The "Top" Priority at the LHC

Tao Han University of Wisconsin-Madison (LHC Workshop, Princeton, March 21, 2007)

With Vernon Barger and Devin Walker hep-ph/0612016 Rakhi Mahbubani, Devin Walker and Lian-Tao Wang, to appear.

The "Top" Priority at the LHC – Top quark: A Window to New Physics

Tao Han

University of Wisconsin-Madison

(Tsinghua University, Jan. 8, 2008)

With Vernon Barger and Devin Walker hep-ph/0612016 Rakhi Mahbubani, Devin Walker and Lian-Tao Wang, to appear.

An exciting time:

The triple "Coincidence"

(1). A highly successful theory: the Standard Model.

The triple "Coincidence"

- (1). A highly successful theory: the Standard Model.
- (2). Terascale new physics must exist!

The triple "Coincidence"

- (1). A highly successful theory: the Standard Model.
- (2). Terascale new physics must exist!
- (3). Upcoming the LHC: Uncover the underlying physics.

Terascale Physics at the LHC

• Unitarity argument for $W_L W_L$ scattering

 \Rightarrow New physics must show up at the Terascale: A Higgs boson $m_H < 1$ TeV or alike.

• Naturalness argument for a m_H or EW scale

 \Rightarrow New physics needed beyond H^0

Gauge coupling unification

 \Rightarrow New threshold at the Terascale.

Particle dark matter

 \Rightarrow WIMP at the Terasacle natural.

Terascale Physics at the LHC

• Unitarity argument for $W_L W_L$ scattering

 \Rightarrow New physics must show up at the Terascale: A Higgs boson $m_H < 1$ TeV or alike.

• Naturalness argument for a m_H or EW scale

 \Rightarrow New physics needed beyond H^0

Gauge coupling unification

 \Rightarrow New threshold at the Terascale.

Particle dark matter

 \Rightarrow WIMP at the Terasacle natural.

What exact form is it realized in nature?

Fundamental scalar in a weakly coupled theory? (SUSY or alike) Composite Higgs and strongly interacting dynamics? (TC, Little Higgs) Low scale string/gravity? (Large extrad dim., RS, ...)

Dark matter connection? (WIMP: LSP ...)

The LHC will tell!

In anticipation of the LHC

Re-discover the SM!

LHC is a top factory:

Event rate: 800K $t\bar{t}$ / fb⁻¹, or 8 Hz @10³⁴/cm²/s ! From Tevatron to LHC: $t\bar{t}$ increased by 100; EW increased by 10.

Top quarks at the LHC:

Production well predicted in the SM: At the LHC: $gg \ 90\%$, $q\bar{q} \ 10\%$; (At the Tevatron: $gg \ 10\%$, $q\bar{q} \ 90\%$.)

Why Top Quarks? bread & butter:

- Top quark exists,
 as the heaviest particle in the SM.
- *m_t* is the most precisely
 measured quark mass —
 Important for precision physics
 of the SM and beyond:

Top decays before it hadronizes:

Good test ground for QCD, spin correlation, couplings, CP property...

• Possible deep connection to electroweak symmetry-breaking: $m_t \approx v/\sqrt{2}$.

Why Top Quarks? A window to new physics

- Largest Yukawa coupling (proportional to $m_t, \cot \beta$): $H, A \rightarrow t\bar{t}.$
- Strong Dynamics (TC, Topcolor/Top See-Saw, Little Higgs): $\rho_{TC}, \ \eta_{TC}, \ \pi_{TC}, \ Z_L \to t\bar{t}.$
- Extra-dimensions (warped and universal): $g_{KK}, \ G_{KK} \rightarrow t\bar{t}.$
- Flavor physics at high scale: $t \rightarrow Zc, \ \gamma c, \ gc \ (u)$.
- Supersymmetry (\tilde{t} often the lightest squark): $\tilde{t}_R \rightarrow t \tilde{\chi}^0$.
- LH with T-parity (theories with naturalness argument): $T \rightarrow t A^0$.
- To the least, precision couplings: $t\bar{t}Z$, $t\bar{t}H$; $t\bar{t}\gamma$, g; $t\bar{b}W$...

