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THE TOEPLITZ PA(AGE USERS' GUIDE

0. B. Arushanian, M. K. Samarin, V. V. Voevodin, E. E. Tyrtyshnikov (USSR)

B. S. Garbow, J. M. Boyle, W. R. Cowell, K. W. Dritz (USA)

ABSTRACT

The TOEPLITZ package is a collection of Fortran subroutines

for the numerical solution of systems of linear equations with

coefficient matrices of Toeplitz or circulant form. This report

provides a description of the algorithms and software in the

package and includes program listings.

INTRODUCTION

1. Overview of the TOEPLITZ Package

The TOEPLITZ package is a collection of Fortran subroutines for solving

linear systems

Ax = b

where A is a Toeplitz matrix (see subsection 1.1 of Chapter 1), a circulant

matrix (see subsection 1.2 of Chapter 1), or has one or several block struc-

tures based on Toeplitz or circulant matrices. Included also is capability

for orthogonal factorization of a column-circulant matrix (see subsection 1.4

of Chapter 1).

Such systems arise in problems of electrodynamics, acoustics, mathe-

matical statistics, algebra, in the numerical solution of integral equations

with a difference kernel, and in the theory of stationary time series and

signals (see, e.g., [5,7,9,17,20,25,26]). Circulant matrices play nn impor-

tant role in the theory of circular convolutions [13]. Block-Toeplitz

matrices have recently begun to play a significant role as the applicability

of miltichannel time series increases [22,30).

Although the theoretical and practical significance of Toeplitz matrices

was recognized early in this century [23,28,311, computational aspc tr were

not. studied until more recently. The most influential and fundamental paper

on algorithmic aspects was Levinson's extension to the discrete case of
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Wiener's basic work on filtering [19,29]. It was here that the technique of

bordering and recursion on the order of the system was first shown to be an

effective way to produce efficient algorithms for Toeplitz systems. Levin-

son's algorithm is an 0(M2) method for solving an order M positive-definite

symmetric Toeplitz system of equations. Trench later used the same ideas to

show how bordering could be exploited for general Toeplitz systems [24].

Trench's work was made more explicit and generalized by Zohar [32,33].

These 0(M2) algorithms for Toeplitz systems are currently the most

practical methods for such problems. They have simple descriptions as pro-

grams, they use simple storage and control structures, and error analyses are

available for some of them [8,10,11].

The algorithms in this package for circulant matrices appear to have been

known classically (see [13]). Toeplitz matrices of the second level are dis-

cussed in [4,21,22,27]; the algorithms are essentially the same as those in

this package.

Toeplitz matrices arising in time series and signal processing are quite

often covariance matrices that occur in normal equations for linear least-

squares problems. The coefficient matrices in these problems often have

column-circulant structures that lend themselves to efficient methods for

problem solution by orthogonalization. These methods are usually called

"lattice methods" in the signal processing literature [12,14,18]; one such

method [12] is implemented in the TOEPLITZ package.

The TOEPLITZ package has an intentional similarity to LINPACK [15] in the

format of the Fortran source, in the comments, and in tne subroutine naming

conventions. All names consist of four, five, or six letters (depending on

the level of block structure of the matrix A) in the forms XSL#, XYSL#, or

XYZSL# for the system solving subroutines and CQR# for the orthogonal factor-

ization subroutines.* When A has no special block structure (see Chapter 1),

the letter in the X position specifies the type of the matrix:

T Toeplitz

C Circulant.

The one member not governed by the naming convention is the services

subroutine SALWC (SALWZ in double precision), called by most of the two-level

and all of the three-level system solving subroutines.
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When A has a two-level block structure (see Chapter 2), the letters in the XY

positions specify the type of the matrix:

TG Block-Toeplitz where the blocks are general matrices

CT Block-circulant where the blocks are Toeplitz matrices

CC Block-circulant where the blocks themselves are circulant matrices

CG Block-circulant where the blocks are general matrices.

When A has a three-level block structure (see Chapter 3), the letters in the

XYZ positions specify the type of the matrix:

CTG Block-circulant where the blocks are two-level TG-type matrices

CCT Block-circulant where the blocks are two-level CT-type matrices

CCC Block-circulant where the blocks are two-level CC-type matrices

CCG Block-circulant where the blocks are two-level CG-type matrices.

By permuting corresponding rows and columns, one can transform any two-

level XY-type matrix to YX-type (see Tyrtyshnikov [25]). Similarly, one can

interchange any two levels of a three-level XYZ-type matrix. These cir-

cumstances effectively extend the capability of the TOEPLITZ package to

additional matrix types.

The fixed letters SL indicate that the routine solves a linear system,

while the letters QR indicate that the routine performs an orthogonal

factorizatica.

The last letter in the # position specifies the matrix data type.

Standard Fortran allows the use of three such types:

S REAL

D DOUBLE PRECISION

C COMPLEX.

In addition, some Fortran systems allow a double precision complex type:

Z DOUBLE COMPLEX.

2. The Leading Array Dimension Parameter

Those members of the TOEPLITZ package that process a two-dimensional

array include in their calling sequences the parameter LDA (or LDQ,LDS) to
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communicate the leading dimension of the array. "Leading dimension" refers to

the DIMENSION statement storage allocation for the array and should be distin-

guished from the order of the linear system. The inclusion of this parameter

enables flexibility in processing systems of varying order without the bother

of changing the DIMENSION statement for the coefficient matrix.

For example, if the array A has been declared "A(50,20)" in the DIMENSION

statement, then simply enter the statement "LDA = 50" into the body of the

program before the call to the TOEPLITZ package subroutine.

3. Development of the TOEPLITZ Package

In offering the TOEPLITZ package to the international computing

community, tt is appropriate to note that this software is the result of

collaboration among scientists in the United States and the Soviet Union.

Hence, in addition to the intrinsic usefulness of the package, the software in

its present form demonstrates the possibilities inherent in Soviet-American

collaboration in the development of scientific software. The work was carried

out under the auspices of the agreement between the U.S.A. and the U.S.S.R. on

Scientific and Technological Cooperation in the Field of Application of

Computers to Economics and Management, subtopic Mathematical Software.

This collaborative effort was initiated at the Numerical Software Work-

shop which took place at the National Science Foundation (NSF) in Washington,

D.C. in December of 1975. The general framework of joint efforts was dis-

cussed during that workshop by D. Aufenkamp of NSF, W. Cody of the Applied

Mathematics Division, Argonne National Laboratory (AMD-ANL), and 0. Arushanian

of the Science Research Computing Center, Moscow State University (SRCC-MSU),

then visiting Pennsylvania State University for the year. Further steps were

discussed during a meeting which took place at Penn State in February of 1976

involving D. Aufenkamp (NSF), J. Boyle (AMD-ANL), W. Cowell (AMD-ANL), and

0. Arushanian (SRCC-MSU), and during a short visit by 0. Arushanian to

J. Bunch, University of California at San Diego (UCSD). In accordance with

plans agreed upon during these meetings and approved in the meeting of coordi-

nators and experts on the topic "Theoretical Foundations of Software for

Application in Economics and Management" which took place in Moscow in June of

1976, long-term visits of American scientists to the U.S.S.R. in 1976 and 1978

and of Soviet scientists to the U.S.A. in 1978 and 1979 were arranged to
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exchange information and to carry out joint work on numerical software devel-

opment. These joint efforts came to be known as the SALAR (Soviet-American

Libraries and Algorithms Research) project. Results of accomplished works

have appeared in 25 papers (see [1] and [2]) and were presented at the IFIP

Congress in August of 1977 in Toronto, Canada (see [3]).

The contributions from the U.S.A. side were made by J. Boyle, K. Dritz,

W. Cowell, and B. Garbow of AMD-ANL (now redesignated MCS-ANL), J. Bunch of

UCSD, D. Sorensen (now of MCS-ANL), W. Miller (now of the University of Ari-

zona), and C. Moler of the University of New Mexico. The contributions from

the U.S.S.R. side were mace by V. Voevodin (now of the Academy of Sciences,

State Committee for Science and Technology), 0. Arushanian, M. Samarin,

E. Nikolaev, V. Morozov, Y. Kuchevskiy, E. Tyrtyshnikov, N. Bogomolov, and

V. Borisov of SRCC-MSU.

The SALAR project had a number of objectives. First of all, it repre-

sented joint research into the methodology and practical aspects of producing

mathematical software, namely, numerical libraries and packages. This main

objective dictated the necessity of also investigating systems aspects of

mathematical software development, which include the study of transportability

problems, tailoring of programs to user requests, abstract formulation of

numerical algorithms, and program transformation and generation systems.

Methodological questions associated with the joint systematization, testing,

and certification of mathematical software packages were also of great impor-

tance in the SALAR project. Research in numerical algorithms development was

conducted mostly in linear algebra on problems such as updating algorithms for

matrix decomposition and solving special types of linear systems.

The TOEPLITZ package was produced as a part of the SALAR project and can

be considered as a practical result of previous investigations. The routines

were originally written in 1978 at Moscow State University by E. Tyrtyshnikov

[25] on the basis of the theoretical results of W. Trench [241 and

S. Voevodina [271, and on his own resea -ch. A preliminary version of the

users' guide was written by Soviet and American scientists during a visit to

Argonne National Laboratory (U.S.A.) made by Soviet scientists 0. Arushanian

and M. Samarin (of SRCC-MSU) in 1979. Multiple versions of TOEPLITZ subrou-

tines and formatting of codes were obtained with the help of the TAMPR-system

[31, produced by J. Boyle and K. Dritz of AMD-ANL. Modifications, commenting,
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and test driver design were also accomplished during this Argonne visit.

Scientific supervision over the development of the TOEPLITZ package at SRCC-

MSU was provided by V. Voevodin.

Further developmental work on the codes and preparation of this users'

guide were accomplished at Argonne in 1982. The added capability for ortho-

gonalization of column-circulant matrices derives from a new algorithm of

G. Cybenko [12] (of Tufts University). Cybenko also suggested an improved

formulation of another of the algorithms, supplied background information

included in the "Overview" section of this guide, and pointed us to many of

the references.

In conclusion we wish to acknowledge the support of the National Science

Foundation (U.S.A.) and the State Committee for Science and Technology

(U.S.S.R.), executors of the Science and Technology Agreement. Special thanks

are due to D. Aufenkamp (U.S.A.), B. Rameev (U.S.S.R.), and Y. Baraboshkin

(U.S.S.R.) who created conditions in which our joint work could flourish. We

also express our great gratitude '_ ; Judy Beumer (of MCS-ANL) who carefully

typed the manuscript for ' is uses' guide.

4 . Availability of the TOEPL I.TZ Package

The TOEPLITZ package is available on tape from the following sources.

National Energy Software Center IMSL, Inc.

Argonne National Laboratory or Sixth Floor, NBC Bldg.

9700 South Cass Avenue 7500 Bellaire Blvd.

Argonne, IL 60439 Houston, TX 77036-5085
Phone: (312) 972-7250 Phone: (713) 772-1927

The package includes both single precision and double precision versions of

the programs, and testing aids are also provided on the tape (see The TOEPLITZ

Package Implement at ion Ouide , ANIr 83-17) 

.

Comments and questions regarding the TOEPLITZ package should be directed

to

Burton S. Garbow

Mathematics and Computer Science Division

Argonne National Laboratory

9700 South Cass Avenue

Argonne, IL 60439
Phone: (312) 972-7184
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CHAPTER 1: TOEPLITZ AND CIRCIiJANT MATRICES

1. Striicture and Representation

1.1. Toeplitz matrices (T-matrices)

A Toeplitz matrix, or T-matrix, A is a real or complex square matrix

whose elements along the main diagonal and along each co-diagonal are equal;

thus A has the representation

a0  a1  a2 . .aM-1

a_1  a0  al . . . aM-2

A = a-2  a_1  a0 . . . aM- 3

a-M+1 a-M+ 2 aM+3 . a0

A T-matrix is completely specified by its first row and column.

In the TOEPLITZ package a T-matrix of order M is represented by a singly

subscripted array of 2*M-1 elements which contains the first row of the mtcix

followed by its first column beginning with the second element:

aO,a1,a2, ... ,aM-1,a_1 ,a-2, ... ,a-M+1 

*

1.2. Circulant matrices (C-matrices)

A circulant matrix, or C-matrix, A is a T-riatrix, limited here to complex

mode, with the further property that

ai=- aM - , i - 1,2,...,M-1 ;

thus A has the presentationn
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a0  a1  a2 . . . aM-1

aM-1 a0  aJ . . . aM-2
A =

aM-2 aM-1 a0 . . . aM-3

a1  a2  a 3 . . . a0

A C-matrix is completely specified by its first row; each further row may be

obtained from the previous one by a right cyclic shift.

In the TOEPLITZ package a C-matrix of order M is represented by a singly

subscripted array of M elements which contains the first row of the matrix:

a0,al,a 2 ,...,aM-1 

*

1.3. General matrices (G-uatrices)

A general real or complex square matrix

a11  a1 2  a1 3 . . . a1M

a21  a2 2  a 2 3 . . . a2 4

A = a31  a32  a33 . . .a3M

aMi aM2 aM3 . . . aMM

will be called a G-matrix.

In the TOEPLITZ package a G-matrix of order M is represented by a singly

subscripted array of M**2 elements which contains the successive columns of

the matrix:

a11 ,a 2 1 ,a 3 1 ,...,aM1,a 1 2 ,a 2 2 ,a 3 2 ,...,a ,...,p.lM,a 2 Ma3M,...,a

1.4. Column-circulant matrices

The designation "column-circulant" will be given to a real or complex

rectangular matrix A, with row order M at least equal to its column order L,

whose first column is specified and each further column obtained from its

predecessor by a downward cyclic shift; thug A has the representation
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a0  aM-1 aM-2 . . . aM-L+1

a1  a0  aM-1 . . . aM-L+2

A- a2  a1  a0  . . . aM-L+3

aM-1 aM-2 aM3 . . . aM-L

In the TOEPLITZ package a column-circulant matrix with M rows is

represented by a singly subscripted array of M elements which contains the

first column of the matrix:

a0,a1,a2,...,aM-1*

2. Solution of Linear Equations with T-Matrices

2.1. Purpose

The TOEPLITZ subroutines in this section are designed to solve linear

algebraic equations with T-matrices. Usage will be described for the single

precision real version. Double precision, complex, and double precision

complex versions are also available. Indeed, the complex version is called in

solving two-level CT-matrix systems (see subsection 3.5 of Chapter 2).

2.2. Usage

Single precision real T-matrices. TSLS solves a linear system with a

real Toeplitz matrix. The calling sequence is

CALL TSLS(A,X,R,M)

On entry,

A is a singly subscripted array of 2*M-1 elements which contains the

first row of the T-matrix followed by its first column beginning

with the second element. A is unaltered by TSLS.
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X is a singly subscripted array of M elements which contains the right

hand side of the system.

R is a singly subscripted array of 2*M-2 elements used for work space.

M is the order of A and the number of elements in X.

On return,

X contains the solution of the system.

Double precision real T-matrices. The calling sequence of the double

precision real T-matrix subroutine TSLD is the same as that of TSLS with A, X,

and R DOUBLE PRECISION variables.

Single precision complex T-matrices. The calling sequence of the single

precision complex T-matrix subroutine TSLC is the same as that of TSLS with A,

X, and R COMPLEX variables.

Double precision complex T-matrices. In those computing systems where it

is available, the calling sequence of the double precision complex T-matrix

subroutine TSLZ is the same as that of TSLS with A, X, and R DOUBLE COMPLEX

variables.

2.3. Example

The following program segment illustrates the use of the single precision

subroutine TSLS for real T-matrices. Examples of the use of TSLD, TSLC, and

TSLZ could be obtained by changing the subroutine name and type declaration.

The system is of order 4 with coefficients as follows.

1 2 3 4 10

5 1 2 3 11

A - X

6 5 1 2 14

7 6 5 1 19
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REAL A(7),X(4),R(6)

INTEGER M,I

DATA A(1)/1.0/,A(2)/2.0/,A(3)/3.0/,A(4)/4.0/,

* A(5)/5.0/,A(6)/6.0/,A(7)/7.0/

DATA X(1)/10.0/,X(2)/11.0/,X(3)/14.0/,X(4)/19.0/

M = 4

CALL TSLS(A,X,R,M)

DO 10 I = 1, M

WRITE(...,...) X(I)

10 CONTINUE

STOP

END

The solution of the system is

X = (1.0,1.0,1.0,1.0).

2.4. Algorithm

The algorithm for the solution of a system of linear algebraic equations

Ax = b (1)

with a T-matrix A of order M comprises a sequence of M steps. At the (k+1)-st

step the solution of the system

Akyk = dk (2)

is determined. Here

a0  a1 . . . ak YO,k b0

a_1  a0 . . . ak-1 1,k b1

A = a-2  a_1 . . . ak2 Yk = 2,k , dk = b2

a-k a-k+1. .'a 0  k,k bk

The vector yk is calculated by recurrence from yk-1. The final result of

the recurrent process is the solution of system (1), namely, x - yM-1'

At step 1, y0 = b0/a0. At step k+1, let us consider the unknown vector

yk to be the sum of two vectors, one of which, augmented by a zero, was deter-

mined at the k-th step:



Y0,k

Yl,k

Yk-1,k

Yk,k

YO,k-1

Y1,k-1

Yk-1,k-1

0

Substituting this sum into equation

vector yk-1 satisfies the equation

+

zOk

Z 1 ,k

zk-1,k

zk,k

(3)

(2) and taking into account that the

Ak-lyk-1 = dk-1

we see that the unknown vector zk from (3) with elements

zO,k,z1,k,... ,zk,k

is the solution of the system

Akzk =k

0

C

0

k

k,k = b. - ayk-k 

-

k~k=1

fk k

Thus, the vector zk is the same as the last column of the matrix Ak multi-

plied by fk,k' Hence, for recurrent calculation of the vectors yk it is

sufficient to evaluate recurrently the last column of the matrix Ak , or as

done here for further economy an appropriately chosen multiple of this

column. It is here that advantage is taken of the Toeplitz structure of A.

Let us denote by gk and hk the first and last columns, respectively, each

-1
scaled by the as yet unspecified factor kof the matrix Ak:

g0,k

91k
gk-l,k

gk,k

,hk-

h0,k

h1 k
h. and -Akk=

hk,k

qk

0

n

S A k h k

0

0

18

where

fk

0
gk 

*
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It is clear that when k = 0 the unsealed vectors coincide and contain the

single element 1/a0 ; we choose q0 = a0 so that g0 = h0 = 1. We will determine

gk, hk, and qk from gk-1, hk-1, and qk-1 using the following two sums:

g0,k-1

g ,k-1

gk-1, k-1

0

0,k-1

g1,k-1

0k-,k-1

0

+

0

hOk-1

h-2 k-1

hk-l,k-1

0

hOk-1

k-2,k-l

hk-1 ,k-1

where v and r are unknown scalars which we are going to derive.

Since gk and hk are columns of the matrix Ak scaled by qk, then

Akhk - rAk

0,k-1

. Ig1,k-

g - k-

0J

g0,k-1

1k-1

gk -1, k-1

0

+ vAk

+ Ak

0

h0,k-1

k-2 ,k-1

h-1,k-1

0

h0,k-1

hk-2,k-1

hk-1,k-1

k

0

0

0

0

0

These relationships reduce to the

unknown scalars:

5qk-1 + f 2v qk

fl +qk-lv - 0

following equations for determining the

{k1r + f2 -0

(4)

f r+ qk-1 -Sk

gk=
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where

k k

1 = _ gk-k,k-1 ' 2 = a h -1,k -1

Solving equations (4) we find

v = -f1Ak-1, r = -f 2 /k- 1 ' 9 k = qk- 1-f1f2/qk-1

Note that this algorithm for solving linear systems with T-matrices requires

that Ak be non-singular for all k.

