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THE TOPOLOGICAL ASYMPTOTIC FOR THE NAVIER-STOKES EQUATIONS
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Abstract. The aim of the topological asymptotic analysis is to provide an asymptotic expansion of
a shape functional with respect to the size of a small inclusion inserted inside the domain. The main
field of application is shape optimization. This paper addresses the case of the steady-state Navier-
Stokes equations for an incompressible fluid and a no-slip condition prescribed on the boundary of an
arbitrary shaped obstacle. The two and three dimensional cases are treated for several examples of
cost functional and a numerical application is presented.
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1. Introduction

Most topology optimization methods are based on the computation of the first variation of a shape functional
with respect to a “small” perturbation of the physical properties of the material constitutive of the domain.
This perturbation can be

• either of small amplitude and fixed support;
• or of narrow support with fixed amplitude.

In the frequent case where only two types of material are allowed, the first solution requires a relaxation of the
problem. A rigorous and efficient way of doing this is provided by the homogenization theory [1–3,5, 14].

The topological sensitivity analysis is part of the second category. To present the basic idea, let us consider
a shape functional J (Ω) = JΩ(uΩ) where uΩ is the solution of a given PDE defined in Ω ⊂ R

n, n = 2 or 3. For
a small parameter ρ > 0, the perturbed domain Ωρ is obtained by the creation of a small hole inside the initial
domain Ω0, namely Ωρ = Ω0 \ (x0 + ρω) where ω is a fixed and bounded subset of R

n containing the origin
and x0 is some point of Ω0. Generally, an asymptotic expansion can be written in the form

J (Ωρ)− J (Ω0) = f(ρ)g(x0) + o(f(ρ)),

where f is a positive function going to zero with ρ. This expansion is called the topological asymptotic and g
the topological gradient, or topological derivative. In order to minimize the criterion, the best location to create
a small hole is the point where g reaches its minimum. When the topological gradient is easy to compute, this
remark leads to efficient shape optimization algorithms.

The topological sensitivity analysis was introduced by Schumacher [23], Sokolowski and Zochowski [25]
for the compliance minimization in linear elasticity with a Neumann condition on the boundary of the hole.
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Then, Masmoudi [15] worked out a topological sensitivity framework based on a generalization of the adjoint
method and on the use of a truncation technique to give an equivalent formulation of the PDE in a fixed
functional space. By using this approach, Garreau, Guillaume, Masmoudi and Sid Idris have obtained the
topological asymptotic expression for the linear elasticity [9], the Poisson [10] and the Stokes [11] equations
with an arbitrary shaped hole and a large class of shape functionals. The analysis is more difficult when the
differential operator under consideration is non-homogeneous. For a Dirichlet condition prescribed on the hole,
the Helmholtz [21,22] and the quasi-Stokes [12] problems have been treated. The case of a Neumann condition
has also been addressed [4] with the help of an alternative to the truncation based on the comparison between
the perturbed and the initial problems both formulated in the perforated domain. This approach brings in this
case substantial technical simplifications. For completeness, we refer the reader to the publications [7,13,16–20]
where the asymptotic behavior of the solution in various situations is studied.

The present work deals with the steady Navier-Stokes equations for an incompressible fluid. The aim is to
provide a tool for shape optimization in fluid dynamics, and this contribution can be seen as the first step
towards the evolution and compressible case. From the mathematical point of view, the difficulties are raised by
the nonlinearity of the operator. Here, the natural boundary condition on the hole (an obstacle in this context)
is of Dirichlet type. An extension of the perturbed velocity field by zero inside the inclusion makes possible
the use of an adjoint method in the whole domain, avoiding a truncation which would present some theoretical
difficulties because of the nonlinearity. We show that the effect of the nonlinear term on the asymptotic behavior
of the cost functional is of second order: we obtain the same formulas as for the Stokes problem [11]. We recall
the results holding for a spherical obstacle in 3D and for an arbitrary shaped obstacle in 2D, valid for a functional
which does not involve the gradient of the velocity in the vicinity of the obstacle:

J (Ωρ)− J (Ω0) =






6πνρu0(x0).v0(x0) + o(ρ) in 3D,
−4πν
ln ρ

u0(x0).v0(x0) + o

( −1
ln ρ

)

in 2D,

where u0 and v0 denote the direct and adjoint velocity fields, respectively. In particular, it appears that the
function f(ρ) is the same for all the Dirichlet problems that have been treated until now: f(ρ) = ρ in 3D,
f(ρ) = −1/ lnρ in 2D. For comparison, we recall that it has been found f(ρ) = ρn in the Neumann cases.

The precise assumptions on the problem are described in Section 2. In Section 3, we present the main results
as well as the sketch of the asymptotic analysis. The 3D and 2D cases are studied separately. The proofs are
gathered in Section 4. Section 5 is devoted to a numerical application.

2. Presentation of the problem and notations

2.1. The Navier-Stokes problem in a perforated domain

Let Ω be a bounded domain of R
n, n = 2 or 3, containing a Newtonian and incompressible fluid with

coefficient of kinematic viscosity ν > 0. For simplicity, and without any loss of generality, we assume that the
system of units is chosen in such a way that the density is equal to one. The velocity and pressure fields are
denoted by u0 and pu0 , respectively. For that fluid, the Navier-Stokes equations read:






−ν∆u0 +∇u0.u0 +∇pu0 = 0 in Ω,

div u0 = 0 in Ω,

u0 = U on Γ.