The Remainder of the Talk

- Search I: tt Resonant Production
 - Backgrounds
 - Reconstruction Methods
 - Search for New Physics
- Search II: $t\bar{t}+E_T$ Signal
 - Backgrounds
 - Signal Events Reconstruction
- Conclusions

Search I: $t\bar{t}$ **Resonant Production**

- "Bump searches" in the $M_{t\bar{t}}$ distribution.
- Representative features:

Model Class	Spin-0	Spin-1	Spin-2
Technicolor/Topcolor/RS	imes (nrw/brd)	imes (nrw/brd)	imes (narrow)
MSSM	imes (narrow)		
Little Higgs	imes (narrow)	imes (narrow)	

A model-independent approach:
 Parametrize each resonance with a few parameters:
 m, Γ, σ-normalization, chirality, CP violation

Strategy

To maximumly extract the resonant information: (Spin, chirality couplings, CP properties ...) \implies Need full kinematics and top-ID.

Using the clean channel: "Semi-leptonic"

 $t\bar{t} \to b\ell^{\pm}\nu, \ bjj \to 2b \ 2j \ \ell^{\pm} \not\!\!\!E_T.$

- Total Hadronic Channel: $\sigma_{t/tbar} \times (6/9)^2 \implies$ large background, no top-ID ...
- Semi-Leptonic Channel: $\sigma_{t/tbar} \times 6/9 \times 2/9 \times 2 \Longrightarrow$ current interest.
- Pure leptonic Channel: $\sigma_{t/tbar} \times (2/9)^2 \Longrightarrow$ small rate, incomplete kinematics ...
- Semi-leptonic/hadronic ratio: 2/3
- Leptonic/hadronic ratio: 1/9
- We propose new/refined top reconstruction methods.
- Take advantage of the tops being highly boosted.

Background Considerations

- W + jets, Z + jets, WW, WZ, ZZ backgrounds:
 - Consider table of efficiencies reproduced from the ATLAS TDR (Volume II, p. 624). The expected events are in the last column.

Process	Efficiency with	As before,	As before,	Events
	$p_T^l > 20~{ m GeV}$	with	with	per 10 ${ m fb}^{-1}$
	$E_T \text{miss} > 20 \text{ GeV}$	plus $N_{\rm jet} \ge 4$	plus $N_{\mathrm{b-jet}} \geq 2$	
	cuts	cut	cut	
$tar{t}$ signal	64.7	21.2	5.0	126,000
W+ jets	47.9	0.1	0.002	1658
Z+ jets	15.0	0.05	0.002	232
WW	53.6	0.5	0.006	10
WZ	53.8	0.5	0.02	8
ZZ	2.8	0.04	0.008	14
Total Background				1922
S/B				65

- W + jets, W + 4 jets, Wbb + 2j, Wbb + 3j backgrounds:
 - Efficiencies from CMS TDR (Volume II, p. 238).

	Semi-	Other				
	leptonic $t\bar{t}$	$t \overline{t}$	W+4j	Wbb+2j	Wbb+3j	S/B
Before cuts	365k	1962k	82.5k	109.5k	22.5k	5.9
L1+HLT Trigger	62.2%	5.3%	24.1%	8.35%	8.29%	7.8
Four jets $E_T > 30$ GeV	25.4%	1.01%	4.1%	1.48%	3.37%	9.9
$p_T^{ m lepton}$ cut	24.8%	0.97%	3.9%	1.41%	3.14%	10.3
b-tag criteria	6.5%	0.24%	0.064%	0.52%	0.79%	25.4
Kinematic fit	6.3%	0.23%	0.059%	0.48%	0.72%	26.7
Cross section (pb)	5.21	1.10	0.10	0.08	0.05	26.7
Scaled to $\mathcal{L} = 1 f b^{-1}$	5211	1084	104	82	50	26.7

- Reconstructing the hadronic decay (\overline{t} , say):
 - From ATLAS collaboration (ATLAS TDR,Volume II, p. 625): The \bar{t} is reconstructed via the hadronic decay $\bar{b}jj$. The wrong b may have some contamination (shaded area).

• At high $M_{t\bar{t}}$, the tops are boosted. That helps select $(\ell^+ b)$, rather than $(\ell^+ \bar{b})$.