2.5. Programing details - subroutine TSLS1

The calling sequence of subroutine TSLS is consistent with those of the

other TOEPLITZ subroutines. However, it proves convenient in the implementa-

tion to consider the input matrix as two arrays and to partition the work

space. Therefore, subroutine TSLS1 was produced to directly implement the

algorithm, and subroutine TSLS merely acts as a user interface that calls

TSLS1. TSLS1 may be called directly by the user, if desired.

The calling sequence of subroutine TSLS1 is

CALL TSLS1(AI,A2,B,X,Cl,C2,M)

On entry,

Al is a singly subscripted array of M elements which contains the first

row of the T-matrix. Al is unaltered by TSLS1.

A2 is a singly subscripted array of M-1 elements which contains the

first column of the T-matrix beginning with the second element. A2

is unaltered by TSLS1.

B is a singly subscripted array of M elements which contains the right

hand side of the system. B is unaltered by TSLSI.

C1,C2 are singly subscripted arrays of M-1 elements used for work

space.

M is the order of the T-matrix and the number of elements in B and X.
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On return,

X is a singly subscripted array of M elements which contains the

solution of the system. X may coincide with B.

Subroutine TSLS1 has double precision, complex, and double precision

complex versions with names TSLD1, TSLC1, and TSLZ1, respectively, whose

calling sequences are the same as that of TSLS1 with Al, A2, B, Cl, C2, and X

variables of the corresponding type.

Towards timing estimation, n te that the algorithm for solving linear

systems with T-matrices requires approximately 3M2 multiplications.

2.6. Additional information

The calling sequences of subroutines TSLS and TSLS1 for the solution of

linear systems with T-matrices limit the right hand sides to single column

vectors. There may be situations where the solutions of two or more such

systems with the same coefficient matrix are desired. In these situations,

modifications of the subroutines that would permit all solutions to be

obtained in a single step could markedly improve efficiency. Fortunately, the

algorithm organization for T-matrices enables such modifications to be made

with little effort.

Three changes need to be made: 1) The parameter list must be extended to

include the column order of X and B, and the leading dimension for these newly

created two-dimensional arrays; 2) References to X and B must be rendered two-

dimensional; and 3) DO loops must be introduced for cycling over the columns

of X and B. Resulting forms of TSLS and TSLS1 are given below and can he

compared with the official versions listed in Appendix B; to facilitate the

comparison, the changes are indicated in lower case. The identical changes

could be made to the double precision, complex, and double precision complex

versions of these subroutines.



SUBROUTINE TSLS(A,X,R,M,mcol,ldx)

INTEGER M,mcol,ldx

REAL A(1),X(ldx,mcol),R(1)

TSLS CALLS TSLS1 TO SOLVE THE REAL LINEAR SYSTEM

A * X = B

WITH THE T - MATRIX A

ON ENTRY

A

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

c

c

C

c

c

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

REAL(2*M - 1)

THE FIRST ROW.OF THE T - MATRIX FOLLOWED BY ITS

FIRST COLUMN BEGINNING WITH THE SECOND I:LEMENT

ON RETURN A IS UNALTERED

REAL(M,mcol)

THE RIGHT HAND SIDE matrix B

REAL(2*M - 2)

A WORK VECTOR

INTEGER

THE ORDER OF THE MATRIX A

mcol irteger

the number of columns of the matrices x and b

ldx integer

the leading dimension of the array x

ON RETURN

X THE SOLUTION matrix

SUBROUTINES AND FUNCTIONS

TOEPLITZ PACKAGE ... TSLS1

CALL SUBROUTINE TSLS1

CALL TSLS1(A,A(M+1),X,X,R,R(),M,mcol,ldx)

RETURN
END

SUBROUTINE TSLS1(Al,A2,B,X,C1,C2,M,mcol,ldx)

INTEGER M,mcol,ldx
REAL A1(M),A2(1),B(ldx:ticol),X(ldx,mcol),C1(1),C2(1)

TSLS1 SOLVES THE REAL LINEAR SYSTEM

A * X = B

WITH THE T - MATRIX A

ON ENTRY

Al REALM)

22

X

R
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C THE FIRSTR'-! (F THE T - MATRIX A
C ON RETURN Al IS UNALTERED

C

C A2 REAL(M - 1)

C THE FIRST COLUMN OF THE T - MATRIX A

C BEGINNING WITH THE SECOND ELEMENT

C ON RETURN A2 IS UNALTERED.

C

C B REAL(M,mcol)

C THE RIGHT HAND SIDE matrix

C ON RETURN B IS UNALTERED

C

C C1 REAL(M - 1)

C A WORK VECTOR 

.

C

C C2 REAL(M - 1)

C A WORK VECTOR 

.

C

C M INTEGER

C THE ORDER OF THE MATRIX A

C

c mcol integer

c the number of columns of the matrices x and b

c

c ldx integer

c the leading dimension of the arrays x and b

c

C ON RETURN

C

C X REAL(M,mcol)

C THE SOLUTION matrix. X MAY COINCIDE WITH B

C

C INTERNAL VARIABLES

C

INTEGER I1,I2,j,N,N1,N2

REAL R1,R2,R3,R5,R6

C

C SOLVE THE SYSTEM WITH THE PRINCIPAL MINOR OF ORDER 1

C

R1 = A1(1)

do 5 j = 1, mcol

X(1,j) = B(1,j)/R1

5 continue

IF (M .EQ. 1) GO TO 80

C

C RECURRENT PROCESS FOR SOLVING THE SYSTEM

C WITH THE T - MATRIX FOR N = 2, M

C

DO 70 N = 2, M

C
C COMPUTE MULTIPLES OF THE FIRST AND LAST COLUMNS OF

C THE INVERSE OF THE PRINCIPAL MINOR OF ORDER N

C

N1 = N - 1
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N2 = N - 2

R5 = A2(N1)
R6 = A1(N)

IF (N .EQ. 2) GO TO 20

C1(N1) = R2

DO 10 Ii = 1, N2

12 = N - I1

R5 = R5 + A2(I1)*C1(I2)
R6 = R6 + A1(I1+1)*C2(I1)

10 CONTINUE

20 CONTINUE

R2 = -R5/R1

R3 = -R6/R1

R1 = R1 + R5'*R3

IF (N .EQ. 2) GO TO 40

R6 = C2(1)

C2(N1) = O.OEO

DO 30 I! = 2, Ni

R5 =- C2(I1)

C2(I1) = C1(I1)*R3 + R6
C1(I1) = C1(I1) + R6*R2

R6 = R5

30 CONTINUE

40 CONTINUE

C2(1) = R3

C

C COMPUTE THE SOLUTION OF THE SYSTEM WITH THE

C PRINCIPAL MINOR OF ORDER N

C

do 65 j = 1, mcol

R5 = O.OEO

DO 50 Ii = 1, Ni

12 = N - I1

R5 = R5 + A2(I1)*X(I2,j)

50 CONTINUE

R6 = (B(N,j) - R5)/R1

DO 60 Ii = 1, Ni

X(I1,j) = X(I1,j) + C2(I1)*R6

60 CONTINUE

X(N,j) = R6

65 continue

70 CONTINUE

80 CONTINUE

RETURN

END
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3. Solution of Linear Equations with C-Matrices

3.1. Purpose

The TOEPLITZ subroutine in this section is designed to solve linear

algebraic equations with C-matrices; it is limited to complex matrices because

the algorithm employs complex arithmetic. Users with real circulant matrices

can either declare them complex or consider them simply T-matrices and employ

the subroutines of section 2. Running times as real T-matrices are shorter,

but the unitary transformations employed in the algorithm described below for

C-matrices offer greater stability. A double precision version of the sub-

routine is also available.

3.2. Usage

Single precision C-matrices. CSLC solves a linear system with a complex

circulant matrix. The calling sequence is

CALL CSLC(A,X,R,M)

On entry,

A is a singly subscripted array of M elements which contains the first

row of the C-matrix. A is unaltered by CSLC.

X is a singly subscripted array of M elements which contains the right

hand side of the system.

R is a singly subscripted array of M elements used for work space.

M is the order of A and the number of elements in X.

On return,

X contains the solution of the system.

Double precision C-matrices. In those computing systems where it is

available, the calling sequence of the double precision C-matrix subroutine

CSLZ is the same as that of CSLC with A, X, and R DOUBLE COMPLEX variables.



3.3. Example

The following program segment illustrat-s the

subroutine CSLC for C-matrices. An example cfA
obtained by changing the subroutine name and type

of order 4 with coefficients as follows.

1+i

4+41

3+31

2+21

2+21 3+31 4+41

1+1 2+2i 3+31

4+41 1+1 2+21

3+31 4+41 1+1

use of the single precision

the use of CSLZ could be

declaration. The system is

10+1Oi

10+10i

10+101

COMPLEX A(4),X(4),R(4)

INTEGER M,I

DATA A(1)/(1.O,1.0)/,A(2)/(2.0,2.0)/,A(3)/(3.0,3.0)/,

* A(4)/(4.0,4.0)/

DATA X(1)/(10.0,1O.0)/,X(2)/(10.0,10.0)/,X(3)/(10.0,10.0)/,

* X(4)/(10.0,10.0)/

M = 4

CALL CSLC(A,X,R,M)

D:) 10 I - 1, M

WRITE(...,...) X(I)

10 CONTINUE

STOP

END

The solution of the system is

X = ((1.0,0.0),(1.0,0.0),(1.0,0.0),(1.0,0.0)) 

.

3.4. Algorithm

The algorithm for solving a system of linear algebraic equations

Ax m b (1)

with a C-matrix A of order M proceeds from a similarity transformation of A to

a diagonal matrix

D - Q*AQ 

,

where Q is unitary. (The symbol * denotes conjugate transpose.) The elements

of Q are inverse discrete Fourier transformations defined as

~ij

26

x =

= OR 0
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where E = exp(2ni//M). The solution x of the system (1) is then determined

as

-l 

*

x = QD Q b . (2)

The diagonal elements dii of D can be calculated as simply

M

d = iiM F q1 a. 1 , i = 1,2,... ,M

j=l

In other words, if d is a column actor r composed of the diagonal elemrnnt

d1 1,d2 2 ,...,dMM of D, and a is a column vector composed of the elements

a0,1,...,aM-l of the first row of A, then these vectors are related by

d = /i Qa 

.

3.5. Programmding details

In the implementation of subroutine CSLC, ins'.ead of Q the matrix Q = / Q

is used, and formula (2) of subsection 3.4 becomes

x = QD Q b/M

The vector d composed of the diagonal elements dii of D is then calculated

more simply as

d = Qa

Towards timing estimation, note that the algorithm for solving linear systems

with C-matrices requires approximately 3M2 multiplications.

3.6. Additional information

The calling sequence of subroutine CSLC for the solution of linear sys-

tems with C-matrices limits the right hand side to a single column vector.

There may be situations where the solutions of two or more such systems with

the same coefficient matrix are desired. In these situations, modifications

of the subroutine that would permit all solutions to be obtained in a single

step could markedly improve efficiency. Unlike TSLS and TSLSI discussed in

subsection 2.6, CSLC admits no simple modification for this purpose; however,

subroutine SALWC could be used instead.
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Subrout ine SALWC is discussed in subsection 3.5 of Chapter 2 -- it is

called as a service subroutine in the solution of second- and third-level

matrix systems. SALWC is similar to CSLC; its different organization, how-

ever, enables it to be separately useful, although somewhat awkward, for the

solution of ;C-matrix systems with multiple right hand sides. Its use requires

three calls with some arithmetic in-between, the presentation of the transpose

of the right hand side matrix, and additional work space; also, unlike CSLC,

it overwrites the coefficient array.

The following program segment illustrates the use of SALWC for C-matrix

systems of order M with MROW right hand sides (refer to subsection 3.5 of

Chapter 2 for a description of the SALWC calling sequence).

COMPLEX A(M),X(LDX,M),R1(M),R2(M)

RM FLOAT(M)

CALL# SALWC(A,R1,R2,1,M,1,-1)

CALL SALWC(X,R1 ,R2 ,MROW,M,LDX,1)

DO 10 J = 1, M

DO 5 I = 1, MROW

X(I,J) = X(I,J)/A(J)/RM

5 CONTINUE

10 CONTINUE

CALL SALWC(X,R1 ,R2 ,MROW,M,LDX, -1)

The dominant\ term in the multiplication count for the above segment is

M2- 2-MROW+1), while for MROW calls of CSLC it is 3M2 *MROW. Comparing these

quantities leads to the expectation that when MROW is 1 the two algorithms

should be about equally fast, and as MROW increases a savings of up to 1/3

should be possible with the above segment. For double precision, substitute

SALWZ.

4. Solution of Linear Equations with G-Matrices

4.1. Purpose

Capability to solve linear algebraic equations with G-matrices is

required for processing second- and third-level Toeplitz- and circulart-type

matrices described in Chapters 2 and 3. The availability of the LINPACK
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package makes it unnecessary to duplicate effort to provide this capability;

the TOEPLITZ package simply invokes that subset of LINPACK which treats

general square matrices. Usage will be briefly described for the single

precision real version; double precision, complex, and double precision

complex versions are al available. P-ferral to the LINPACK Users' Guide

[151 is recommended for fuller discussion than will be given here, including

algorithm descriptions and programming details.

4.2. Usage

Single precision real G-matrices. SGEFA and SGESL together solve a

linear system Ax = b with a real general matrix A; SGEFA computes the LU

factorization of A and SGESL uses the factorization to solve the linear

system.

The calling sequence for SGEFA is

CALL SGEFA(A,LDA,M,PVT,INFO)

On entry,

A is a doubly subscripted M by M array which contains the G-matrix.

LDA is the leading dimension of the array A.

M is the order of A and the number of elements in PVT.

On return,

A contains information from the LU factorization.

PVT is a singly subscripted array of M elements which contains informa-

tion to be transmitted to SGESL about the pivoting strategy used in

the factorization. Note: In the LINPACK package PVT is specified

as an integer array. For use in the TOEPLITZ package, PVT has the

variable type of A; this simplifies the partition of the work space.

INFO is an integer which if nonzero warns of singularity of A. Note:

Nonsingularity of A and indeed all its principal minors is funda-

mental for use of the TOEPLITZ package; no interrogation of INFO is

made anywhere.
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The calling sequence for SGESL is

CALL SGESL(A,LDA,M,PVT,X,JOB)

On entry,

A is a doubly subscripted M by M array which contains the information

from the factorization stored by SGEFA.

LDA is the leading dimension of the array A.

M is the order of A and the number of elements in X and PVT.

PVT is a singly subscripted array of M elements which contains the pivot

information stored by SGEFA.

X is a singly subscripted array of M elements which contains the right

hand side of the system.

JOB is an integer which specifies the system to be solved. If JOB is

zero, the system Ax = b is solved. If JOB is nonzero, the system

ATx = b is solved. Note: In its vse with the TOEPLITZ package, JOB

is always zero.

On return,

X contains the solution of the system.

Double precision real G-matrices. The calling sequences of the double

precision real G-matrix subroutines DGEFA and DGESL are the same as those of

SGEFA and SGESL with A, X, and PVT DOUBLE PRECISION variables.

Single precision complex G-matrices. The calling sequences of the single

precision complex G-matrix subroutines CGEFA and CGESL are the same as those

of SGEFA and. SGESL with A, X, and PVT COMPLEX variables.

Double precision complex G-matrices. In those computing systems where

they are available, the calling sequences of the double precision complex

G-matrix subroutines ZGEFA and ZGESL are the same as those of SGEFA and SGESL

with A, X, and PVT DOUBLE COMPLEX variables.
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5. Orthogonal Factorization of Coluan-Circulant Matrices

5.1. Purpose

Given an M by L column-circulant matrix A, the TOEPLITZ subroutines in

this section determine an M by L matrix Q with orthonormal columns and an

upper triangular matrix S of order L such that AS = Q. The AS = Q factoriza-

tion can be transformed to the more familiar A = QR factorization by inverting

S, i.e., R = S- 1 . Usage will be de. "ribed here for the single precision real

version. Double precision, complex, and double precision complex versions are

also available.

5.2. Usage

Single precision real column-circulant matrices. CQRS performs the

orthogonal factorization AS = Q of a real column-circulant matrix A. The

calling sequence is

CALL CQRS(A,Q,S,M,L,LDQ,LDS)

On entry,

A is a singly subscripted array of M elements which contains the first

column of the column-circulant matrix. A is unaltered by CQRS.

M is the number of rows of the matrices A and Q. M must be at 'east

equal to L.

L is the number of columns of the matrices A and Q and the order of

the upper triangular matrix S.

LDQ is the leading dimension of the array Q.

LDS is the leading dimension of the array S.

On return,

Q is a doubly subscriptec' M by L array which contains the factor with

orthonormal columns.
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S is a doubly subscripted L by L array which contains the upper

triangular factor. Elements below the main diagonal of S are not

accessed.

Double precision real column-circulant matrices. The calling sequence of

the double precision real column-circulant orthogonal factorization subroutine

CQRD is the same as that of CQRS with A, Q, and S DOUBLE PRECISION variabl,-s.

Single precision complex column-circulant matrices. The calling sequence

of the single precision complex column-circulant orthogonal factorization

subroutine CQRC is the same as that of CQRS with A, Q, and S COMPLEX

variables.

Double precision complex column-circulant matrices. In those computing

systems where it is available, the calling sequence of the double precision

complex column-circulant orthogonal factorization subroutine CQRZ is the same

as that of CQRS with A, Q, and S DOUBLE COMPLEX variables.

5.3. Exaqple

The following program segment illustrates th.. use of the single precision

subroutine for orthogonal factorization of real column-circulant matrices;

factors Q and S are returned satisfying AS - Q. Examples of the use of CQRD,

CQRC, and CQRZ could be obtained by changing the subroutine name and type

declaration. The matrix is 4 by 3 with coefficients as follows.

1 4 3

2 1 4

A 

-

3 2 1

4 3 2

REAL A(4),Q(4,3),S(3,3)

INTEGER M,L,LDQ,LDS,I,J

DATA A(1)/1.0/,A(2)/2.0/,A(3)/3.0/,A(4)/4.0/

M - 4

L - 3

LDQ - 4

LDS - 3

CALL CQRS(A,Q,S,M,L,LDQ,LDS)
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DO 10 I = 1, M

WRITE(...,...) (Q(I,J),J=1,L)

10 CONTINUE

DO 20 I = 1, L

WRITE(...,...) (S(I,J),J=I,L)

20 CONTINUE

STOP

END

The factors Q and S are

1/ 30 16/n276

2//h -3/1270

3// 0 -2//27

' 4//3 -1/270

10/17344

78//7344

-26/ /7344

-22/ 7344

-4//70

0

0

-7/7344

5//270 -16//7344

0 27 //7344

5.4. Algorithm

The algorithm description can be found in [12]. Note that usige of this

algorithm for orthogonal factorization of column-circulant matrices requires

that the matrix have full rank L.

5.5. Program ng details

The algorithm for the orthogonmd factorization of an M by L column-

circulant matrix requires approximately 6ML+L 2 multiplications.
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CHAPTER 2: TOEPLITZ- AND CLRCIJIANT-TYPE MATRICES OF THE SECOND LEVEL

1. Structure and Representation

1.1. Overview

A matrix

Al 1 A
1 2

A2 1 A 22

A1 3

A 23

A3 1 A3 2 A3 3 . . . A3L

AL1 AL2 AL3

with L elements in a raw (or column) where the elements Aiu are blocks of

order M is called a two-level matrix. L is called the first-level order and M

becomes the second-level order of the matrix A. The order N of A is then the

product of the orders of its levels: N - L*M.