(2.1)

We use the standard notation ∇u.v =
∑n

i=1 ∂iuvi, vi and ∂i being the i-th component of the vector v and the
partial derivative with respect to the i-th coordinate, respectively. For well-posedness, we suppose that the
boundary Γ of Ω is smooth (see the precise conditions in [26] Appendix 1, p. 458), and that U , the prescribed
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Figure 1. The perforated domain.

velocity on the boundary, belongs to the functional space H3/2(Γ)n and satisfies the normalization condition:
for all connected component Γi of Γ, ∫

Γi

U.nds = 0. (2.2)

In all the paper, n stands for the outward unit normal of the boundary under consideration.
For a given x0 ∈ Ω, we consider the perforated domain Ωρ = Ω\ωρ, ωρ = x0 +ρω, where ω is a fixed bounded

domain of R
n containing the origin and whose boundary ∂ω is connected and of class C2 (see Fig. 1). Possibly

shifting the origin, we suppose henceforth that x0 = 0. The new velocity and pressure fields solve the system:





−ν∆uρ +∇uρ.uρ +∇puρ = 0 in Ωρ,
div uρ = 0 in Ωρ,

uρ = U on Γ,
uρ = 0 on ∂ωρ.

(2.3)

2.2. Variational formulation and well-posedness

We define the family of functional spaces (Vρ)ρ≥0 by

V0 = {u ∈ H1(Ω)n, div u = 0},

Vρ = {u ∈ H1(Ωρ)n, div u = 0, u|∂ωρ
= 0} ∀ρ > 0.

We associate to Problem (2.3) the variational formulation: find uρ ∈ Vρ such that uρ|Γ = U and

∫

Ωρ

[ν∇uρ : ∇ϕ+ (∇uρ.uρ).ϕ] dx = 0 ∀ϕ ∈ Vρ, ϕ|Γ = 0. (2.4)

We remark that the pressure does not appear here. It can be deduced afterwards from the velocity field, up to
an additive constant. This is a well-known phenomenon for incompressible flows. In [26] (Appendix 1, p. 469),
it is proved that Problem (2.4) has at least one solution. Henceforth, all Navier-Stokes equations have to be
understood in the sense of their variational formulations. We assume that

|u0|1,Ω <
ν

k
, (2.5)

where the constant k is defined by

k =






2
√

2
3

meas(Ω)1/6 if n = 3,

1
2
meas(Ω)1/2 if n = 2.

(2.6)
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In [8] (Vol. 2, Chap. VIII, p. 10), it is proved that (2.5) is a sufficient uniqueness condition for Problem (2.1).
Thanks to estimate (4.6) which is stated and proved in Section 4, we obtain that (2.5) implies |uρ|1,Ωρ < ν/k
for any ρ sufficiently small and thus, for such a ρ, Problem (2.3) admits a unique solution.

2.3. The cost functional

We are interested in a criterion of the form

j(ρ) = Jρ(uρ)

where Jρ is a differentiable function from Vρ into R. For simplicity, the analysis is restricted to the cases where Jρ

belongs to one of the following categories.
Case 1. There exists a neighborhood O of the origin and a differentiable map J : {u ∈ H1(Ω \ O)n, div u =

0} → R such that for all u ∈ Vρ

Jρ(u) = J(u|Ω\O).

Moreover, the distribution DJ0(u0) belongs to H1(Ω)n.
Case 2. The cost functional is of the form

Jρ(u) =
∫

Ωρ

|u− ud|2dx,

where ud ∈ H1(Ω)n.
Case 3. The cost functional is of the form

Jρ(u) = ν

∫

Ωρ

|∇u−∇ud|2dx,

where ud ∈ H2(Ω)n.

2.4. Reformulation in a fixed functional space

Equation (2.4) is written for a test function belonging to the variable functional space Vρ. This does not suit
to the use of an adjoint method, which is however appropriate in our case since the criteria of interest are scalar.
For this reason, we are going to reformulate equation (2.4) with respect to the fixed space V0.

Let us first define the map

F0 : V0 −→ V ′
0

〈F0(u), ϕ〉 =
∫

Ω

[ν∇uρ : ∇ϕ+ (∇uρ.uρ).ϕ] dx ∀u, ϕ ∈ V0.
(2.7)

In this way, the variational formulation of (2.1) reads

〈F0(u0), ϕ〉 = 0 ∀ϕ ∈ V0, ϕ|Γ = 0. (2.8)

Let us now consider a parameter ρ > 0. The extension by zero in ωρ defines an embedding from Vρ into V0. This
embedding will be considered in all the paper as “canonical”: the extension by zero of a function u ∈ Vρ will be
still denoted by u. Thanks to a regularity property up to the boundary (see [8], Chap. VIII, p. 48), we have that
(uρ, puρ) is H2 ×H1 in the vicinity of ∂ωρ. Therefore, we can construct the map:

Fρ : V0 −→ V ′
0

〈Fρ(u), ϕ〉 = 〈F0(u), ϕ〉+
∫

∂ωρ

(ν∂nuρ − puρn).ϕds ∀u, ϕ ∈ V0.
(2.9)
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We derive from the Green formula the equality:

〈Fρ(uρ), ϕ〉 = 0 ∀ϕ ∈ V0, ϕ|Γ = 0. (2.10)

2.5. The adjoint problem

It is standard in control theory to define the adjoint state v0 as the solution of the linearized problem: find
v0 ∈ V0, v0|Γ = 0 such that

〈DF0(u0)ϕ, v0〉 = −DJ0(u0)ϕ ∀ϕ ∈ V0. (2.11)
Yet, we have for all u, ϕ, v ∈ V0:

〈DF0(u)ϕ, v〉 =
∫

Ω

[ν∇ϕ : ∇v + (∇ϕ.u +∇u.ϕ).v] dx.

If moreover ϕ|Γ = 0, then an integration by parts yields

〈DF0(u)ϕ, v〉 =
∫

Ω

[
ν∇v : ∇ϕ+ (−∇v.u+∇uT .v).ϕ

]
dx.