• Lepton isolation does not effect the signal appreciably: $\Delta R > 0.4$

Event Selection

When indicated we apply the following acceptance cuts:

- Jets: $p_T > 20~{
 m GeV}, |\eta_j| \le 2.5$
- Leptons: $p_T \geq 20~{\rm GeV}, ~|\eta_l| \leq 2.5, ~\Delta R > 0.4$
- $E_T \ge 20$ GeV (tightened the ATLAS cuts)
- Minimum Transverse Mass: $M_T(t\bar{t}) > 600 \text{ GeV}$
- Detector effects (Gaussian smearing) taken into account:

$$\frac{\Delta E}{E} = \frac{a}{\sqrt{E/GeV}} \oplus b.$$

- CMS ECAL resolution: a = 0.03, b = 0.005
- CMS HCAL resolution: a = 1.1, b = 0.05
- pT CMS resolution: $a = 1.5 \times 10^{-4}$, b = 0.05

ATLAS/CMS simulations:

SM processes not a threat to the top-quark sample.

Kinematics Reconstruction

Present two schemes:

Reconstruction of the missing neutrino!

- $(M_W, m_t)^*$ scheme: the masses as known inputs.
- Small angle scheme: t decay products collimated.

*Similar to the three-constraint kinematic fit used at the Tevatron to determine the top mass. CDF Collaboration, Phys. Rev. Lett. **80** (1998) 2767; D0 Collaboration, Phys. Rev. **D27** (1983) 052001.

(M_W, m_t) Scheme

Step 1: Reconstruct W boson with the constraint: $M_W^2 = m_{l\nu}^2$. Yields two-fold ambiguity for the neutrino longitudinal momentum:

$$p_{\nu L} = \frac{A \, p_{eL} \pm E_e \sqrt{A^2 - 4 \, \vec{p}_{eT}^2 \, \not\!\!\!E_T^2}}{2 \, p_{eT}^2}, \quad \text{where} \ A = M_W^2 + 2 \, \vec{p}_{eT} \cdot \not\!\!\!E_T^2.$$

• If $A^2 - 4 \vec{p}_{eT}^2 \not{E}_T^2 \ge 0$, then choose the value that reconstructs $m_t^2 = m_{l\nu b}^2$. • If not, go to Step 2.

Expected distributions from this reconstruction alone:

(M_W, m_t) Scheme Cont'd

Step 2: If Step 1 gives complex solutions, first reconstruct top quark with: $m_t^2 = m_{l\nu b}^2$. Yields two-fold ambiguity for the neutrino longitudinal momentum:

$$p_{\nu L} = \frac{A' p_{blL} \pm \sqrt{p_{blL}^2 A'^2 + (E_{bl}^2 - p_{blL}^2) (A'^2 - 4E_{bl}^2 \not\!\!\!E_T^2)^2}}{2 (E_{bl}^2 - p_{blL}^2)},$$
$$A' = m_t^2 - M_{bl}^2 + 2 \, \vec{p}_{blT} \cdot \not\!\!\!\!E_T.$$

• If $p_{blL}^2 A^{'2} + (E_{bl}^2 - p_{blL}^2) (A^{'2} - 4E_{bl}^2 \not\!\!\!E_T^2)^2 \ge 0$, then choose $M_W^2 = m_{l\nu}^2$. • If not, go to Step 3.

Expected distributions from this reconstruction alone:

(M_W, m_t) Scheme Cont'd

- Step 3: If the solution fails to reconstruct for both times, the event is discarded.
 - The discarded event rate $\sim 16\%$.

 Choosing to keep the discarded solutions (by taking the real components) results in a distortion of high/low invariant mass tails.

Resulting reconstructions of m_t and M_{tt} :

We have the full $t\bar{t}$ kinematics!

Small Angle Selection Scheme

Wish not to rely on m_t input, because ...

- High $t\bar{t}$ invariant mass limit: Tops quarks highly energetic/boosted:
- **D** Expect a small angle $\theta_{l\nu}$, or in turn, θ_{bW} to give the correct solution.

Consider $\cos \theta_{bW}$:

Small Angle Selection Scheme Cont'd

Thus,

- Again, $M_w^2 = m_{l\nu}^2 \implies$ two-fold ambiguity in $p_{\nu L}$ and thus p_W .
- \checkmark The scheme: selecting the solution with the smaller angle between the b and the W.

Note the leakage at the high m_{tt} region...

