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Abstract. Scaling relationships between mean body masses and abundances of species in
multitrophic communities continue to be a subject of intense research and debate. The top-
down mechanism explored in this paper explains the frequently observed inverse linear
relationship between body mass and abundance (i.e., constant biomass) in terms of a
balancing of resource biomasses by behaviorally and evolutionarily adapting foragers, and the
evolutionary response of resources to this foraging pressure.

The mechanism is tested using an allometric, multitrophic community model with a
complex food web structure. It is a statistical model describing the evolutionary and
population dynamics of tens to hundreds of species in a uniform way. Particularities of the
model are the detailed representation of the evolution and interaction of trophic traits to
reproduce topological food web patterns, prey switching behavior modeled after experimental
observations, and the evolutionary adaptation of attack rates. Model structure and design are
discussed.

For model states comparable to natural communities, we find that (1) the body-mass–
abundance scaling does not depend on the allometric scaling exponent of physiological rates in
the form expected from the energetic equivalence rule or other bottom-up theories; (2) the
scaling exponent of abundance as a function of body mass is approximately�1, independent
of the allometric exponent for physiological rates assumed; (3) removal of top-down control
destroys this pattern, and energetic equivalence is recovered. We conclude that the top-down
mechanism is active in the model, and that it is a viable alternative to bottom-up mechanisms
for controlling body-mass–abundance relations in natural communities.
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INTRODUCTION

Empirical data show the abundances, N, and the

mean body masses, M, of species related by power laws

of the form N ’ N0(M/M0)
�1þk, where one can set M0¼

1 kg by convention and jkj is usually small compared to

one (e.g., Sheldon et al. 1972, Damuth 1981, Rodriguez

and Mullin 1986, Nee et al. 1991, Carbone and

Gittleman 2002, Marquet 2002, Cohen et al. 2003,

Quiñones et al. 2003, Marquet et al. 2005, Mulder et al.

2005). The precise value of k varies and depends on the

precise question asked (Sprules and Munawar 1986,

Brown et al. 2004, Li et al. 2004, Marquet et al. 2005).

For stable pelagic ecosystems across trophic levels (e.g.,

Sheldon et al. 1972, Rodriguez and Mullin 1986, Sprules

and Munawar 1986, Gaedke 1992, Cohen et al. 2003,

Quiñones et al. 2003), and to some degree also for soil

food webs (Mulder et al. 2005), the pattern is

particularly clear, with k ’ 0. These observations

suggest four questions: (1) What are the mechanisms

that lead to the power laws? (2) What are the values of k

implied by these mechanisms? (3) What determines the

value of N0? (4) And what determines the observed

scatter by a factor 10–100 up and down around the

power laws (Cyr 2000)? The last question seems to be at

the core of the problem of understanding species

abundance distributions (Whittaker 1965, Cyr 2000)

and shall here be set aside, leaving questions 1–3.

Many theories for the origin of the power laws build

on the ‘‘energetic equivalence’’ (Nee et al. 1991) between

species of different size, first observed by Damuth (1981)

for herbivorous mammals. The conceived mechanism is

fundamentally bottom-up: for physiological reasons,

mass-specific metabolic rates scale as Mfr , and rates per

individual as M 3 M
fr ¼ M

1þfr with f ¼�1/4. Thus, an

assumed fixed rate R of energy supply can support at

most N ; R/M1þfr individuals, yielding�1þ k¼�1� fr
and k ¼�fr ’ 1/4. Advanced bottom-up theories (e.g.,

Platt and Denman 1977, 1978, Cyr 2000, Brown et al.

2004, Meehan 2006) take losses by the transfer of energy

from one trophic level to the next into account and

arrive, by a combination of quantities such as trophic

and metabolic efficiencies and predator–prey mass ratios

at k ’ 0 or other values. Characteristic the whole class

of bottom-up theories is that they predict k to be of the

form k ¼ k0 � fr, with k0 independent of fr. That is, a

change in the allometric exponent for the metabolic rate
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would lead to a change of equal size for k, but with the

opposite sign.

Criticism of bottom-up theories of this form (Griffiths

1992, Currie 1993, Marquet et al. 1995, Blackburn and

Gaston 1999) has pointed out that the nature of the

uniform source of energy is left unclear, and that the

theories do not explained why this source would provide

the same amount of energy to each species at a given

trophic level. Leaving this point open, it has been argued

(e.g., Blackburn and Gaston 1999), renders the theories

somewhat vacuous.

The review by Blackburn and Gaston (1999) discusses

five more mechanisms that have been proposed for

body-mass–abundance scaling. Three of them relate to

observational effects, two to ecological mechanisms. But

none of these seems to be strong enough to explain the

observed scaling over 10 or more orders of magnitude

and a large range of taxa. Duarte et al. (1987) considered

limitations of space as the mechanism underlying body-

mass–abundance scaling. However, the space left

between individuals, e.g., in the pelagic communities of

the open oligotrophic waters of the ocean (Rodriguez

and Mullin 1986, Quiñones et al. 2003), often seems to

be too large for this mechanism to become effective.

Yet another conceivable mechanism had been shortly

mentioned by Peters (1983), but seems to have received

only little attention since: the biomasses of species might

be balanced by consumers to be all of similar size. Thus

B ¼ M 3 N ’ constant and k ¼ 0. This explanation is

fundamentally top down. Intuitively the idea is clear: if

there was a species with an outstanding large (eatable)

biomass, many consumers would adapt their behavior

or evolve to feast on it, thus bringing this species back to

the normal biomass level or driving it into extinction.

Some indications for this mechanism to be feasible

can be found from the model of Benoı̂t and Rochet

(2004), which describes size-dependent trophic interac-

tions within a community modeled by a continuous size

spectrum. Benoı̂t and Rochet find k ’ 0 nearly constant

while varying parameters, including fr. However, in a

model by Loeuille and Loreau (2006), which differs from

that of Benoı̂t and Rochet among others by resolving

individual species and allowing body masses to evolve, k

depends strongly on model parameters. Also, Damuth

(2007) recently interpreted simulations using a simple

model of competition for energy on evolutionary time

scales as supportive for the bottom-up mechanism. The

question is therefore not so much if the top-down

mechanism works in principle, but if it will be active

under realistic conditions.

In the following section, we will first introduce a

general model of multitrophic community structure

appropriate for studying this question. In order to

reduce the dependence of model results on questions

whether particular model elements affect the relevant

mechanism for body-mass abundance scaling, which is a

priori difficult to answer, and to make the model more

realistic while maintaining generality, construction of

the model was lead by the principle to include ideally all

those elements that are common across a broad range of

ecosystems, preferentially those that are empirically well

studied. In particular, all elements contained in the three

models discussed above by Benoı̂t and Rochet, Loeuille

and Loreau, and Damuth are taken into account, except

for ontogenetic growth (Benoı̂t and Rochet). Since the

model is rather complex, a detailed description of the

model and discussions of parameterization and model

design have been referred to the Appendix.

After discussing and comparing several aspects of

model community structure with empirical data (General

properties of model communities and their dynamics), we

demonstrate in Numerical experiments and results that,

in the model, the prediction k ¼ k0 � fr of bottom-up

theories does not hold. Rather, we find k ’ 0

independent of fr. Next, we confirm the presence of

the top-down mechanism by comparing the model with

variants where top-down effects have been artificially

removed. We then present a detailed discussion of how

the top-down mechanism works. Based on these results,

a simple formula can be set up that, up to a factor ’100,

predicts the abundance of arbitrary consumer species in

a community in terms of physiological properties of

individual species.

THE POPULATION-DYNAMICAL MATCHING MODEL

Overall model structure

A list of elements included in the model and references

motivating their implementation are given in Table 1.

The main problem targeted by the model is to describe

the structure and population dynamics of a multitrophic

community at a single location. However, it turns out

that, in order to obtain more realistic community

structures, it is useful to model, in a simplified form,

the evolutionary history of this community and the

structure of other communities from which species may

invade.

Hence, our model describes the population dynamics

and evolution of four communities, which are weakly

coupled by the occasional exchange of species, but

population-dynamically uncoupled. It is a statistical

model describing tens to hundreds of species in a

uniform way. Only ‘‘producers’’ (e.g., algae or plants)

and ‘‘consumers’’ (all higher trophic levels) are explicitly

distinguished. Since, for reducers in the soil, energy

(detritus) is provided largely independent of consump-

tion, just as light for primary producers, reducers in soil

ecosystems can take the role of ‘‘producers’’ in the model

as well. Each community is characterized by the

biomasses Bi and the mean body masses Mi of its

member species i, implying population numbers Ni ¼
Bi/Mi, and by the trophic interaction structure.