Therefore, the classical formulation associated to Problem (2.11) reads: find (v0, pv0) ∈ H1(Ω)n×L2(Ω) such that





−ν∆v0 −∇v0.u0 +∇uT
0 .v0 +∇pv0 = −DJ0(u0) in Ω,

div v0 = 0 in Ω,
v0 = 0 on Γ.

(2.12)

Since u0 satisfies (2.5), the existence and uniqueness of the solution of (2.12) is a consequence of the Lax-Milgram
theorem. Indeed, the coercivity of the associated bilinear form comes from Lemmas 4.1 and 4.2: for all v ∈ H1(Ω)n,

∣
∣〈DF0(u0)v, v〉V′

0,V0

∣
∣ =

∣
∣
∣
∣

∫

Ω

[
ν|∇v|2 + (∇u0.v).v

]
dx

∣
∣
∣
∣

≥ ν|v|21,Ω − k|u0|1,Ω|v|21,Ω

≥ α|v|21,Ω, with α = ν − k|u0|1,Ω > 0.

3. Asymptotic behavior of the cost functional

3.1. A preliminary proposition

The following proposition describes the adjoint method that will be used to calculate the first variation of the
cost functional. The notations are those introduced in Section 2.

Proposition 3.1. If we determine asymptotic expansions of the form

〈Fρ(uρ)− F0(u0)−DF0(u0)(uρ − u0), v0〉 = f(ρ)δF + o(f(ρ)), (3.1)
Jρ(uρ)− J0(u0)−DJ0(u0)(uρ − u0) = f(ρ)δJ + o(f(ρ)), (3.2)

where δF , δJ ∈ R and f is a smooth function tending to zero with ρ, then

j(ρ)− j(0) = f(ρ)(δF + δJ) + o(f(ρ)).

Proof. By equations (2.8) and (2.10), we have

j(ρ)− j(0) = Jρ(uρ)− J0(u0) + 〈Fρ(uρ)− F0(u0), v0〉.
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Next, equations (3.1) and (3.2) yield

j(ρ)− j(0) = DJ0(u0)(uρ − u0) + f(ρ)δJ + o(f(ρ)) + 〈DF0(u0)(uρ − u0), v0〉+ f(ρ)δF + o(f(ρ)).

From equation (2.11) we derive the desired result. �

We are now in position to carry out the topological asymptotic analysis. The 3D and 2D cases will be studied
separately. The main steps will be

(1) to study the asymptotic behavior of the solution for the norms needed;
(2) to determine f(ρ) and δF such that equation (3.1) holds;
(3) to check equation (3.2) for the cost functionals of interest.

3.2. Asymptotic analysis in 3D

3.2.1. Asymptotic behavior of the solution

We are going to determine the leading term of the variation of the solution by two successive approximations.
The error estimates (for the appropriate norms) are reported in Section 4.3.

• First approximation. We split (uρ, puρ) into

(uρ, puρ) = (u0, pu0) + (hρ, phρ) + (rρ, prρ)

where (hρ, phρ) and (rρ, prρ) solve the systems:






−ν∆hρ +∇phρ = 0 in R
3 \ ωρ,

div hρ = 0 in R
3 \ ωρ,

hρ −→ 0 at ∞,
hρ = −u0 on ∂ωρ,

(3.3)






−ν∆rρ + ∇rρ.(u0 + hρ) +∇(u0 + hρ).rρ +∇rρ.rρ +∇prρ

= −∇hρ.u0 −∇u0.hρ −∇hρ.hρ in Ωρ,

div rρ = 0 in Ωρ,

rρ = −hρ on Γ,
rρ = 0 on ∂ωρ.

(3.4)

It is proved in [6] (Chap. XI, p. 695) that the Stokes problem (3.3) has one and only one solution
(hρ, phρ) ∈ W 1(R3 \ ωρ)3 × L2(R3 \ ωρ)/R. We recall that, for any open and bounded subset O of R

3,
the space W 1(R3 \ O) is defined by (see [6], Chap. XI, p. 649)

W 1(R3 \ O) =
{

u,
u

(1 + r2)1/2
∈ L2(R3 \ O),∇u ∈ L2(R3 \ O)3

}

.

By difference, the existence of a solution of (3.4) is guaranteed.
• Second approximation. We set Hρ(x) = hρ(ρx) and PHρ(x) = ρphρ(x). We have






−ν∆Hρ +∇PHρ = 0 in R
3 \ ω,

div Hρ = 0 in R
3 \ ω,

Hρ −→ 0 at ∞,
Hρ = −u0(ρx) on ∂ω.

(3.5)
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Then, we split (Hρ, PHρ) into

(Hρ, PHρ) = (H,PH) + (Sρ, PSρ)

where (H,PH) and (Sρ, PSρ) are the solutions of:






−ν∆H +∇PH = 0 in R
3 \ ω,

div H = 0 in R
3 \ ω,

H −→ 0 at ∞,
H = −u0(0) on ∂ω,

(3.6)






−ν∆Sρ +∇PSρ = 0 in R
3 \ ω,

div Sρ = 0 in R
3 \ ω,

Sρ −→ 0 at ∞,
Sρ = −u0(ρx) + u0(0) on ∂ω.

(3.7)

Problem (3.6) can be solved with the help of a single layer potential (see [6], Chap. XI, p. 697):






H(x) =
∫

∂ω

E(x− y)η(y)ds(y),

PH(x) =
∫

∂ω

Π(x − y).η(y)ds(y),

where η ∈ H−1/2(∂ω)3 verifies the integral equation

∫

∂ω

E(x− y)η(y)ds(y) = −u0(0) ∀x ∈ ∂ω (3.8)

and (E,Π) is the fundamental solution of the Stokes system

E(x) =
1

8πν|x| (I + erer
T ), Π(x) =

er

4π|x|2 ·

We denote by |x| the euclidean norm of the vector x and by er the unit vector er = x/|x|. The density η
is unique up to a function proportional to the normal. As we will see, for some particular norms, the
pair

(

H

(
x

ρ

)

,
1
ρ
PH

(
x

ρ

))

is the leading term of the variation (uρ − u0, puρ − pu0) in Ωρ.