We wili call the two-level matrix (1) an XY-type if A considered as a

block matrix is an X-type and each of its blocks Ai is a I- type. As X- and

Y-types in the TOEPLITZ package we consider T-, C-, and G-matLrices defined in

section 1 of Chapter 1. Examples of two-level matrices can be found below and

in subsections 2.3, 3.3, 4.3, and 5.3 of this chapter.

By permuting corresponding rows

to YX-type (see Tyrtyshnikov [25]).

a

c

b

g

i

h

b

a

c

h

g

i

c

b

a

i

h

g

d

f

e

a

C

b

e

d

f

b

a

c

f

e

d

c

b

a

and columns, we can transform any XY-type

For example, the TC-matrix

I

(1)

.. A1L

.. 
A2L

.0 ALL
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with L=2, M-3 can be permuted to the CT-matrix

a i b g c h

e a f b d c

c h a i b g

d c e a f b

b g c h a i

f b d c e a

with L=3, M-2 by interchanging raw and column pairs (1,6) and (3,4). This

circumstance allows us to limit consideration to one of each XY- YX-type pair.

The scheme for compact representation of two-level matrices is the

following. Let A be of XY-type with first-level order L and second-level

order M. Furthermore, let L be the number of elements required in the compact

representation of X and M be the number of elements required in the compact

representation of Y. Recall that for T-, C- and G-matrices of order M as

described in section 1 of Chapter 1 the values of M are, respectively, 2*M-1,

M, and M**2. In the TOEPLITZ package such a two-level matrix is represented

by a doubly subscripted M by L array. The blocks in the array are indexed

by the second subscript and ordered in accordance with the X-type compact

representation. In turn, the elements in a block are indexed by the first

subscript and ordered in accordance with the block's Y-type compact

representation.

1.2. TG-matrices

A matrix

AO Al A? . . . AL-1

A_1  A0  Al . . . AL-2
A-

A-2  A_1  AO . . . AL-3

A-L+1 A-L+2 A-L+3. . . A0
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is called a TG-matrix if Ai and A_i, i-0,1,2,...,L-1, are G-matrices of order

M (see subsection 1.3 of Chapter 1).

In the TOEPLITZ package this TG-matrix is represented by a doubly sub-

scripted M**2 by 2*L-1 array in which the blocks are ordered in the following

way:

AO,Al,A2,...,AL-1,A_1,A-2,...,A-L+l

1.3. CT-uatrices

A complex matrix

A0  A1  A 2 . . . AL-1

AL-1 A0  AI . . . AL-2
A = (2)

AL-2 AL-1 A0 . . . AL- 3

A1  A2  A3 ... A0

is called a CT-matrix if Ai, i-0,1,2,...,L-1, are T-matrices of order M (see

subsection 1.1 of Chapter 1).

In the TOEPLITZ package this CT-matrix is represented by a doubly sub-

scripted 2*M-1 by L array in which the blocks are ordered in the following

way:

AO,A1,A2,...,AL-1 

*

1.4. CC-itrices

A matrix of form (2) is called a CC-matrix if Ai, i-0,1,2,...,L-1, are

C-matrices of order M (see subsection 1.2 of Chapter 1).

In the TOEPLITZ package this CC-matrix is represented by a doubly sub-

scripted M by L array in which the blocks are ordered in the following way:

AO,AI,A2 ,...,AL- 1 0
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1.5. CG-matrices

A matrix of form (2) is called a CG-matrix if Ai, i=0,1,2,...,L-1, are

G-matrices of order M (see subsection 1.3 of Chapter 1).

In the TOEPLITZ package this CG-matrix is represented by a doubly sub-

scripted M**2 by L array in which the blocks are ordered in the following way:

A0,Al,A2 ,...,AL-1.

1.6. Other types of two-level matrices

GT-, TC-, and GC-matrices, defined in analogous ways, can be pernuted,

respectively, to TG-, CT-, and CG-matrices (see example in subsection 1.1).

Therefore, the TOEPLITZ package does not include subroutines for solving

linear systems with two-level matrices of these types. At the present time

no algorithm is known that capitalizes effectively on the structure of

TT-matrices, so TT-matrices should be treated as TG-matrices.

2. Solution of Linear Equations with TG-matrices

2.1. Purpose

The TOEPLITZ subroutines in this section are designed to solve linear

algebraic equations with TG-matrices, that is, block-Toeplitz matrices whose

blocks are G-matrices. Usage will be described for the single precision real

version. Double precision, complex, and double precision complex versions are

also available. Indeed, the complex version is called in solving three-level

CTG-matrix systems (see subsection 2.5 of Chapter 3).

2.2. Usage

Single precision real TG-matrices. TGSLS solves a linear system with a

real block-Toeplitz matrix whose blocks are G-matrices. The calling sequence

is

CALL TC ,LS(A,X,R,M,L,LDA)
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On entry,

A is a doubly subscripted M**2 by 2*L-1 array which contains the

TG-matrix in the form described in subsection 1.2. A is unaltered

by TGSLS.

X is a singly subscripted array of M*L elements which contains the

right hand side of the system.

R is a singly subscripted array of 2*M**2*L+3*M**2+M elements used for

work space.

M is the order of each G-matrix block of A.

L is the number of blocks in each row or column of A.

LDA is the leading dimension of the array A.

On return,

X contains the solution of the system.

Double precision real TG-matrices. The calling sequence of the double

precision real TG-matrix subroutine TGSLD is the same as that of TGSLS with A,

X, and R DOUBLE PRECISION variables.

Single precision complex TG-matrices. The calling sequence of the single

precision complex TG-matrix subroutine TGSLC is the same as that of TGSLS with

A, X, and R COMPLEX variables.

Double precision complex TG-matrices. T'i .iose computing systems where

it is available, the calling sequence of the double precision complex

TG-matrix subroutine TGSLZ is the same as that of TGSLS with A, X, and R

DOUBLE COMPLEX variables.

2.3. Exale

The following program segment illustrates the use of the single precision

subroutine TGSLS for real TG-matrices. Examples of the use of TGSLD, TGSLC,
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and TGSLZ could be obtained by changing the subroutine name and type declara-

tion. The system is of order 4 with coefficients as follows.

1

2

3

4

11

12

5 7

6 8

1 3

2 4

16

20

24

28

REAL A(4,3),X(4),R(30)

INTEGER M,L,LDA,I,J

DATA A(1,1)/1.0/,A(2,1)/2.0/.A(3,1)/3.0/,A(4,1)/4.0/,

A(1,2)/5.0/,A(2,2)/6.0/,A(3,2)/7.0/,A(4,2)/8.0/,
A(1,3)/9.0/,A(2,3)/10.0/,A(3,3)/11.0/,A(4,3)/12.0/

DATA X(1)/16.0/,X(2)/20.0/,X(3)/24.0/,X(4)/28.0/

M = 2

L = 2

LDA = 4

CALL TGSLS(A,X,R,M,L,LDA)

J = M*L

DO 10 I = 1, J

WRITE(...,...) X(I)

10 CONTINUE

STOP

END

The soluLorn of the system is

X = (1.0,1.0,1.0,1.0)

2.4. Algorithm

The algorithm for solving a linear system

Ax - b (1)

with the TG-matrix

i

9

10
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A0  A1  A2  . .. AL-1

A_1  A 0  A1  . . . At-2
A =

A-2  A_1  A0  . . . A-3

A-L+1 A-L+2 A-L+3. . . A0

where Ai and Ai, i=0,1,2,...,L-1, are G-matrices of order M, is the block

analogue of the algorithm for solving linear systems with T-matrices (see sub-

section 2. of Chapter 1).

Let us introduce the following notation:

A0  Al . . . Ak 0,k b0

A_1  A0 . . . Ak 1  1,k bI

Ck = . . . . .A * * * k = .. , d k =

-k A-k+1 . . A0  k,kbk*M+M-1

where yi,k, i=0,1,...,k, are vectors of M elements. The algorithm consists of

step-by-step recurrent solution of systems

Ck k = dk (2)

for k=0,1,2,...,L-1. The final result of the recurrent process is the

solution of the given system (1):

X = FL-1

-1
At step 1, y0 = A0 d0. At step k+1, the vector yk is calculated from yk-1 as

follows. Let us consider the vector yk to be the sum of two vectors, one of

which, augmented by a zero vector of M elements, was determined at the k-th

step:

y0,k 0,k-1 zO,k

y1,k 1,k-I zl k

+ . (3)

k-l,k kz-1,k-1 zk-1,k

yk,k 0 zk,k
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Substituting this sum into equation (2) and taking into account that the

vector yk-1 satisfies the equation

Ck-1 k-1 = dk-1 

'

we see that the unknown vector zk from (3) consisting of component vectors

z0,k,zl,k,...,zk,k each of M elements is the solution of the system

Ckzk = k

where

0 b
k*M

0 b

k*M+1

k

k k,k =Q1 a _ yk-&,k-1 

*

0 b

k*M+M-2

f b
k,k k*M+M-1

Thus, the vector zk is a linear combination of the last M columns of the

matrix Ck, and the elements of the vector fk,k are the coefficients of that

linear combination. Hence, for recurrent calculation of the vectors yk it is

sufficient to evaluate recurrently the last block column of the matrix C~1, or

as done here for further economy an appropriately chosen block multiple of

this block column. It is here that advantage is taken of the block-Toeplitz

structure of A.

Let us denote by Gk and Hk the first and last block columns, respectively

scaled by M-order matrices Pk and Qk, of the matrix C-i:

GO,k HO,k

G1,k H1,k

Gk - , Hk 

-

Gk-l,k Hk-1,k

Gk,k Hk,k



and

CkGk =

0

0

CkHk =

0

0

0

oQ

It is clear that when k 0 the unscaled block columns coincide and contain

the single block A0 ; we choosee P0 =Q0 = A0 so that G0 = H0 = 1. eviIll

determine Gk, Hk ' k, and Qk from k_1, Hk-l Pk-1' and Qk- 1 using the

following two sums:

G0,k10

Gk =

Hk =

Gi,k-1

Gk-1,k-1

0

CO,k-1

G1 ,k-1

Gk-l,k-1

0

+

tk,k-1

Hk-2,k-1

Hk-1,k-1

V

0

HO,k-1

Hk-2,k-1

Hk-l,k-1

where V and R are unknown M by M matrices which we are going to derive.

Since Gk and Hk are block columns of the matrix Ck~ scaled by Pk and Qk'

respectively, then

CkGk - Ck

GO,k-1

Gl,k-1

Gk-1,k-1

0

+

Ck

0

Hark-1

Hk-2,k-1

Hk-1,k-1

k

0

0
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0



CkHk = Ck

GO ,k-1

G1 ,k-1

1,k-1

0

R +Ck

These relationships reduce to the

known matrices:

{ k-1 + F2V =k

F1 + QklV = 0

where

k

Fy = AG 

0

HOk-1

Hk-2 ,k-1

Hk -,k-1

0

0

following equations for determining the un-

{Pk1R + F2 = 0

FiR + Q_1 = Qk

k

F = A LH .lk-1 

*

(4)

Solving systems (4) we find

V = -(Qk-1)'Fi , R = -(Pk'-1F2

k k-1 - F2(-QPF (. 1)1F,

=k ~ k-1 - Fl(Pk_-1~F2

"

Note that this algorithm for solving linear systems with TG-matrices requires

that Ck be non-singular for all k.

2.5. Program.L ig details - subroutine TGSLS1

Subroutine TGSLS merely acts as an interface to subroutine TGSLS1, in the

manner of TSLS and TSLS1 for T-matrices as explained in subsection 2.5 of

Chapter 1.

The calling sequence of subroutine TGSLS1 is

CALL TGSLS1(A1,A2,B,X,C1,C2,R1,R2,R3,RS,R6,R,M,L,LDA)

44

"

0
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On entry,

Al is a doubly subscripted M**2 by L array which contains the first row

of blocks of the TG-matrix. Al is unaltered by TGSLSL.

A2 is a doubly subscripted M**2 by L-1 array which contains the first

column of blocks of the TG-matrix beginning with the second block.

A2 is unaltered by TGSLSI.

B is a singly subscripted array of M*L elements which contains the

right hand side of the system. B is unaltered by TGSLS1.

C1,C2 are triply subscripted arrays with dimension (M,M,L-1) used for

work space.

Rl,R2,R3,R5,R6 are doubly subscripted arrays with dimension (M,M) used

for work space.

R is a singly subscripted array of M elements used for work space.

M is the order of each G-matrix block of the TG-matrix.

L is the number of blocks in each row or column of the TG-matrix.

LDA is the leading dimension of the arrays Al and A2.

On return,

X is a singly subscripted array of M*L elements which contains the

solution of the system. X may coincide with B.

For solving G-matrix systems in accordance with the algorithm described

in subsection 2.4, TGSLS1 calls the LINPACK subroutines SGEFA and SGESL (see

section 4 of Chapter 1).

Vector operations are facilitated by calls to the LINPACK BLA subroutine

SAXPY. This subroutine is co d efficiently but there is a cat associated
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with communication to it; this cost can become relatively large when computa-

tion within SAXPY itself is small and the further computations of TGSLS1 are

highly optimized by the compiler. Therefore, when the number of vector

components (M for two-level TG-matrices) is small and the compiler is capable

of a high level of optimization, it may be more efficient to perform the

vector computations in-line instead of repeatedly calling SAXPY. (It is of

interest to note that in TGSLCI, overhead associated with the use of the

corresponding LINPACK BLA subroutine CAXFi is much less significant in the

presence of the slower complex arithme ci a.) To facilitate a possible change

to in-line computation, directions are provided through code comments in

subroutine TGSLS1 (and also TGSLD1, TGSLCL, and TGSLZL).

For solving systems with double precision, Lomplex, and double precision

complex TG-matrices, versions corresponding to TGSLS1 are available with names

TGSLDI, TGSLCL, and TGSLZL, respectively. These in turn call the correspond-

ing versions of the LINPACK subroutines.

The algorithm implemented in subroutine TGSLS1 requires approximately

2M3L2 multiplications.

3. Solution of Linear Equations with CT-matrices

3.1. Purpose

The TOEPLITZ subroutine in this section is designed to solve linear

algebraic equations with CT-matrices, that is, complex block-circulant

matrices whose blocks are T-matrices. K double precision version of the

subroutine is also available.

3.2. Usage

Single precision CT-matrices. CTSLC solves a linear system with a

complex block-circulant matrix whose blocks are T-matrices. The calling

sequence is

CALL CTSLC(A,X,R,M,L,LDA) 

.
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On entry,

A is a doubly subscripted 2*M-1 by L array which contains the

CT-matrix in the form described in subsection 1.3. A is destroyed

by CTSLC.

X is a singly subscripted array of M*L elements which contains the

right hand side of the syst_m.

R is a singly subscripted array of max(2*M-2,2*L) elements used for

work space.

M is the order of each T-matrix block of A.

L is the number of blocks in each row or column of A.

LDA is the leading dimension of the array A.

On return,

X contains the solution of the system.

Double precision CT-matrices. In those computing systems where it is

available, the calling sequence of the double precision CT-matrix subroutine

CTSLZ is the same as that of CTSLC with A, X, and R DOUBLE COMPLEX variables.

3.3. Example

The following program segment illustrates the use of the single

subroutine CTSLC for CT-matrices. An example of the use of CTSLZ

obtained by changing the subroutine name and type declaration. The

of order 4 with coefficients as follows.

precision

could be

system is

1+1 2+21

3+31 1+1

2+21 3+31

4+41 2+21

1+1

3+3i

2+21

1+1

A

2+21 3+31

4+41 2+21

8 + 8i

10 + l0i

8 + 81

10 + l0i
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COMPLEX A(3,2),X(4),R(4)

INTEGER M,L,LDA,I,J

DATA A(1,1)/(1.0,1.0)/,A(2,1)/(2.0,2.0)/,A(3,i)/(3.0.3.0)/,

* A(1,2)/(2.0,2.0)/,A(2,2)/(3.0,3.0)/,A(3,2)/(4.0,4.0)/

DATA X(1)/(8.0,8.0)/,X(2)/(10.0,10.0)/,X(3)/(8.0,8.0)/,

* X(4)/(10.0,10.0)/

M = 2

L = 2

LDA = 3

CALL CTSLC(A,X,R,M,L,LDA)

J = M*L

DO 10 I = 1, J

WRITE(...,...) X(I)

10 CONTINUE

STOP

END

The solution of the system is

X = ((1.0,0.0),(1.0,0.0),(1.O,0.O),(1.0,0.0))

3.4. Algorithm

The algorithm for solving a linear system

Ax-b (1)

with the CT-matrix

A0  A1  A2 . . . AL- 1

AL-1 A0  A1 . . . AL-2

A - AL-2 AL-1 A0 . . . AL- 3  

,

A1  A2  A3 . . . A0

where Ai, i-0,1,2,...,L--1, are T-matrices of order M, proceeds from a

similarity transformation of A to a block-diagonal matrix

D - Q*AQ

in which each diagonal block is a T-matrix. (The symbol * denotes conjugate

transpose.) Q is a two-level matrix with first-level order L and second-level

order M whose blocks are scalar matrices; the matrix of the scalars themselves

is unitary.
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Block Q of Q is defined as

= 

-E~i-1).(J-1)*I/lT

where E = exp(2ir/T/L) and I is the identity matrix of order M. However, as

for C-matrices (see section 3 of Chapter 1), it is more efficient to use

instead the matrix

Thus the solution x of the system (1) can be found by the following steps:

a) Transform the matrix A to the block-diagonal matrix

D - Q AQ/L

b) Transform the right hand side

y = Q b

c) Solve the system

Dz - y 

.

d) Transform the vector z back to

x - Qz/L 

.

Note that since A is a CT-matrix, its transformation to D becomes simply

L

D - Q A _ 

,

where Dii is the i-th diagonal block of D and A._ 1 i.. the block with index i-1

at the top of A. Furthermore, since D is block-diagonal each block of which

is a T-matrix, the Rystem (1) reduces to L systems with T-matrices.

3.5. Prograudug details - subroutine SAIMC

The implementation of

cribed in subsection 3.4.

implemented by the service

subroutine CTSLC corresponds to the algorithm des-

All needed operations with matrices Q and Q are

subroutine SALWC. The structure of these matrices
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and the compact form of input representation are such that, from the point of

view of programming, these operations (or more properly Q and Q*) can be con-

sidered respectively as inverse and direct discrete Fourier transformations

upon a set of row vectors in a cE rtain rectangular matrix.

The calling sequence of subroutine SALWC is

CALL SALWC(A,R1,R2,M,L,LDA,JOB)

On entry,

A is a doubly subscripted M by L array which contains the matrix upon

whose rows the Fourier transformation will be performed.

R1,R2 are singly subscripted arrays of L elements used for work space.

M is the number of rows of A.

L is the number of columns of A.

LDA is the leading dimension of the array A.

JOB indicates what is to be computed. If JOB is 1, the direct Fourier

transformation will be performed and if JOB is -1, the inverse

Fourier transformation will be performed.

On return,

A contains the transformed rows of the matrix.

For solvirng the L systems with T-matrices, first-level subroutines TSLC

and TSLCI are called. For solving systems with double precision CT-matrices

(using CTSLZ), the double precision subroutine SALWZ is called, as well as

TSLZ and TSLZ1.

The overall algorithm implemented in subroutine CTSLC requires approxi-

mately 4ML2 -3M2L multiplications - 4ML2 in SALWC and 3M2L in TSLC1.
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4. Solution of Linear Equations with CC-matrices

4.1. Purpose

The TOEPLITZ subroutine in this section is designed to solve linear alge-

braic equations with CC-matrices, that is, complex block-circulant matrices

whose blocks themselves are circulant matrices. A double precision version of

the subroutine is also available.