Evolution

On time scales larger than typical population-dynam-

ical times, the species pool of each community evolves—

technically by ‘‘speciations,’’ local extinctions, and
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‘‘invasions’’ from the three other communities. Howev-

er, the picture behind these processes, sketched in Fig. 1,

is more complex: each of the four explicitly modeled

communities (black ‘‘lakes’’ in Fig. 1) has a number of

similar communities in its vicinity that are not explicitly

modeled (gray ‘‘lakes’’). Most speciations are allopatric

and occur within these surrounding communities, at

times and for reasons unrelated to the explicitly modeled

communities. But species invading a modeled commu-

nity from its surroundings will often have some

similarity with species already present due to common

evolutionary ancestors. Thus, from the perspective of

the local community, such invasions will appear as if

they were spontaneous ‘‘speciations’’ of existing species

by large mutations. Furthermore, ‘‘invasions’’ from the

other three modeled communities (arrows in Fig. 1)

proceed in steps through other systems, thus giving rise

to some evolutionary variation and some delay, and

decoupling the population dynamics of the four modeled

communities. Thus, ‘‘speciations’’ and ‘‘invasions’’ in the

model are extremely coarse-grained descriptions of the

actual evolutionary processes. It can be shown that this

coarse graining of phylogeny in models of local

communities affects food web topology only weakly

(Rossberg 2008). Except for some sympatric speciations,

both local ‘‘speciations’’ and ‘‘invasions’’ correspond, in

reality, to invasions of the community by species more

or less related to existing ones. We shall denote these

processes below collectively as additions to a communi-

ty, and use the number of species added (abbreviated as

‘‘sa’’) as a measure of evolutionary time.

Attack rates

Traits mutating in speciations include not only body

masses and abstract foraging and vulnerability traits,

which together determine feeding relationships, but also

the attack rates of consumers. Attack rates can evolve

freely in the model without an explicit physiological

TABLE 1. Elements contained in the population-dynamical matching model.

Model element Based on

Energy conservation and dissipation McNiel and Lawton (1970), Peters (1983)
Allometric scaling of physiological rates McNiel and Lawton (1970), Peters (1983), Savage et al. (2004)
Type II functional responses Jeschke et al. (2004)
Prey switching Greenwood and Elton (1979)
Size ratios determining trophic links Claessen et al. (2002), Brose et al. (2006)
Abstract traits determining trophic links Yoshida (2003), Rossberg et al. (2006a)
Evolution of body masses Loeuille and Loreau (2005)
Evolution of abstract traits Yoshida (2003), Rossberg et al. (2006a)
Differentiation of evolution rates by traits Rossberg et al. (2006a), Bersier and Kehrli (2008)
Community evolution through simplified speciations see The population-dynamical matching model: Evolution and

Caldarelli et al. (1998)
Population-dynamically isolated, evolutionary
coupled patches

arguments discussed in The population-dynamical matching model:
Evolution

Free evolution of attack rates arguments discussed in The population-dynamical matching model:
Attack rates

FIG. 1. The hierarchical spatial structure assumed in the evolutionary submodel. Black ‘‘lakes’’ represent the four explicitly
modeled communities; gray ‘‘lakes’’ represent similar communities in the vicinity that are not explicitly modeled. Arrows represent
‘‘invasions’’ from the other three modeled communities. See The population-dynamical matching model: Evolution for more detailed
discussion.
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trade-off. As is shown below, mean attack rates of

communities will nevertheless evolve to some stable

value, well below the point of total eradication of all

producers, but sufficiently large to control resource

populations. This is not to imply that attack rates in

nature cannot also be determined by physiological and

physical constraints, but this mechanism is here exclud-

ed for simplicity.

Parameterization

Empirical estimates for model parameters were used

whenever possible, and model variables are expressed in

physical units. This allows a quantitative comparison of

macroecological model properties (e.g., biomass densi-

ties) with empirical data. If there was a choice, we

preferred parameter values applicable to pelagic com-

munities, because (1) for pelagic communities the

empirical pattern of body-mass–abundance scaling is

particularly clear; (2) due to their relatively high spatial

homogeneity, they might be comparatively easy to

model; and (3) in the present form the model favors

primary producers of small body mass resembling

phytoplankton (see, however, Numerical experiments

and results: Testing the top-down theory for body-mass–

abundance scaling: Communities without consumers).

Interpretations of model states in terms of pelagic

communities therefore come easily to mind, and we shall

sometimes invoke them below. Yet, in order to maintain

generality, the model was intentionally constructed such

as not to include elements specific to and should not be

misunderstood as an attempt to quantitatively reproduce

the properties of particular community types.

Masses are expressed in the currency of wet biomass,

and biologically available energy is assumed propor-

tional to mass, since this is the traditional choice of

allometric theory (Peters 1983). This choice obviously

raises some conceptual and quantitative issues, but at

the degree of accuracy targeted here, these are not

relevant, yet.

The Appendix first gives a complete definition of the

model. It then provides a detailed discussion of specific

model design decisions, the rational behind choices of

parameter values, and a full list of model parameters

and variables.

GENERAL PROPERTIES OF MODEL COMMUNITIES AND

THEIR DYNAMICS

The purpose of the sections is twofold. It provides

information on general model community structure that

is referred to in the discussion of body-mass–abundance

scaling further below, and, by comparison with empir-

ical results, it offers a picture of the degree of realism

that is reached by the model and points out possible

artifacts.

Evolution of attack rates and steady state

Simulations of the model show that at the community

level attack rates evolve to a stable evolutionary

equilibrium. We define the aggressivity gi of a species i

as gi¼ aiA/ri, i.e., as the attack rate ai normalized to the

system area A and the specific respiration rate ri. The

aggressivity has dimensions of an inverse biomass

density. Fig. 2 shows a time series of the community

means of the aggressivity g for standard parameters as

listed in the Appendix. After a transient period with

exponential growth, the aggressivity settles in at 33 106

6 23 106 m2/kg (mean 6 SD).

After the aggressivity saturates, other system proper-

ties, such as the number of species, reach their steady-

state values as well. Characterizations of the steady state

in the next section are based on the data from 18 000 sa

to 80 000 sa, where the simulations were stopped.

FIG. 2. Time series of the mean consumer aggressivity, g, the attack rate normalized to consumer respiration rate and system
area (g has units of m2/kg). Samples (plus signs) are taken in each community after every 60 sa (species added).
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Fluctuations in the evolutionary steady state

In the steady state, each community consists of Sp ¼

46 6 14 producer species and Sc ¼ 24 6 8 consumer

species on the average. Fig. 3 displays the time series of

Sp and Sc for one of the four communities. Immediately

apparent are the strong fluctuations, which are due to

intermittent extinction avalanches, not unlike those

found in the paleontological record (e.g., Solé et al.

1997). Amaral and Meyer (1999) observed such extinc-

tion avalanches also in a simplified model for the

evolution of food web topology. Many later models

combining evolutionary and population dynamics did

not produce large extinction avalanches (Drossel et al.

2001, Yoshida 2003, Loeuille and Loreau 2005, 2006). It

is not clear if the avalanches found in the model

correspond to those observed.

Other quantities, such as the aggressivity displayed in

Fig. 2, also exhibit fluctuation over long time scales

(thousands of sa). The resulting temporal correlations

affect the accuracy of characterizations of the steady

state, which is, e.g., reflected in the residual scatter of the

simulation results for k in Fig. 8.

Distribution of body masses

The average number of species in each logarithmic

body size class is shown in Fig. 4. In the presence of

herbivory, producer body masses tend to evolve toward

the lowest allowed value in the model, Mmin, of 10
�13 kg

(but see Numerical experiments and results: Testing the

top-down theory for body-mass–abundance scaling: Com-

munities without consumers for the case without herbiv-

ory). Thus, almost all producers fall into the smallest

size class. The average maximum log10(body mass)

(body mass measured kilograms) in a community is

�0.5 6 2.0. This upper limit for the body mass is

partially due to the finite habitat size, and partially due

to energetic or dynamic constraints along the food

chain. The hard-coded upper limit of the model Mmax¼
103 kg only marginally affects this value.

In empirical data for lakes (e.g., Jonsson et al. 2005),

the body masses of producer species easily span two

orders of magnitude. The extremely sharp distribution

found here is certainly a consequence of the sharp lower

body-mass cutoff employed in the model. On the other

hand, the maximum of the consumer species distribution

near 10�9 kg has been found empirically in similar form

by Jonsson et al. (2005), and the secondary peak near

10�2 kg, corresponding to fish species, as well, albeit

sharper than here.

