 10 1.4
CTSLC 20 20 .35
CCSLC 20 20 .31
CGSLC 20 20 1.5




APPENDIX B. PROGRAM LISTINGS

There follows the single precision version of the TOEPLITZ package
program listings; both single precision and double precision versions of the
subprograms are available with the TOEPLITZ package. The listings appear in

the following order:

TSLS, TSLS1, TSLC, TSLCl, CSLC, CQRS, CQRC, TGSLS,
TGSLS1, TGSLC, TGSLCI, CTSLC, CCSLC., CGSLC, SALWC,
CTGSLC, CCTSLC, CCCSLC, CCGSLC.
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SUBROUTINE TSLS(A,X,R,M)

INTEGER M

REAL A(1),X(M),R(1)

TSLS CALLS TSLS1 TO SOLVE THE REAL LINEAR SYSTEM

A*X=28

WITH THE T - MATRIX A .

ON ENTRY

A

M

ON RETURN

X

REAL(2*M - 1)
THE FIRST ROW OF THE T - MATRIX FOLLOWED BY ITS

FIRST COLUMN BEGINNING WITH THE SECOND ELEMENT .

ON RETURN A IS UNALTERED .

REAL(M)
thk RIGHT HAND SIDE VECTOR B

REAL(2*M - 2)
A WORK VECTCR .

INTEGER
THE ORDER OF THE MATRIX A .

THE SOLUTICN VECTOR .

TOEPLITZ PACKAGE. THIS VERSION DATED 07/23/82 .

SUBROUTINES AND FUNCTIONS

TOEPLITZ PACKAGE ... TSLS1

CALL SUBROUTTINE TSLS1

CALL TSLSI(A,A(M+1),X,X,R,R(M),M)

RETURN
END

81
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SUBROUTINE TSLS1(Al,A2,B,X,C1,C2,M)
INTEGER M
REAL A1(M),A2(1),B(M),X(M),C1(1),C2(1)

TSLS1 SOLVES THE REAL LINEAR SYSTEM
A*X=B
WITH THE T - MATRIX A .

ON ENTRY
Al REAL(M)
THE FIRST ROW OF THE T - MATRIX A .
ON RETURN Al IS UNALTERED .
A2 REAL(M - 1)
THE FIRST COLUMN OF THE T - MATRIX A
BEGINNING WITH THE SECOND ELEMENT .
ON RETURN A2 IS UNALTERED .
B REAL(M)
THE RIGHT HAND SIDE VECTOR .
ON RETURN B IS UNALTERED .
C1 REAL{(M - 1)
A WORK VECTOR .
Cc2 REAL(M - 1)
4 WORK VECTOR .
M INTEGER
THE ORDER OF THE MATRIX A .
ON RETURN
X REAL(M)

THE SOLUTION VECTOR. X MAY COINCIDE WITH B .

TOEPLITZ PACKAGE. THIS VERSION DATED 07/23/82 .
INTERNAL VARIABLES

INTEGER T1,I2,N,N1,N2
REAL R1,R2,R3,R5,R6

SOLVE THE SYSTEM WITH THE PRINCIPAL MINCR OF ORDER 1 .

Rl = Al(1)
X(1) = B(1)/R1
IF (M .EQ. 1) GO TO 80

RECURRENT PROCESS FOR SOLVING THE SYSTEM
WITH THE T - MATRIX FOR N = 2, M .

DO 7/ON=2, M
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> Rele Ny

10
20

30
40

20

60

COMPUTE MULTIPLES OF THE FIRST AND LAST COLUMNS OF

THE INVERSE OF THE PRINCIPAL MINOR OF ORDER N .

N1
N2

N -1
N -2
R5 = A2(N1)
R6 = A1(N)
IF (N .EQ. 2) GO TO 20
C1(N1) = R2
DO 10 I1 =1, N2
I2 =N - 11
RS = R5 + A2(I1)*C1(I2)
R6 = R6 + AL(I1+1)*C2(I1)
CONTINUE
CONTINUE
R2 = -R5/R1
R3 = -R6/R1
Rl = R1 + R5%R3
IF (N .EQ. 2) GO TOQ 40
Ré = C2(1)
C2(N1) = D.0OED
DO 30 I1 = 2, N1
R5 = C2(I1)
C2(I1) = C1(I1)*R3 + R6
€C1(I1) = C1(I1) + Ré6™R2
R6 = RS
CONTINUE
CONTINUE
€2(1) = R3

oo
Tt

COMPUTE THE SOLUTION OF THE SYSTEM WITH THE
PRINCIPAL MINOR OF ORDER N .

R5 = 0.0EQ
DO 50 I1 = 1, N1
12 =N - I1
R5 = R5 + A2(I1)*X(I2)
CONTINUE
R6 = (B(N) - R5)/R1
DO 60 Il = 1, N1
X(I1) = X(I1) + C2(I1)*R6
CONTINUE
X(N) = R6

70 CONTINUE
80 CONTINUE

RET
END

RN
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SUBRQUTINE TSLC(A,X,R,M)

INTEGER M

COMPLEX A(1),X(M),R(1)

TSLC CALLS TSLC1 TO SOLVE THE COMPLEX LINEAR SYSTEM

A*X =28

WITH THE T - MATRIX A .

ON ENTRY

A

M

ON RETURN

X

COMPLEX(2*M - 1)

THE FIRST ROW OF THE T - MATRIX FOLLOWED BY ITS
FIRST COLUMN BEGINNING WITH THE SECOND ELEMENT .
ON RETURN A IS UNALTERED .

COMPLEX (M)
THE RIGHT HAND SIDE VECTCR B .

COMPLEX(2*M - 2)
A WORK ViICTOR .

INJEGER
THE ORDER OF THE MATRIX 4 .

THE SOLUTION VECTOR .

TOEPLITZ PACKAGE. THIS VERSION DATED 07/23/82 .

SUBROUTINES AND FUNCTIONS

TOEPLITZ PACKAGE ... TSLC1

CALL SUBRGUTINE TSLC1

CALL TSLC1(A,A(M+1),X,X,R,R(M),M)

RETURN
END
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SUBROUTINE TSLC1(Al,A2,B,X,C1,C2,M)
INTEGER M
COMPLEX A1(M),A2(1),B(M),X(M),C1(1),C2(1)

TSLC1 SOLVES THE COMPLEX LINEAR SYSTEM
A* X =8B
WITH THE T - MATRIX A .

ON ENTRY
Al COMPLEX (M)
THE FIRST ROW OF THE T - MATRIX A .
ON RETURN Al IS UNALTERED .
A2 COMPLEX(M - 1)
THE FIRST COLUMN OF THE T - MATRIX A
BEGINNING WITH THE SECOND ELEMENT .
ON RETURN A2 IS UNALTERED .
B COMPLEX (M)
THE RIGHT HAND SIDE VECTOR .
ON RETURN B IS UNALTERED .
C1 COMPLEX(M - 1)
A WORK VECTOR .
c2 COMPLEX(M - 1)
A WORK VECTOR .
M INTEGER
THE ORDER OF THE MATRIX A .
ON RETURN
X COMPLEX (M)

THE SOLUTION VECTOR. X MAY COINCIDE WITH B .

TOEPLITZ PACKAGE. THIS VERSION DATED 07/23/82 .
INTERNAL VARIABLES

INTEGER I1,12,N,N1,N2
COMPLEX R1,R2,R3,R5,R6

SOLVE THE SYSTEM WITH THE PRINCIPAL MINOR OF ORDER 1 .

R1 = A1(1)
X(1) = B(1)/Rl
IF (M .EQ. 1) GO TO 80

RECURRENT PROCESS FOR SOLVING THE SYSTEM
WITH THE T - MATRIX FOR N = 2, M .