4.2. Usage

Single precision CC-matrices. CCSLC solves a linear system with a

complex block-circulant matrix whose blocks are C-matrices. The calling

sequence is

CALL CCSLC(A,X,R,M,L,LDA)

On .ntry,

A is a doubly subscripted M by L array which contains the

the system in the form described in subsection 1.4. A

by CCSLC.

X is a singly subscripted array of M*L elements which

right hand side of the system.

CC-matrix of

is destroyed

contains the

R is a singly subscripted array of max(M,2*L) elements used for work

space.

M is the order of each C-matrix block of A.

L is the number of blocks in each row or column of A.

LDA is the leading dimension of the array A.

On return,

X contains the solution of the system.
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Double precision CC-matrices. In those computing systems where it is

available, the calling sequence of the double precision CC-matrix subroutine

CCSLZ is the same as that of CCSLC with A, X, and R DOUBLE COMPLEX variables.

4.3. Example

The following program segment illustrates the use of the single precision

subroutine CCSLC for CC-matrices. An example of the use of CCSLZ could be

obtained by changing the subroutine name and type declaration. The system is

of order 4 with coefficients as follows.

1+i 2+21 2+2i 4+41 9 + 9i

2+21 1+1 4+41 2+2i 9 + 9i
A= X =

2+21 4+4i 1+1 2+2i 9 + 9i

4+41 2+21 2+21 1+i 9 + 9i

COMPLEX A(2,2),X(4),R(4)

INTEGER M,L,LDA,I,J

DATA A(1,1)/(1.0,1.0)/,A(2,1)/(2.0,2.0)/,

* A(1,2)/(2.0,2.O)/,A(2,2)/(4.0,4.0)/

DATA X(1)/(9.0,9.0)/,X(2)/(9.0,9.0)/,

* X(3)/(9.0,9.O)/,X(4)/(9.0,9.0)/

M= 2

L=s 2

LDA - 2

CALL CCSLC(A,X,R,M,L,LDA)

J M*L

DO 10 I - 1, J

WRITE(...,...) X(I)

10 CONTINUE

STOP

END

The solution of the system is

X - ((1.0,0.0),(1.0,0.0),(1.0,0.0),(1.0,0.0))

4.4 Algorithm

The algorithm used in subroutine CCSLC is the same as that described in

subsection 3.4 for CT-matrices except that the solution of C-matrix rather

than T-matrix systems is involved.
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4.5. Programming details

Programming details of subroutine CCSLC are as for CTSLC (see subsection

3.5) except that subroutine CSLC is called instead of subroutines TSLC and

TSLC; the number of multiplications is approximately 3ML 2+3M 2L -- 3ML2 in

SALWC and 3M2L in CSLC.

5. Solution of Linear Equations with CC-matrices

5.1. Purpose

The TOEPLITZ subroutine in this section is designed to solve linear

algebraic equations with CG-matrices, that is, complex block-circulant

matrices whose blocks are general matrices. A double precision version of the

subroutine is also available.

5.2. Usage

Single precision CG-matrices. CGSLC solves a linear system with a

complex block-circulant matrix whose blocks are G-matrices. The calling

sequence is

CALL CGSLC(A,X,R,M,L,LDA)

On entry,

A is a doubly subscripted M**2 by L array which contains the CG matrix

of the system in the form described in subsection 1.5. A is

destroyed by CGSLC.

X is a singly subscripted array of M*L elements which contains the

right hand side of the system.

R is a singly subscripted array of max(M,2*L) elements used for work

space.

M is the order of each G-matrix block of A.

L is the number of blocks in each row or column of A.

LDA is the leading dimension of the array A.
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On return,

X contains the solution of the system.

Double precision CG-matrices. In those computing systems where it is

available, the calling sequence of the double precision CG-matrix subroutine

CGSLZ is the same as that of CGSLC with A, X, and R DOUBLE COMPLEX variables.

5.3. Example

The following program segment illustrates the

subroutine CGSLC for CG-matrices. An example of

obtained by changing the subroutine name and type

of order 4 with coefficients as follows.

use of the single

the use of CGSLZ

declaration. The

1+1 3+31

2+21 4+41

5+51 7+71

6+61 8+81

5+51 7+71

6+61 8+81

1+i 3+31

2+21 4+41

*

COMPLEX A(4,2),X(4),R(4)

INTEGER M,L,LDA,I,J

DATA A(1 , 1)/(1.0,1.O)/,A(2,1)/(2.0,2.0)/,A(3,1)/(3.0,3.0)/,

A(4,1)/(4.0,4.0)/,A(1,2)/(5.0,5.0)/,A(-2,2)/(6.0,6.0)/,
A(3,2)/(7.0,7.0)/,A(4,2)/(8.O,8.0)/

DATA X(1)/(16.0,16.O)/,X(2)/(20.0,20.0)/,X(3)/(16.0,16.0)/,

X(4)/(20.0,20.0)/

M = 2
L - 2

LDA 4

CALL CGSLC(A,X,R,M,L,LDA)

J = M*L

DO 10 1 - 1, J

WRITE(...,...) X(I)

10 CONTINUE

STOP

END

The solution of the system is

X - ((1.0,0.0),(1.0,0.0),(1.0,0.0),(1.0,0.0)) 

.

precision

could be

system is

16 + 161

20 + 201

16 + 161

20 + 201

L _

**
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5.4. Algorithm

The algorithm used in subroutine CGSLC is the same as that described in

subsection 3.4 for CT-matrices except that the solution of G-matrix rather

than T-matrix systems is involved.

5.5. Programming details

Programming details o'. subroutine CGSLC are as for CTSLC (see subsection

3.5) except that LINPACK subroutines CGEFA and CGESL (see section 4 of Chapter

1) are called instead of subroutines TSLC and TSLCL; the number of multiplica-

tions is M2 L2 +M 3 L/3 plus terms of lesser degree -- M2 L 2 4n SALWC (first call),

M3 L/3 in CGEFA, and lesser amounts in CGESL and further calls of SALWC.
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CHAPTER 3: TOEPLITZ- AND CIRCULANT-TYPE MATRICES OF THE THIRD LEVEL

1. Structure and Representation

1.1. Overview

A matrix

A1 1  A12  A13 . . . A1K

A2 1  A22  A2 3 . . . A2K
A = (1)

A3 1  A32  A33 . . . A3K

AK1 AK AK3 . . .AKK

with K elements in a row (or column) where the elements Ail are two-level

matrices (see Chapter 2) with fr:st-level order L and second-level order M is

called a three-level matrix. K is called the first-level order, L becomes the

second-level order, and M becomes the third-level order of the matrix A. The

order N of A is then the product of the orders of its levels: N = K*L*M.

We will call the three-level matrix (1) an XYZ-type if A considered as a

block matrix is an X-type and each of its blocks Ail is a YZ-type (see section

1 of Chapter 2). As X-, Y-, and Z-types in the TOEPLITZ package we consider

T-, C-, and G-matrices defined in section 1 of Chapter 1. Examples of three-

level matrices can be found in subsections 2.3, 3.3, 4.3, and 5.3 of this

chapter.

By permuting corresponding rows and columns, we can transform an XYZ-type

to any of types XZY, YXZ, YZX, ZXY, or ZYX (see Tyrtychnikov [25)). This

circumstance allows us to limit consideration to a few among the possible

three-level types.

The scheme for compact representation of three-level matrices is the

following. Let A be of XYZ-type with level orders K, L, and M, respective-

ly. Furthermore, let K be the number of elements required in the compact

representation of X, and M*L be the number of elements required in the compact

representation of a YZ-type with level orders L and M. RecaU1 that for TG-,
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CT-, CC-, and CG-matrices described in section 1 of Chapter 2 the values of

M*L are, respectively, M**2*(2*L-1), (2*M-1)*L, M*L, and M**2*L. Ir the

TOEPLITZ package such a three-level matrix is represented by a doubly sub-

scripted M*L by K array. The blocks in the array are indexed by the second

subscript and ordered in accordance with the X-type compact representation.

In turn, the elements in a block are indexed by the first subscript and

ordered in accordance with the block's YZ-type compact representation packed

linearly by columns.

1.2. CTG-atrices

A complex matrix

A0  A1  A2 *.. .AK-1

AK-1 A0  A1 . . . AK-2

A = (2)

AK-2 AK-1 A0 . . . AK-3

A1  A2  A3 . . . A0

is called a CTG-matrix if Ai, i=0,1,2,...,K-1, are TG-matrices of first-level

order L and second-level order M (see subsection 1.2 of Chapter 2).

Ii. the TOEPLITZ package this CTG-matrix is represented by a doubly sub-

scripted M**2*(2*L-1) by K array in which the first-level blocks are ordered

in the following way:

AO,AL,A
2 ,...,AK_1.

Each block Ai is a TG-matrix packed linearly by columns..

1.3. CCT-aatr.cis

A matrix of form (2) is called a CCT-matrix if Ai, i=0,1,2,...,K-1, are

CT-matrices of first-level order L and second-level order M (see subsection

1.3 of Chapter 2).

In the TOEPLITZ package this CCT-matrix is represented by a doubly

subscripted (2*M-1)*L by K array. The storage arrangement for the CCT-matrix

is as for the CTG-matrix except that each block Ai is a CT-matrix.
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1.4. CCC-uatrices

A matrix of form (2) is called a CCC-matrix if A, 1=0,1,2,... ,K-1, are

CC-matrices of first-level order L and second-level order M (see subsection

1.4 of Chapter 2).

In the TOEPLITZ package this CCC-matrix is represented by a doubly

subscripted M*L by K array. The storage arrangement for the CCC-matrix is as

for the CTG-matrix except that each block Al is a CC-matrix.

1.5. CaG-matrices

A matrix of form (2) is called a CCG-matrix if Ai, i=0,1,2,...,K-1, are

CG-matrices of first-level order L and second-level order M (see subsection

1.5 of Chapter 2).

In the TOEPLITZ package this CCG-matrix is represented by a doubly

subscripted M**2*L by K array. The storage arrangement far the CCG-matrix is

as for the CTG-matrix except that each block Ai is a CG-matrix.

1.6. Other types of three-level matrices

CGT-, TCG-, TGC-, GCT-, GTC-, CTC-, TCC-, CGC-, and GCC-matrices, defined

in analogous ways, can be transformed to the types discussed in subsections

1.2-1.5 by permuting corresponding levels. Therefore, the TOEPLITZ package

does not include subroutines for solving linear systems with three-level

matrices of these types. At the present time no algorithm is known that

capitalizes effectively or the structure of linear systems with three-level

matrices more than one of whose levels is of T- or G-type.

2. Solution of Linear Equations with CTG-matrices

2.1. Purpose

The TOEPLITZ subroutine in this section is designed to solve linear alge-

braic equations with CTG-matrices, that is, complex block-circulant matrices

whose blocks are TG-matrices. A double precision version is also available.
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2.2. Usage

Single precision CTG-matrices.

CTG-matrix. The calling sequence is

CTGSLC solves a linear system with a

CALL CTGSLC(A,X,R,M,L,K,LDA)

On entry,

A is a doubly subscripted M**2*(2*L-1) by K array which contains the

CTG-matrix in the form described in subsection 1.2. A is destroyed

by CTGSLC.

X is a singly subscripted array of M*L*K elements which contains the

right hand side of the system.

R is a singly subscripted array of max(2*M**2*L+3*M**2+M,2*K) elements

used for work space.

M is th- order of each inner G-matrix block of A.

L is the number of inner blocks in each row or column of the

TG-matrices which comprise the outer blocks of A.

K is the number of outer blocks in each row or column of A.

LDA is the leading dimension of the array A.

On return,

X contains the solution of the system.

Double precision CTG-matrices. In those computing systems where it is

available, the calling sequence of the double precision CTG-matrix subroutine

CTGSLZ is the same as that of CTGSLC with A, X, and R DOUBLE COMPLEX

variables.
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2.3. Example

The following program segment illustrates the use of the single precision

subroutine CTGSLC for CTG-matrices. An example of the use of CTGSTLZ could be

obtained by changing the subroutine name and type declaration. The system is

of order 8 with coefficients as follows.

1+1 3+31 5+51 7+71 13+131 15+151 17+171 19+19i 80+801

2+21 4+41 6+6i 8+81 14+141 16+161 18+181 20+201 88+881

9+9i 11+111 1+i 3+31 21+211 23+231 13+131 15+15i

10+101 12+121 2+21 4+41 22+221 24+241 14+141 16+161

13+131 15+151 17+171 19+191 1+1 3+31 5+51 7+71

14+14i 16+161 18+181 20+201 2+21 4+41 6+6i 8+81

I 96+961

104+1041

80+801

88+881

21+211 23+231 13+131 15+151 9+91 11+111 1+1 3+31 96+961

22+22i 24+241 14+141 16+161 10+101 12+121 2+21 4+41 104+104

COMPLEX A(12,2),X(8),R(30)

INTEGER M,L,K,LDA,IJ

DATA A(1,1)/(1.0,1.0)/,A(2,1)/(2.0,2.0)/,A(3,1)/(3.0,3.0)/,

* A(4,1)/(4.0,4.0)/,A(5,1)/(5.0,5.0)/,A(6,1)/(6.0,6.0)/,

* A(7,1)/(7.0,7.0)/,A(8,1)/(8.0,8.0)/,A(9,1)/(9.0,9.0)/,

* A(10,1)/(10.0,10.0)/,A(11,1)/(11.0,11.O)/,A(12,1)/(12.0,12.0)/,

* A(1,2)/(13.0,13.0)/,A(2,2)/(14.0,14.0)/,A(3,2)/(15.0,15.0)/,

* A(4,2)/(16.0,16.0)/,A(5,2)/(17.0,17.0)/,A(6,2)/(18.0,18.0)/,

* A(7,2)/(19.0,19.0)/,A(8,2)/(20.0,20.0)/,A(9,2)/(21.0,21.0)/,

* A(10,2)/(22.0,22.0)/,A(11,2)/(23.0,23.0)/,A(12,2)/(24.0,24.0)/

DATA X(1)/(80.0,80.0)/,X(2)/(88.0,88.0)/,X(3)/(96.0,96.0)/,

* X(4)/(104.0,104.0)/,X(5)/(80.0,80.0)/,X(6)/(88.0,88.0)/,
* X(7)/(96.0,96.0)/,X(8)/(104.0,104.0)/

M = 2

L = 2

K - 2

LDA = 12

CALL CTGSLC(A,X,R,M,L,K,LDA)

J = M*L*K

DO 10 I = 1, J

WRITE(...,...) X(I)

10 CONTINUE

STOP

END

1

i
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The solution of the system is

X = ((1.0,0.0),(1.0,0.0),(1.0,0.0),(1.0,0.0)

(1.0,0.0),(1.0,0.0),(1.0,0.0),(1.0,0.0))

2.4. Algorithm

The algorithm for solving a linear system

Ax = b (1)

with the CTG-matrix

AO Al A2 . .. AK-1

AK- 1 A0  A1 . . . AK-2

A =

AK-2 AK-1 A0 *. . .AK-3

A1  A2  A3 *. .. A0

where Ai, i=0,1,2,...,K-1, are TG-matrices of first-level order L and second-

level order M, is analogous to that described in subsection 3.4 of Chapter 2

for CT-matrices. It proceeds from a similarity transformation of A to a

block-diagonal "^atrix

D = Q*AQ

in which each diagonal block is a TG-matrix. (The symbol * denotes conjugate

transpose.) Q is a two-level matrix with first-level order K and second-level

order L*M whose blocks are scalar matrices; the matrix of the scalars

themselves is unitary.

Blcck Q of Q is defined as

where E = exp(2r/-~/K) and I is the identity matrix of order L*M. However, as

for C-matrices (see section 3 of Chapter 1), it is more efficient to use

instead the matrix

Q -RQ 

.
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Thus the solution x of the system (1) can be found by the following steps:

a) Transform the matrix A to the block-diagonal matrix

D = Q AQ/K

b) Transform the right hand side

y = Q b

c) Solve the system

Dz = y

d) Transform the vector z back to

x = Qz/K

Note that since A is a CTG-matrix, its transformation to D becomes simply

K

D.. = XQAj-
ii = iji-i

where Dii is the i-th diagonal block of D and A _ 1 is the outer block with

index j-1 at the top of A. Furthermore, since D is block-diagonal each block

of which is a TG-matrix, the system (1) reduces to K systems with TG-matrices.

2.5. Programming details

The implementation of

described in subsection 2.4.

implemented by the service

Chapter 2. For solving

subroutines TGSLC and TGSLC1

subroutine CTGSLC corresponds to the algorithm

All needed operations with matrices Q and Q are

subroutine SALWC described in subsection 3.5 of

the K systems with TG-matrices, second-level

are called.

For solving systems with double precision CTG-matrices (using CTGSLZ),

corresponding versions of subroutines TGSLC, TGSLC1, and SALWC are called,

namely, TGSLZ, TGSLZ1, and SALWZ.

The number of multiplications in executing subroutine CTGSLC is 2M3 L2 K 

+

2M 2 LK2 plus terms of lesser degree.
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3. Solution of Linear Equations with CCT-mtrices

3.1. Purpose

The TOEPLITZ subroutine in this section is designed to solve linear alge-

braic equations with CCT-matrices, that is, complex block-circulant matrices

whose blocks are CT-matrices. A double precision version is also available.

3.2. Usage

Single precision CCT-matrices.

CCT-matrix. The calling sequence is

CCTSLC solves a linear system with a

CALL CCTSLC(A,X,R,M,L,K,LDA)

On entry,

A is a doubly subscripted (2*M-1)*L by K array which contains the

CCT-matrix in the form described in subsection 1.3. A is destroyed

by CCTSLC.

X is a singly subscripted array of M*L*K elements which contains the

right hand side of the system.

R is a singly subscripted array of max(2*M-2,2*L,2*K) elements used

for work space.

M is the order of each inner T-matrix block of A.

L is the number of inner blocks in each row or column of the

CT-matrices which comprise the outer blocks of A.

K is the number of outer blocks in each row or column of A.

LDA is the leading dimension of the array A.

On return,

X contains the solution of the system.
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Double precision CCT-matrices. In those computing systems where it is

available, the calling sequence of the double precision CCT-matrix subroutine

CCTSLZ is the same as that of CCTSLC with A, X, and R DOUBLE COMPLEX

variables.

3.3. Example

The following program segment illustrates the use of the single precision

subroutine CCTSLC for CCT-matrices. An example of the use of CCTSLZ could be

obtained by changing the subroutine name and type declaration. The system is

of order 8 with coefficients as follows.

1+i 2+21 4+4i 5+51 7+71 8+81 10+101 11+111 48+48i

3+3i 1+1 6+61 4+41 9+91 7+7i 12+121 10+101 52+52i

4+41 5+51 1+1 2+21 10+101 11+111 7+71 8+8i 48+481

6+61 4+41 3+31 1+1 12+121 10+101 9F9i 7+71 52+521
A= -- X=

'+7i 8+81 10+101 11+111 1+1 2+21 4+41 5+5i 48+48i

9+91 7+71 12+121 i10+101 3+31 1+1 6+61 4+4i 52+52i

10+101 11+111 7+71 8+81 4+41 5+5i 1+i 2+2i 48+48i

12+12i 10+101 9+91 7+71 6+61 4+41 3+31 1+i \52+52i

COMPLEX A(6,2),X(8),R(4)

INTEGER M,L,K,LDA,I,J

DATA A(1,1)/(1.0,1.0)/,A(2,1)/(2.0,2.0)/,A(3,1)/(3.0,3.0)/,

* A(4,1)/(4.0,4.0)/,A(5,1)/(5.0,5.0)/,A(6,1)/(6.0,6.0)/,

* A(1,2)/(7.0,7.0)/,A(2,2)/(8.0,8.0)/,A(3,2)/(9.0,9.0)/,
* A(4,2)/(10.0,10.0)/,A(5,2)/(11.0,11.0)/,A(6,2)/(12.0,12.0)/

DATA X(1)/(48.0,48.0)/,X(2)/(52.0,52.0)/,

* X(3)/(48.0,48.0)/,X(4)/(52.0,52.0)/,

* X(5)/(48.0,48.0)/,X(6)/(52.0,52.0)/,

* X(7)/(48.0,48.0)/,X(8)/(52.0,52.0)/

M= 2

L= 2

K - 2

LDA - 6

CALL CCTSLC(A,X,R,M,L,K,LDA)

J = M*L*K

DO 10 I = 1, J
WRITE(...,...) X(I)

10 CONTINUE

STOP

END
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The solution of the system is

X = ((1.0,0.0),(1.0,0.0),(1.0,0.0),(1.0,0.0),

(1.0,0.0),(1.0,0.0),(1.0,0.0),(1.0,0.0))

3.4. Algorithm

The algorithm used in subroutine CCTSLC is the same as that described in

subsection 2.4 for CTG-matrices except that the solution of CT-matrix rather

than TG-matrix systems is involved.