Typical population dynamics in the steady state

After the perturbations arising when species are added

to the communities have relaxed, populations typically

exhibit chaotic, and occasionally also periodic, oscilla-

tions. Due to their small body masses and the resulting

FIG. 3. Time series of the number of producer species (Sp) and the number of consumer species (Sc) in one of the four
communities.
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fast population dynamics, the variability of the bio-

masses of producers is much larger than that for most

consumers. Fig. 5 displays a typical time series for the

producer biomasses in a community. Some producers

appear to follow ‘‘K strategies’’ (small variability) others

‘‘r strategies’’ (algae blooms), with biomasses spanning

four orders of magnitude or more (typical values of

SD(log10Bi) are in the range 0.5–1.5). The duration of

the blooming events is on the order of weeks, compatible

with observations in pelagic communities. The intensity

of blooming shows no seasonal variability because

seasonal effects are not modeled. Due to their larger

body masses, the variability of consumer biomasses is

much smaller (typically SD(log10Bi) , 0.3).

Results presented in the following sections always

refer to time averages of biomasses Bi and trophic mass

flows ( fijBj in the formalism of the Appendix), obtained

numerically from simulations of population dynamics.

Distribution of trophic levels

Fig. 6 shows the effective trophic level h (Levine 1980)

vs. its relative rank. Specifically, the effective trophic

levels of all species from all communities, sampled every

60 sa in the steady state, are ordered from large to small,

and the ranks in this order are normalized by dividing by

the total number of sampled species. The cumulative

probability distribution can be obtained from this graph

by a simple exchange of axis. This representation of the

level structure was chosen for an easy comparison with

the corresponding empirical result of Christian and

Luczkovich (1999) for a seagrass community, who found

that ‘‘The effective trophic levels of consumers tended to

aggregate near integer values, but the spread from

integer values increased with increasing level.’’ The same

phenomenon is found in simulations. This partially

quantized structure justifies the grouping of species into

trophic levels (producers, herbivores, carnivores, super-

carnivores) according to the integer value nearest to h.

The average community maximum effective trophic level

is hmax ¼ 3.7 6 0.4 in the steady state. Effective trophic

levels larger than 4.5 are rarely observed.

Topological properties of model food webs

Food web topologies were obtained by considering

exactly those resources as linked to a consumer that

contribute more than 1% to the consumer’s diet (Drossel

et al. 2004). A theoretically important property of food

webs (May 1972) is the number of links per species, the

link density Z. We obtained Z ¼ 4.1 6 1.3 links per

species. For a better comparison with empirical data on

food web topology, Z and the topological food web

properties listed in Table 2 have been computed after the

following standardization of the raw topological data:

first, small unconnected sub-webs are removed (Wil-

liams and Martinez 2000), then all producers are lumped

into a single species, and finally species with the same

sets of consumers and resources are lumped together as

‘‘trophic species’’ (Cohen et al. 1990) (for motivation

and discussion, see Rossberg et al. 2006a).

A quantity related to Z is the average number of

resources of a consumer, the consumer link density Zc (8

6 2 resources in the steady state). Since this quantity is

directly empirically accessible without sampling a

complete web (Rossberg et al. 2006b), no standardiza-

tion of food web topology was done to compute it.

Large link densities, as we find them here in good

accordance with empirical data (Dunne et al. 2002,

Banašek-Richter et al. 2005, Rossberg et al. 2006b), are

known to be difficult to reproduce in complex popula-

tion-dynamical models. For example, link densities in

the models investigated by Drossel et al. (2004) do not

exceed 2.3. (In other work, larger values are reported,

but these generally include all links regardless of their

strength.) The present model would not yield large link

densities either, if the known stabilizing effect of prey

switching (Oaten and Murdoch 1975) had not been

included. Large link densities, on the other hand, might

be important for the top-down mechanism, since they

allow consumers to compare and to balance biomasses

between resource species.

Means and standard deviations of other topological

properties of model food webs in the steady state are

listed in Table 2 for reference. For a simple comparison

with empirical data, means and standard deviations of

the corresponding values obtained from a collection of

17 empirical data sets are listed as well. Of the 14

properties, the model averages of 13 are within one

standard deviation of the empirical range. Model webs

have a comparatively large fraction of cannibal species

(Cannib), but cannibalism is known often to be

underreported (Cohen et al. 1990). All 14 model

averages are within two standard deviations of the

empirical data. This shows that the topology of the

model food webs does not exhibit any obvious artifacts

that might favor the top-down mechanism. A more

FIG. 4. Mean number of species (log scale) in each decimal
size class in the model steady state, where Mmin is the lowest
value allowed in the model and Mmax is the highest value
allowed in the model. Log-transformed body mass was
originally measured in kilograms.
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systematic validation of the model food web topology is

desirable but beyond the purpose of the current work.

NUMERICAL EXPERIMENTS AND RESULTS

Definitions of scaling exponents

There are two different approaches commonly used

for defining the scaling exponent. One is a double-

logarithmic regression of the normalized size spectrum

(Platt and Denman 1977, 1978), where the size spectrum

is obtained by first determining the total biomasses of all

individuals in logarithmically scaled size classes and then

dividing these totals by the width of the classes (which

yields values of dimension abundance). The other

approach is a direct double-logarithmic regression of

the abundances or biomasses of all species with their

mean body masses (Damuth 1981), usually taking body

mass as the independent variable. The first approach is

much easier to realize in field studies, in particular if the

number of species is large. However, in small commu-

nities the size spectrum may have gaps with unoccupied

FIG. 5. Typical chaotic variations of producer (e.g., phytoplankton) biomasses in the model steady state, with parameters as
given in the Appendix. Lines of different colors or gray level correspond to different species. The same data are shown on a linear
scale (top) and a logarithmic scale (bottom) for comparison. The dashed horizontal line corresponds to the monoculture carrying
capacity for the smallest producer species.
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size classes (Havlicek and Carpenter 2001), leading to

singularities when taking logarithms. The second ap-

proach does not have this conceptual disadvantage, and

is more robust when the number of species is small. The

precise relationship between the two definitions is not

clear. Results for both definitions are given in the

following sections. All regressions reported are ordinary

least square with log10M as the independent variable.

Body mass vs. abundance scaling in simulated food webs

Direct regression.—For a typical model community,

the body masses and time-averaged abundances of all

species, as well as their trophic levels, are shown in Fig.

7. Direct double-logarithmic regression yields a rela-

tionship N ; M�1þk, or B¼N3M¼Mk, with k¼ 0.05

(n ¼ 79; nominal standard error, 0.09).

When pooling the data of all saved steady-state

communities of the model run with standard parameters

(see the Appendix), the corresponding value is k ¼

�0.002 (n¼ 279 598). When restricting the regression to

consumer species, the exponent in the relation B ; M
kc

is kc¼ 0.034 (n¼ 96 276). Because of strong phylogenetic

and temporal correlations, which are difficult to take

into account, we refrain here from computing error

estimates from the underlying data. From the compar-

ison of different simulation runs below, the standard

error in k and kc can be estimated as ’0.02.

As we explained in Introduction, bottom-up theories,

such as the energetic equivalence rule, predict that the

scaling exponent k in the relation B¼M3N ; Mk is of

the form k¼ k0� fr, where fr is the allometric exponent

for the mass-specific metabolic rates of consumers. The

current model incorporates the metabolic rates of

consumer species in their respiration rates and their

maximum growth rates (see the Appendix).

FIG. 6. The effective trophic level (h) of species vs. their
relative rank in the steady state of the model. Producers
correspond to h ¼ 1. Hatching indicates the corresponding
integer trophic levels obtained by rounding h.

TABLE 2. Topological properties of model food webs in the steady state (mean 6 SD) at standard
parameters (see the Appendix), compared to the ranges of values found in an analysis of
empirical data sets.

Symbol Simple explanation Model Observations

S number of species 20 6 8 54 6 35
C directed connectance 0.21 6 0.05 0.16 6 0.10
T fraction of top species 0.15 6 0.09 0.18 6 0.19
GenSD variability of generality 0.91 6 0.12 1.13 6 0.44
VulSD variability of vulnerability 0.84 6 0.16 0.98 6 0.18
MxSim trophic similarity among species 0.62 6 0.07 0.60 6 0.10
Cannib fraction of cannibal species 0.37 6 0.09 0.16 6 0.19
aChnLg mean food chain length 3.9 6 1.4 6.4 6 4.1
aChnSD variability of chain length 1.3 6 0.3 1.6 6 0.7
aChnNo log10(number of chains) 2.6 6 0.8 4.3 6 2.2
aLoop number of loops 3 6 3 11 6 20
aOmniv degree of omnivory 0.74 6 0.13 1.0 6 0.33
Ddiet deviation from intervality 0.33 6 0.20 0.22 6 0.15
Clust clustering coefficient 0.53 6 0.11 0.50 6 0.15

Note: For sources of empirical data, precise definitions of the properties, computational issues,
and individual values, see Rossberg et al. (2006a).