3.2.2. Asymptotic behavior of the cost functional

Our aim here is to find some parameters f(ρ) and δF such that equation (3.1) holds. Hence we have to study
the quantity

VF (ρ) := 〈Fρ(uρ)− F0(u0)−DF0(u0)(uρ − u0), v0〉
= 〈Fρ(uρ)− F0(uρ), v0〉+ 〈Fρ(uρ)− F0(u0)−DF0(u0)(uρ − u0), v0〉
=

∫

∂ωρ

(ν∂nuρ − puρn).v0ds+
∫

Ω

(∇(uρ − u0).(uρ − u0)).v0dx.
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Denoting

E1(ρ) =
∫

Ω

(∇(uρ − u0).(uρ − u0)).v0dx,

E2(ρ) =
∫

∂ωρ

(ν∂nu0 − pu0n).v0ds,

E3(ρ) =
∫

∂ωρ

(ν∂nrρ − prρn).v0ds,

E4(ρ) = ρ

∫

∂ω

(ν∂nSρ − PSρn).v0(ρx)ds,

we obtain successively

VF (ρ) =
∫

∂ωρ

(ν∂nhρ − phρn).v0ds+
3∑

i=1

Ei(ρ)

= ρ

∫

∂ω

(ν∂nHρ − PHρn).v0(ρx)ds +
3∑

i=1

Ei(ρ)

= ρ

∫

∂ω

(ν∂nH − PHn).v0(ρx)ds +
4∑

i=1

Ei(ρ).

Then, the jump relation of the single layer potential yields (see [6] p. 698)

VF (ρ) = −ρ
∫

∂ω

η.v0(ρx)ds+
4∑

i=1

Ei(ρ)

= −ρ
(∫

∂ω

ηds
)

.v0(0) +
5∑

i=1

Ei(ρ),

where
E5(ρ) = −ρ

∫

∂ω

η.[v0(ρx)− v0(0)]ds.

It is convenient to introduce the polarization matrix Pω defined by

Pω =
∫

∂ω

Λ(x)ds(x), (3.9)

where Λ is the 3 by 3 matrix solution of the integral equation
∫

∂ω

E(x− y)Λ(y)ds(y) = I ∀x ∈ ∂ω. (3.10)

We denote here by I the identity matrix of order 3. Then we can write

VF (ρ) = ρPωu0(0).v0(0) +
5∑

i=1

Ei(ρ).

We will prove in Section 4 that |Ei(ρ)| = o(ρ) for all i = 1, ..., 5. Thus, it stands out that equation (3.1) holds
with

f(ρ) = ρ and δF = Pωu0(0).v0(0).
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3.2.3. Polarization matrix for a spherical hole

Consider the most natural case where ω = B(0, 1), the unit ball of R
3. We have in this particular situation

∫

∂ω

E(x− y)ds =
2
3ν
I ∀x ∈ ∂ω.

Hence, the solution of (3.10) reads

Λ(y) =
3ν
2
I ∀y ∈ ∂ω.

It follows the polarization matrix

PB(0,1) = 6πνI.

3.3. Asymptotic analysis in 2D

3.3.1. Asymptotic behavior of the solution

In dimension two, the fundamental solution of the Stokes problem reads

E(x) =
1

4πν
(− ln |x|I + erer

T ), Π(x) =
er

2π|x| ·

The matrix E(x) does not tend to zero at infinity. That is why the argumentation is very different from what
was done in 3D.

We split (uρ, puρ) into

(uρ, puρ) = (u0, pu0) + (hρ, phρ) + (rρ, prρ)

with:





hρ =
−1
ln ρ

(H −Hρ),

phρ(x) =
−1
ln ρ

(PH − PHρ),
(3.11)

{
H(x) = −4πνE(x)u0(0),
PH(x) = −4πνΠ(x).u0(0), (3.12)






−ν∆Hρ +∇Hρ.(u0 − 1
ln ρ

H) + (∇u0 − 1
ln ρ
∇H).Hρ +

1
ln ρ
∇Hρ.Hρ +∇PHρ

= ∇u0.H +∇H.u0 − 1
ln ρ
∇H.H in Ω,

div Hρ = 0 in Ω,
Hρ = H on Γ,

(3.13)






−ν∆rρ +∇rρ.(u0 + hρ) +∇(u0 + hρ).rρ +∇rρ.rρ +∇prρ = 0 in Ωρ,
div rρ = 0 in Ωρ,

rρ = 0 on Γ,
rρ = −u0 − hρ on ∂ωρ.

(3.14)

The existence of solutions of problems of the type (3.13) and (3.14) is shown in [8] (Chap. VIII, p. 20).
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3.3.2. Asymptotic behavior of the cost functional

We consider again the variation

VF (ρ) := 〈Fρ(uρ)− F0(u0)−DF0(u0)(uρ − u0), v0〉
=

∫

∂ωρ

(ν∂nuρ − puρn).v0ds+
∫

Ω

(∇(uρ − u0).(uρ − u0)).v0dx.