DO 70N =2, M
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COMPUTE MULTIPLES OF THE FIRST AND LAST COLUMNS OF
THE INVERSE OF THE PRINCIPAL MINOR OF ORDER N .

aaaa

10
20

30
40

50

60

N1
N2

N - 1
N -2
RS = A2(N1)
R6 = AL(N)
IF (N .EQ. 2) GO TO 20
C1(N1) = R2
DO 10 I1 =

it mu

1

—

1, N2
I2 =N - 11
RS = R5 + A2(I1)*C1(I2)
R6 = R6 + A1(I1+1)*C2(I1)
CONTINUE
GONTINUE
R2 = -R5/R1
R3 = -R6/RIl
R1 = Rl + R5*R3
IF (N .EQ. 2) GO TO 40
R6 = C2(1)
C2(N1)} = (0.0E0,0.0E0)
DO 30 Il = 2, NIl
R5 = C2(I1)
C2(I1) = CL(I1)*R3 + Ré
C1(I1) = C1(I1) + R6%R2
R6 = RS
CONTINUE
CONTINUE
C2(1) = R3

COMPUTE THE SOLUTION OF THE SYSTEM WITH THE
PRINCIPAL MINOR OF ORDER N .

R5 = (0.0E0,0.0EQ)
DO 50 11 = 1, N1
I2=N-1I1
R5 = R5 + A2(I1)*X(I2)
CONTINUE
R6 = (B(N) - RS)/R1
DO 60 I1 = 1, N1
X(I1) = X(I1) + C2(I1)*R6
CONTINUE
X(N) = R6

s

It H

70 CONTINUE
80 CONTINUE
RETURN

END
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SUBROUTINE CSLC(A,X,R,M)
INTEGER M
COMPLEX A(M),X(M),R(M)

CSLC SOLVES THE COMPLEX LINEAR SYSTEM
A*X=38
WITH THE C - MATRIX A .

ON ENTRY
A COMPLEX (M)
THE FIRST ROW OF THE C - MATRIX .
ON RETURN A IS UNALTERED .
X COMPLEX (M)
THE RIGHT HAND SIDE VECTOR B .
R COMPLEX (M)
A WORK VECTOR .
M INTEGER
THE ORDER OF THE MATRIX A .
ON RETURN
X THE SOLUTION VECTOR .

TOEPLITZ PACKAGE. THTS VERSION DATED 07/23/82 .
SUBROUTINES AND FUNCTIONS
FORTRAN ... CMPLY,COS,FLOAT,SIN
INTERNAL VARIABLES
INTEGER I1,1I2
REAL P,RI,RM,V1,V2
COMPLEX E,E1,F,F1,T,T1
T1 = X(1)
X(1) = T1/A(D)
IF (M .EQ. 1) GO TO 50
RM = FLOAT(M)

COMPUTE THE INVERSE DISCRETE FOURIER TRANSFORMATION
OF THE FIRST ROW OF THE MATRIX AND THE DISCRETE

FOURIER TRANSFORMATION OF THE RIGHT HAND SIDE VECTOR .

T = (0.0E0,0.0E0)
RI = -1.0E0
DO 20 11 =1, M

RI = RI + 1.0EO

MINIMIZE ERROR IN FORMING MULTIPLES OF 2*PI

B9
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P = ((201.E0/32.E0)*RI + 1.93530717958647692528E-3*RI)/RM

V1 = COS(P)

V2 = SIN(P)

E = CMPLX(V1,-V2)

E1 = CMPLX(V1,V2)

F = A1)

Fl = Tl

DO 10 I2 = 2, M

F = EXF + A(I2)

Fl = E1*F1 + X(I2)
CONTINUE
R(I1) = (EI*F1)/(E*F)
T =T + R(I1)

CONTINUE

COMPUTE THE SOLUTION OF THE GIVEN 3YSTEM BY
THE INVERSE DISCRETE FOURIER TRANSFORMATION .

X(1) = T/RH
RI = 0.0EO
DO 40 I1 = 2, M
RI = RI + 1.0E0
MINIMIZE ERROR IN FORMING MULTIPLES OF 2Z*PI
P = ((201.E0/32.E0)*RI + 1.935307179586476£92528E-3*R1)/RM

Vi
V2

COS(P)
SIN(P)
= CMPLX(V1,-V2)
= R(1)
030 1I2=2,M
F = E¥F + R(I2)
CONTINUE
X(I1) = E*F/RM
CONTINUE
CONTINGE
RETURN
END

E
F
D
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SUBROUTINE CQRS(A,Q,S,M,L,LDQ,LDS)
INTEGER M,L,LDQ,LDS
REAL A(M),Q(LDQ,L),S(LDS,L)

CQRS COMPUTES THE QR FACTORIZATION IN THE FORM
A * R(INVERSE) = Q
OF THE REAL COLUMN-CIRCULANT MATRIX A .

ON ENTRY
A REAL(M)
THE FIRST COLUMN OF THE COLUMN-CIRCULANT MATRIX .
ON RETURN & IS UNALTERED .
M INTEGER
THE NUMBER OF ROWS OF THE MATRICES A AND Q .
M MUST BE AT LEAST AS LARGE AS L .
L INTEGER
THE NUMBER OF COLUMNS OF THE MATRICES A AND Q
AND THE ORUER OF THE UPPER TRIANGULAR MATRIX § .
LDQ INTEGER
THE LEADING DIMENSION OF THE ARRAY Q .
LDS INTEGER
THE LEADING DIMENSION OF THE ARRAY S .
ON RETURN
Q REAL(M,L)
THE @ MATRIX OF THE FACTORIZATION .
THE COLUMNS OF Q ARE ORTHONORMAL .
S REAL(L,L)

THE INVERSE OF THE R MATRIX OF THE FACTORIZATION .

ELEMENTS BELOW THE MAIN DIAGONAL ARE NOT ACCESSED .

TOEPLITZ PACKAGE. THIS VERSION DATED 07/23/82 .
SUBROUTINES AND FUNCTIONS
LINPACK ... SAXPY,SDOT,SSCAL,SNRM2
INTERNAL VARIABLES
INTEGER I1,J,J1,J1
REAL SCALE,SNRM2
REAL C,SDOT

INITIALIZATION (LAST COLUMN OF Q USED AS WORK VECTOR)

DO 10 I =1, M
Q(I,1) = A(I)
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Q(I,L) = A(I)

10 CONTINUE

20

30

40
50
60

70

RECURRENT PROCESS FOR THE LATTICE ALGORITHM WITH NORMALIZATION .

DO 70 J1 = 1, L

J=J1+1

SCALE = 1.0E0/SNRM2(M,Q(1,J1),1)

IF (J1 .EQ. L) GO TO 60
C = -SCALE*(Q(M,J1)*Q(1,L) +

spoT(M-1,Q(1,J1),1,Q(2,L),1))/SNRM2(M,Q(1,L),1)
Q(1,J) = Q(M,J1) + C*Q(1,L)
DO 20 I =2, M
Q(I1,J) = Q(I-1,J1) + C*Q(I,L)

CONTINUE
IF (J .EQ. L) GO TO 30
Q(1,L) = Q(1,L) + C*Q(M,J1)
CALL SAXPY(M-1,C,Q(1,J1),1,Q(2,L),1)
CONTINUE
S(1,J) = C
IF (J .EQ. 2) GO TO 50
DO 40 I = 2, J1
JI=J-1
S(I,J) = §(I-1,J1) + C%S(JI,J1)
CONTINUE
CONTINUE
CONTINUE
CALL SSCAL(M,SCALE,Q(},J1),1)
S(J1,J1) = 1.0E0
CALL SSCAL(J1,SCALE,S(1,J1),1)
CONTINUE
RETURN

END
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SUBROUTINE CQRC(A,Q,S,M,L,LDQ,LDS)
INTEGER M,L,LDQ,LDS
COMPLEX A(M),Q(LDQ,L),S(LDS,L)

CQRC COMPUTES THE QR FACTORIZATION IN THE FORM
A * R(INVERSE) = Q
OF THE COMPLEX COLUMN-CIRCULANT MATRIX A .