3.5. Program ng details

Programming details of subroutine CCTSLC are as for CTGSLC (see subsec-

tion 2.5) except that subroutine CTSLC is called instead of subroutines TGSLC

and TGSLCL; the number of multiplications is approximately 4MLK2+4ML2K+3M2LK.

4. Solution of Linear Equations with CCC-matrices

4.1. Purpose

The TOEPLITZ subroutine in this section is designed to solve Linear alge-

braic equations with CCC-matrices, that is, complex block-circulant matrices

whose blocks are CC-matrices. A double precision version is also available.

4.2. Usage

Single precision CCC-matrices. CCSLC solves a linear system with a

CCC-matrix. The calling sequence is

CALL CCCSLC(A,X,R,M,L,K,LDA)

On entry,

A is a doubly subscripted M*L by K array which contains the CCC-matrix

in the form described in subsection 1.4. A is destroyed by CCCSLC.

X is a singly subscripted array of M*L*K elements which contains the

right hand side of the system.
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R is a singly subscripted array of max(M,2*L,2*K) elements used for

work space.

M is the order of each inner C-matrix block of A.

L is the number of inner blocks in each row or

CC-matrices which comprise the outer blocks of A.

column of the

K is the number of outer blocks in each row or column of A.

LDA is the leading dimension of the array A.

On return,

X contains the solution of the system.

Double precision CCC-matrices. In those computing systems where it is

available, the calling sequence of the double precision CCC-matrix subroutine

CCCSLZ is the same as that of CCCSLC with A, X, and R DOUBLE COMPLEX

variables.

4.3. Ezanqle

The following program segment illustrates the use of the single precision

subroutine CCCSLC for CCC-matrices. An example of the use of CCCSLZ could be

obtained by changing the subroutine name and type declaration. The system is

of order 8 with coefficients as follows.

1+1 2+21

2+21 1+1

3+31 4+41

4+41 3+31

3+31 4+41

4+41

1+1

3+31

2+21

2+21 1+1

5+51 6+61

6+61 5+51

7+71 8+81

8+81 7+71

7+71 8+81

8+81 7+71

5+51 6+61

6+61 5+51

5+51 6+61 7+71 8+81 1+1 2+21 3+31 4+41

6+61 5+51 8+81 7+71 2+21 11i 4+41 3+31

7+7i

8+81

8+81

7+71

5+51 6+61

6+61 5+51

3+31 4+41

4+41 3+31

I
1+1 2+21

2+21 ' 1+1

A 

-

I

X 

-

36+361

36+361

36+361

36+361

36+361

36+361

36+361

36+361



COMPLEX A(4,2),X(8),R(4)

INTEGER M,L,K,LDA,I,J

DATA A(1,1)/(1.0,1.0)/,A(2,1)/(2.0,2.0)/,A(3,1)/(3.0,3.0)/,

A(4,1)/(4.0,4.0)/,A(1,2)/(5.0,5.0)/,A(2,2)/(6.0,6.0)/,

A(3,2)/(7.0,7.0)/,A(4,2)/(8.0,8.0)/
DATA X(1)/(36.0,36.0)/,X(2)/(36.0,36.0),X(3)/(36.0,36.0)/,

X(4)/(36.0,36.0)/,X(5)/(36.0,36.0),X(6)/(36.0,36.0)/,

X(7)/(36.0,36.0)/,X(8)/(36.0,36.0)/
M = 2

L = 2

K = 2

LDA = 4

CALL CCCSLC(A,X,R,M,L,K,LDA)

J = M*L*K

DO 10 1 = 1, J

WRITE(...,...) X(I)

10 CONTINUE

STOP

END

The solution of the system is

X = ((1.0,0.0),(1.0,0.0),(1.0,0.0),(1.0,0.0),

(1.0,0.0),(1.0,0.0),(1.0,0.0),(..0,0.0)) 

.

4.4. Algorithm

The algorithm used in subroutine CCCSLC is the same as that described in

subsection 2.4 for CTG-matrices except that the solution of CC-matrix rather

than TG-matrix systems is involved.

4.5. Programing details

Programming details of subroutine CCCSLC are as for CTGSLC (see subsec-

tion 2.5) except that subroutine CCSLC is called instead of subroutines TGSLC

and TGSLCL; the number of multiplications is approximately 3MLK2 +3ML 2 K+3M 2 LK.

5. Solution of Linear Equations with COG-matrices

5.1. Purpose

The TOEPLITZ subroutine in this section is designed to solve linear alge-

braic equations with CCG-matrices, that is, complex block-circulant matrices

whose blocks are CG-matrices. A double precision version is also available.

68

****
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5.2. Usage

Single precision CCG-matrices. CCGSLC solves a linear system with a

CCG-matrix. The calling sequence is

CALL COGSLC(A,X,R,M,L,K,LDA)

On entry,

A is a doubly subscripted M**2*L by K array which contains the

CCG-matrix in the form described in subsection 1.5. A is destroyed

by CCGSLC.

X is a singly subscripted array of M*L*K elements which contains the

right hand side of the system.

R is a singly subscripted array of max(M,2*L,2*K) elements used for

work space.

M is the order of each inner G-matrix block of A.

L is the number of inner blocks in each row or column of the

CG-matrices which comprise the outer blocks of A.

K is the number of outer blocks in each row or column of A.

LDA is the leading dimension of the array A.

On return,

X contains the solution of the system.

Double precision CCG-matrices. In those computing systems where it is

available, the calling sequence of the double precision CCG-matrix subroutine

CCGSLZ is the same as that of CCGSLC with A, X, and R DOUBLE COMPLEX

variables.
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5.3. Example

The following program segment illustrates the use of the single precision

subroutine CCGSLC for CCG-matrices. An example of the use of CCGSLZ could be

obtained by changing the subroutine name and type declaration. The system is

of order 8 w th coefficients as follows.

1+1 3+31 5+5i 7+71 9+91 11+111 13+131 15+151 64+641

2+2 4+41 6+61 8+81 10+101 12+121 14+141 16+161 72+721

A=

5+51 7+7i 1+1 3+31 13+131 15+151 9+91 11+111

6+61 8+8i 2+21 4+41 14+141 16+161 10+101 12+121

9+91 11+111 13+13i 15+151 1+1 3+31 5+51 7+71

10+101 12+121 14,141 16+161 2+21 4+41 6+61 8+81

I
64+641

72+721

64+641

72+721

13+131 15+151 9+91 11+111 5+51 7+71 1+1 3+31 64+641

14+141 16+161 10+101 12+121 6+61 8+81 2+21 4+41 72+721

COMPLEX A(8,2),X(8),R(4)

INTEGER M,L,K,LDA,I.J

DATA A(1,1)/(1.0,1.0)/,A(2,1)/(2.0,2.0)/,A(3,1)/(3.j,3.0)/,

* A(4,1)/(4.0,4.0)/,A(5,1)/(5.0,5.0)/,A(6, 1)/(6.0,6.0)/,

* A(7,1)/(7.0,7.O)/,A(8,1)/(8.0,8.0)',A(1,2)/(4.0,9.0)/,
* A(2,2)/(10.0,10.0)/,A(3,2)/(11.0, 11.0)/,A(4,2)/(12.0,12.0)/,

* A(5,2)/(13.0,13.0)/,A(6,2)/(14.0, 14.0)/,A(7,2)/(15.0,15.0)/,
* A(8,2)/(16.0,16 0)/

DATA X(1)/(64.0,64.0)/,X(2)/(72.0,72.0)/,

* X(3)/(64.0,64.0)/,X(4)/(72.0,72.0)/,

* X(5)/(64.0,64.0)/,X(6)/(72.0,72.0)/,

* X(7)/(64.0,64.0)/,(8)/(72.0,72.0)/
M.= 2
L = 2

K = 2

LDA = 8

CALL CCGSLC(A,X,R,M,L,K,LDA)

J = M*L*K

DO 10 I = 1, J

WRITE(...,...) X(I)

10 CONTINUE

STOP

END

I
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The solution of the system is

X = ((1.0,0.0),(1.0,0.0),(1.0,0.0),(1.0,0.0),

(1.0,0.0),(1.0,0.0),(1.0,0.0),(1.0,0.0))

5.4 Algorithm

The algorithm used in subroutine CCGSLC is the same as that described in

subsection 2.4 for CTG-matrices except that the 3olutiou of CG-matrix rather

-.ian TG-matrix systems is involved.

5.5. Programming details

Programming details of subroutine CCGSLC are as for CTGSLC (see subsec-

tion 2.5) except that subroutine CGSLC is called instead of subroutines TGSLC

and TGSLCL; the number of multiplications is M2LK2+M2L2K+M3LK/3 plus terms of

lesser degree.
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APPENDIX A. TABLES OF EXECUTION TIMES

We provide here three tables of sample execution times for the TOEPLITZ

package subroutines. The first two tables report times for the single

precision and double precision versions, respectively, on the VAX 11/780; the

third table reports times for the single precision version on the IBM 3033.

The VAX compilations were made with the Fortran 77 compiler running under

UNIX; the IBM compilations were made with the Fortran H Extended (Enhanced)

compiler running under MVS. Using these tables and the approximate

multiplication counts given in the discussions of the algorithms in the

previous chapters, it should be possible to extrapolate execution times for

problems of different dimensions.
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SUMMARY OF EXECUTION TIMES FOR THE

SINGLE PRECISION TOEPLITZ SUBROUTINES ON THE VAX 11/780

SUBROUTINE 3 rd LEVEL 2 nd LEVEL 1st LEVEL TIME (sec.)

TSLS (TSLS1)

TSLC (TSLCI)

CSLC

CQRS

CQRC

TGSLS (TGSLSL)

TGSLS (IN-LINE SAXPY)

TGSLC (TGSLC1)

TGSLC (IN-LINE CAXPY)

CTSLC

CCSLC

CGSLC

CTGSLC

CCTSLC

CCCSLC

CCGSLC

6

8

8

8

100(rows)

100(rows)

10

10

10

10

20

20

20

6

8

8

8

100

100

100

20(columns)

20(columns)

10

10

10

10

20

20

20

6

8

8

8

0.35

1.6

1.2

0.25

0.83

5.9

6.7

14.5

16.6

2.7

2.2

13.5

9.2

2.5

2.0

5.7
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SUMMARY OF EXECUTION TIMES FOR THE

DOUBLE PRECISION TOEPLITZ SUBROUTINES ON THE VAX 11/780

SUBROUTINE 3 rd LEVEL 2 nd LEVEL 1st LEVEL TIMF (sec.)

TSLD (TSLD1)

TSLZ (TSLZ1)

CSLZ

CQRD

CQRZ

TGSLD (TGSLD1)

TGSLZ (TGSLZ1)

CTSLZ

CCSLZ

CGSLZ

CTGSL Z

CCTSLZ

CCCSLZ

CCGSLZ

100

100

100 (rows 

)

100(rows)

10

10

20

20

20

6

8

8

8

6

8

8

8

100

20(columns)

20(columns)

10

10

20

20

20

6

8

8

8

0.52

2.5

1.9

0.38

1.6

8.5

27.3

4.0

3.3

22.2

14.8

3.7

3.2

9.4
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SUMMARY OF EXECUTION TINES FOR THE

SINGLE PRECISION TOEPLITZ SUBROUTINES ON THE IBM 3033

SUBROUTINE 2 nd LEVEL 1st LEVEL TIME (sec.)

TSLS (TSLS1)

TSLC (TSLC1)

CSLC

TGSLS

TGSLS

TGSLC

TGSLC

CTSLC

CCSLC

CGSLC

(TGSLS1)

(IN-LINE SAXPY)

(TGSLC1)

(IN-LINE CAXPY)

100

200

300

400

500

100

100

200

300

400

500

10

10

10

10

20

20

20

10

10

10

10

20

20

20

.028

.11

.25

.44

.69

.19

.18

.70

1.6

2.8

4.3

.47

.27

1.5

1.4

.35

.31

1.5
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APPENDIX B. PROGRAM LISTINGS

There follows the single precision version of the TOEPLITZ package

program listings; both single precision and double precision versions of the

subprograms are available with the TOEPLITZ package. The listings appear in

the following order:

TSLS, TSLS1, TSLC, TSLC1, CSLC, CQRS, CQRC, TGSLS,

TGSLS1, TGSLC, TGSLCL, CTSLC, CCSLC, CGSLC, SALWC,

CTGSLC, CCTSLC, CCCSLC, CCGSLC.
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SUBROUTINE TSLS(A,X,R,M)

INTEGER M

REAL A(1),X(M),R(1)

TSLS CALLS TSLS1 TO SOLVE THE REAL LINEAR SYSTEM

A * X = B

WITH THE T - MATRIX A

ON ENTRY

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

ON RETURN

THE SOLUTION VECTOR

TOEPLITZ PACKAGE. THIS VERSION DATED 07/23/82

SUBROUTINES AND FUNCTIONS

TOEPLITZ PACKAGE ... TSLS1

CALL SUBROUTINE TSLS1

CALL TSLS1(A,A(M+1),X,X,R,R(M),M)

RETURN

END

A

X

R

M

REAL(2*M - 1)

THE FIRST ROW OF THE T - MATRIX FOLLOWED BY ITS

FIRST COLUMN BEGINNING WITH THE SECOND ELEMENT

ON RETURN A IS UNALTERED

REAL(M)

i-Y RIGHT HAND SIDE VECTOR B

REAL(2*M - 2)

A WORK VECTOR

INTEGER

THE ORDER OF THE MATRIX A

X





83

SUBROUTINE TSLS1(Al,A2,B,X,C1,C2,M)

INTEGER M

REAL Al(M),A2(l),B(M),X(M),Cl(l),C2(l)

C

C TSLS1 SOLVES THE REAL LINEAR SYSTEM

C A * X = B

C WITH THE T - MATRIX A

C

C ON ENTRY

C

C Al REAL(M)

C THE FIRST ROW OF THE T - MATRIX A

C ON RETURN Al IS UNALTERED

C

C A2 REAL(M - 1)

C THE FIRST COLUMN OF THE T - MATRIX A

C BEGINNING WITH THE SECOND ELEMENT

C ON RETURN A2 IS UNALTERED

C

C B REAL(M)

C THE RIGHT HAND SIDE VECTOR

C ON RETURN B IS UNALTERED

C

C Cl REAL(M - 1)

C A WORK VECTOR

C

C C2 REAL(M - 1)

C A WORK VECTOR

C

C M INTEGER

C THE ORDER OF THE MATRIX A

C

C ON RETURN

C

C X REAL(M)

C THE SOLUTION VECTOR. X MAY COINCIDE WITH B

C

C TOEPLITZ PACKAGE. THIS VERSION DATED 07/23/82

C

C INTERNAL VARIABLES

C

INTEGER I1,I2,N,N1,N2

REAL Rl,R2,R3,R5,R6

C

C SOLVE THE SYSTEM WITH THE PRINCIPAL MINOR OF ORDER 1

C

R1 = Al(l)

X(1) = B(1)/R1

IF (M .EQ. 1) GO TO 80

C

C RECURRENT PROCESS FOR SOLVING THE SYSTEM

C WITH THE T - MATRIX FOR N = 2, M

C

DO 70 N = 2, M

C



C

C

C

R5 = O.OEO

DO 50 Ii = 1, Ni

I2 = N - I1

R5 = R5 + A2(I1)*X(I2)

50 CONTINUE

R6 = (B(N) - R5)/R1

DO 60 Ii = 1, Ni

X(I1) = X(Ii) + C2(I1)*R6

60 CONTINUE

X(N) = R6

70 CONTINUE

80 CONTINUE

RETURN

END

84

COMPUTE MULTIPLES OF THE FIRST AND LAST COLUMNS OF

THE INVERSE OF THE PRINCIPAL MINOR OF ORDER N

Ni = N - 1

N2 = N - 2

R5 = A2(N1)

R6 = A1(N)

IF (N .EQ. 2) GO TO 20

C1(N1) = R2

DO 10 Ii = 1, N2

12 = N - I1

R5 = R5 + A2(I1)*C1(I2)

R6 = R6 + A1(I1+1)*C2(I1)

CONTINUE

CONTINUE

R2 = -R5/R1

R3 = -R6/R1

R1 = R1 + R5*R3

IF (N .EQ. 2) GO TO 40

R6 = C2(1)

C2(N1) = O.OEO

DO 30 Ii = 2, Ni

R5 = C2(Ii)

C2(I1) = C1(I1)*R3 + R6

Ci(Ii) = Ci(I1) + R6*R2

R6 = R5

CONTINUE

CONTINUE

C2(1) = R3

COMPUTE THE SOLUTION OF THE SYSTEM WITH THE

PRINCIPAL MINOR OF ORDER N 

.

10

20

30

40

C

C

C

C
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SUBROUTINE TSLC(A,X,R,M)

INTEGER M

COMPLEX A(1),X(M),R(1)

TSLC CALLS

A * X = B

WITH THE T

ON ENTRY

A

X

R

M

TSLC1 TO SOLVE THE COMPLEX LINEAR SYSTEM

- MATRIX A 

.

COMPLEX(2*M - 1)

THE FIRST ROW OF THE T - MATRIX FOLLOWED BY ITS

FIRST COLUMN BEGINNING WITH THE SECOND ELEMENT

ON RETURN A IS UNALTERED

COMPLEX (M)

THE RIGHT HAND SIDE VECTOR B

COMPLEX(2*M - 2)

A WORK VICTOR

IN? EGER

THE ORDER OF THE MATRIX A

ON RETURN

x THE SOLUTION VECTOR 

.

TOEPLITZ PACKAGE. THIS VERSION DATED 07/23/82

SUBROUTINES AND FUNCTIONS

TOEPLITZ PACKAGE ... TSLC1

CALL SUBROUTINE TSLC1

CALL TSLC1(A,A(M+1),X,X,R,R(M),M)

RETURN

END

C

C

C

C

C

C

C

C

C





SUBROUTINE TSLC1(Al,A2,B,X,C1,C2,M)

INTEGER M

COMPLEX Al(M),A2(1),B(M),X(M),C1(l),C2(1)

TSLC1 SOLVES THE COMPLEX LINEAR SYSTEM

A * X = B

WITH THE T - MATRIX A

ON ENTRY

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

B

ROW OF THE T - MATRIX A

Al IS UNALTERED 

.

- 1)

COLUMN OF THE T

WITH THE SECOND

A2 IS UNALTERED

- MATRIX A

ELEMENT

COMPLEX(M)

THE RIGHT HAND SIDE VECTOR

ON RETURN B IS UNALTERED 

.

C1 COMPLEX(M - 1)

A WORK VECTOR

C2 COMPLEX(M - 1)

A WORK VECTOR

M INTEGER

THE ORDER OF THE MATRIX A 

.