FIG. 7. Typical body-mass (M )–abundance (N ) relation-
ship in a model community, with parameters as given in the
Appendix. Points denote population sizes of individual species.
The dashed line corresponds to a linear regression (N ;

M�0.95). Symbols encode trophic levels, with plus signs for level
1 (producers), circles for level 2 (herbivores), squares for level 3
(carnivores), and triangles for level 4 (super carnivores). Log-
transformed body mass was originally measured in kilograms,
and abundance was the number of individuals.
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To test if bottom-up theories apply to the current

model, we considered a modification of the model where

the allometric exponent of consumer metabolic rates fr is

replaced by alternative values fr ¼ �0.35...�0.15. The

coefficients of the corresponding scaling laws were

adjusted in such a way as to keep rates constant at Mi

¼ 10�10 kg, near the lower end of the range occupied by

consumers in the model.

This modification is a compromise between leaving as

many parts of the model unchanged for better compar-

ison with the main simulation, and consistently imple-

menting a thought experiment to test bottom-up

theories. As a result, the allometric exponents for

producer physiological rates and for the background

scaling of attack rates (Eq. A.11 in the Appendix), on

one hand, and for consumer physiology, on the other

hand, differ. But the former exponents only weakly

affect the community structure. The value of the

allometric exponent for producer physiological rates

has little effect, since most producers have body masses

near Mmin, and the effective exponent for the attack

rates can be adjusted by the evolutionary mechanism.

The range of values over which fr can reasonably be

varied is limited. At the upper end (fr ¼�0.15) of the
range investigated, the number of consumer species Sc¼
16 6 9 is low, and lowering it further will destroy

system-level effects resulting from the interaction of

many species. At the lower end (fr¼�0.35) the range of
consumer body masses spreads out widely and is limited

from above by the condition Bi . Mi. Reducing fr
further would potentially bias the Bi. Furthermore,

species numbers become large (ScþSp¼144 on average)

and simulations difficult. In fact, the computations for fr
¼�0.35 had to be stopped prematurely after 29 000 sa or

716 hours of simulations. But we expect that the large

number of consumer species Sc ¼ 75 6 31 in the

communities for fr ¼ �0.35 mostly compensates a

possible losses of accuracy in k and kc due to the

reduced simulation time.

The simulation results displayed in Fig. 8 show no

obvious relationship between k and fr or between kc and

fr. A statistical analysis confirms this impression: Linear

regression yields k ¼ �0.032(27) � 0.06(10) fr (n ¼ 7,

standard errors in parenthesis, residual SD¼ 0.016) and

kc ¼ 0.036(36) þ 0.14(14) fr (residual SD ¼ 0.021).

(Estimates and standard errors have similar values by

chance.) The null hypothesis that k¼ k0 � fr with fixed

k0 is rejected (P¼ 0.0003), the corresponding hypothesis

for kc as well (P ¼ 0.0004). Instead, the data is

compatible with the null hypothesis that k and kc are

independent of fr (P¼ 0.3 and P¼ 0.4, respectively) with

means �0.017(6) for k and 0.002(8) for kc. The latter

value is consistent with zero (two-sided t test, P ¼ 0.8),

while the former is rather not (P ¼ 0.025).

Regression of size spectra.—For reasons discussed in

Definitions of scaling exponents, scaling exponents based

on size spectra become ill defined if the number of

species is small. Besides, producer biomasses exhibit a

larger variability than consumer biomasses (see Fig. 12),

leading to non-power law size spectra if producers are

included. The analysis here is therefore restricted to

consumer species, and for each value of fr the mean

slope m̄c is computed as the arithmetic mean of the slopes

of the normalized size spectra of only the n¼100 steady-

state communities with largest number of consumers Sc.

Choosing n¼ 50 or n¼ 200 does not alter the statistical

conclusions. Species were grouped in decimal size classes

to compute the spectra. Fig. 9 displays the slopes m̄c of

normalized steady-state size spectra (fr ¼�0.25) vs. Sc

and the n ¼ 100 cutoff.

Mean slopes m̄c for varying fr are shown in Fig. 10.

Again, there is no clear relationship. Linear regression

gives m̄c ¼�1.061(30) � 0.04(11) fr. Here, too, the null

hypothesis that m̄c¼ m0� fr with fixed m0 is rejected (P¼
0.0004) and the hypothesis of constant m̄c is accepted (P

¼ 0.7). The mean value of m̄c over all fr is �1.050(7),
slightly but significantly smaller than�1 (P¼ 23 10�4).

If consumer abundances would scale exactly as N ;

M
�1þkc and consumer species were distributed evenly

over the M axis, a relation mc¼�1þ kc would hold. The

fact that simulated spectra have slightly steeper slopes is

consistent with expectation, since there are more small

than large species. Slopes of empirical size spectra tend

to be slightly smaller than one as well (Quiñones et al.

2003).

Testing the top-down theory for

body-mass–abundance scaling

Distribution of species in the body-mass–biomass

plane.—In order to understand the weak dependence

of k on fr, it is instructive to inspect the underlying

distribution of species in the log(B)–log(M ) plane.

Steady-state densities in the log(M )–log(B) plane (Figs.

11–14) were estimated using a kernel estimator applied

with equal weight to all species contained in snapshots

taken over the evolutionary model steady states of all

four communities every 60 sa. In order to avoid biases

from the kernel, it was chosen data driven as a bivariate

normal density with covariance matrix 1.5C 3 N�1/3,

where C is the estimated covariance matrix of the data

and N the number of sample points. The exponent�1/3

FIG. 8. Simulation results for the scaling exponent k
(population growth rate) relating biomass (B) as B ; Mk to
body mass M for varying allometric exponent fr of consumer
physiological rates (circles, k [all species]; crosses, kc [consumers
only]). Horizontal and vertical axis are drawn at the same scale.
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guarantees a balance between stochastic errors and

errors due to smoothing for bivariate distributions.

The distribution of species in the log(B)–log(M ) plane

is shown in Fig. 11 (standard parameters). Apparent are

the region of high density at low body masses

corresponding to producer species, and the long tail

with roughly constant biomass stretching toward higher

body masses. A more detailed picture can be obtained

by splitting this distribution into the contributions from

different trophic levels. This has been done in Fig. 12.

The maxima of the distributions for all levels are located

near a line of constant B. The positions of the maxima

are listed in Table 3. The regression line through these

points yields a between-level slope of �0.037. For

herbivores and carnivores, the within-level slopes are

also close to zero (Table 3). For super carnivores, the

slope (0.144) is closer to 0.25 than to 0. However, Fig. 12

suggests that this is rather due to the extinction limit at

B¼M (i.e., N¼ 1) than due to the structure of the bulk

of the distribution.

Communities without carnivores.—To test the hypoth-

esis that the distribution of species in the log(B)–log(M )

plane is under top-down control, top-down effects were

disabled in the model in two steps. First, carnivory was

FIG. 9. Slopes of model consumer size spectra, mc, vs. consumer species richness, Sc, with parameters as in the Appendix. Error
bars indicate sample estimates of standard errors. The 100 communities to the right of the dashed line have an average slope of
�1.04.

FIG. 10. Simulation results for slopes of consumer size
spectra vs. the allometric exponent fr of consumer physiological
rates. Horizontal and vertical axes are drawn at the same scale.

FIG. 11. Estimated density of species in the body mass–
biomass plane for the model steady state, with parameters as
given in the Appendix. The four solid concentric lines
correspond to 80%, 60%, 40%, and 20% of the maximum
density. The dash-dotted line corresponds to 2.5%. Gray levels
encode intermediate densities. The solid line in the lower right
corner corresponds to the extinction limit at B¼M. The peak of
the distribution at low body masses, which is dominated by
producer species, is blurred by the smoothing window. With a
narrower window, the long tail toward higher body masses
would become invisible. For the actual density of producer
species, see the top panel of Fig. 12. Body mass was originally
measured in kilograms, and biomass density was measured in
kilograms per square meter.
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disabled. That is, in a modification of the original

model, the trophic interaction coefficients cki were set to

zero whenever the resource species k was a consumer.