ON ENTRY
A COMPLEX (M)
THE FIRST COLUMN OF THE COLUMN-CIRCULANT MATRIX .
ON RETURN A IS UNALTERED .
M INTEGER
THE NUMBER OF ROWS OF THE MATRICES A AND Q .
M MUST BE AT LEAST AS LARGE AS L .
L INTEGER
THE NUMBER OF COLUMNS OF THE MATRICES A AND Q
AND THE ORDER OF THE UPPER TRIANGULAR MATRIX S .
LDQ INTEGER
THE LEADING DIMENSION OF THE ARRAY Q .
LDS INTEGER
THE LEADING DIMENSION OF THE ARRAY S .
ON RETURN
Q COMPLEX (M, L)
THE Q MATRIX OF THE FACTORIZATION .
THE COLUMNS OF Q ARE ORTHONORMAL .
S COMPLEX(L, L)

THE INVERSE OF THE R MATRIX OF THE FACTORIZATION .

ELEMENTS BELOW THE MAIN DIAGONAL ARE NOT ACCESSED .

TOEPLITZ PACKAGE. THIS VERSION DATED 07/23/82 .
SUBROUTINES AND FUNCTIONS

LINPACK ... CAXPY,CDOTC,CSSCAL,SCNRM2
FORTRAN ... CONJG

INTERNAL VARIABLES

INTEGER I,J,J1,J1

REAL SCALE,SCNRM2

COMPLEX C,CDOTC

INITIALIZATION (LAST COLUMN OF Q USED AS WORK VECTOR)

DO1I0I =1, M
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Q(I,1)
Q(I,L)

ACT)
A(T)

10 CONTINUE

20

30

40
50
60

RECURRENT PROCESS FOR THE LATTICE ALGORITHM WITH NORMALIZATION .

PO770J1 =1, L
J=J1+1
SCALE = 1.0E0/SCNRM2(M,Q(1,J1),1)
IF (J1 .EQ. L) GO TO 60

C = -SCALE*(CONJG(Q(M,J1))*Q(1,L) +
CDOTC(M-1,Q(1,J1),1,Q(2,L),1))/SCNRM2(M,Q(1,L),1)

Q(1,J) = Q(M,J1) + C*Q(1,L)
DO 20 I =2, M

Q(I,J) = Q(1-1,J1) + C*Q(I,L)
CONTINUE
IF (J .EQ. L) GO TO 30

Q(1,L) = Q(1,L) + C*Q(M,J1)

CALL CAXPY(M-1,C,Q(1,J1),1,Q(2,1),1)
CONTINUE
S(1,J) = C
IF (J .EQ. 2) GO TO 50

DO 40 I = 2, Ji

JI=J-1
8(I,J) = 8(I-1,J1) + C*8(JI,J1)
CONTINUE
CONTINUE

CONTINUE

CALL CSSCAL(M,SCALE,Q(1,J1),1)
$(J1,J1) = (1.0E0,0.0E0)

CALL CSSCAL(J1,SCALE,S(1,J1),1)

70 CONTINUE
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SUBROUTINE TGSLS(4,X,R,M,L,LDA)
INTEGER M,L,LDA
REAL A(LDA,1),X(M,L),R(1)

TGSLS CALLS TGSLS1 TO SOLVE THE REAL LINEAR SYSTEM
A*X=B8
WITH THE TG - MATRIX A .

ON ENTRY
A REAL{M¥*2,25L - 1)
THE FIRST ROW OF BLOCKS OF THE TG - MATRIX
FOLLOWED BY ITS FIRST COLUMN OF BLOCKS BEGINNING
WITH THE SECOND BLOCK. EACH BLOCK IS REPRESENTED
BY COLUMNS. ON RETURN A IS UNALTERED .
X REAL(M*L)
THE RIGHT HAND SIDE VECTOR B .
R REAL(M*#2% (2%L + 3) + M)
A WORK VECTOR .
M INTEGER
THE ORDER OF THE BLOCKS OF THE MATRIX A .
L INTEGER
THE NUMBER OF BLOCKS IN A ROW OR COLUMN
OF THE MATRIX A .
LDA INTEGER
THE LEADING DIMENSION OF THE ARRAY A .
ON RETURN
X THE SOLUTION VECTOR .

TOEPLITZ PACKAGE. THIS VERSION DATED 07/23/82 .
SUBROUTINES AND FUNCTIONS
TOEPLITZ PACKAGE ... TGSLS1
INTERNAL VARIABLES
INTEGER MM,MML,MML1,MML2,MML3,MML4 ,MMLS ,MMLG

CALL SUBROUTINE TGSLS1

MM = M&%2

MML = MM*(L - 1) + 1
MML1 = 2*%MML =~ 1
MML2 = MML1 + MM
MML3 = MMLZ + MM
MML4 = MML3 + MM

95



96

MML5
MML6

MML4 + MM
MML5 + MM

CALL TGSLS1(A,A(1,I+1),X,X,R,R{MML),R(MML1),R(MML2),
R(MML3) ,R(MML&4) ,R(MML5) ,R(MML6) ,M, L, LDA)

RETURN
END
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SUBROUTINE TGSLS1(Al,A2,B,X,C1,C2,R1,R2,R3,R5,R6,R,M,L,LDA)
INTEGER M,L,LDA

REAL Al(LDA,L),A2(LDA,1),B(M,L),X(M,L),C1(M,H,1),
* C2(M,M,1),R1(M,M),R2(M, M) ,R3(M,M),R5(M,M),R6(M,M) ,R(M)

TGSLS1 SOLVES THE REAL LINEAR SYSTEM
A* X =28
WITH THE TG - MATRIX A .

ON ENTRY
Al REAL (M*%2,L)
THE FIRST ROW OF BLOCKS OF THE TG - MATRIX A .
EACH BLOCK IS REPRESENTED BY COLUMNS .
ON RETURN Al IS UNALTERED .
A2 REAL(M*%2,1, - 1)
THE FIRST COLUMN OF BLOCKS OF THE TG - MATRIX A
BEGINNING WITH THE SECOND BLOCK. EACH BLOCK IS
REPRESENTED BY COLUMNS. ON RETURN A2 IS UNALTERED .
B REAL (M*L)
THE RIGHT HAND SIDE VECTOR .
ON RETURN B IS UNALTERED .
ci REAL(M,M,L - 1)
A WORK ARRAY .
c2 REAL(M,M,L - 1)
A WORK ARRAY .
R1 REAL(M,M)
A WORK ARRAY .
R2 REAL (M, M)
A WORK ARRAY .
R3 REAL(M,M)
A WORK ARRAY .
R5 REAL (M, M)
A WORK ARRAY .
R6 REAL(M,M)
A WORK ARRAY .
R REAL (M)
A WORK VECTOR .
M INTEGER
THE ORDER OF THE BLOCKS OF THE MATRIX A .
L INTEGER

THE NUMBER OF BLOCKS IN A ROW OR GOLUMN
OF THE MATRIX A .
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LDA INTEGER
THE LEADING DIMENSION OF THE ARRAY A .
ON RETURN
X REAL(M*L)

THE SOLUTION VECTOR. X MAY COINCIDE WITH B .
TOEPLITZ PACKAGE. THIS VERSION DATED 07/23/82 .
SUBROUTINES AND FUNCTIONS

LINPACK ... SAXPY,SGEFA,SGESL
(FOR IN-LINE SAXPY, SEE DIRECTIONS IN COMMENTS)

INTERNAL VARIABLES
INTEGER I,I1,12,13,II,J,N,N1,N2
SOLVE THE SYSTEM WITH THE PRINCIPAL MINOR OF ORDER M .

I3 =1
DO 20 J =1, M
DO 10 1 = 1,
C1¢(I,J,1)
R1(I,J) =
R3(I,J) =
I3 = I3 +
CONTINUE
X(J,1) = B(J,1)
CONTINUE
CALL SGEFA(R3,M,M,R,II)
CALL SGESL(R3,M,M,R,X(1,1),0)
IF (L .EQ. 1) GO TO &20

M

= A1(I3,1)
Al1(I3,1)
R1(I,J)

1

RECURRENT PROCESS FOR SOLVING THE SYSTEM
WITH THE TG - MATRIX FOR N = 2, L .

DO 410 N=2, L

COMPUTE MULTIPLES OF THE FIRST AND LAST BLOCK COLUMNS OF
THE INVERSE OF THE PRINCIPAL MINOR OF ORDER M*N .