The introduction of the errors

E1(ρ) =
∫

Ω

(∇(uρ − u0).(uρ − u0)).v0dx,

E2(ρ) =
∫

∂ωρ

(ν∂nu0 − pu0n).v0ds,

E3(ρ) =
∫

∂ωρ

(ν∂nrρ − prρn).v0ds,

E4(ρ) =
∫

∂ωρ

(ν∂nhρ − phρn).(v0 − v0(0))ds,

E5(ρ) =
−1
ln ρ

∫

∂ωρ

(ν∂nHρ − PHρn).v0(0)ds,

permits to write

VF (ρ) =
∫

∂ωρ

(ν∂nhρ − phρn).v0(0)ds+
4∑

i=1

Ei(ρ)

=
−1
ln ρ

∫

∂ωρ

(ν∂nH − PHn).v0(0)ds+
5∑

i=1

Ei(ρ)

=
−4πν
ln ρ

∫

∂ωρ

[ν∂n(Eu0(0))− (Π.u0(0))n].v0(0)ds+
5∑

i=1

Ei(ρ).

Then, the fact that (E,Π) is the fundamental solution of the Stokes equations brings

VF (ρ) = −4πν
lnρ

u0(0).v0(0)ds+
5∑

i=1

Ei(ρ).

Yet, we show that |Ei(ρ)| = o( −1
ln ρ ) for all i = 1, ..., 5 (see the proofs in Sect. 4). Equation (3.1) is satisfied with

f(ρ) =
−1
ln ρ

and δF = 4πνu0(0).v0(0).

3.4. A theorem gathering the main results

The following theorem provides the topological asymptotic expansion for the cost functionals under consider-
ation. It results from Proposition 3.1 with the values of f(ρ) and δF obtained before and the values of δJ whose
calculus is performed in Section 4.
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Table 1. Values of δJ for the 3 categories of cost functional.

3D 2D
case 1 0 0
case 2 0 0
case 3 Pωu0(0).u0(0) 4πν|u0(0)|2

Theorem 3.1. Under the hypotheses of Section 2, we have the asymptotic expansions

j(ρ)− j(0) = ρ [Pωu0(0).v0(0) + δJ ] + o(ρ) in 3D,

j(ρ)− j(0) =
−1
ln ρ

[4πνu0(0).v0(0) + δJ ] + o

( −1
ln ρ

)

in 2D.

The polarization matrix Pω is defined by (3.9), for a spherical hole it reads

PB(0,1) = 6πνI.

The values of the term δJ for the cost functionals of interest are indicated in Table 1.

4. Proofs

4.1. Preliminary lemmas

The proofs of the first three lemmas can be found in [8] (Vol. 2 Sect. VIII.1 for Lems. 4.1 and 4.2, Vol. 1
Sect. III.3 for Lem. 4.3).

Lemma 4.1 (n = 2, 3). For all (u, v) ∈ H1
0 (Ωρ)n ×H1(Ωρ)n with div v = 0,

∫

Ωρ

(∇u.v).udx = 0.

Lemma 4.2 (n = 2, 3). For all (u, v, w) ∈ H1(Ωρ)n ×H1(Ωρ)n ×H1(Ωρ)n,

∣
∣
∣
∣
∣

∫

Ωρ

(∇u.v).wdx

∣
∣
∣
∣
∣
≤ c(n,Ω)|u|1,Ωρ‖v‖1,Ωρ‖w‖1,Ωρ .

Moreover, if v|Γ = w|Γ = 0,
∣
∣
∣
∣
∣

∫

Ωρ

(∇u.v).wdx

∣
∣
∣
∣
∣
≤ k|u|1,Ωρ |v|1,Ωρ |w|1,Ωρ ,

where k is the constant defined by (2.6).

Lemma 4.3 (n = 2, 3). Consider R > 0 such that B(0, R) ⊂ Ω. For any w ∈ H1/2(Γ)n satisfying

∫

Γ

w.nds = 0,



412 S. AMSTUTZ

there exists W ∈ H1(Ω)n such that

W|Γ = w,

div W = 0 in Ω,
W = 0 in B(0, R),

|W |1,Ω ≤ c0‖w‖ 1
2 ,Γ.

The constant c0 may depend on n, Ω and R.

Lemma 4.4 (n = 2, 3). Consider fρ ∈ H−1(Ωρ)n, Vρ ∈ H1(Ωρ)n with div Vρ = 0 and |Vρ|1,Ωρ ≤ β < ν/k and
w ∈ H1/2(Γ)n verifying

∫

Γ
w.nds = 0. Let (yρ, pyρ) ∈ H1(Ωρ)n×L2(Ωρ) be a solution (if exists) of the problem:






−ν∆yρ +∇yρ.Vρ +∇Vρ.yρ +∇yρ.yρ +∇pyρ = fρ in Ωρ,

div yρ = 0 in Ωρ,

yρ = w on Γ,
yρ = 0 on ∂ωρ.

There exists some constants γ = γ(n,Ω, ν, β) and c = c(n,Ω, ν, β) such that if ‖w‖ 1
2 ,Γ ≤ γ, then

‖yρ‖1,Ωρ ≤ c
[
‖fρ‖−1,Ωρ + ‖w‖ 1

2 ,Γ

]
.

Proof. Let us consider W the extension of w given by Lemma 4.3. The function zρ = yρ −W satisfies





−ν∆zρ + ∇zρ.(Vρ +W ) +∇(Vρ +W ).zρ +∇zρ.zρ +∇pzρ

= fρ + ν∆W −∇W.Vρ −∇Vρ.W −∇W.W in Ωρ,

div zρ = 0 in Ωρ,

zρ = 0 on Γ,
zρ = 0 on ∂ωρ.

Taking zρ as test function in the variational formulation of the above problem brings

∫

Ωρ

[ν∇zρ : ∇zρ + (∇zρ.(Vρ +W ) +∇(Vρ +W ).zρ +∇zρ.zρ).zρ] dx =
∫

Ωρ

[−ν∇W : ∇zρ + (fρ −∇W.Vρ −∇Vρ.W −∇W.W ).zρ]dx.