ON RETURN

X COMPLEX (M)

THE SOLUTION VECTOR. X MAY COINCIDE WITH B

TOEPLITZ PACKAGE. THIS VERSION DATED 07/23/82

INTERNAL VARIABLES

INTEGER I1,12,N,N1,N2

COMPLEX R1,R2,R3,R5,R6

SOLVE THE SYSTEM WITH THE PRINCIPAL MINOR OF ORDER 1

R1 = A1(1)

X(1) = B(1)/R1

IF (M .EQ. 1) GO TO 80

RECURRENT PROCESS FOR SOLVING THE SYSTEM

WITH THE T - MATRIX FOR N = 2, M

DO 70 N = 2, M

87

Al COMPLEX(M)

THE FIRST

ON RETURN

A2 COMPLEX(M

THE FIRST

BEGINNING

ON RETURN

C

C

C

C

C



C

C

C

R5 = (0.OEOO.OEO)

DO 50 11 =

12 = N 

-

R5 = R5

50 CONTINUE

R6 = (B(N)

DO 60 Ii =

X(Ii) =

60 CONTINUE

X(N) = R6

70 CONTINUE

80 CONTINUE

RETURN

END

1, Ni

Ii

+ A2(I1)*'X(I2)

- R5)/R1

1, Ni

X(Ii) + C2(I1)*R6

88

COMPUTE MULTIPLES OF THE FIRST AND LAST COLUMNS OF

THE INVERSE OF THE PRINCIPAL MINOR OF ORDER N

Ni = N - 1

N2 = N - 2

R5 = A2(N1)

R6 = A1(N)

IF (N .EQ. 2) GO TO 20

C1(N1) = R2

DO 10 Ii = 1, N2

12 = N - 11

R5 = R5 + A2(I1)*C1(I2)

R6 = R6 + A1(I1+1)* C2(I1)

CONTINUE

CONTINUE

R2 = -R5/R1

R3 = -R6/R1

R1 = R1 + R5*R3

IF (N .EQ. 2) GO TO 40

R6 = C2(1)

C2(N1) = (O.OEO,O.OEO)

DO 30 Ii = 2, Ni

R5 = C2(Il)

C2(I1) = C1(I1)*R3 + R6

C1(I1) = Ci(Il) + R6*R2

R6 = R5

CONTINUE

CONTINUE

C2(1) = R3

COMPUTE THE SOLUTION OF THE SYSTEM WITH THE

PRINCIPAL MINOR OF ORDER N

10

20

30

40

C

C

C

C
V

P

1
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SUBROUTINE CSLC(A,X,R,M)

INTEGER M

COMPLEX A(M),X(M),R(M)

C

C CSLC SOLVES THE COMPLEX LINEAR SYSTEM

C A * X = B

C WITH THE C - MATRIX A

C

C ON ENTRY

C

C A COMPLEX(M)

C THE FIRST ROW OF THE C - MATRIX

C ON RETURN A IS UNALTERED

C

C X COMPLEX(M)

C THE RIGHT HAND SIDE VECTOR B

C

C R COMPLEX(M)

C A WORK VECTOR

C

C M INTEGER

C THE ORDER OF THE MATRIX A

C

C ON RETURN

C

C X THE SOLUTION VECTOR

C

C TOEPLITZ PACKAGE. THIS VERSION DATED 07/23/82

C

C SUBROUTINES AND FUNCTIONS

C

C FORTRAN ... CMPLM,COS,FLOAT,SIN

C

C INTERNAL VARIABLES

C

INTEGER I1,I2

REAL P,RI,RM,V1,V2

COMPLEX E,E1,F,F1,T,T1

C

Ti = X(1)

X(1) = T1/A(1)

IF (M .EQ. 1) GO TO 50

RM = FLOAT(M)

C

C COMPUTE THE INVERSE DISCRETE FOURIER TRANSFORMATION

C OF THE FIRST ROW OF THE MATRIX AND THE DISCRETE

C FOURIER TRANSFORMATION OF THE RIGHT HAND SIDE VECTOR

C

T = (0.OEO,O.OEO)

RI = -1.OEO

DO 20 Ii = 1, M

RI = RI + 1.OEO

C

C MINIMIZE ERROR IN FORMING MULTIPLES OF 2*PI

C
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P = ((201.EO/32.EO)*RI + 1.93530717958647692528E-3*RI)/RM

C

V1 = COS(P)

V2 = SIN(P)

E = CMPLX(V1,-V2)

El = CMPLX(V1,V2)

F = A(l)

Fl = T1

DO 10 I2 = 2, M

F = E*F + A(12)

Fl = E1*F1 + X(I2)

10 CONTINUE

R(Ii) = (Ei*F1)/(E*F)

T = T + R(Ii)

20 CONTINUE

C

C COMPUTE THE SOLUTION OF THE GIVEN SYSTEM BY

C THE INVERSE DISCRETE FOURIER TRANSFORMATION

C

X(1) = T/RH

RI = 0.OEO

DO 40 I1 = 2, M

RI = RI + 1.OEO

C

C MINIMIZE ERROR IN FORMING MULTIPLES OF 2*PI

C

P = ((201.E0/32.E0)*RI + 1.93530717958647692528E-3*RI)/RM

C

V1 = COS(P)

V2 = SIN(P)

E = CMPLX(V1,-V2)

F = R(1)

DO 30 I2 = 2, M

F = E*F + R(12)

30 CONTINUE

X(I1) = E*F/RM

40 CONTINUE

50 CONTINUE

RETURN

END
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SUBROUTINE CQRS(A,Q,S,M,L,LDQ,LDS)

INTEGER M,L,LDQ,LDS

REAL A(M),Q(LDQ,L),S(LDS,L)

C

C CQRS COMPUTES THE QR FACTORIZATION IN THE FORM

C A * R(INVERSE) = Q

C OF THE REAL COLUMN-CIRCULANT MATRIX A

C

C ON ENTRY

C

C A REAL(M)

C THE FIRST COLUMN OF THE COLUMN-CIRCULANT MATRIX

C ON RETURN A IS UNALTERED

C

C M INTEGER

C THE NUMBER OF ROWS OF THE MATRICES A AND Q

C M MUST BE AT LEAST AS LARGE AS L

C

C L INTEGER

C THE NUMBER OF COLUMNS OF THE MATRICES A AND Q

C AND THE ORDER OF THE UPPER TRIANGULAR MATRIX S

C

C LDQ INTEGER

C THE LEADING DIMENSION OF THE ARRAY Q

C

C LDS INTEGER

C THE LEADING DIMENSION OF THE ARRAY S

C

C ON RETURN

C

C Q REAL(M,L)

C THE Q MATRIX OF THE FACTORIZATION

C THE COLUMNS OF Q ARE ORTHONORMAL

C

C S REAL(L,L)

C THE INVERSE OF THE R MATRIX OF THE FACTORIZATION

C ELEMENTS BELOW THE MAIN DIAGONAL ARE NOT ACCESSED

C

C TOEPLITZ PACKAGE. THIS VERSION DATED 07/23/82

C

C SUBROUTINES AND FUNCTIONS

C

C LINPACK ... SAXPY,SDOT,SSCAL,SNRM2

C

C INTERNAL VARIABLES

C

INTEGER I,J,J1,JI

REAL SCALE,SNRM2

REAL C,SDOT

C

C INITIALIZATION (LAST COLUMN OF Q USED AS WORK VECTOR)

C

DO 10 I = 1, M

Q(I,1) = A(I)
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Q(IL) = A(I)

10 CONTINUE

C

C RECURRENT PROCESS FOR THE LATTICE ALGORITHM WITH NORMALIZATION

C

DO 70 J1 = 1, L

J = J1 + 1

SCALE = 1.OEO/SNRM2(M,Q(1,J1),1)

IF (J1 .EQ. L) GO TO 60

C = -SCALE*(Q(M,J1)*Q(1,L) 

+

SDOT(M-1,Q(1,J1),1,Q(2,L),1))/SNRM2(M,Q(1,L),1)

Q(1,J) = Q(M,J1) + C*Q(1,L)

DO 20 I = 2, M

Q(I,J) = Q(I-1,J1) + C*Q(I,L)
20 CONTINUE

IF (J .EQ. L) GO TO 30

Q(1,L) = Q(1,L) + C*Q(M,J1)

CALL SAXPY(M-1,CQ(1,J1),1,Q(2,L),1)

30 CONTINUE

S(1,J) = C

IF (J .EQ. 2) GO TO 50

DO 40 I = 2, J1

JI = J - I

S(I,J) = S(I-1,J1) + C*S(JI,J1)

40 CONTINUE

50 CONTINUE

60 CONTINUE

CALL SSCAL(MSCALE,Q(1,J1),1)

S(J1,J1) = 1.OEO

CALL SSCAL(J1,SCALE,S(1,J1),1)

70 CONTINUE

RETURN

END
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SUBROUTINE CQRC(A,Q,SM,L,LDQ,LDS)

INTEGER M,L,LDQ,LDS

COMPLEX A(M),Q(LDQL),S(LDS,L)

C

C CQRC COMPUTES THE QR FACTORIZATION IN THE FORM

C A * R(INVERSE) = Q

C OF THE COMPLEX COLUMN-CIRCULANT MATRIX A

C A

C ON ENTRY

C

C A COMPLEX(M)

C THE FIRST COLUMN OF THE COLUMN-CIRCULANT MATRIX

C ON RETURN A IS UNALTERED

C

C M INTEGER

C THE NUMBER OF ROWS OF THE MATRICES A AND Q

C M MUST BE AT LEAST AS LARGE AS L

C

C L INTEGER

C THE NUMBER OF COLUMNS OF THE MATRICES A AND Q

C AND THE ORDER OF THE UPPER TRIANGULAR MATRIX S

C

C LDQ INTEGER

C THE LEADING DIMENSION OF THE ARRAY Q

C

C LDS INTEGER

C THE LEADING DIMENSION OF THE ARRAY S

C

C ON RETURN

C

C Q COMPLEX(M,L)

C THE Q MATRIX OF THE FACTORIZATION

C THE COLUMNS OF Q ARE ORTHONORMAL

C

C S COMPLEX(L,L)

C THE INVERSE OF THE R MATRIX OF THE FACTORIZATION

C ELEMENTS BELOW THE MAIN DIAGONAL ARE NOT ACCESSED

C

C TOEPLITZ PACKAGE. THIS VERSION DATED 07/23/82

C

C SUBROUTINES AND FUNCTIONS

C

C LINPACK ... CAXPY,CDOTC,CSSCAL,SCNRM2

C FORTRAN ... CONJG

C

C INTERNAL VARIABLES

C

INTEGER I,J,J1,JI

REAL SCALE,SCNRM2

COMPLEX C,CDOTC

C

C INITIALIZATION (LAST COLUMN OF Q USED AS WORK VECTOR)

C

DO 10 I = 1, M



94

Q(I,1) = A(I)

Q(I,L) = A(I)

10 CONTINUE

C

C RECURRENT PROCESS FOR THE LATTICE ALGORITHM WITH NORMALIZATION

C

DO 70 J1 = 1, L

J = J1 + 1

SCALE = 1.0E0/SCNRM2(M,Q(1,J1),1)

IF (J1 .EQ. L) GO TO 60

C = -SCALE*(CONJG(Q(M,J1))*Q(1,L) 

+

* CDOTC(M--1,Q(1,J1),1,Q(2,L),1))/SCNRM2(MQ(1,L),1)

Q(1,J) = Q(M,J1) + C*Q(1,L)

DO 20 I = 2, M

Q(I,J) = Q(I-1,J1) + C*Q(I,L)
20 CONTINUE

IF (J .EQ. L) GO TO 30

Q(1,L) = Q(1,L) + C*Q(M,J1)

CALL CAXPY(M-1,C,Q(1,J1),1,Q(2,L),1)

30 CONTINUE

S(1,J) = C

IF (J .EQ. 2) GO TO 50

DO 40 I = 2, J1

JI = J - I

S(I,J) = S(I-1,J1) + C*S(JI,J1)

40 CONTINUE

50 CONTINUE

60 CONTINUE

CALL CSSCAL(M,SCALE,Q(1,J1),1)

S(J1,J1) = (1.OEO,O.OEO)

CALL CSSCAL(J1,SCALE,S(1,J1),1)

70 CONTINUE

RETURN

END
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SUBROUTINE TGSLS(A,X,R,M,L,LDA)

INTEGER M,L,LDA

REAL A(LDA,1),X(M,L),R(l)

C

C TGSLS CALLS TGSLS1 TO SOLVE THE REAL LINEAR SYSTEM

C A * X = B

C WITH THE TG - MATRIX A

C

C ON ENTRY

C

C A REAL(M**2,2*L - 1)

C THE FIRST ROW OF BLOCKS OF THE TG - MATRIX

C FOLLOWED BY ITS FIRST COLUMN OF BLOCKS BEGINNING

C WITH THE SECOND BLOCK. EACH BLOCK IS REPRESENTED

C BY COLUMNS. ON RETURN A IS UNALTERED

C

C X REAL(M*L)

C THE RIGHT HAND SIDE VECTOR B

C

C R RFAL(M**2*(2*L + 3) + M)

C A WORK VECTOR

C

C M INTEGER

C THE ORDER OF THE BLOCKS OF THE MATRIX A

C

C L INTEGER

C THE NUMBER OF BLOCKS IN A ROW OR COLUMN

C OF THE MATRIX A

C

C LDA INTEGER

C THE LEADING DIMENSION OF THE ARRAY A

C

C ON RETURN

C

C X THE SOLUTION VECTOR

C

C TOEPLITZ PACKAGE. THIS VERSION DATED 07/23/82

C

C SUBROUTINES AND FUNCTIONS

C

C TOEPLITZ PACKAGE ... TGSLS1

C

C INTERNAL VARIABLES

C

INTEGER MM,MML,MML1,MML2,MML3,MML4,MML5,MML6

C

C CALL SUBROUTINE TGSLS1

C

MM = M**2

MML = MM*(L - 1) + 1

MML1 = 2*MML - 1

MML2 = MML1 + MM

MML3 = MML2 + MM

MML4 = MML3 + MM
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MML5 = MML4 + MM

MML6 = MML5 + MM

C

CALL TGSLS1(A,A(1,L+1),X,X,R,R(MML),R(MML1),R(MML2),

* R(MML3),R(MML4),R(MML5),R(MML6),M,L,LDA)

C

RETURN

END
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SUBROUTINE TGSLS1(Al,A2,B,X,C1,C2,R1,R2,R3,R5,R6,R,M,L,LDA)

INTEGER M,L,LDA

REAL A1(LDA,L),A2(LDA,1),B(M,L),X(M,L),C1(M,M,1),

* C2(M,M,1),R1(M,M),R2(M,M),R3(M,M),R5(M,M),R6(M,M),R(M)

C

C TGSLS1 SOLVES THE REAL LINEAR SYSTEM

C A * X = B

C WITH THE TG - MATRIX A

C

C ON ENTRY

C

C Al REAL(M**2,L)

C THE FIRST ROW OF BLOCKS OF THE TG - MATRIX A

C EACH BLOCK IS REPRESENTED BY COLUMNS

C ON RETURN Al IS UNALTERED

C

C A2 REAL(M**2,L - 1)

C THE FIRST COLUMN OF BLOCKS OF THE TG - MATRIX A

C BEGINNING WITH THE SECOND BLOCK. EACH BLOCK IS

C REPRESENTED BY COLUMNS. ON RETURN A2 IS UNALTERED

C

C B REAL (M*L)

C THE RIGHT HAND SIDE VECTOR

C ON RETURN B IS UNALTERED

C

C Cl REAL(M,M,L - 1)

C A WORK ARRAY

C

C C2 REAL(M,M,L - 1)

C A WORK ARRAY

C

C R1 REAL(M,M)

C A WORK ARRAY

C

C R2 REAL(M,M)

C A WORK ARRAY

C

C R3 REAL(M,M)

C A WORK ARRAY

C

C R5 REAL(M,M)

C A WORK ARRAY

C

C R6 REAL(M,M)

C A WORK ARRAY

C

C R REAL(M)

C A WORK VECTOR

C

C M INTEGER

C THE ORDER OF THE BLOCKS OF THE MATRIX A

C

C L INTEGER

C THE NUMBER OF BLOCKS IN A ROW OR COLUMN

C OF THE MATRIX A 

.
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C

C LDA INTEGER

C THE LEADING DIMENSION OF THE ARRAY A

C

C ON RETURN

C

C X REAL(M*L)

C THE SOLUTION VECTOR. X MAY COINCIDE WITH B

C

C TOEPLITZ PACKAGE. THIS VERSION DATED 07/23/82

C

C SUBROUTINES AND FUNCTIONS

C

C LINPACK ... SAXPY,SGEFA,SGESL

C ... (FOR IN-LINE SAXPY, SEE DIRECTIONS IN COMMENTS)

C

C INTERNAL VARIABLES

C

INTEGER I,I1,I2,I3,II,J,N,N1,N2

C

C SOLVE THE SYSTEM WITH THE PRINCIPAL MINOR OF ORDER M

C

13 = 1

DO 20 J = 1, M

DO 10 i = 1, M

C1(I,J,1) = A1(I3,1)

R1(I,J) = A1(13,1)

R3(I,J) = R1(I,J)

I3 = I3 + 1
10 CONTINUE

X(J,1) = B(J,1)

20 CONTINUE

CALL SGEFA(R3,M,M,R,II)

CALL SGESL(R3,M,M,R,X(1,1),O)

IF (L .EQ. 1) GO TO 420

C

C RECURRENT PROCESS FOR SOLVING THE SYSTEM

C WITH THE TG - MATRIX FOR N = 2, L

C

DO 410 N = 2, L

C

C COMPUTE MULTIPLES OF THE FIRST AND LAST BLOCK COLUMNS OF

C THE INVERSE OF THE PRINCIPAL MINOR OF ORDER M*N

C

Ni = N - 1

N2 = N - 2

13 = 1

DO 40 J = 1, M

DO 30 I = 1, M

R5(I,J) = A2(I3,N1)

R6(I,J) = A1(I3,N)'

I3 = I3 + 1

30 CONTINUE

40 CONTINUE



IF (N

DO

.EQ. 2) GO TO 100

60 J = 1, M

DO 50 I = 1, M

C1(I,J,N1) = R2(I,J)

50 CONTINUE

60 CONTINUE

DO 90 Il = 1, N2

I2 = N - I1

DO 80 J = 1, M

13 = 1

DO 70 I = 1, M

FOR IN-LINE SAXPY, ACTIVATE NEXT 5 LINES AND DEACTIVATE FOLLOWING 3

DO 65 II = 1, M

R5(II,J) = R5(II,J) + C1(I,J,I2)IA2(I3,I1)

R6(II,J) = R6(II,J) + C2(I,J,I1)*.A1(I3,I1+1)

I3 = 13 + 1

65 CONTINUE

CALL SAXPY(M,C1(I,J,I2),A2(I3,I1),1,R5(1,J),1)

CALL SAXPY(M,C2(I,J,I1),A1(I3,I1+1),1,R6(1,J),1)

I3 = 13 + M

70 CONTINUE

80 CONTINUE

90 CONTINUE

100 CONTINUE

DO 120 J = 1, M

DO 110 I = 1, M

R2(I,J) = -R5(I,J)

110 CONTINUE

CALL SGESL(R3,M,M,R,R2(1,J),O)

120 CONTINUE

DO 140 J = 1, M

DO 130 I = 1, M

R3(I,J) = R6(I,J)

R6(I,J) = -C1(I,J,1)

130 CONTINUE

140 CONTINUE

DO 160 J = 1, M

DO 150 I = 1, M

FOR IN-LINE SAXPY, ACTIVATE NEXT 3 LINES AND DEACTIVATE FOLLOWING 1

DO 145 II = 1, M

C1(II,J,1) = C1(II,J,1) + R2(I,J)*R3(II,I)