NI=N-1
N2 =N -2
I3 =1
DO 40 J =1, M
DO 30 I =1, M
R5(I,J) = A2(I3,N1)
R6(I,J) = A1(I3,N)’
I3=13+1
CONTINUE
CONTINUE
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50
60

FOR

65

70
80
90
100

110

120

130

140

FOR

145

150

160

FOR

165

IF (N .EQ. 2) GO TO 100
DO 60 J =1, M
DOS0I=1,M
C1(I,J,N1) = R2(I,J)
CONTINUE
CONTINUE
DO 90 I1 = 1, N2
I2 =N - I1
DO 80 J =1, M
I3 =1
DO 70 I =1, M
IN-LINE SAXPY, ACTIVATE NEXT 5 LINES AND DEACTIVATE FOLLOWING 3
DO 65 II = 1, M

RS(II,J) = RS(II,J) + C1(I,J,I2)*A2(I3,I1)
R6(TI,J) = R6(II,J) + C2(I,J,I1)*A1(I3,I1+1)
I3 =13+ 1

CONTINUE

CALL SAXPY(M,C1(I,J,12),A2(I3,I1),1,R5(1,J),1)
CALL SAXPY(M,C2(I,J,I1),A1(I3,11+1),1,R6(1,J),1)
13 =13 +M
CONTINUE
CONTINUE
CONTINUE
CONTINUE
DO 120 J = 1,
DO 110 I =
R2(1,J)
CONTINUE
CALL SGESL(R3,M,M,R,R2(1,J),0)
CONTINUE
DO 140 J = 1,
DO 130 I =
R3(I,J)
R6(I,J)
CONTINUE
CONTINUE
N0 160 J =1, M
DO 150 I =1, M
IN-LINE SAXPY, ACTIVATE NEXT 3 LINES AND DEACTIVATE FOLLOWING 1
DO 145 II = 1, M
C1(I1,J,1) = G1(II,J,1) + R2(I,J)*R3(II,I)
CONTINUE
CALL SAXPY(M,R2(I,J),R3(1,1),1,C01(1,7,1),1)
CONTINUE
CONTINUE
CALL SGEFA(R6,M,M,R,II)
DO 180 J =1, M
CALL SGESL(R6,M,M,R,R3(1,J),0)
DO 170 I = 1, M

M
1, M
= -R5(1,J)

, M
R6(I,J)
-C1(1,J,1)

==

IN-LINE SAXPY, ACTIVATE NEXT 3 LINES AND DEACTIVATE FOLLOWING 1 .

DO 165 II = 1, M

R1(II,J) = R1(II,J) + R3I(I,J)*R5(II,I)
CONTINUE
CALL SAXPY(M,R3(I,J),R5(1,I),1,R1(1,J),1)
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170
180

190
200

210
220
230

240

FOR

245

250
260

CONTINUE
CONTINUE
IF (N .EQ. 2) GO TO 320
DO 200 J =1, M
DO 190 I = 1, M
R6(I,J) = C2(I,J,1)
CONTINUE
CONTINUE
DO 310 I1 = 2, N1
IF (I1 .EQ. N1) GO TO 230
DO 220 J =1, M
DO 210 I =1, M
R5(I,J) = C2(I,J,I1)
CONTINUE
CONTINUE
CONTINUE
DO 260 J = 1, M
DO 240 I = 1, M
€2(I,J,I1) = R6(I,J)
CONTINUE
DO 250 I =1, M

IN-LINE SAXPY, ACTIVATE NEXT 3 LINES AND DEACTIVATE FOLLOWING 1 .

DO 245 II = 1, M
C2(II,J,T1) = C2(11,J,I1) + R3(I,J)*C1(II,I,I1)
CONTINUE
CALL SAXPY(M,R3(I,J),C1(1,I,I1),1,C2(1,J,I1),1)
CONTINUE
CONTINUE
DO 280 J =1, M
DO 270 I = 1, M

FOR IN-LINE SAXPY, ACTIVATE NEXT 3 LINES AND DEACTIVATE FOLLOWING 1 .

265

270
280

290
300
310
320

330
340

DO 265 II = 1, M
C1(II,J,I11) = C1(II,J,I1) + R2(I,J)*R6(II,I)
CONTINUE
CALL SAXPY(M,R2(I,J),R6(1,1),1,C1(1,J,I1),1)
CONTINUE
CONTINUE
DO 300 J = 1,
DO 290 I =
R6(1,J)
CONTINUE
CONTINUE
CONTINUE
CONTINUE
DO 340 J =1, M
DO 330 I =1, M
¢2(1,J,1) = R3(1,J)
CONTINUE
CONTINUE

M
1, M
= R5(I,J)

COMPUTE THE SOLUTION OF THE SYSTEM WITH THE
PRINCIPAL MINOR OF ORDER M*N .

DO 360 J =1, M
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FOR

365

370
380
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DO 350 T =1, M
= R1

R3(I,J) = R1(I,J)
CONTINUE
X(I,N) = B(J,N)
CONTINUE
DO 380 I1 = 1, N1
I12=N- 11
I3 =1

DO 370 I = 1, M
LINE SAXPY, ACTIVATE NEXT 4 LINFS AND DEACTIVATE FOLLOWING 2 .
DO 365 II = 1, M
X(II,N) = X(II,N) - X(I,I2)*A2(I3,I1)
13 = I3 + 1
CONTINUE
CALL SAXPY(M,-X(I,12),A2(I3,I1),1,X(1,N),1)
I3 = 13 + M
CONTINUE
CONTINUE
CALL SGEFA(R3,M,M,R,II)
CALL SGESL(R3,M,M,R,X(1,N),0)
DO 400 I = 1, N
DO 390 I = 1, M

FOR TN-LINE SAXPY, ACTIVATE NEXT 3 LINES AND DEACTIVATE FOLLOWING 1 .

385

390
400

DO 385 II = 1, M
X(I1,11) = X(II,I1) + X(I,N)*C2(II,I,I1)
CONTINUE
CALL SAXP¥(M,X(I,N),C2(1,1,11),1,X(1,I1),1)
CONTINUE
CONTINUE

410 CONTINUE
420 CONTINUE

RET
END

URN
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SUBROUTINE TGSLC(A,X,R,M,L,LDA)
INTEGER M,L,LDA
COMPLEX A(IDA,1),X(M,L),R(1)

TGSLC CALLS TGSLC1 TO SOLVE THE COMPLEX LINEAR SYSTEM

A X =B

WITH THE TG - MATRIX A .

ON ENTRY

A

Lba

ON RETURN

X

COMPLEX (M*%2,2%L, - 1)

THE FIRST ROW OF BLCCKS OF THE TG - MATRIX
FOLLOWED 3Y ITS FIRST COLUMN OF BLOCKS BEGINNING
WITH THE SECOND BLOCK. EACH BLOCK IS REPRESENTED
BY COLUMNS. ON RETURN A IS UNALTERED .

COMPLEX (M*L)
THE RIGHT HAND SIDE VECTCOR B .

COMPLEX (M**2* (2%L + 3) + M)
A WORK VECTOR .

INTEGER
THE ORDER OF THE BLOCKS OF THE MATRIX A .

INTEGER
THE NUMBER OF BLOCKS IN A ROW OR COLUMN
OF THE MATRIX A .

INTEGER
THE LEADING DIMENSION OF THE ARRAY A .

THE SOLUTION VECTOR .

TOEPLITZ PACKAGE. THIS VERSION DATED 07/23/82 .

SUBROUTINES AND FUNCTIONS

TOEPLITZ PACKAGE ... TGSLC1

INTERNAL VARIABLES

INTEGER MM,MML,MML1,MML2 ,MML3,MML4 , MMLS , MML6

CALL SUBROUTINE TGSLC1

MM = Mw*2

MML = MM*(L - 1) + 1
MML1 = 2*MML - 1
MMLZ2 = MML1 + MM
MML3 = MML2 + MM
MML4 = MML3 + MM
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MML5 = MML4 + MM
MML6 = MML5 + MM
C
CALL TGSLC1(A,A(1,L+1),X,X,R,R(MML) ,R(MML1),R(MML2),
* R(MML3) ,R(MML&4) ,R(MMLS) ,R(MML6),M,L,LDA)
C
RETURN

END
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SUBROUTINE TGSLC1(Al,A2,B,X,C1,C2,R%1,R2,R3,R5,R6,R,M,L,LDA)
INTEGER M,L,LDA
COMPLEX Al(LDA,L),A2(LDA,1),B(M,L),X(M,L),C1(M,M,1),

* C2(M,M,1),R1(M,M),R2(M,M),R3(M, M), RS (M, M) ,R6 (M, M) ,R(M)

TGSLC1 SOLVES THE COMPLEX LINEAR SYSTEM
A® X=8
WITH THE TG - MATRIX A .