Thanks to Lemma 4.1, two terms vanish in the left hand side and we obtain

ν

∫

Ωρ

∇zρ : ∇zρdx = −
∫

Ωρ

(∇(Vρ +W ).zρ).zρdx

+
∫

Ωρ

[−ν∇W : ∇zρ + (fρ −∇W.Vρ −∇Vρ.W −∇W.W ).zρ]dx.

Lemma 4.2 and the Schwarz inequality yield

ν|zρ|21,Ωρ
≤ k|Vρ|1,Ωρ |zρ|21,Ωρ

+ k|W |1,Ωρ |zρ|21,Ωρ
+ ν|W |1,Ωρ |zρ|1,Ωρ

+ ‖fρ‖−1,Ωρ‖zρ‖1,Ωρ + c‖W‖1,Ωρ‖Vρ‖1,Ωρ‖zρ‖1,Ωρ + c|W |1,Ωρ‖W‖1,Ωρ‖zρ‖1,Ωρ ,
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where c denotes any positive constant depending only on n, Ω and ν. Therefore, thanks to the Poincaré
inequality and Lemma 4.3, we have

(ν − k|Vρ|1,Ωρ − k|W |1,Ωρ)c‖zρ‖1,Ωρ ≤ c‖w‖ 1
2 ,Γ + ‖fρ‖−1,Ωρ + c‖w‖ 1

2 ,Γ + c‖w‖21
2 ,Γ.

Yet, choosing γ such that c0γ < ν/k − β, c0 being the constant of Lemma 4.3 we have

c1 := ν − k|Vρ|1,Ωρ − k|W |1,Ωρ ≥ ν − kβ − kc0γ > 0.

It follows that

‖zρ‖1,Ωρ ≤
1
c1

[c‖w‖ 1
2 ,Γ + c‖fρ‖−1,Ωρ ].

Finally,

‖yρ‖1,Ωρ ≤ ‖zρ‖1,Ωρ + ‖W‖1,Ωρ

≤ 1
c1

[c‖w‖ 1
2 ,Γ + c‖fρ‖−1,Ωρ ] + c‖w‖ 1

2 ,Γ,

which achieves the proof. �

Lemma 4.5 (n = 3). Consider ϕ ∈ H1/2(∂ω)3 with
∫

∂ω ϕ.nds = 0 and let (v, p) ∈ W 1(R3 \ ω)3 × L2(R3 \ ω)
be the solution of the problem:






−ν∆v +∇p = 0 in R
3 \ ω,

div v = 0 in R
3 \ ω,

v −→ 0 at ∞,
v = ϕ on ∂ω.

Then, for any R > 0 and DR = Ω \B(0, R), there exists some constant c(R,Ω) such that

‖v‖0,Ωρ/ρ ≤ cρ−1/2‖ϕ‖1/2,∂ω,

|v|1,DR/ρ ≤ cρ1/2‖ϕ‖1/2,∂ω,

|v|1,Ωρ/ρ ≤ c‖ϕ‖1/2,∂ω.

Proof. See [11]. �

Lemma 4.6 (n = 2). Consider ϕ ∈ H1/2(∂ωρ)2, ψ ∈ H1/2(Γ)2 and let (yρ, pyρ) ∈ H1(Ωρ)2 × L2(ωρ) be the
solution of the problem:






−ν∆yρ +∇pyρ = 0 in Ωρ,

div yρ = 0 in Ωρ,

yρ = ψ on Γ,
yρ = ϕ on ∂ωρ.

There exists some constant c independent of ρ such that

‖yρ‖1,Ωρ ≤ c

[

‖ψ‖ 1
2 ,Γ +

1√− lnρ
‖ϕ(ρx)‖ 1

2 ,∂ω

]

.
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Proof. If ϕ is constant on ∂ωρ and ψ = 0, we come down to a circular hole by using a principle of minimization
of the energy and we use then the explicit expression of the solution (see [24]). Next, a decomposition of the
solution and the standard elliptic regularity brings the case ψ 
= 0. Let us now study the case where ϕ is not
constant. Let V be the bounded solution of






−ν∆V +∇PV = 0 in R
2 \ ω,

div V = 0 in R
2 \ ω,

V (x) = ϕ(ρx) on ∂ω.

We have V = λ +W with λ ∈ R and W = O(1/r). Then, we split yρ into W (x/ρ) + zρ. The previous results
apply to zρ and W (x/ρ) satisfies the desired estimate. �
Lemma 4.7 (n = 2). Consider fρ ∈ H−1(Ωρ)n, Vρ ∈ H1(Ωρ)n with div Vρ = 0 and |Vρ|1,Ωρ ≤ β < ν/k,
ϕ ∈ H1/2(∂ωρ)2 and ψ ∈ H1/2(Γ)2 verifying

∫

Γ ψ.nds = 0. Let (yρ, pyρ) ∈ H1(Ωρ)n × L2(Ωρ) be a solution (if
exists) of the problem:






−ν∆yρ +∇yρ.Vρ +∇Vρ.yρ +∇yρ.yρ +∇pyρ = fρ in Ωρ,

div yρ = 0 in Ωρ,

yρ = ψ on Γ,
yρ = ϕ on ∂ωρ.

There exists some constants γ = γ(n,Ω, ν, β) and c = c(n,Ω, ν, β) such that if ‖w‖ 1
2 ,Γ ≤ γ, then

‖yρ‖1,Ωρ ≤ c

[

‖fρ‖−1,Ωρ +
1√− ln ρ

‖ϕ(ρx)‖ 1
2 ,∂ω + ‖ψ‖ 1

2 ,Γ

]

.