Small Angle Selection Scheme Cont'd

- High Invariant mass tail is due to smearing and the wrong solution in small angle selection.
- A solution: Provide an incrementally higher transverse mass cut depending on expected resonance. 10^{-1} 10^{-1} 10⁻² 10^{-2} 10-3 10^{-3} 10^{-4} 10^{-4} 500 500 1000 1500 2000 2500 1000 1500 2000 2500 0 0

 M_T >650 and 950 GeV.

Search for New Resonances in *m*_{tt}

Search for integer spin resonances via

$$gg \rightarrow \phi_0 \rightarrow \overline{t} + t$$

$$q\overline{q} \rightarrow V_1 \rightarrow \overline{t} + t$$

$$q\overline{q}, gg \rightarrow \tilde{h}_2 \rightarrow \overline{t} + t$$

where ϕ , V and \tilde{h} are J = 0, 1, 2 resonaces.

- Parametrize each interaction with five parameters:
 - m mass of the resonance (1 TeV for benckmark study)
 - Γ total width
 - $\Gamma_{\phi} = 0.5 (m_{\phi}/TeV)^3, \ \Gamma_{V} = 5\% m_{V}, \ \Gamma_{\tilde{h}} = 1.2\% m_{\tilde{h}}$
 - $\omega^2 \text{cross section normalization factor}$
 - $\omega_{\phi} = 1$ recovers SM higgs
 - $\omega_V = 1$ recovers Z' with electroweak couplings
 - $\omega_{\tilde{h}} = 1$ recovers RS graviton
 - Chirality CP violation ...

Resonance Distributions in m_{tt}

• (M_W, m_t) and small angle selection, respectively:

Discovery Potential

• Determine minimal ω for a 5σ discovery

Angular Distributions in $t\bar{t}$ c.m. frame

• (M_W, m_t) and small angle selection, respectively

Red dashed: scalar \rightarrow flat; Black dots: Chiral vector $\rightarrow d_{11}^1 \Rightarrow (1 + \cos \theta^*)^2$; Blue dash-dots: graviton from $gg \rightarrow d_{2\pm 1}^2 \Rightarrow \sin^2 \theta^*$;

Black solid: graviton from $q\bar{q} \rightarrow d_{1\pm 1}^2 \Rightarrow \sin^4 \theta^* + \dots$

Chirality

Forward/Backward Asymmetry for Parity-Violation:

$$\mathcal{A}_f^{\text{had}} = \frac{N_F - N_B}{N_F + N_B}$$

- N_F (N_B) is the number of events with the top quark momentum \vec{p}_{top} in the forward (backward) direction defined relative to the quark moving direction \vec{p}_q ,
- "Forward" for the final state top is thus defined relative to the boost direction from the resonance c.m. frame (because the valence quarks tend to carry a higher-momentum fractions than the sea (anti-) quarks.)
- Gluon contributions are homogeneous and subtracted out.
- Similarly, one may consider CP-asymmetry. (work in progress.)

Quite generically,

Features: No Bump, but much $\not\!\!\!E_T$

Due to more missing particles from both T and \overline{T} , no p_{ν} can be reconstructed. Instead, may lead to larger $\not\!\!E_T$:

It's Good or Bad: A complex m_t^r

p_{ν} reconstruction by M_W may yield complex solutions:

Back-to-back $t - \overline{t}$

SM $t - \bar{t}$ are back-to-back in the transverse plane, while those from $T\bar{T}$ are kicked randomly:

LHC Reach for $T\bar{T}$ Signal

After judicious cuts, plus

Conclusions

- LHC is a top factory providing 8 million tt s per 10 fb⁻¹.
 Good channel to probe physics beyond SM.
 May serve as an early indicator for new physics.
- For the resonant signal tt
 Two methods to reconstruct semi-leptonic tt
 events at high-invariant mass, to study resonant spin, Chiral coupings, CP properties ...

Conclusions

- LHC is a top factory providing 8 million tt s per 10 fb⁻¹.
 Good channel to probe physics beyond SM.
 May serve as an early indicator for new physics.
- For the resonant signal tt
 Two methods to reconstruct semi-leptonic tt
 events at high-invariant mass, to study resonant spin, Chiral coupings, CP properties ...

Top quark studies are of high priority!