ON ENTRY
Al COMPLEX (M*#2,L)
THE FIRST ROW OF BLOCKS OF THE TG - MATRIX A .
FACH BLOCK IS REPRESENTED BY COLUMNS .
ON RETURN A1 IS UNALTERED .
A2 COMPLEX (M*¥2,L, - 1)
THE FIRST COLUMN OF BLOCKS OF THE TG - MATRIX A
BEGINNING WITH THE SECOND BLOCK. EACH BLOCK IS
REPRESENTED BY COLUMNS. ON RETURN A2 IS UNALTERED .
B COMPLEX (M*L)
THE RIGHT HAND SIDE VECTOR .
ON RETURN B IS UNALTERED .
c1 COMPLEX(M,M,L - 1)
A WORK ARRAY .
c2 COMPLEX(M,M,L - 1)
A WORK ARRAY .
R1 COMPLEX (M, M)
A WORK ARRAY .
R2 COMPLEX (M, M)
A WORK ARRAY .
R3 COMPLEX (M, M)
A WORK ARRAY .
RS COMPIFX (M, M)
A WORK ARRAY .
R6 COMPLEX (M, M)
A WORK ARRAY .
R COMPLEX (M)
A WORK VECTOR .
M INTEGER
THE ORDER OF THE BLOCKS OF TilE MATRIX A .
L INTEGER

THE NUMBER OF BLOCKS IN A ROW OR COLUMN
OF THE MATRIX & .
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LDA INTEGER
THE LEADING DIMENSION OF THE ARRAY A .
ON RETURN
X COMPLEX (M*L)

THE SOLUTION VECTOR. X MAY COINCIDE WITH B .
TOEPLITZ PACKAGE. THIS VERSION DATED 07/23/82 .
SUBROUTINES AND FUNCTIONS

LINPACK ... CAXPY,CGEFA,CGESL
(FOR IN-LINE CAXPY, SEE DIRECTIONS IN COMMENTS)

INTERNAL VARIABLES
INTEGER 1,11,I12,13,11,J,N,N1 N2
SOLVE THE SYSTEM WITH THE PRINCIPAL MINOR OF ORDER M .

13 =1
DO 20 J = 1,
DO 10 I =
C1(I,J,
R1(I,J)
R3(I,J)
I3 = I3
CONTINUE
X(J,1) = B(J,1)
CONTINUE
CALL CGEFA(R3,M,M,R,1I)
CALL CGESL(R3,M,M,R,X(1,1),0)
IF (L .EQ. 1) GO TO 420

M
1, M
1) = A1(13,1)
A1(I3,1)
R1(I,J)

1

+ 0NN

RECURRENT PROCESS FOR SOLVING THE SYSTEM
WITH THE TG - MATRIX FOR N = 2, L .

DO 410 N =2, L

COMPUTE MULTIPLES OF THE FIRST AND LAST BLOCK COLUMNS OF
THE INVERSE OF THE PRINCIPAL MINOR OF ORDER M*N .

N1
N2
I3
DO

&0 N

A2(I3,N1)
R6(I,J) = Al1(I3,N)
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FOR

145

150

160

FOR

165

IF (N .EQ. 2) GO TO 100
DO 60 J = 1, M
DO501=1, M
C1(I,J,N1) = R2(I,J)
CONTINUE
CONTINUE
DO 90 I1 = 1, N2
I2 =N - I1
DO 80 J =1, M
13
DO 701 =1, M

I}
L ||

IN-LINE CAXPY, ACTIVATE NEXT 5 LINES AND DEACTIVATE FOLLOWING 3 .

DO 65 II = 1, M
R5(II,J) = RS(II,J) + C1(I,J,I12)%A2(I13,11)
R6(II,J) = R6(II,5) + C2(1,J,11)%A1(I3,11+1)
I3 =13+ 1
CONTINUE
CALL CAXPY(M,C1(I,J,12),A2(I3,I11),1,R5(1,J),1)
CALL CAXPY(M,C2(I,J,I11),A1(I3,I1+1),1,R6(1,J),1)
I3 =13 + M
CONTINUE
CONTINUE
CONTINUE
CONTINUE
DO 120 J = 1,
DO 110 I =
R2(I,J)
CONTINUE
CALL CGESL(R3,M,M,R,R2(1,J),0)
CONTINUE
DO 140 J = 1,
DO 130 I =
R3(I,J)
R6(1,J)
CONTINUE
CONTINUE
DO 160 J =1, M
DO 150 I =1, M

M
1,

» M
R6(1,J)
-C1(I1,J,1)

nil -

IN-LINE CAXPY, ACTIVATE NEXT 3 LINES AND DEACTIVATE FOLLOWING 1 .

DO 145 II =1, M
C1(II,J,1) = C1(II,J,1) + R2(I,J)*R3(1I,I)
CONTINUE
CALL CAXPY(M,R2(I,J),R3(1,1),1,C1(1,J,1),1)
CONTINUE
CONTINUE
CALL CGEFA(R6,M,M,R,II)
DO 180 J = 1, M
CALL CGESL(R6,M,M,R,R3(1,J),0)
DO 170 I =1, M

IN-LINE CAXPY, ACTIVATE NEXT 3 LINES AND DEACTIVATE FOLLOWING 1 .

DO 165 I1 =1, M

RI1(II,J) = R1(1I,J) + R3(I,J)*RS(II,I)
CONTINUE
CALL CAXPY(M,R3(I,J),R5(1,I),1,R1(1,J),1)
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180
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200

210
220
230

240

FOR

245

250

260

FOR

265

270
280

290
300
310
320

330
340

CONTINUE
CONTINUE
IF (N .EQ. 2) GO TO 320
DO 200 J =1, M
DO 190 I =1, M
R6(I,J) = C2(I,J,1)
CONTINUE
CONTINUE
DO 310 I1 = 2, Ni
IF (I1 .EQ. N1) GO TO 230
DO 220 J =1, M
DO 210 I =1, M
RS(I,J) = €2(1,J,11)
CONTINUE
CONTINUE
CONTINUE
DO 260 J =1, M

DO 240 I =1, M
€2(1,J,11) = R6(1,J)
CONTINUE

DO 250 1 =1, M
IN-LINE CAXPY, ACTIVATE NEXT 3 LINES AND DEACTIVATE FOLLOWING 1 .
DO 245 II =1, M
C2(11,J,11) = C2(1I,J,I1) + R3(I,J)*C1(II,I,I1)
CONTINUE
CALL CAXPY(M,R3(I,J),C1(1,I,11),1,02(1,J,I1),1)
CONTINUE
CONTINUE
DO 280 J =1, M
DO 270 I = 1, M
IN-LINE CAXPY, ACTIVATE NEXT 3 LINES AND DEACTIVATE FOLLOWING 1 .
DO 265 II = 1, M
C1(1I,J,I1) = C1(II,J,I11) + R2(I,J)*R6(1I,I)
CONTINUE
CALL CAXPY(M,R2(I,J),R6(1,1),1,C1(1,J,1I1),1)
CONTINUE
CONTINUE
DO 300 J = 1,
DO 290 I =
R6(I,J)
CONTINUE
CONTINUE
CONTINUE
CONTINUE
DO 340 J = 1, M
DO 330 I =1, M
€2(1,J,1) = R3(1,J)
CONTINUE
CONTINUE

M
1, M
= R5(1,J)

COMPUTE THE SOLUTION OF THE SYSTEM WITH THE
PRINCIPAL MINOR OF ORDER M*N .