The remaining trophic interactions were only between

consumers (herbivores) and producers. Fig. 13 shows

the distributions of producers and consumers in the

log(B)–log(M ) plane for this case. The bulk of the

distribution for consumers now stretches along an

energetic equivalence line (slope 1/4), rather than a line

of constant biomass as was the case in the full model.

The numerical value obtained for the slope by ordinary

least square regression is somewhat smaller (0.153),

which can be attributed to the comparatively large

scatter along log(B), but it is still closer to 1/4 than to

zero.

Communities without consumers.—Similar observa-

tions can be also made when disabling herbivory and

running the model only with producer species. Released

from the need to compensate losses by grazing at the

highest possible rate, larger producers can now evolve.

In fact, inter-producer competition is modeled such that

larger producers have a competitive advantage over

smaller producers (Eqs. A.5 and A.6 in the Appendix).

A large producer at its carrying capacity depletes a large

part of the resources of a small producer if there is

FIG. 12. Density of species in the body mass–biomass
plane, separated by trophic level, in the steady state of the
model, with parameters as given in the Appendix. The four
solid concentric lines correspond to 80%, 60%, 40%, and 20% of
the maximum density. The dotted line corresponds to 10%.
Gray levels encode intermediate densities. The solid line in the
lower right corner corresponds to the extinction limit at B¼M.
The dashed line in the upper left corner represents the carrying
capacity for producer species in monoculture. The two other
dashed lines are guides to the eye with slopes 0 and 1/4,
respectively. All auxiliary lines are reproduced identically in
Figs. 13 and 14. Horizontal and vertical axes are drawn at the
same scale. Body mass was originally measured in kilograms,
and biomass density was measured in kilograms per square
meter.

TABLE 3. Characteristics of distributions displayed in Fig. 12.

Trophic level

Maximum at
Slope of regression
of log(B) on log(M )log(M ) log(B/A)

Producers �12.8 �4.0 (�2.1)
Herbivores �10.3 �4.6 0.017
Carnivores �8.6 �4.8 0.050
Super carnivores �1.4 �4.6 0.144

Note: Abbreviations are: M, body mass of individuals; B,
total biomass of a species; A, system area.

FIG. 13. Density of species in the body mass–biomass
plane, separated by trophic level, for the model variant without
carnivores. See Fig. 12 for details.
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sufficient niche overlap, while a small producer at its

carrying capacity has only a weak effect on the resources

available to a large producer. As a result, producers

evolve to larger sizes, limited, in this model, only by the

system size or the hard upper cutoff Mmax. Producer

biomasses are close to their monoculture carrying

capacities (Fig. 14, upper dashed line), in good

agreement with the energetic equivalence rule.

That is, in the absence of consumption, the structure

of the producer community resembles rather a forest

than a planktonic community. As an aside, a similar

observation can be made if, in the model, producers are

allowed to evolve vulnerability traits that cannot easily

be matched by the foraging traits of consumers. In the

presence of consumption, trees can evolve only if

equipped with a sufficiently effective defense, just as

observed in nature.

The small scatter away from the energetic equivalence

line in Fig. 14 might at first be surprising. It can be

attributed to the simplicity of the producer sub-model.

Apart from the scaling of rates and carrying capacities

with body size, the population dynamics of different

plant species are identical when niche overlaps are

sufficiently small. The situation without carnivores (Fig.

13) is not quite as simple. Consumers differ in their

attack (or grazing) rates, the degree of adaptation to,

and the abundance of their resources. It is remarkable

that energetic equivalence is approximately realized in

these communities, too.

DISCUSSION

The results discussed above show that, in the model,

(1) the body-mass–abundance scaling exponent does not

change with the allometric scaling of the metabolic rates

in the form predicted by bottom-up theories, (2) rather,

the dependence of the exponent on the allometric scaling

of the metabolic rate is weak, (3) the scaling exponent of

abundance with body mass is close to �1 over a wide

parameter range, which implies that the biomass of

species does not depend systematically on their body

mass, and (4) this scaling breaks down if top-down

control is disabled. These results show that in the model

the top-down mechanism is active: the biomasses of

species are in an equilibrium mediated by adaptive

foraging.

Top-down control can explain why biomasses are

limited from above by some equilibrium value. Together

with a general heuristic argument, it can also explain

why biomasses are, on a logarithmic scale, located near

this equilibrium value. In order for the population of a

species to saturate at some value, a mechanism for

density-dependent population growth is necessary. In

the model, such density-dependent mechanisms set in

when a species either controls the abundance of its main

resources, such that an increase of its own abundance

will lead to a depletion of the resource, or when this

species is the main resource for some consumer, and thus

determines the abundance of the consumer and its own

consumption rate. But a species that is rare compared to

other, similar species will neither control the abundance

of its resources, nor determine the abundance of its

consumers. The population growth of a rare species does

therefore not depend on its own density. On the long

term, its population will either grow until it is not rare

anymore, or the species will go extinct. Thus, the

populations of all species are, on the log scale, near

the upper limit in the population-dynamical steady state.

In this context, it is worth noting that, because the

dynamics of rare species is linear, the precise value of the

biomass at which species invade or go extinct (here

chosen as Bi ¼Mi) does not matter.

We now come back to the third question posed in the

introduction and ask by which mechanism this upper

limit, the equilibrium biomass, is determined. For the

model, the following argument shows that this value

must be determined bottom-up by the carrying capacity

of producers. Since attack rates evolve freely, there are

only two effects in the model that involve biomass

densities as parameters: one is the extinction of rare

species at Bi ¼Mi, the other is the carrying capacity of

producers Bi ¼ Ki ; M
1=4
i

(see the Appendix). But the

extinction threshold does not affect equilibrium bio-

masses. This is suggested by the low density of species

near the line Bi¼Mi in Fig. 11 and the absence of such

species in Fig. 13, and can be confirmed in numerical

experiments varying the system size A (not shown).

Producer carrying capacities are the only possible

determinants of equilibrium biomass density remaining.

Thus, while the biomass equilibrium is a top-down

effect, the value of the equilibrium biomass density itself

is controlled bottom-up.

Remarkably, time-averaged producer biomasses nev-

ertheless remain about two orders of magnitude below

their monoculture carrying capacity. We do not have a

quantitative theory to predict this ratio, yet. Certainly,

the strong regular or chaotic oscillations of producer

biomasses (Fig. 5) are important. The maxima of these

oscillations always have to remain below the carrying

capacity, hence the mean values will be somewhat lower.

But competition for resources between producers and

consumption by herbivores will also play a role.

FIG. 14. Density of producers in the body mass–biomass
plane (model variant without consumers). See Fig. 12 for
details. Body mass was originally measured in kilograms, and
B/A was in kilograms per square meter.
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Taking the ratio between the monoculture carrying

capacity of the smallest producers and typical mean

biomasses actually reached into account by a correction

factor C’ 100, the equilibrium biomass is therefore give

by B ¼ Kp/C, where Kp is the carrying capacity for a

small producer (e.g., phytoplankton) species in mono-

culture. The latter can be estimated as Kp¼GPPmax/rp,

where GPPmax is the gross primary production of

monocultures, and rp is the maximum specific produc-

tion rate of small producers. Thus, when the top-down

mechanism is active, the prediction of the theory can be

summarized by the following formula for typical

abundances of species on the log scale:

N ¼
GPPmax

C3rp 3M
ð1Þ

where N and M are the abundance and body mass of an

arbitrary species at an arbitrary trophic level. We note

that, apart from C, the right-hand side of this formula

contains only quantities related to the biology of

individual species and the physical availability of the

limiting resource, while the left-hand side describes an

aspect of ecology resulting from the interaction of many

species. Predicting macroecological patterns based on

general biological and physical facts is perhaps the most

one can expect from a general macroecological theory.

CONCLUSIONS

Based on simulation results using a general multi-

trophic community model, we conclude that the top-

down mechanism is a viable alternative to bottom-up

mechanisms in controlling body-mass–abundance scal-

ing. The top-down mechanism naturally leads to

biomass densities independent of body mass, as they

are frequently observed.

Since, in the model, the top-down mechanism

operates at least partially on the evolutionary time

scale, it might be difficult to identify it in the field. On

population-dynamical time scales, one might simply find

ecological parameters ‘‘magically’’ adjusted such as to

yield constant biomass across trophic levels under

bottom-up control. More research is necessary to better

understanding the relative importance of evolutionary

and population-dynamical contributions to the top-

down mechanism.