145 CONTINUE

CALL SAXPY(M,R2(I,J),R3(1,I),1,C1(1,J,1),1)

150 CONTINUE

160 CONTINUE

CALL SGEFA(R6,M,M,R,II)

DO 180 J = 1, M

CALL SGESL(R6,M,M,R,R3(1,J),0)

DO 170 I = 1, M

FOR IN-LINE SAXPY, ACTIVATE NEXT 3 LINES AND DEACTIVATE FOLLOWING 1

DO 165 II = 1, M

R1(II,J) = R1(II,J) + R3(I,J)*R5(II,I)

165 CONTINUE

CALL SAXPY(M,R3(I,J),R5(1,I),1,R1(1,J),1)

99

C

C

C

C

C

C

C

C

C

C

C

C

C

C



100

170 CONTINUE

180 CONTINUE

IF (N .EQ. 2) GO TO 320

DO 200 J = 1, M

DO 190 I = 1, M

R6(I,J) = C2(I,J,1)

190 CONTINUE

200 CONTINUE

DO 310 Ii = 2, Ni

IF (Ii .EQ. Ni) GO TO 230

DO 220 J = 1, M

DO 210 I = 1, M

R5(I,J) = C2(I,J,I1)

210 CONTINUE

220 CONTINUE

230 CONTINUE

DO 260 J = 1, M

DO 240 I = 1, M

C2(I,J,I1) = R6(I,J)

240 CONTINUE

DO 250 I = 1, M

C FOR IN-LINE SAXPY, ACTIVATE NEXT 3 LINES AND DEACTIVATE FOLLOWING 1

C DO 245 II = 1, M

C C2(II,J,I1) = C2(II,J,I1) + R3(I,J)*C1(II,I,I1)

C 245 CONTINUE

CALL SAXPY(M,R3(I,J),C1(1,I,I1),1,C2(1,J,I1),1)

250 CONTINUE

260 CONTINUE

DO 280 J = 1, M

DO 270 I = 1, M

C FOR IN-LINE SAXPY, ACTIVATE NEXT 3 LINES AND DEACTIVATE FOLLOWING 1

C DO 265 II = 1, M

C C1(II,J,I1) = C1(II,J,I1) + R2(I,J)*R6(II,I)

C 265 CONTINUE

CALL SAXPY(M,R2(I,J) ,R6(1,I) ,1,C1(1,J,I1) ,1)

270 CONTINUE

280 CONTINUE

DO 300 J = 1, M

DO 290 I = 1, M

R6(I,J) = R5S(I,J)

290 CONTINUE

300 CONTINUE

310 CONTINUE

320 CONTINUE

DO 340 J = 1, M

DO 330 I = 1, M

C2(I,J,1) = R3(I,J)

330 CONTINUE

340 CONTINUE

C

C COMPUTE THE SOLUTION OF THE SYSTEM WITH THE

C PRINCIPAL MINOR OF ORDER M*N

C

DO 360 J = 1, M
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DO 350 I = 1, M

R3(I,J) = R1(I,J)

350 CONTINUE

X(J,N) = B(J,N)

360 CONTINUE

DO 380 I1 = 1, Ni

12 = N - Ii

13 = 1

DO 370 I = 1, M

C FOR IN-LINE SAXPY, ACTIVATE NEXT 4 LINES AND DEACTIVATE FOLLOWING 2

C DO 365 II = 1, M

C X(II,N) = X(II,N) - X(I,I2)*A2(I3,I1)

C I3=I3+1

C 365 CONTINUE

CALL SAXPY(M,-X(I,:2),A2(I3,I1),1,X(1,N),1)

I3 = I3 + M

370 CONTINUE

380 CONTINUE

CALL SGEFA(R3,M,M,R,II)

CALL SGESL(R3,M,M,R,X(1,N),0)

DO 400 I1 = 1, Ni

DO 390 I = 1, M

C FOR TN-LINE SAXPY, ACTIVATE NEXT 3 LINES AND DEACTIVATE FOLLOWING 1

C DO 385 II = 1, M

C X(II,I1) = X(II,I1) + X(I,N)*C2(II,I,I1)

C 385 CONTINUE

CALL SAXPY(M,X(I,N),C2(1,I,I1),1,X(1,I1),1)

390 CONTINUE

400 CONTINUE

410 CONTINUE

420 CONTINUE

RETURN

END
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SUBROUTINE TGSLC(A,X,R,M,L,LDA)

INTEGER M,L,LDA

COMPLEX A(LDA,1),X(M,L),R(1)

C

C TGSLC CALLS TGSLC1 TO SOLVE THE COMPLEX LINEAR SYSTEM

C A * X = B

C WITH THE TG - MATRIX A

C

C ON ENTRY

C

C A COMPLEX(M**2,2*L - 1)

C THE FIRST ROW OF BLOCKS OF THE TG - MATRIX

C FOLLOWED BY ITS FIRST COLUMN OF BLOCKS BEGINNING

C WITH THE SECOND BLOCK. EACH BLOCK IS REPRESENTED

C BY COLUMNS. ON RETURN A IS UNALTERED

C

C X COMPLEX(M*L)

C THE RIGHT HAND SIDE VECTOR B

C

C R COMPLEX(M**2*(2*L + 3) + M)

C A WORK VECTOR

C

C M INTEGER

C THE ORDER OF THE BLOCKS OF THE MATRIX A

C

C L INTEGER

C THE NUMBER OF BLOCKS IN A ROW OR COLUMN

C OF THE MATRIX A

C

C LDA INTEGER

C THE LEADING DIMENSION OF THE ARRAY A

C

C ON RETURN

C

C X THE SOLUTION VECTOR

C

C TOEPLITZ PACKAGE. THIS VERSION DATED 07/23/82

C

C SUBROUTINES AND FUNCTIONS

C

C TOEPLITZ PACKAGE ... TGSLC1

C

C INTERNAL VARIABLES

C

INTEGER MM,MML,MML1,MML2,MML3,MML4,MML5,MML6

C

C CALL SUBROUTINE TGSLC1

C

MM = M**2

MML = MM*(L - 1) + 1

MML1 = 2*MML - 1

MML2 = MML1 + MM

MML3 = MML2 + MM
MML4 = MML3 + MM
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MML5 = MML4 + MM

MML6 = MML5 + MM

C

CALL TGSLC1(A,A(1,L+1),X,X,R,R(MML),R(MML1),R(MML2),

* R(MML3),R(MML4),R(MMLS),R(MML6),M,L,LDA)

C

RETURN

END
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SUBROUTINE TGSLC1(A1,A2,B,X,C1,C2,R1,R2,R3,R5,R6,R,M,L,LDA)

INTEGER M,L,LDA

COMPLEX A1(LDA,L),A2(LDA,1),B(M,L),X(M,L),Cl(M,M,1),

* C2(M,M,1),R1(M,M),R2(M,M),R3(M,M),R5(M,M),R6(M,M),R(M)

C

C TGSLC1 SOLVES THE COMPLEX LINEAR SYSTEM

C A* X=B

C WITH THE TG - MATRIX A

C

C ON ENTRY

C

C Al COMPLEX(M'*2,L)

C THE FIRST ROW OF BLOCKS OF THE TG - MATRIX A

C EACH BLOCK IS REPRESENTED BY COLUMNS

C ON RETURN Al IS UNALTERED

C

C A2 COMPLEX(M**2,L - 1)

C THE FIRST COLUMN OF BLOCKS OF THE TG - MATRIX A

C BEGINNING WITH THE SECOND BLOCK. EACH BLOCK IS

C REPRESENTED BY COLUMNS. ON RETURN A2 IS UNALTERED

C

C B COMPLEX(M*L)

C THE RIGHT HAND SIDE VECTOR

C ON RETURN B IS UNALTERED

C

C Cl COMPLEX(M,M,L - 1)

C A WORK ARRAY

C

C C2 COMPLEX(M,M,L - 1)

C A WORK ARRAY

C

C R1 COMPLEX(M,M)

C A WORK ARRAY

C

C R2 COMPLEX(M,M)

C A WORK ARRAY

C

C R3 COMPLEX(M,M)

C A WORK ARRAY

C

C R5 COMPIEX(M,M)

C A WORK ARRAY

C

C R6 COMPLEX(M,M)

C A WORK ARRAY

C

C R COMPLEX(M)

C A WORK VECTOR

C

C M INTEGER

C THE ORDER OF THE BLOCKS OF TilE MATRIX A

C

C L INTEGER

C THE NUMBER OF BLOCKS IN A ROW OR COLUMN

C OF THE MATRIX A 

.
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C

C LDA INTEGER

C THE LEADING DIMENSION OF THE ARRAY A

C

C ON RETURN

C

C X COMPLEX(M*L)

C THE SOLUTION VECTOR. X MAY COINCIDE WITH B

C

C TOEPLITZ PACKAGE. THIS VERSION DATED 07/23/82

C

C SUBROUTINES AND FUNCTIONS

C

C LINPACK ... CAXPY,CGEFA,CGESL

C ... (FOR IN-LINE CAXPY, SEE DIRECTIONS IN COMMENTS)

C

C INTERNAL VARIABLES

C

INTEGER I,I1,I2,I3,II,J,N,N1,N2

C

C SOLVE THE SYSTEM WITH THE PRINCIPAL MINOR OF ORDER M

C

13 = 1

DO 20 J = 1, M

DO 10 I = 1, M

C1(I,J,1) = A1(13,1)

R1(I,J) = A1(13,1)

R3(I,J) = R1(I,J)

I3 = I3 + 1
10 CONTINUE

X(J,1) = B(J,J)

20 CONTINUE

CALL CGEFA(R3,M,M,R,II)

CALL CGESL(R3,M,M,R,X(1,1),O)

IF (L .EQ. 1) GO TO 420

C

C RECURRENT PROCESS FOR SOLVING THE SYSTEM
C WITH THE TG - MATRIX FOR N = 2, L 

.

C

DO 410 N =2, L
C

C COMPUTE MULTIPLES OF THE FIRST AND LAST BLOCK COLUMNS OF
C THE INVERSE OF THE PRINCIPAL MINOR OF ORDER M*N

C

N1 = N - 1

N2 = N - 2

13 = 1

DO 40 J = 1, M

DO 30 I = 1, M

R5(I,J) = A2(I3,N1)
R6(I,J) = A1(I3,N)

I3 = I3 + 1

30 CONTINUE

40 CONTINUE
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IF (N .EQ. 2) GO TO 100

DO 60 J = 1, M

DO 50 I = 1, M

C1(I,J,N1) = R2(I,J)

50 CONTINUE

60 CONTINUE

DO 90 Il = 1, N2

12 = N - I1

DO 80 J = 1, M

13 = 1

DO 70 I = 1, M

C FOR IN-LINE CAXPY, ACTIVATE NEXT 5 LINES AND DEACTIVATE FOLLOWING 3

C DO65II1=1, M

C R5(II,J) = R5(II,J) + C1(I,J,I2)*A2(I3,I1)

C R6(IIJ) = R6(II,J) + C2(I,J,I1)*A1(I3,I1+1)

C I3=I3+1

C 65 CONTINUE

CALL CAXPY(M,C1(I,J,I2),A2(I3,I1),1,R5(1,J),1)

CALL CAXPY(M,C2(I,J,I1),A1(I3,I1+1),1,R6(1,J),1)

13 = 13 + M

70 CONTINUE

80 CONTINUE

90 CONTINUE

100 CONTINUE

DO 120 J = 1, M

DO 110 I = 1, M

R2(I,J) = -R5(I,J)

110 CONTINUE

CALL CGESL(R3,M,M,R,R2(1,J),0)

120 CONTINUE

DO 140 J = 1, M

DO 130 I = 1, M

R3(I,J) = R6(I,J)

R6(I,J) = -C1(I,J,1)

130 CONTINUE

140 CONTINUE

DO 160 J = 1, M

DO 150 I = 1, M

C FOR IN-LINE CAXPY, ACTIVATE NEXT 3 LINES AND DEACTIVATE FOLLOWING 1

C DO0145 II = 1, M

C C1(II,J,1) = C1(II,J,1) + R2(I,J)*R3(II,I)
C 145 CONTINUE

CALL CAXPY(M,R2(I,J),R3(1,I),1,C1(1,J,1),1)

150 CONTINUE

160 CONTINUE

CALL CGEFA(R6,M,M,R,II)

DO 180 J = 1, M

CALL CGESL(R6,M,M,R,R3(1,J),O)

DO 170 I = 1, M

C FOR IN-LINE CAXPY, ACTIVATE NEXT 3 LINES AND DEACTIVATE FOLLOWING 1

C DO 165 II = 1, M

C R1(II,J) = R1(II,J) + R3(I,J)*R5(II,I)
C 165 CONTINUE

CALL CAXPY(M,R3(I,J),R5(1,I),1,R1(1,J),1)
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170 CONTINUE

180 CONTINUE

IF (N .EQ. 2) GO TO 320

DO 200 J = 1, M

DO 190 I = 1, M

R6(I,J) = C2(I,J,1)

190 CONTINUE

200 CONTINUE

DO 310 I1 = 2, Ni

IF (Ii .EQ. Ni) GO TO 230

DO 220 J = 1, M

DO 210 I = 1, M

R5(I,J) = C2(I,J,I1)

210 CONTINUE

220 CONTINUE

230 CONTINUE

DO 260 J = 1, M

DO 240 I = 1, M

C2(I,J,I1) = R6(I,J)

240 CONTINUE

DO 250 I = 1, M

C FOR IN-LINE CAXPY, ACTIVATE NEXT 3 LINES AND DEACTIVATE FOLLOWING 1

C DO 245 II = 1, M

C C2(II,J,I1) = C2(II,J,I1) + R3(I,J)*C1(II,I,I1)

C 245 CONTINUE

CALL CAXPY(M,R3(I,J),C1(1,I,I1),1,C2(1,J,I1),1)

250 CONTINUE

260 CONTINUE

DO 280 J = 1, M

DO 270 I = 1, M

C FOR IN-LINE CAXPY, ACTIVATE NEXT 3 LINES AND DEACTIVATE FOLLOWING 1

C DO 265 II = 1, M

C C1(II,J,I1) = C1(II,J,I1) + R2(I,J)*R6(II,I)

C 265 CONTINUE

CALL CAXPY(M,R2(I,J),R6(1,I),1,C1(1,J,I1),1)

270 CONTINUE

280 CONTINUE

DO 300 J = 1, M

DO 290 I = 1, M

R6(I,J) = R5(I,J)

290 CONTINUE

300 CONTINUE

310 CONTINUE

320 CONTINUE

DO 340 J = 1, M

DO 330 I = 1, M

C2(I,J,1) = R3(I,J)
330 CONTINUE

340 CONTINUE

C
C COMPUTE THE SOLUTION OF THE SYSTEM WITH THE

C PRINCIPAL MINOR OF ORDER M*N

C

DO 360 J = 1, M
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DO 350 I = 1, M

R3(IJ) = R1(IJ)

350 CONTINUE

X(JN) = B(JN)

360 CONTINUE

DO 380 I1 = 1, Ni

12 = N - Ii

13 = 1

DO 370 I = 1, M

C FOR IN-LINE CAXPY, ACTIVATE NEXT 4 LINES AND DEACTIVATE FOLLOWING 2

C DO 365 II = 1, M

C X(II,N) = X(II,N) - X(I,12)*A2(I3,I1)

C 13 = 13 + 1

C 365 CONTINUE

CALL CAXPY(M,-X(I,I2),A2(I3,I1),1,X(1,N),1)

13 = 13 + M

370 CONTINUE

380 CONTINUE

CALL CGEFA(R3,M,M,R,II)

CALL CGESL(R3,M,M,R,X(1,N),0)

DO 400 Ii = 1, Ni

DO 390 I = 1, M

C FOR IN-LINE CAXPY, ACTIVATE NEXT 3 LINES AND DEACTIVATE FOLLOWING 1

C DO 385 II = 1, M

C X(II,I1) = X(II,I1) + X(I,N)*C2(II,I,I1)

C 385 CONTINUE

CALL CAXPY(M,X(I,N),C2(1,I,I1),1,X(1,I1),1)

390 CONTINUE

400 CONTINUE

410 CONTINUE

420 CONTINUE

RETURN

END
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SUBROUTINE CTSLC(A,X,R,M,L,LDA)

INTEGER M,L,LDA

COMPLEX A(LDA,L),X(M,L),R(1)

C

C CTSLC SOLVES THE COMPLEX LINEAR SYSTEM

C A * X = B

C WITH THE CT - MATRIX A

C

C ON ENTRY

C

C A COMPLEX(2*M - 1,L)

C THE FIRST ROW OF BLOCKS OF THE CT - MATRIX

C EACH BLOCK IS REPRESENTED BY ITS FIRST ROW

C FOLLOWED BY ITS FIRST COLUMN BEGINNING WITH THE

C SECOND ELEMENT. ON RETURN A HAS BEEN DESTROYED

C

C X COMPLEX(M*L)

C THE RIGHT HAND SIDE VECTOR B

C

C R COMPLEX(MAX(2*M - 2,2*L))

C A WORK VECTOR

C

C M INTEGER

C THE ORDER OF THE BLOCKS OF THE MATRIX A

C

C L INTEGER

C THE NUMBER OF BLOCKS IN A ROW OR COLUMN

C OF THE MATRIX A

C

C LDA INTEGER

C THE LEADING DIMENSION OF THE ARRAY A

C

C ON RETURN

C

C X THE SOLUTION VECTOR

C

C TOEPLITZ PACKAGE. THIS VERSION DATED 07/23/82

C

C SUBROUTINES AND FUNCTIONS

C

C TOEPLITZ PACKAGE ... SALWC,TSLC

C FORTRAN ... FLOAT

C

C INTERNAL VARIABLES

C

INTEGER I1,I2

REAL RL

C

RL = FLOAT(L)

C

C REDUCE THE CT - MATRIX TO A BLOCK-DIAGONAL MATRIX

C BY THE INVERSE DISCRETE FOURIER TRANSFORMATION

C

CALL SALWC(A,R,R(L+1),2*M - 1,L,LDA,-1)

C
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C COMPUTE THE DISCRETE FOURIER TRANSFORMATION OF

C THE RIGHT HAND SIDE VECTOR

C

CALL SALWC(X,R,R(L+1),M,L,M,1)

C

C SOLVE THE BLOCK-DIAGONAL SYSTEM, BLOCKS OF WHICH

C ARE T - MATRICES

C

DO 10 12 = 1, L

CALL TSLC(A(1,I2),X(1,I2),R,M)

10 CONTINUE

C

C COMPUTE THE SOLUTION OF THE GIVEN SYSTEM BY

C THE INVERSE DISCRETE FOURIER TRANSFORMATION

C

CALL SALWC(X,R,R(L+1),M,L,M,-1)

C

DO 30 12 = 1, L

DO 20 I1 = 1, M

X(I1,I2) = X(I1,I2)/RL

20 CONTINUE

30 CONTINUE

RETURN

END
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SUBROUTINE CCSLC(A,X,R,M,L,LDA)

INTEGER M,L,LDA

COMPLEX A(LDA,L),X(M,L),R(1)

C

C CCSLC SOLVES THE COMPLEX LINEAR SYSTEM

C A * X = B

C WITH THE CC - MATRIX A

C

C ON ENTRY

C

C A COMPLEX(M,L)

C THE FIRST ROW OF BLOCKS OF THE CC - MATRIX 

.

C EACH BLOCK IS REPRESENTED BY ITS FIRST ROW 

.