DO 360 J =1, M
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360

FOR

365

370
380

FOR IN-LINE CAXPY, ACTIVATE NEXT 3 LINES AND DEACTIVATE FOLLOWING 1 .

385

390
400
410
420

DO 350
R3(

CONTIN
X(J,N)
CONTINUE
DO 380 Il

I2 =N

I3 =1

DO 370

IN-LINE CAXPY, ACTIVATE NEXT & LINES AND DEACTIVATE FOLLOWING 2 .

Do

CON

I=1, N
I,5) = R1(I,J)
UE

= B(J,N)

1, N1
- 11

I=1,

365 I1 = 1, M

X(II,N) = X(IT,N) - X(I,12)*A2(I3,11)
I3 =13+ 1

TINUE

CALL CAXPY(M,-X(I,I2),A2(I3,I1),1,X(1,N),1)

13
CONTIN

CONTINUE
CALL CGEF
CALL CGES
DO 400 Il
Do 390

DO

=13+ M
UE

A(R3,M,M,R,II)
L(R3,M,M,R,X(1,N),0)
=1, Nl

I=1,M

385 IT =1, M
X(IT,11) = X{II,11) + X(I ,NY*C2(II,I,I1)

CONTINUE
CALL CAXPY(M,X(I,N),C2(1,I,I1),1,X(1,I1),1)

CONTIN

CONTINUE
CONTINUE
CONTINUE
RETURN
END

UE
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SUBROUTINE CTSLC(A,X,R,M,L,LDA)
INTEGER M,L,LDA
COMPLEX A(LDA,T.),X(M,L),R(1)

CTSLC SOLVES THE COMPLEX LINEAR SYSTEM
A*X =8B
WITH THE CT - MATRIX & .

ON ENTRY
A COMPLEX(2*M - 1,L)
THE FIRST ROW OF BLOCKS OF THE CT - MATRIX .
EACH BLOCK IS REPRESENTED BY ITS FIRST ROW
FOLLOWED BY ITS FIRST COLUMN BEGINNING WITH THE
SECOND ELEMENT. ON RETURN A HAS BEEN DESTROYED .
X COMPLEX (M*L)
THE RIGHT HAND SIDE VECTOR B .
R COMPLEX (MAX(2*M - 2,2*%L))
A WORK VECTOR .
M INTEGER
THE ORDER OF THE BLOCKS OF THE MATRIX A .
L INTEGER
THE NUMBER OF BLOCKS IN A ROW OR COLUMN
OF THE MATRIX A .
LDA INTEGER
THE LEADING DIMENSION OF THE ARRAY A .
ON RETURN
X THE SOLUTION VECTOR .

TOEPLITZ PACKAGE. THIS VERSION LATED 07/23/82 .
SUBROUTINES AND FUNCTIONS

TOEPLITZ PACKAGE ... SALWC,TSLC
FORTRAN ... FLOAT

INTERNAL VARIABLES

INTEGER I1,I2
REAL RL

RL = FLOAT(L)

REDUCE THE CT - MATRIX TO A BLOCK-DIAGONAL MATRIX
BY THE INVERSE DISCRETE FOURIER TRANSFORMATION .

CALL SALWC(A,R,R(L+1),2*M - 1,L,LDA,-1)
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c COMPUTE THE DISCRETE FOURIER TRANSFORMATION OF
c THE RIGHT HAND SIDE VECTOR .
c

CALL SALWC(X,R,R(L+1),M,L,M,1)
c
c SOLVE THE BLOCK-DIAGONAL SYSTEM, BLOCKS OF WHICH
G ARE T - MATRICES .
c

DO 10 I2 =1, L

CALI, TSLC(A(1,12),X(1,I2),R,M)
10 CONTINCE

c
c COMPUTE THE SOLUTION OF THE GIVEN SYSTEM BY
c THE INVERSE DISCRETE FOURIER TRANSFORMATION .
C

CALL SALWC(X,R,R(L+1),M,L,M,-1)
C

DO 30 I2 =1, L
Do 20 I1 =1, M
X(I1,12) = X(I11,I2)/RL
20 CONTINUE
30 CONTINUE
RETURN
END
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SUBROUTINE CCSLC(A,X,R,M,L,LDA)
INTEGER M,L,LDA
COMPLEX A(LDA,L),X(M,L),R(1)

CCSLC SOLVES THE COMPLEX LINEAR SYSTEM
A*X=28B
WITH THE CC - MATRIX A .

ON ENTRY
A COMPLEX (M, L)
THE FIRST ROW OF BLOCKS OF THE CC - MATRIX .
EACH BLOCK IS REPRESENTED BY ITS FIRST ROW .
ON RETURN A HAS BEEN DESTROYED .
X COMPLEX (M*L)
THE RIGHT HAND SIDE VECTOR B .
R COMPLEX (MAX (M, 2%L1))
A WORK VECTOR .
M INTEGER
THE ORDER OF THE BLOCKS OF THE MATRIX A .
L INTEGER
THE NUMBER OF BLOCKS IN A ROW OR COLUMN
OF THE MATRIX A .
LDA INTEGER
THE LEADING DIMENSION OF THE ARRAY A .
ON RETULN
X THE SOLUTION VECTOR .

TOEPLITZ PACKAGE. THIS VERSION DATED 07/23/82 .
SUBROUTINES AND FUNCTIONS

TOEPLITZ PACKAGE ... CSLC,SALWC
FORTRAN ... FLOAT

INTERNAL VARIABLES

INTEGER I1,I2
REAL RL

RL = FLOAT(L)

REDUCE THE CC - MATRIX TO A BLOCK-DIAGONAL MATRIX
BY THE INVERSE DISCRETE FOURIER TRANSFORMATION .

CALL SALWC(A,R,R(L+1),4 L,LDA,-1)

COMPUTE THE DISCRETE FOURIER TRANSFORMATION OF

113
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THE RIGHT HAND SIDE VECTOR .

e N

CALL SALWC(X,R,R(L+1),M,L.,M,1)

SOLVE THE BLOCK-DIAGONAL SYSTEM, BLOCKS OF WHICH
ARE C - MATRICES .

GG

DO 10 I2 = 1, L
CALL CSLC(A(1,I2),X(1,I2),R,M)
10 CONTINUE

COMPUTE THE SOLUTION OF THE GIVEN SYSTEM BY
THE INVERSE DISCRETE FOURIER TRANSFORMATION .

aOaaa

CALL SALWC(X,R,R(IL+1),M,L,M,-1)

DO 30 I2 =1, L
po 20 11 =1, H
X(I1,12) = X(I1,I2)/RL
20 CONTINUE
30 CONTINUE
RETURN
END



R R R R R R R R R Ry R R R R e e R s N N2 K e R R R AT A R R ES R N N o N o R R R4 B4 I o R B

OO0 [ ]

9]

SUBROUTINE CGSLG(A,X,R,M,L,LDA)
INTEGER M,L,LDA
COMPLEX A(LDA,L),X(M,L),R(1)

CGSLC SOLVES THE COMPLEX LINEAR SYSTEM
A*X=38
WITH THE CG - MATRIX A .

ON ENTRY
A COMPLEX (M**2,L)
THE FIRST ROW OF BLOCKS OF THE CG - MATRIX .
EACH BLOCK IS REPRESENTED BY COLUMNS .
ON RETURN A HAS BEEN DESTROYED .
X COMPLEX (ML)
THE RIGHT HAND SIDE VECTOR B .
R VOMPLEX (MAX(M, 2*L))
A WORK VECTOR .
M INTEGER
THE ORDER OF THE BLOCKS OF THE MATRIX A .
L INTEGER
THE NUMBER OF BLOCKS IN A ROW OR COLUMN
OF THE MATRIX A .
LDA INTEGER
THE LEADING DIMENSION OF THE ARRAY A .
ON RETURN
X THE SOLUTION VECTOR .

TOEPLITZ PACKAGE. THIS VERSION DATED 07/23/82 .