Proof. It is a combination of Lemmas 4.6 and 4.4. �

4.2. Some regularity properties

From the regularity assumptions made on the data, we get by using some regularity theorems for the Navier-
Stokes equations (see [8] Sect. VIII.5) that:

• (u0, pu0) ∈ H2(Ω)×H1(Ω);
• (u0, pu0) ∈ H∞(O)×H∞(O) for all open set O such that O ⊂ Ω;
• (v0, pv0) ∈ H3(Ω)×H2(Ω).

We are now in position to prove Theorem 3.1. We shall
(1) estimate all errors that have been introduced in the calculus of δF in Sections 3.2 and 3.3, so that

equation (3.1) holds;
(2) check equation (3.2) for the cost functionals presented.

We will denote by c any positive constant that may depend on Ω, ν and U but never on ρ. We consider some
positive radius R such that B(0, R) ⊂ Ω and DR = Ω \B(0, R).

4.3. Calculus of δF in 3D

4.3.1. Preliminary estimates

(1) Estimate of hρ. Lemma 4.5, the continuity of u0 (thanks to the Sobolev imbeddings) and a change of
variable yield

‖hρ‖0,Ωρ ≤ cρ,

|hρ|1,DR ≤ cρ,

|hρ|1,Ωρ ≤ cρ1/2.

(4.1)
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(2) Estimate of rρ. As |u0|1,Ω < ν/k, we have for ρ sufficiently small

|u0 + hρ|1,Ωρ ≤ α < ν/k.

Thus, by Lemma 4.4,

‖rρ‖1,Ωρ ≤ c‖ − ∇hρ.u0 −∇u0.hρ −∇hρ.hρ‖−1,Ωρ + c‖hρ‖1/2,Γ

≤ c‖∇hρ‖−1,Ωρ + c‖hρ‖−1,Ωρ + c‖∇hρ.hρ‖−1,Ωρ + c‖hρ‖1/2,Γ,

since u0 ∈ L∞(Ω). Yet
‖∇hρ‖−1,Ωρ ≤ ‖hρ‖0,Ωρ .

Moreover, using Lemma 4.2, we obtain immediately that

‖∇hρ.hρ‖−1,Ωρ ≤ c|hρ|1,Ωρ‖hρ‖1,Ωρ .

Therefore

‖rρ‖1,Ωρ ≤ c‖hρ‖0,Ωρ + c|hρ|1,Ωρ‖hρ‖1,Ωρ + c‖hρ‖1,DR

≤ cρ. (4.2)

(3) Estimate of Sρ. Lemma 4.5 and a Taylor expansion of u0 computed at the origin provide the inequalities

‖Sρ‖0,Ωρ/ρ ≤ cρ1/2,

|Sρ|1,DR/ρ ≤ cρ3/2,

|Sρ|1,Ωρ/ρ ≤ cρ.

(4.3)

4.3.2. Estimate of the errors Ei(ρ)
We will successively prove that |Ei(ρ)| = o(ρ) for i = 1, ..., 5.

(1) An integration by parts taking into account the fact that div (uρ − u0) = 0 provides

E1(ρ) = −
∫

Ω

(∇v0.(uρ − u0)).(uρ − u0)dx.

Thus,

|E1(ρ)| ≤ ‖∇v0‖L∞(Ω)‖uρ − u0‖2L2(Ω)

≤ ‖∇v0‖L∞(Ω)(‖uρ − u0‖2L2(Ωρ) + ‖u0‖2L2(ωρ))

≤ ‖∇v0‖L∞(Ω)[(‖hρ‖L2(Ωρ) + ‖rρ‖L2(Ωρ))2 + ‖u0‖2L2(ωρ)]

≤ (cρ+ cρ)2 + cρ3

≤ cρ2.

(2) Thanks to the regularity of (u0, pu0) and (v0, pv0) in the vicinity of the origin, we obtain immediately
that

|E2(ρ)| ≤ cρ2.
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(3) We have by a change of variable

E3(ρ) = ρ

∫

∂ω

[ν∂n(rρ(ρx)) − ρprρ(ρx)n].v0(ρx)ds.

Hence,
|E3(ρ)| ≤ cρ‖ν∂n(rρ(ρx))− ρprρ(ρx)n‖−1/2,∂ω .

Let B be some ball such that ω ⊂ B and B ⊂ Ω. For all ϕ ∈ H1(B \ ω)3 with div ϕ = 0 and ϕ|∂B = 0
we have by the Green formula

−ν
∫

∂ω

[ν∂n(rρ(ρx))− ρprρ(ρx)n].ϕds =
∫

B\ω

ρ2(ν∆rρ(ρx) −∇prρ(ρx)).ϕdx +
∫

B\ω

ρν∇rρ(ρx).∇ϕdx

= ρ2

∫

B\ω

[∇rρ.(u0 + hρ) +∇(u0 + hρ).rρ +∇rρ.rρ +∇hρ.u0 +∇u0.hρ

+∇hρ.hρ](ρx).ϕdx + ρν

∫

B\ω

∇rρ(ρx).∇ϕdx

= ρ

∫

B\ω

[∇Rρ.(U0 +Hρ) +∇(U0 +Hρ).Rρ +∇Rρ.Rρ +∇Hρ.U0

+∇U0.Hρ +∇Hρ.Hρ].ϕdx+ ν

∫

B\ω

∇Rρ.∇ϕdx,

where Rρ(x) = rρ(ρx), Hρ(x) = Hρ(ρx) and Uρ(x) = uρ(ρx). Then, by Lemma 4.2 and the Poincaré
inequality,

∣
∣
∣
∣

∫

∂ω

[ν∂n(rρ(ρx))− ρprρ(ρx)n].ϕds
∣
∣
∣
∣ ≤ cρ[|Rρ|.|U0 +Hρ|+ |U0 +Hρ||Rρ|+ |Rρ||Rρ|+ |Hρ||U0 +Hρ|