Just as constant biomass is not always observed in

nature, and many communities do show patterns

compatible with the simple energetic equivalence rule,

our model did not yield constant biomass for every

parameter set considered. If, for example, parameters

were chosen such that no or only few carnivores could

evolve, we often observed a biomass dominance of large

herbivores. We would therefore caution to conclude that

the top-down mechanism is active in nature under all

circumstances. But we believe that, in view of the

ongoing debate and the unresolved issues surrounding

body-mass–abundance scaling, the idea deserves more

attention.

Code and data availability

The Cþþ simulation code and sample data generated

by the model are provided in The ESA Data Registry

(urn:lsid:esa:org:45:1).
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APPENDIX

Model details (Ecological Archives E089-031-A1).

DATA REGISTRY

The Cþþ simulation code and sample data generated by the model are registered (ESA Data Registry esa.45.1).

A. G. ROSSBERG ET AL.580 Ecology, Vol. 89, No. 2



The top-down mechanism for body mass – abundance scaling

A. G. Rossberg, R. Ishii, T. Amemiya, K. Itoh

Appendix A: Model Details

In the following, we give a compact technical definition of the full model, suitable for writing a

numerical simulation code. The parametrization and the motivations and implications of design

decisions are discussed in Section A2. Table A1 lists model parameters and variables.

A1 Model Definition

A1.1 Model states

Each consumer species i is characterized by its mean body mass Mi (Mmin ≤ Mi ≤ Mmax), its

current total biomass Bi(t), a D-dimensional vector of abstract quantitative vulnerability traits ~Vi,

another D dimensional vector ~Fi describing foraging traits and capabilities, its attack rate ai, and a

switching exponent bi. Producer species i are characterized by Mi, Bi(t), ~Vi, and a D-dimensional

vector ~Gi describing the non-trophic producer niche.

A community is fully characterized by its constituent consumers and producers. The complete

model state consists of four communities.

A1.2 Population dynamics

Consumer population dynamics is of the standard form

dBi

dt
=

eating
︷ ︸︸ ︷

ε
∑

species k

fkiBi −

being eaten
︷ ︸︸ ︷

∑

consumers l

filBl −

respiration
︷︸︸︷

riBi . (A.1)

The the functional response fki has been constructed in such a way as to satisfy three conditions.

If there is only a single resource species or if all resource abundances are scaled by the same factor,

the standard Type II form should be recovered, because Type II responses are overwhelmingly

observed (Jeschke et al., 2004). If, on the other hand, resource abundances vary disproportionally, the

relative intake should follow the power-law form fki/fli ∼ (Bk/Bl)
bi which is found in experiments

(e.g., Greenwood and Elton, 1979; Elliott, 2004). Finally the biomasses of species not contributing to

the diet should not affect the functional response. These conditions are satisfied by

fki =
ai (ckiBk)

bi

βbi−1
i + Tiai

∑

j(cjiBj)bi

with log βi =

∑

j cjiBj log cjiBj
∑

j cjiBj
, (A.2)

with ai and Ti representing the attack rate and the “handling time” of consumer i, and the cki

denoting trophic interaction coefficients.

However, this form fails to satisfy a “common sense” condition pointed out by Arditi and

Michalski (1995) and Berryman et al. (1995): Dynamics is not invariant if a resource population is

formally split into two populations with identical traits.

This problem can be overcome by organizing resources k into groups γ = Γ(k) of similar

species, within which consumers cannot distinguish when switching prey. Among group members,
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consumers forage proportional to the resource availability ckiBk. The groups are formed, for

simplicity, by dividing the D-dimensional trophic niche space into a lattice of cells with lattice

constant u, and assigning all species with a vulnerability ~Vk in the same cell to the same group.

Denote by Aγi =
∑

Γ(k)=γ ckiBk the total availability of resource species in group γ to consumer i.
Then, a second, “common sense”, form of the functional response is given by

fki =
ckiBk

AΓ(k)i
·

ai A
bi

Γ(k)i

βbi−1
i + Tiai

∑

γ Abi

γi

with log βi =

∑

γ Aγi log Aγi
∑

γ Aγi
. (A.3)

When no two ~Vk are identical, which is practically always the case with the evolutionary dynamics

given below, the second from of the functional response goes over into the first form (A.2) in the

limit of small cells u → 0.

The trophic interaction coefficients are composed as

cki =

trophic trait matching
︷ ︸︸ ︷

exp

[

−
|~Vk − ~Fi|

2

2w2
t

]

×

small resource cutoff
︷ ︸︸ ︷
(

Mk

Mi

)α

×

{

large resource cutoff
︷ ︸︸ ︷

exp(−Λ Mk/Mi) for consumer k,

1 for producer k,
(A.4)

where the form of the last two factors follows Claessen et al. (2002).

Producer population dynamics is modeled as

dBi

dt
=

competition, resource exploitation
︷ ︸︸ ︷

σi exp
(

−
∑

producers j

dijBj

)

Bi −

being eaten
︷ ︸︸ ︷

∑

consumers k

fikBk −

losses
︷︸︸︷

liBi , (A.5)

The exponential form of the factor describing the availability of resources in the first term is inspired

by the attenuation of light (Monsi and Saeki, 1953), but it could describe the depletion of other

resources as well.

The matrix dij describes producer competition and self-interaction. Mutualistic and parasitic

producer-producer interactions are not included in the model. The niche overlap between two

producer species i, j is modeled as exp[−|~Gi − ~Gj |
2/2w2

r ], with wr denoting the producer niche

width. This leads to the resource competition matrix

dij = djj

producer niche overlap
︷ ︸︸ ︷

exp

[

−
|~Gi − ~Gj |

2

2w2
r

]

. (A.6)

The species-specific coefficients follow allometric scaling laws djj , lj ∼ M ζ
j and

rj , T
−1
j ∼ M ζr

j , with ζ = ζr = −1/4 in the standard case.

A1.3 Species evolution

Next, we describe the implementations of “speciations” and “invasions” in the model. As explained

in Sec. 2.2 of the main text, these are extremely coarse-grained descriptions of the actual evolutionary

processes. To model a “speciation”, the properties of a descendant species j are obtained by mutating

the properties of its ancestor i. The biomass of the descendant species is given by
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Mj = dξMi (A.7)

with ξ denoting a standard-normal random variable, newly sampled at each use. If Mj falls outsize

the range [Mmin, Mmax], it is projected back into this range by the operations Mj → M2
min/Mj or

Mj → M2
max/Mj , which correspond to simple reflections on the log scale (Rossberg et al., 2006).

Traits mutate as

~Vj =

(

~Vi − ~V 0
j

)

+ µV
~ξ

√

1 + µ2
V /σ2

V

+ ~V 0
j , (A.8)

~Fj =
~Fi + µF

~ξ
√

1 + µ2
F /σ2

F

, (A.9)

~Gj =
~Gi + µG

~ξ
√

1 + µ2
G/σ2

G

, (A.10)

with ~V 0
j = (sj , 0, 0, 0, 0), sj = s/2 for producers and sj = −s/2 for consumers, to model the

distinct characteristics of the members of the two kingdoms as resources. The ~ξ denote standard

normal random vectors, the µs and σs are model parameters.

The attack rate of the descendant species is given by

aj =

(
Mj

Mi

)ζ

× a0 × ãξ
0 × ai (A.11)

This inheritance rule has the following interpretation: The first factor implies a background

allometric scaling of attack rates with body mass, ai ∼ M ζ
i , the second factor, with 0 < a0 < 1,

describes a degeneration of aggressivity in the absence of evolutionary pressures, and the third factor

contributes a random mutation. Equation (A.11) is set up to be scale free in the sense that it does not

imply a typical order of magnitude for the attack rates ai or the allometric coefficients

ai (Mi/M0)
−ζ . This follows from the fact that all three parameters ζ, a0, ã0 in Eq. (A.11) are

dimensionless, while the ai have dimensions of (time × biomass)−1.

The heredity of switching exponents is assumed to be negligibly small. Thus bj is simply given

by

bj = b0 + b̃0ξ (A.12)

with constant b0 and b̃0.

Except for the attack rates, this model of speciation implies a simple neutral theory: In the

steady-state distribution resulting from speciations as above and random extinctions, log body masses

are distributed uniformly in [log Mmin, log Mmax], and trait vectors are given by

~Vi = σV
~ξ + ~V 0

i , ~Fi = σF
~ξ, ~Gi = σG

~ξ. (A.13)

To model the “invasion” of species, two pools of representative species are assembled from the

other three communities as described below, one for producers and one for consumers. The

3



properties of an invading species are obtained by picking one species from the pool at random, and

mutating it in the same way as for speciations. The additional mutation represents evolutionary

changes occurring in the surrounding, not explicitly modeled, communities (Fig. 1).