SUBROUTINES AND FUNCTIONS

TOEPLITZ PACKAGE ... SALWC
LINPACK ... CGEFA,CGESL
FORTRAN ... FLOAT

INTERNAL VARIABLES

INTEGER I1,I2,II
REAL RL

RL = FLOAT(L)

REDUCE THE CG - MATRIX TO A BLOCK-DIAGONAL MATRIX
BY THE INVERSE DISCRETE FOURIER TRANSFORMATION .

CALL SALWC(A,R,R(L+1),M*¥2,L,LDA,-1)
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C OMPUTE THE DISCRETE FOURIER TRANSFORMATION OF
c THE RIGHT HAND SIDE VECTOR .
c
CALL SALWC(X,R,R(L+1),M,L,M,1)
C
c SOLVE THE BLOCK-DIAGONAL SYSTEM, BLOCKS OF WHICH
C ARE G - MATRICES .
C
DO 10 I2 =1, L
CALL CGEFA(A(1,I2),M,M,R,II)
CALL CGESL(A(1,12),M,M,R,X(1,12),0)
10 CONTINUE
C
C COMPUTE THE SOLUTICN OF THE GIVEN SYSTEM BY
c THE INVERSE DISCRETE FOURIER TRANSFORMATION .
C
CALL SALWC(X,R,R(L+1),M,L,M,-1)
c

DO 30 12 =1, L
DO 20 I1 =1, M
X(I1,I2) = X(I1,12)/RL
20  CONTINUE
30 CONTINUE
RETURN
END
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SURROUTINE SALWC(A,R1,R2,M,L,LDA,JOB)
INTEGER M,L,LDA,JOB
COMPLEX A(LDA,L),R1(L),R2(L)

SALWC COMPUTES THE DIRECT OR INVERSE DISCRETE FOURIER

TRANSFORMATION FOR ROWS OF A COMPLEX RECTANGULAR MATRIX .

ON ENTRY
A COMPLEX (M, L)
THE INPUT MATRIX .
R1 COMPLEX (L)
A WORK VECTOR .
R2 COMPLEX (L)
A WORK VECTOR .
M INTEGER
THE NUMBER OF ROWS OF THE MATRIX A .
L INTEGER
THE NUMBER OF COLUMNS OF THE MATRIX A .
LDA INTEGER
THE LEZDING DIMENSION OF THE ARRAY A .
JNB INTEGER
= 1 FOR DIRECT FOURIER TRANSFORMATION .
= -1 FOR INVERSE FOURIER TRANSFORMATION .
ON RETURN
A THE TRANSFORMED ROWS OF THE MATRIX .

TOEPLITZ PACKAGE. THIS VERSION DATED 07/23/82 .
SUBROUTINES AND FUNCTIONS
FORTRAN ... CMPLX,COS,FLOAT,SIN
INTERNAL VARIABLES
INTEGER I,I1,I2
REAL P,Ri,RL,V1,V2
COMPLEX E,F

IF (L .EQ. 1) GO TO 60
RL = FILOAT(L)

R1(1) = (1.0E0,0.0E0)
RI = 0.0E0
DO 10 I1 = 2, L

RI = RI + 1.0EO
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c MINIMIZE ERROR IN FORMING MULTIPLES OF 2*PI .
C

P = {((201.ED/32.E0)*RI + 1.93530717958647692528E-3*RI)/RL
c

V1 = COS(P)

V2 = SIN(P)

IF (JOB .EQ. (-1)) V2 = -V2
R1(I1) = CMPLX(V1,V2)
10 CONTINUE
DO SO I =1, M
DO 30 I1 =1, L
E = R1(IL)
F = A(I1)
DO 20 12 =2, L
F = E¥F + A(I,I2)

20 CONTINUE
R2(I1) = E*F
30 CONTINUE
DO 40 I1 =1, L
A(I,I1) = R2(I1)

40 CONTINUE
50 CONTINUE
60 CONTINUE
RETURN
END
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SUBROUTINE CTGSLG(A,X,R,M,L,K,LDA)
INTEGER M,L,K,LDA
COMPLEX A(LDA,X),X(M,L,K),R(1)

CTGSLC SOLVES THE COMPLEX LINEAR SYSTEM

A*X=18

WITH THE CTG - MATRIX A .

ON ENTRY

A

LDA

ON RETURN

X

COMPLEX (M#*#2# (2%L - 1),K)

THE FIRST ROW OF OUTER BLOCKS OF THE CTG - MATRIX .
EACH OUTER BLOCK IS REPRESENTED BY ITS FIRST ROW
OF INNER BLOCKS FOLLOWED BY ITS FIRST COLUMN

OF INNER BLOCKS BEGINNING WITH THE SECOND BLOCK .
EACH INNER BLOCK IS REPRESENTED BY COLUMNS .

ON RETURN A HAS BEEN DESTROYED .

COMPLEX (M*L*K)
THE RIGHT HAND SIDE VECTOR B .

COMPLEX (MAX (M##2% (2%L + 3) + M,2%K))
A WORK VECTOR .

INTEJER
THE ORDER OF THE INNER BLOCKS OF THE MATRIX A .

INTEGER
THE NUMBER OF INNER BLOCKS IN A ROW OR COLUMN
OF AN OUTER BLOCK OF THE MATRIX A .

INTEGER
THE NUMBER OF OUTER BLOCKS IN A ROW OR COLUMN
OF THE MATRIX A .

INTEGER
THE LEADING DIMENSION OF THE ARRAY A .

THE SOLUTION VECTOR .

TOEPLITZ PACKAGE. THIS VERSION DATED 07/23/82 .

SUBROUTINES AND FUNCTIONS

TOEPLITZ PACKAGE ... SALWC,TGSLC

FORTRAN ...

FLOAT

INTERNAL VARIABLES

INTEGER I1,I2,I3,ML,MM

REAL RK
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RK = FLOAT(K)
MM = M#¥2
ML = M*L

REDUCE THE CTG - MATRIX TQO A BLOCK-DIAGONAL MATRIX
BY THE INVERSE DISCRETE FOURIER TRANSFORMATION .

CALL SALWC(A,R,R(K+1) ,MM*(2%L - 1),K,LDA,-1)

COMPUTE THE DISCRETE FOURIER TRANSFORMATICON OF
THE RIGHT HAND SIDE VECTOR .

CALL SALWC(X,R,R(¥+1),ML,K,ML,1)

SOLVE THE BLOCK-DIAGONAL SYSTEM, BLOCKS OF WHICH
ARE TG - MALRICES .

DO 10 I3 =1, K
CALL TGSLC(A(1,I3),X(1,1,I3),R,M,L,MM)
CONTINUE

COMPUTE THE SOLUTION OF THE GIVEN SYSTEM BY
THE INVERSE DISCRETE FOURIC TRANSFORMATION .

CALL SALWC(X,R,R(K+1),ML,K,ML,-1)

DO 40 I3 = 1, K
DO 30 I12 =1, L
DO 20 I1 =1, M
X(I1,I2,1I3) = X(I1,I2,I3)/RK
CONTINUE
CONTINUE
CONTINUE
RETURN
END
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SUBROUTINE CCTSLC(A,X,R,M,L,K,LDA)
INTEGER M,L,K,LDA
COMPLEX A(LDA,K),X(M,L,K),R(1)

CCTSLC SOLVES THE COMPLEX LINEAR SYSTEM

A*X=28

WITH THE CCT - MATRIX A .

ON ENTRY

A

M

LDA

ON RETURN

X

COMPLEX((2*M - 1)*L,K)

THE FIRST ROW OF OUTER BLOCKS OF THE CCT - MATRIX .
EACH OUTER BLOCK IS REPRESENTED BY ITS FIRST ROW
OF INNER BLOCKS. EACH INNER BLOCK IS REPRESENTET
BY ITS FIRST ROW FOLLOWED BY ITS FIRST COLUMN
BEGINNING WITH THE SECOND ELEMENT .

ON RETURN A HAS BEEN LESTROYED .

COMPLEX (M*L*K)
THE RIGHT HAND SIDE VECTOR B .

COMPLEX(MAX(2*M - 2,2%L,2%K})
A WORK VECTCR .

INTEGER
THE ORDER OF THE INNER BLOCKS OF THE MATRIX A .