C ON RETURN A HAS BEEN DESTROYED
C

C X COMPLEX(M*L)

C THE RIGHT HAND SIDE VECTOR B

C

C R COMPLEX(MAX(M,2*L))

C A WORK VECTOR

C

C M INTEGER

C THE ORDER OF THE BLOCKS OF THE MATRIX A

C

C L INTEGER

C THE NUMBER OF BLOCKS IN A ROW OR COLUMN

C OF THE MATRIX A

C

C LDA INTEGER

C THE LEADING DIMENSION OF THE ARRAY A

C

C ON RETURN

C

C X THE SOLUTION VECTOR

C

C TOEPLITZ PACKAGE. THIS VERSION DATED 07/23/82

C

C SUBROUTINES AND FUNCTIONS

C

C TOEPLITZ PACKAGE ... CSLC,SALWC

C FORTRAN ... FLOAT

C

C INTERNAL VARIABLES

C

INTEGER I1,I2

REAL RL

C

RL = FLOAT(L)

C

C REDUCE THE CC - MATRIX TO A BLOCK-DIAGONAL MATRIX
C BY THE INVERSE DISCRETE FOURIER TRANSFORMATION

C

CALL SALWC(A,R,R(L+1),M.L,LDA,-1)

C

C COMPUTE THE DISCRETE FOURIER TRANSFORMATION OF



114

C THE RIGHT HAND SIDE VECTOR

C

CALL SALWC(X,R,R(L+1),M,L,M,1)

C

C SOLVE THE BLOCK-DIAGONAL SYSTEM, BLOCKS OF WHICH

C ARE C - MATRICES

C

DO 10 12 = 1, L

CALL CSLC(A(1,I2),X(1,I2),R,M)

10 CONTINUE

C

C COMPUTE THE SOLUTION OF THE GIVEN SYSTEM BY

C THE INVERSE DISCRETE FOURIER TRANSFORMATION

C

CALL SALWC(X,R,R(L+1),M,L,M,-1)

C

DO 30 12 = 1, L

DO 20 Ii = 1, M

X(I1,I2) = X(I1,I2)/RL

20 CONTINUE

30 CONTINUE

RETURN

END
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SUBROUTINE CGSLC(A,X,R,M,L,LDA)

INTEGER M,L,LDA

COMPLEX A(LDA,L),X(M,L),R(1)

C

C CGSLC SOLVES THE COMPLEX LINEAR SYSTEM

C A X = B

C WITH THE CG - MATRIX A

C

C ON ENTRY

C

C A COMPLEX(M**2,L)

C THE FIRST ROW OF BLOCKS OF THE CG - MATRIX

C EACH BLOCK IS REPRESENTED BY COLUMNS

C ON RETURN A HAS BEEN DESTROYED

C

C X COMPLEX(M*L)

C THE RIGHT HAND SIDE VECTOR B

C

C R uJMPLEX(MAX(M,2*L))

C A WORK VECTOR

C

C M INTEGER

C THE ORDER OF THE BLOCKS OF THE MATRIX A

C

C L INTEGER

C THE NUMBER OF BLOCKS IN A ROW OR COLUMN

C OF THE MATRIX A

C

C LDA INTEGER

C THE LEADING DIMENSION OF THE ARRAY A

C

C ON RETURN

C

C X THE SOLUTION VECTOR

C

C TOEPLITZ PACKAGE. THIS VERSION DATED 07/23/82

C

C SUBROUTINES AND FUNCTIONS

C

C TOEFLITZ PACKAGE ... SALWC

C LINPACK ... CGEFA,CGESL

C FORTRAN ... FLOAT

C

C INTERNAL VARIABLES

C

INTEGER I1,I2,II

REAL RL

C

RL = FLOAT(L)

C

C REDUCE THE CG - MATRIX TO A BLOCK-DIAGONAL MATRIX

C BY THE INVERSE DISCRETE FOURIER TRANSFORMATION

C

CALL SALWC(A,R,R(L+1),M**2,L,LDA,-1)

C
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C COMPUTE THE DISCRETE FOURIER TRANSFORMATION OF

C THE RIGHT HAND SIDE VECTOR

C

CALL SALWC(X,R,R(L+1),M,L,M,1)

C

C SOLVE THE BLOCK-DIAGONAL SYSTEM, BLOCKS OF WHICH

C ARE G - MATRICES

C

DO 10 12 = 1, L

CALL CGEFA(A(1,I2),M,M,R,II)

CALL CGESL(A(1,I2),M,M,R,X(1,I2),O)

10 CONTINUE

C

C COMPUTE THE SOLUTION OF THE GIVEN SYSTEM BY

C THE INVERSE DISCRETE FOURIER TRANSFORMATION

C

CALL SALWC(X,R,R(L+1),M,L,M,-1)

C

DO 30 12 = 1, L

DO 20 I1 = 1, M

X(I1,I2) = X(I1,I2)/RL

20 CONTINUE

30 CONTINUE

RETURN

END
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SUPROUTINE SALWC(A,R1,R2,M,L,LDA,JOB)

INTEGER M,L,LDA,JOB

COMPLEX A(LDA,L) ,R1(L) ,R2(L)

SALWC COMPUTES THE DIRECT OR INVERSE DISCRETE FOURIER

TRANSFORMATION FOR ROWS OF A COMPLEX RECTANGULAR MATRIX

ON ENTRY

A COMPLEX(M,L)

THE INPUT MATRIX

R1 COMPLEX(L)

A WORK VECTOR 

.

R2 COMPLEX(L)

A WORK VECTOR 

.

M

L

LDA

JOB

INTEGER

THE NUMBER OF ROWS

INTEGER

THE NUMBER OF COLUMN

INTEGER

THE LEADING DIMENSI

OF THE MATRIX A 

.

INS OF THE MATRIX A

ON OF THE ARRAY A

INTEGER

= 1 FOR DIRECT FOURIER TRANSFORMATION

= -1 FOR INVERSE FOURIER TRANSFORMATION

ON RETURN

A THE TRANSFORMED ROWS OF THE MATRIX

TOEPLITZ PACKAGE. THIS VERSION DATED 07/23/82

SUBROUTINES AND FUNCTIONS

FORTRAN ... CMPLX,COS,FLOAT,SIN

INTERNAL VARIABLES

INTEGER 1,11,12

REAL P,Ri,RL,V1,V2

COMPLEX E,F

IF (L .EQ. 1) GO TO 60

RL = FLOAT(L)

R1(1) = (1.OEO,O.OEO)

RI = O.OEO

DO 10 I1 = 2, L

RI = RI + 1.OEO

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C
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C MINIMIZE ERROR IN FORMING MULTIPLES OF 2*PI

C

P = ((201.EO/32.EO)*RI + 1.93530717958647692528E-3*RI)/RL

C

V1 = COS(P)

V2 = SIN(P)
IF (.JOB .EQ. (-1)) V2 = -V2

R1(Ii) = CMPLX(V1,V2)

10 CONTINUE

DO 50 I = 1, M

DO 30 I1 = 1, L

E = R1(I1)

F = A(I,1)

DO 20 12 = 2, L

F = E*F + A(I,I2)

20 CONTINUE

R2(I1) = E*F

30 CONTINUE

DO 40 I1 = 1, L

A(I,I1) = R2(I1)

40 CONTINUE

50 CONTINUE

60 CONTINUE

RETURN

END
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SUBROUTINE CTGSLC(A,X,R,M,L,K,LDA)

INTEGER M,L,K,LDA

COMPLEX A(LDA,K),X(M,L,K),R(1)

C

C CTGSLC SOLVES THE COMPLEX LINEAR SYSTEM

C A* X=B

C WITH THE CTG - MATRIX A

C

C ON ENTRY

C

C A COMPLEX(M**2*(2*L - 1),K)

C THE FIRST ROW OF OUTER BLOCKS OF THE CTG - MATRIX

C EACH OUTER BLOCK IS REPRESENTED BY ITS FIRST ROW

C OF INNER BLOCKS FOLLOWED BY ITS FIRST COLUMN

C OF INNER BLOCKS BEGINNING WITH THE SECOND BLOCK

C EACH INNER BLOCK IS REPRESENTED BY COLUMNS

C ON RETURN A HAS BEEN DESTROYED

C

C X COMPLEX (M*L*K)

C THE RIGHT HAND SIDE VECTOR B

C

C R COMPLEX(MAX(M**2*(2*L + 3) + M,2*K))

C A WORK VECTOR

C

C M INTEGER

C THE ORDER OF THE INNER BLOCKS OF THE MATRIX A

C

C L INTEGER

C THE NUMBER OF INNER BLOCKS IN A ROW OR COLUMN

C OF AN OUTER BLOCK OF THE MATRIX A

C

C K INTEGER

C THE NUMBER OF OUTER BLOCKS IN A ROW OR COLUMN

C OF THE MATRIX A

C

C LDA INTEGER

C THE LEADING DIMENSION OF THE ARRAY A

C

C ON RETURN

C

C X THE SOLUTION VECTOR

C

C TOEPLITZ PACKAGE. THIS VERSION DATED 07/23/82

C

C SUBROUTINES AND FUNCTIONS

C

C TOEPLITZ PACKAGE ... SALWC,TGSLC

C FORTRAN ... FLOAT

C

C INTERNAL VARIABLES

INTEGER I1,I2,I3,ML,MM

REAL RK

C



120

RK = FLOAT(K)

MM = M**2

ML = M*L

C

C REDUCE THE CTG - MATRIX TO A BLOCK-DIAGONAL MATRIX

C BY THE INVERSE DISCRETE FOURIER TRANSFORMATION

C

CALL SALWC(A,R,R(K+1),MM*(2*L - 1),K,LDA,-1)

C

C COMPUTE THE DISCRETE FOURIER TRANSFORMATION OF

C THE RIGHT HAND SIDE VECTOR

C

CALIF SALWC(X,R,R(+1),ML,K,ML,1)

C

C SOLVE THE BLOCK-DIAGONAL SYSTEM, BLOCKS OF WHICH

C ARE TG - MAT'RICES

C

DO 10 13 = 1, K

CALL TGSLC(A(1,I3),X(1,1,I3),R,M,L,MM)

10 CONTINUE

C

C COMPUTE THE SOLUTION OF THE GIVEN SYSTEM BY

C THE INVERSE DISCRETE FOURIIR TRANSFORMATION

C

CALL SALWC(X,R,R(K+1),ML,K,ML,-1)

C

DO 40 13 = 1, K

DO 30 12 = 1, L

DO 20 Ii = 1, M

X(I1,I2,I3) = X(I1,I2,I3)/RK

20 CONTINUE

30 CONTINUE

40 CONTINUE

RETURN

END
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SUBROUTINE CCTSLC(A,X,R,M,L,K,LDA)

INTEGER M,L,K,LDA

COMPLEX A(LDA,K),X(M,L,K),R(1)

C

C CCTSLC SOLVES THE COMPLEX LINEAR SYSTEM

C A * X = B

C WITH THE CCT - MATRIX A

C

C ON ENTRY

C

C A COMPLEX((2*M - 1)*L,K)

C THE FIRST ROW OF OUTER BLOCKS OF THE CCT - MATRIX

C EACH OUTER BLOCK IS REPRESENTED BY ITS FIRST ROW

C OF INNER BLOCKS. EACH INNER BLOCK IS REPRESENTED

C BY ITS FIRST ROW FOLLOWED BY ITS FIRST COLUMN

C BEGINNING WITH THE SECOND ELEMENT

C ON RETURN A HAS BEEN DESTROYED

C

C X COMPLEX(M*L*K)

C THE RIGHT HAND SIDE VECTOR B

C

C R COMPLEX(MAX(2*M - 2 , 2*L,2*K))

C A WORK VECTOR

C

C M INTEGER

C THE ORDER OF THE INNER BLOCKS OF THE MATRIX A

C

C L INTEGER

C THE NUMBER OF INNER BLOCKS IN A ROW OR COLUMN

C OF AN OUTER BLOCK OF THE MATRIX A

C

C K INTEGER

C THE NUMBER OF OUTER BLOCKS IN A ROW OR COLUMN

C OF THE MATRIX A

C

C LDA INTEGER

C THE LEADING DIMENSION OF THE ARRAY A

C

C ON RETURN

C

C X THE SOLUTION VECTOR

C

C TOEPLITZ PACKAGE. THIS VERSION DATED 07/23/82

C

C SUBROUTINES AND FUNCTIONS

C

C TOEPLITZ PACKAGE ... CTSLC,SALWC

C FORTRAN ... FLOAT

C

C INTERNAL VARIABLES

C

INTEGER I1,I2,I3,M2,ML

REAL RK

C
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RK = FLOAT(K)

M2 = 2*M - 1

ML = M*L

C

C REDUCE THE CCT - MATRIX TO A BLOCK-DIAGONAL MATRIX

C BY THE INVERSE DISCRETE FOURIER TRANSFORMATION

C

CALL SALWC(A,R,R(K+1),M2*L,K,LDA,-1)

C

C COMPUTE THE DISCRETE FOURIER TRANSFORMATION OF

C THE RIGHT HAND SIDE VECTOR

C

CALL SALWC(X,R,R(K+1),ML,K,ML,1)

C

C SOLVE THE BLOCK-DIAGONAL SYSTEM, BLOCKS OF WHICH

C ARE CT - MATRICES

C

DO 10 13 = 1, K

CALL CTSLC(A(1,I3),X(1,1,I3),R,M,L,M2)

10 CONTINUE

C

C COMPUTE THE SOLUTION OF THE GIVEN SYSTEM BY

C THE INVERSE DISCRETE FOURIER TRANSFORMATION

C

CALL SALWC(X,R,R(K+1),ML,K,ML,-1)

C

DO 40 13 = 1, K

DO 30 12 = 1, L

DO 20 Ii = 1, M

X(I1,I2,13) = X(I1,I2,I3)/RK

20 CONTINUE

30 CONTINUE

40 CONTINUE

RETURN

END



SUBROUTINE CCCSLC(A,X,R,M,L,K,LDA)

INTEGER M,L,K,LDA

COMPLEX A(LDA,K),X(M,L,K),R(1)

CCCSLC SOLVES THE COMPLEX LINEAR SYSTEM

A* X = B

WITH THE CCC - MATRIX A

ON ENTRY

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

INTEGER

THE LEADING DIMENSION OF THE ARRAY A

ON RETURN

THE SOLUTION VECTOR 

.

TOEPLITZ PACKAGE. THIS VERSION DATED 07/23/82

SUBROUTINES AND FUNCTIONS

TOEPLITZ PACKAGE ... CCSLC,SALWC

FORTRAN ... FLOAT

INTERNAL VARIABLES

INTEGER I1,I2,13,ML
REAL RK

RK = FLOAT(K)

ML = M*L

123

A

X

R

M

L

K

COMPLEX(M*L,K)

THE FIRST ROW OF OUTER BLOCKS OF THE CCC - MATRIX

EACH OUTER BLOCK IS REPRESENTED BY ITS FIRST ROW

OF INNER BLOCKS. EACH INNER BLOCK IS REPRESENTED

BY ITS FIRST ROW. ON RETURN A HAS BEEN DESTROYED

COMPLEX (M*L*K)

THE RIGHT HAND SIDE VECTOR B

COMPLEX(MAX(M, 2*L, 2*K))

A WORK VECTOR

INTEGER

THE ORDER OF THE INNER BLOCKS OF THE MATRIX A

INTEGER

THE NUMBER OF INNER BLOCKS IN A ROW OR COLUMN

OF AN OUTER BLOCK OF THE MATRIX A

INTEGER

THE NUMBER OF OUTER BLOCKS IN A ROW OR COLUMN

OF THE MATRIX A 

.

LDA

X
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C REDUCE THE CCC - MATRIX TO A BLOCK-DIAGONAL MATRIX

C BY THE INVERSE DISCRETE FOURIER TRANSFORMATION

C

CALL SALWC(A,R,R(K+1),ML,K,LDA,-1)

C

C COMPUTE THE DISCRETE FOURIER TRANSFORMATION OF

C THE RIGHT HAND SIDE VECTOR

C

CALL SALWC(X,R,R(K+1),ML,K,ML,1)

C

C SOLVE THE BLOCK-DIAGONAL SYSTEM, BLOCKS OF WHICH

C ARE CC - MATRICES

C

DO 10 13 = 1, K

CALL CCSLC(A(1,I3),X(1,1,I3),R,M,L,M)

10 CONTINUE

C

C COMPUTE THE SOLUTION OF THE GIVEN SYSTEM BY

C THE INVERSE DISCRETE FOURIER TRANSFORMATION

C

CALL SALWC(X,R,R(K+1),ML,K,ML,-1)

C

DO 40 13 = 1, K

DO 30 I2 = 1, L

DO 20 I1 = 1, M

X(I1,I2,I3) = X(I1,I2,I3)/RK

20 CONTINUE

30 CONTINUE

40 CONTINUE

RETURN

END
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SUBROUTINE CCGSLC(A,X,R,M,L,K,LDA)

INTEGER M,Jl,K,LDA

COMPLEX A(LDA,K),X(M,L,K),R(1)

C

C CCGSLC SOLVES THE COMPLEX LINEAR SYSTEM

C A*X=B

C WITH THE CCG - MATRIX A

C

C ON ENTRY

C

C A COMPLEX(M**2*L,K)

C THE FIRST ROW OF OUTER BLOCKS OF THE CCG - MATRIX

C EACH OUTER BLOCK IS REPRESENTED BY ITS FIRST ROW

C OF INNER BLOCKS. EACH INNER BLOCK IS REPRESENTED

C BY COLUMNS. ON RETURN A HAS BEEN DESTROYED

C

C X COMPLEX(M*L*K)

C THE RIGHT HAND SIDE VECTOR B

C

C R COMPLEX(MAX(M,2*L,2*K))

C A WORK VECTOR

C

C M INTEGER

C THE ORDER OF THE INNER BLOCKS OF THE MATRIX A

C

C L INTEGER

C THE NUMBER OF INNER BLOCKS IN A ROW OR COLUMN

C OF AN OUTER BLOCK OF THE MATRIX A

C

C K INTEGER

C THE NUMBER OF OUTER BLOCKS IN A ROW OR COLUMN

C OF THE MATRIX A

C

C LDA INTEGER

C THE LEADING DIMENSION OF THE ARRAY A

C

C ON RETURN

C

C X THE SOLUTION VECTOR

C

C TOEPLITZ PACKAGE. THIS VERSION DATED 07/23/82

C

C SUBROUTINES AND FUNCTIONS

C

C TOEPLITZ PACKAGE ... CGSLC,SALWC

C FORTRAN ... FLOAT

C

C INTERNAL VARIABLES

C

INTEGER I1,I2,I3,ML,MM

REAL RK

C

RK = FLOAT(K)

MM = M**2
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ML = M*L

C

C REDUCE THE CCG - MATRIX TO A BLOCK-DIAGONAL MATRIX

C BY THE INVERSE DISCRETE FOURIER TRANSFORMATION

C

CALL SALWC(A,R,R(K+1),MM*L,K,LDA,-1)

C

C COMPUTE THE DISCRETE FOURIER TRANSFORMATION OF

C THE RIGHT HAND SIDE VECTOR

C

CALL SALWC(X,R,R(K+1),ML,K,ML,1)

C

C SOLVE THE BLOCK-DIAGONAL SYSTEM, BLOCKS OF W'IICH

C ARE CG - MATRICES

C

DO 10 13 = 1, K

CALL CGSLC(A(1,I3),X(1,1,I3),R,M,L,MM)

10 CONTINUE

C

C COMPUTE THE SOLUTION OF THE GIVEN SYSTEM BY

C THE INVERSE DISCRETE FOURIER TRANSFORMATION

C

CALL SALWC(X,R,R(K+1),ML,K,ML,-1)

C

DO 40 13 = 1, K

DO 30 12 = 1, L

DO 20 I1 = 1, M

X(I1,I2,I3) = X(I1,I2,I3)/RK

20 CONTINUE

30 CONTINUE

40 CONTINUE

RETURN

END
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