If a species pool is empty, which happens only in the initial phase of the simulation with the

parameters used here, an invading species is sampled from the steady state of the neutral theory, with

the attack rate set to ai = astart(Mi/M0)
ζ with constant astart.

Initial biomasses Bj of speciating or invading species are set to Mj .

A1.4 Community evolution

The community evolves by repeated additions (successful speciations or invasions) of a producer and

a consumers species and the subsequent relaxations to the population-dynamical steady state. If a

species reaches Bi < Mi during the relaxation, it is removed as extinct. A speciation or invasion is

successful (and hence an addition) if its population initially grows (dB/dt > 0). Speciation and

invasions are repeatedly attempted until successful3. At each repetition, the attempted addition is an

invasion with probability κ/(κ + Sp), were Sp denotes the producer species abundance, and

otherwise a speciation from a producer species chosen randomly form the local community.

Correspondingly for additions of consumers.

Simulations are initiated with four empty communities and run until an evolutionary steady state

is reached.

A1.5 Construction of representative species pools

Representative species pools for invasions of communities by producers are constructed by

combining all producer species from the other three modeled communities, and correspondingly for

consumers. To reduce waiting times when parallelizing the simulations, the information about the

species compositions of the other communities is updated only after every 30 additions of one

consumer and one producer, i.e., a total of 60 s.a., into each of the four communities.

A1.6 Numerical implementation

With body masses spanning 12 to 14 orders of magnitudes, and the corresponding time scales

spanning tree to four, special care was required with the numerical implementation of the

population-dynamical sub-model. For a stable, accurate, and fast numerical integration, the

population-dynamic equations (A.1) and (A.5) were first transformed to new dependent variables

B̂(t) = lnB(t), and then integrated using the adaptive-order, adaptive-stepsize, implicit ODE solver

CVODE included in the SUNDIALS package (Hindmarsh et al., 2005).

In order to approach the population-dynamical steady state, simulations were continued until

either limit-cycle oscillations or chaotic oscillations were detected using heuristic algorithms, or until

a long time TSS had passed without detecting either, which usually indicates the vicinity of a fixed

point. As mentioned above, species i with Bi < Mi were removed as locally extinct during

simulations.

3In about 2% of all cases, no species with positive growth rate can be found for a given population-dynamical state, even

after 1000 attempts. In order to avoid blocking the simulations, the condition dB/dt > 0 is then dropped, and the addition

is counted as “successful”, even though the inserted species will immediately go extinct.
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The four communities were simulated on separate processors. After every 60 s.a. in each

community and the subsequent population-dynamical relaxation to the steady state, the full model

state was saved for an update of species pools among communities (see Sec. A1.5) and for later data

analysis.

A2 Model design and parameter choices

In this Appendix, the rational behind several aspects of model design and parameter choices is

explained. It begins with a discussion of two aspects of niche-space structure: phylogenetic

correlations of trophic traits and the number of dimensions of the niche space. Then, the

parametrization and allometry of consumer and producer population dynamics is derived from

empirical data; followed by a brief account of the parametrization of other aspects of trophic

interaction. For some aspects of the model, most of them related to the geometry of niche space,

satisfactory empirical data do not seem to be available. These have been adjusted “by hand”

following the criteria discussed at the end of this Appendix.

A2.1 Phylogenetic correlations

The staring point for constructing the present model was the matching model (Rossberg et al., 2006).

In the matching model, food webs are constructed by a branching process that models the evolution

of the member species. It is a neutral theory, in the sense that evolution is undirected, independent of

the fitness or population dynamics of species. Trophic links are determined by matching abstract

traits determining the vulnerabilities of potential resources to consumption with abstract traits

determining the foraging capabilities and strategies of consumers.

Fitting the matching model to empirical data, Rossberg et al. (2006) found that the heredity of

vulnerability traits in local “speciations” (sensu Sec. 2.2) is considerably larger than of foraging

traits: the median (average) of the decay rate of correlations in the vulnerability traits over all

predatory food webs investigated is 1.4% per “speciation” (1.8%), while correlations between

foraging traits decay by 22% per “speciation” (36%). This observation was interpreted as indicating

that the evolutionary pressure through competition for resources is stronger than the pressure through

indirect competition due to common predators. L.-F. Bersier (priv. comm.) suggested an alternative

interpretation, which is employed in the present model: Foraging traits are simply more easily

adjustable than vulnerability traits, and have higher variability.

In the neural theory for the present model, the correlation-decay rate of vulnerability traits ~Vi is

1 − (1 + µ2
V /σ2

V )−1/2 ≈ µ2
V /2σ2

V per speciation, where µV is the magnitude of typical mutations in

speciations, and σV is the steady-state variability of traits. (Similar results hold for foraging traits ~Fi

and producer-interaction traits ~Gi.) However, in the presence of evolutionary pressures, both the

magnitude of mutations and the steady-state variability for the ~Vi will increase, and the variability of

foraging traits is restricted to the variability of the corresponding vulnerability traits, and all these

quantities are difficult to predict in advance. Thus, reproducing the observed patterns of trait

correlations quantitatively is not easy. Yet, in order to stay in line with observations, parameters were

chosen such as to keep the decay of correlations of foraging traits large, (µF /σF )2 = O(1), and the

decay of correlations of vulnerability traits small, (µF /σF )2 = O(1%). Regarding the correlations

of ~Gi in speciations, no empirical data could be obtained.
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A2.2 Dimensionality of niche space

For the matching model, it has been argued that the dimensionality of the trophic niche space does

not matter much, as long as it is not too small (Rossberg et al., 2006). An important effect of high

dimensionality D, i.e., of many relevant traits, is that different consumers are likely to consume the

same resources for different reasons (Rossberg, 2007): Consider the situation that two consumers 1

and 2 have foraging traits ~F1 and ~F2 that are both close to the vulnerability traits ~V3 of resource 3,

such that the factor eki := exp(−|~Vk − ~Fi|
2/2w2

t ) entering the interaction coefficients Eq. (A.4) is

comparatively large (an exact match is very unlikely). Then, if ~F1 is also close to another, unrelated
~V4, this does not imply that ~F2 is likely to be close to ~V4, too, if the number of dimensions is large.

This is because then ~F1 and ~F2 are likely to approach ~V3 from different directions. Mathematically,

the relevant quantity is the correlation ρD between the two products e3,1 × e3,2 and e4,1 × e4,2. When

evaluating this correlation numerically, for example, with independent, D-dimensional, multivariate

standard normal ~F1, ~F2, ~V3, and ~V4 and the niche width wt = 0.446 (Tab. A1), one obtains

ρ1 = 0.25, ρ2 = 0.16, ρ3 = 0.096, ρ4 = 0.055, and ρ5 = 0.030. The correlations decay

exponentially, roughly by a factor 0.6 with each additional dimension.

We find that the standard error in estimating ρ5 from N independent quadruples of samples is

approximately ρ5 × 150N−1/2, that is, detecting that ρ5 6= 0 requires about (2 × 150)2 = 90000
independent quadruples. Since typical model food webs consist only of ∼ 100 species, and these are

phylogenetically correlated, it is fair to assume that when choosing D = 5 the phylogenetic

correlation structure underlying food-web topology is hardly distinguishable from that with any

larger number of dimensions in the model. Here, D = 5 is used. With an even larger number of

dimensions, the volume of the accessible niche space, which scales as the variability of vulnerability

traits to the Dth power, and, as a result, the number of species, would be difficult to control.4

A2.3 Consumer physiology

Consumer population dynamics is characterized by the gross conversion efficiency ε, respiration rates

ri, “handing times” Tk, attack rates ak, and the trophic interaction coefficients.

To determine the first three parameters, consider a situation of abundant resources (ad libitum

feeding) for species i. Then, for both forms of the functional response (A.2), (A.3), the summed

functional response reduce to
∑

l fli = 1/Ti and, in the absence of predation, population i increases

at its maximal growth rate rmax,i = ε/Ti − ri.

While producing biomass at a rate P = (ε/Ti − ri)Bi, species i is, by the passive consumption

terms of Eqs. (A.1) and (A.5) summed over all resource species, consuming biomass at a rate Bi/Ti.

Thus, the net conversion efficiency is ε0 = ε − riTi. We set ε0 = 0.2, a typical empirical value for

poikilotherms (Peters, 1983).