INTEGER
THE NUMBER OF INNER BLOCKS IN A ROW OR COLUMN
OF AN OUTER BLOCK OF THE MATRIX A .

INTEGER
THE NUMBER OF OUTER BLOCKS IN A ROW OR COLUMN
OF THE MATRIX 4 .

INTEGER
THE LEADING DIMENSION OF THE ARRAY A .

THE SOLUTION VECTOR .

TOEPLITZ PACKAGE. THIS VERSION DATED 07/23/82 .

SUBROUTINES AND FUNCTIONS

TOEPLITZ PACKAGE ... CTSLC,SALWC

FORTRAN ..

. FLOAT

INTERNAL VARIABLES

INTEGER I1,12,I3,M2,ML

REAL RK
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RK = FLOAT(K)
M2 =2%M - 1
ML = M*L

REDUCE THE CCT - MATRIX TO A BLOCK-DIAGONAL MATRIX
BY THE INVERSE DISCRETE FOURIER TRANSFORMATION .

CALL SALWC(A,R,R(K+1),M2*L,K,LDA,-1)

COMPUTE THE DISCRETE FOURIER TRANSFORMATION OF
THE RIGHT HAND SIDE VECTOR .

CALL SAILWC(X,R,R(K+1),ML,K,ML,1)

SOLVE THE BLOCK-DIAGONAL SYSTEM, BLOCKS OF WHICH
ARE CT - MATRICES .

DO 10 I3 = 1, K
CALL CTSLC(A(1,13),X(1,1,I3),R,M,L,M2)
CONTINUE

COMPUTE THE SOLUTION OF THE GIVEN SYSTEM BY
THE INVERSE DISCRETE FOURIER TRANSFORMATION .

CALL SALWC(X,R,R(K+1),ML,K,ML,-1)

DO 40 I3 = 1, K
DO 30 I2 =1, L
DO 20 I1 =1, M
X(I1,12,13) = X(I1,12,I3)/RK
CONTINUE
CONTINUE
CONTINUE
RETURN
END
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SUBROUTINE CCCSLC(A,X,R,M,L,K,LDA)
INTEGER M,L,K,LDA
COMPLEX A(LDA,K),X(M,L,K),R(1)

CCCSLC SOLVES THE COMPLEX LINEAR SYSTEM
A* X=2B8
WITH THE CCC - MATRIX A .

ON ENTRY
A COMPLEX (M*L,,K)
THE FIRST ROW OF OUTER BLOCKS OF THE CCC - MATRIX .
EACH OUTER BLOCK IS REPRESENTED BY ITS FIRST ROW
OF INNER BLOCKS. EACH INNER BLOCK IS REPRESENTED
BY ITS FIRST ROW. ON RETURN A HAS BEEN DESTROYED .
X COMPLEX (M*L*K)
THE RIGHT HAND SIDE VECTOR B .
R COMPLEX (MAX (M, 2*L, 2%K))
A WORK VECTOR .
M INTEGER
THE ORDER OF THE INNER BLOCKS OF THE MATRIX A .
L INTEGER
THE NUMBER OF INNER BLOCKS IN A ROW OR COLUMN
OF AN OUTER BLOCK OF THE MATRIX A .
K INTEGER
THE NUMBER OF OUTER BLOCKS IN A ROW OR COLUMN
OF THE MATRIX A .
LDA INTEGER
THE LEADING DIMENSION OF THE ARRAY A .
ON RETURN
X THE SOLUTION VECTOR .

TOEPLITZ PACKAGE. THIS VERSION DATED 07/23/82 .
SUBROUTINES AND FUNCTIONS

TOEPLITZ PACKAGE ... CCSLC,SALWC
FORTRAN ... FLOAT

INTERNAL VARIABLES

INTEGER I1,72,13,ML

REAL RK
RK = FLOAT(K)
ML = M*L
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REDUCE THE CCC - MATRIX TO A BLOCK-DIAGONAL MATRIX
BY THE INVERSE DISCRETE FOURIER TRANSFORMATION .

CALL SAIWC(A,R,R(K+1),ML,K,LDA,-1)

COMPUTE THE DISCRETE FOURIER TRANSFORMATION OF
THE RIGHT HAND SIDE VECTOR .

CALL SALWC(X,R,R(X+1),ML,K,ML,1)

SOLVE THE BLOCK-DIAGONAL SYSTEM, BLOCKS OF WHICH
ARE CC - MATRICES .

po 10 I3 =1, K
CALL CCSLC(A(1,13),X(1,1,I3),R,M,L,M)
CONTINUE

COMPUTE THE SOLUTION OF THE GIVEN SYSTEM BY
THE INVERSE DISCRETE FOURIER TRANSFORMATION .

CALL SALWC(X,R,R(K+1),ML,K,ML,-1)

DO 40 I3 =1, K
DO 30 I2=1, L
DO 20 I1 =1, M
X(11,I2,13) = X(I1,I2,13)/RK
CONTINUE
CONTINUE
CONTINUE
RETURN
END



OOOOOOCO0OO0O0000O0OOOoOOOoCcOOOOooOO0o0O0aOoOoOaOaoaoaoaoOooaon

125

SUBROUTINE GCGSLC(A,X,R,M,L,K,LDA}
INTEGER M,L,K,LDA
COMPLEX A(LDA,K),X(M,L,K),R(1)

CCGSLC SOLVES THE COMPLEX LINEAR SYSTEM

A*¥X=238

WITH THE CCG - MATRIX A .

ON ENTRY

A

M

LDA

ON RETURN

X

COMPLEX (M#**2*L,K)

THE FIRST ROW OF QUTER BLOCKS OF THE CCG - MATRIX .
EACH OUTER BLOCK IS REPRESENTED BY ITS FIRST ROW
OF INNER BLOCKS. £ACH INNER BLOCK IS REPRESENTED
BY COLUMNS. ON RETURN A HAS BEEN DESTROYED .

COMPLEX (M*L*K)
THE RIGHT HAND SIDE VECTOR B .

COMPLEX (MAX(M,2*L,2%K))
A WORK VECTOR .

INTEGER
THE ORDER OF THE INNER BLOCKS OF THE MATRIX A .

INTEGER
THE NUMBER OF INNER BLOCKS IN A ROW OR COLUMN
OF AN OUTER BLOCK OF THE MATRIX A .

INTEGER
THE NUMBER OF OUTER BLOCKS IN A ROW OR COLUMN
OF THE MATRIX A .

INTEGER
THE LEADING DIMENSION OF THE ARRAY A .

THE SOLUTION VECTOR .

TOEPLITZ PACKAGE. THIS VERSION DATED 07/23/82 .

SUBROUTINES AND FUNCTIONS

TOEPLITZ PACKAGE ... CGSLC,SALWC

FORTRAN ...

FLOAT

INTERNAL VARIABLES

INTEGER I1,12,13,ML,MM

REAL RK
RK = FLOAT(K)
MM = M¥k2
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ML = M*L

REDUCE THE CCG - MATRIX TO A BLOCK-DIAGONAL MATRIX
BY THE INVERSE DISCRETE FOURIER TRANSFORMATION .

CALL SALWC(A,R,R(K+1),MM*L,K,LDA,-1)

COMPUTE THE DISCRETE FOURIER TRANSFORMATION OF
THE RIGHT HAND SIDE VECTOR .

CALL SALWC(X,R,R(K+1),ML,K,ML,1)

SOLVE THE BLOCK-DIAGONAL SYSTEM, BLOCKS OF WIICH
ARE CG - MATRICES .

D0 10 I3 = 1, K
CALL CGSLC(A(1,I3),X(1,1,I3),R,M,L,MM)
CONTINUE

COMPUTE THE SOLUTION OF THE GIVEN SYSTEM BY
THE INVERSE DISCRETE FOURIER TRANSFORMATION .

CALL SALWC(X,R,R(K+1),ML,K,ML,-1)

DO 40 I3 =1, K
DO 30 I2 =1, L
DO 20 I1 = 1, M
X(I1,12,13) = X(I1,12,13)/RK
CONTINUE
CONTINUE
CONTINUE
RETURN
END
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