The term −riBi in Eq. (A.1) represents all losses other than by passive consumption. Usually,

this will be dominated by respiration, losses by natural death are negligibly small.5 Observed values

for the ratio P/R of production to respiration vary from ∼ 10 or higher for bacteria to ∼ 0.01 for

homeotherms (McNiel and Lawton, 1970). We use the value found by McNiel and Lawton for

“short-lived poikilotherms”, P/R = 0.8. Altogether, these considerations lead to

4For the neutral matching model (Rossberg et al., 2006) a much higher number of traits is used in order to reduce

discretization effects, since, contrary to the situation here, the matched traits are binary (yes/no). The number of species in

this model does not depend on niche-space geometry.
5Since the model does not describe birth or death of individuals, effects of demographic stochasticity are not included.

They would have little effect on the results, since most populations are large (Fig. 12).
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ε =

(

1 +
R

P

)

ε0, Ti =
ε0

rmax,i
, ri =

R

P
rmax,i. (A.14)

The maximum consumer population growth rate rmax,i is known to follow an allometric scaling law.

Based on the result of Savage et al. (2004) for intermediate temperatures, we set

rmax,i = 0.81 yr−1(Mi/M0)
ζr , with ζr = −1/4.

In correspondence with the range of switching exponents obtained by Greenwood and Elton

(1979) in a re-analysis of 14 laboratory experiments, we set the mean switching exponent to b0 = 1.5
and its standard deviation to b̃0 = 0.3. Field data on prey switching still seem to be rare (Elliott,

2004).

A2.4 Producer physiology and interaction

The model for producer population dynamics Eq. (A.5) implies a maximal population growth rate for

producers σmax,i = σi − li, which is set to σmax,i = σmax,0 (Mi/M0)
−1/4 with σmax,0 = 0.208 year−1

after Niklas and Enquist (2001). The ratio between the maximum growth rate σi − li and the

respiration rate li was set to (σi − li)/li = (1 − 0.1)/0.1 = 9 as a plausible value.6

To determine the diagonal elements of the resource competition matrix dij , Eq. (A.6), we make

use of the fact that the maximal production of producers at their carrying capacity Bi = Ki is

uncorrelated to their body mass (Enquist et al., 1998). Therefore, carrying capacities are chosen such

that the maximal gross primary production defined by GPPmax = σi Ki is constant. (Since the losses

described by the factors li include both respiration and litter fall, the model does not define the net

primary production.) As a convention, GPPmax and the Ki are here understood as extensive

quantities, that it, they are proportional to the area A covered by each of the modeled communities.

By Eq. (A.5), the carrying capacity of monocultures of producers is Ki = (1/dii) log(σi/li), which,

in turn, determines the diagonal elements of the competition matrix as

dii = σi
log(σi/li)

GPPmax

. (A.15)

A2.5 Other aspects of trophic interaction

Prey switching facilitates coexistence in the model, especially between producers. In particular, we

found that with the first form for the functional response, or the second form with u → 0, which

imply switching between any pair of resources, communities sometimes fall into unrealistic

“gardening” states where a few tens of herbivores mediate coexistence of thousands of producers.

With our choice u = 1 such states are not observed. Further disabling switching by increasing u
would strongly reduce the number of coexisting species.

A value of Λ ≈ 0.03 for the lower cutoff for the predator-prey size ratio is suggested by the

evaluation of a large set of empirical data by Brose et al. (2006). The extension of the body mass

range occupied by consumers sensitively depends on the exponent α that characterizes the decay of

cacheability with large predator-prey mass ratios. With α = 0, arbitrary large body sizes up to Mmax

are observed. With the parameter set used here, the choice α = 0.075 restricts body masses to

approximately 10 kg.

6 This ratio should not be confused with the ratio of producer production to respiration in the steady state, which is

routinely measured.
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A2.6 Model calibration

The reader will notice that some of the parameters listed in Tab. A1 have rather odd values, even

though they are not directly based on empirical data. There are several reasons.

First, the way in which the parameter space is spanned in the computer model is slightly different

from the way chosen here. For example, trophic niche widths had been expressed in therms of

trophic niche densities ∼ w−D
t , w−D

r , but this would here only confound notation.

Second, some parameter calibration is required in order to obtain a reasonable community

structure in the steady state. It was attempted (i) to keep the numbers of producer and consumer

species similar; (ii) to make sure that some consumers are omnivores sensu stricto, eating producers

and consumers alike, while others are not (this can be achieved by controlling the ranges of

vulnerability traits covered by producers and consumers in trophic niche space); (iii) to keep the

fraction of top-predators around 0.2 as observed, (iv) to obtain a large number of trophic links per

consumer, and (v) to have consumers cover a broad range of body masses, but to avoid producing a

Loch Ness Monster or hitting Mmax.

Third, the computation time required to reach the steady state increases at least with the square of

the number of species simulated. Simulations of systems with about 100 species per community take

several days to reach the steady state. On the other hand, a large number of species is desired in order

to reproduce collective, system-level ecological phenomena. Therefore, the steady-state number of

species must be controlled in a narrow range. But the number of species appears to depend on most

system parameters in a complicated way, and initial transients provide only little clues where it will

ultimately settle in. Adjusting one parameter usually requires adjusting a second one in order to keep

the number of species fixed, and the outcome is not always predictable.

Fourth, some parameter values were found to yield reasonable results at an earlier stage of model

development, and were later kept fixed for simplicity.

Summarizing, much effort has been made to calibrate the model such as to obtain reasonable

community structures within the computational limitations. The rational was that the demonstration

of the top-down mechanism in a model that exhibits strong artifacts would not exclude the possibility

that these artifacts were required for the mechanism to work. But in fact, rather the contrary seems to

be true: Observations during the model calibration indicate that the requirements on parameters for

the top-down mechanism to work are less restrictive than the requirement for achieving all the other

community properties listed above.
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Table A1: Model parameters and state variables

Symbol Description Important Range or

Equations Standard Value

A system area 1000 ha
Mi body mass of species i A.7 Mmin ≤ Mi ≤ Mmax

Mmin smallest allowed body mass A.7 10−13 kg

Mmax largest allowed body mass A.7 103 kg

d variation of body mass in speciations A.7 3.0

M0 allometric base unit 1 kg
Bi biomass of species i A.1,A.5 Bi ≥ Mi

ζ general allometric exponent -1/4

ζr allometric exponent consumer metabolism -1/4

Ti resource “handling” time of consumer i A.2,A.3,A.14 Ti > 0
ai attack rate of consumer i A.2,A.3,A.11 ai > 0
a0 degeneration of attack rates in speciations A.11 0.9

ã0 variation of attack rates in speciations A.11 1.2

astart attack rate initializer Sec. A1.5 107 m2kg−1yr−1/A
bi switching exponent of consumer i A.2,A.3,A.12 see below

b0 mean switching exponent A.12 1.5

b̃0 std switching exponent A.12 0.3

u resolution of resources when switching A.3 1

ε gross conversion efficiency A.1,A.14 0.45

ε0 net conversion efficiency A.14 0.2

P/R consumer production/respiration ratio A.14 0.8

ri respiration rate of consumer i A.1,A.14 ri > 0
cki trophic interaction coefficients A.2,A.3,A.4 cki > 0
wt trophic niche width A.4 0.446
α small resource cutoff exponent A.4 0.075

Λ min predator-prey mean body mass ratio A.4 0.03

rmax,i max population growth rate of consumer i A.14 0.81 yr−1(Mi/M0)
ζr

GPPmax monoculture GPP A.15 103 kg yr−1m−2 × A

σmax,i max population growth rate of producer i Sec. A2.4 0.208 yr−1 (Mi/M0)
−1/4

li loss rate of producer i A.5 σmax,i/9
σi gross population growth rate of producer i A.5 σmax,i + li
dij producer resource competition matrix A.6 dij > 0
wr producer niche width A.6 0.976
TSS max population-dynamical relaxation time Sec. A1.6 30 yr
D dimensionality of niche spaces Sec. A2.2 5
~Vi vulnerability traits of species i A.8 ~Vi ∈ R

D
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Symbol Description Important Range or

Equations Standard Value
~Fi foraging traits of consumer i A.9 ~Fi ∈ R

D

~Gi niche traits of producer i A.10 ~Gi ∈ R
D

s producer-consumer trait separation A.8 1.4

σV nominal variability of ~Vi A.8 0.2

σF nominal variability of ~Fi A.9 3.0

σG nominal variability of ~Gi A.10 1.0

µV mutation of ~Vi in speciations A.8 0.025

µF mutation of ~Fi in speciations A.9 6.0

µG mutation of ~Gi in speciations A.10 0.025
κ invasion pressure Sec. A1.4 1.4
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