+ |U0|‖Hρ‖]‖ϕ‖+ c|Rρ||ϕ|,

where all the norms and semi-norms are taken in H1(B \ ω). Next,
∣
∣
∣
∣

∫

∂ω

[ν∂n(rρ(ρx))− ρprρ(ρx)n].ϕds
∣
∣
∣
∣ ≤ cρ

[|Rρ|(|U0 +Hρ|+ |Rρ|) + |Hρ||U0 +Hρ|+ |U0|‖Hρ‖+ ρ−1|Rρ|
] ‖ϕ‖

≤ cρ [|Rρ|(1 + |Hρ|+ |Rρ|) + |Hρ|(1 + |Hρ|) + ‖Hρ‖+ ρ−1|Rρ|
] ‖ϕ‖,

since U0 is of class C1 in B \ ω. A new change of variables and equations (4.1) and (4.2) yield
∣
∣
∣
∣

∫

∂ω

[ν∂n(rρ(ρx))− ρprρ(ρx)n].ϕds
∣
∣
∣
∣ ≤ cρ1/2‖ϕ‖1/2,∂ω.

Finally,
|E3(ρ)| ≤ cρ3/2.

(4) We have

|E4(ρ)| ≤ cρ‖ν∂nSρ − PSρn‖−1/2,∂ω‖v0(ρx)‖1/2,∂ω

≤ cρ|Sρ|1,B\ω

≤ cρ2.



THE TOPOLOGICAL ASYMPTOTIC FOR THE NAVIER-STOKES EQUATIONS 417

(5) A Taylor expansion of v0 yields straightforwardly

|E5(ρ)| ≤ cρ2.

4.4. Calculus of δF in 2D

4.4.1. Preliminary estimates

(1) Thanks to the implicit mapping theorem applied to the variational formulation of Problem (3.13) in
ρ = 0, we obtain easily that

lim
ρ→0
‖Hρ −H0‖1,Ω = 0,

from which it comes
‖Hρ‖1,Ω ≤ c.

Furthermore, the definition of H provides






‖H‖0,Ω ≤ c,
‖H‖1,DR ≤ c,
|H |1,Ωρ ≤ c

√− ln ρ
‖H‖W 1,p(Ω) ≤ c ∀p ∈]1, 2[.

Hence we have the estimates 




‖hρ‖0,Ωρ ≤
c

− ln ρ
,

‖hρ‖1,DR ≤
c

− lnρ
,

|hρ|1,Ωρ ≤
c√− lnρ
·

(4.4)

Next, Hρ verifies
−ν∆Hρ +∇PHρ = fρ

with

fρ = −∇Hρ.(u0 − 1
ln ρ

H)−
(

∇u0 − 1
ln ρ
∇H

)

.Hρ − 1
ln ρ
∇Hρ.Hρ

−∇u0.H −∇H.u0 − 1
ln ρ
∇H.H.

Using the Hölder inequality, we obtain that for any q ∈]1, 2[,

‖fρ‖Lq(Ω) ≤ c.

Then, a regularity property (see [8]) yields

{
‖Hρ‖W 2,q(Ω) ≤ c,

‖PHρ‖W 1,q(Ω) ≤ c.

(2) Due to Lemma 4.7, we have

‖rρ‖1,Ωρ ≤
c√− lnρ
‖(−u0 − hρ)(ρx)‖1/2,∂ω .
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Yet,

(−u0 − hρ)(ρx) = −u0(ρx) − −1
ln ρ

[
(ln(ρr)I − erer

T )u0(0)−Hρ(ρx)
]

= −u0(ρx) + u0(0) +
1

ln ρ
[
(ln rI − erer

T )u0(0)−Hρ(ρx)
]
.

Hence, using that W 2,q(Ω) ⊂ L∞(Ω), we obtain

‖(−u0 − hρ)(ρx)‖1/2,∂ω ≤ cρ+
c

− lnρ
≤ c

− ln ρ
·

We arrive at the inequality
‖rρ‖1,Ωρ ≤

c

(− lnρ)3/2
· (4.5)

4.4.2. Estimate of the errors Ei(ρ)
We shall prove that |Ei(ρ)| = o(ρ) for all i = 1, ..., 5.

(1) We obtain in the same way as in 3D that

|E1(ρ)| ≤ c
( −1

ln ρ

)2

·

(2) Like in 3D, thanks to the regularity assumptions, we find that

|E2(ρ)| ≤ cρ2.

(3) A change of variable furnishes

E3(ρ) =
∫

∂ω

[ν∂n(rρ(ρx)) − ρprρ(ρx)n].v0(ρx)ds,

from which it follows

|E3(ρ)| ≤ c‖ν∂n(rρ(ρx)) − ρprρ(ρx)n‖−1/2,∂ω.

Let B be again some ball such that ω ⊂ B and B ⊂ Ω. For all ϕ ∈ H1(B \ ω)2 with div ϕ = 0 and
ϕ|∂B = 0 we have by the Green formula

−ν
∫

∂ω

[ν∂n(rρ(ρx)) − ρprρ(ρx)n].ϕds =
∫

B\ω

ρ2(ν∆rρ(ρx)−∇prρ(ρx)).ϕdx +
∫

B\ω

ρν∇rρ(ρx).∇ϕdx

= ρ2

∫

B\ω

[∇rρ.(u0 + hρ) +∇(u0 + hρ).rρ +∇rρ.rρ] (ρx).ϕdx

+ρν
∫

B\ω

∇rρ(ρx).∇ϕdx.

A change of variable, Lemma 4.2 and the Poincaré inequality bring

∣
∣
∣
∣

∫

∂ω

[ν∂n(rρ(ρx))− ρprρ(ρx)n].ϕds
∣
∣
∣
∣ ≤ cρ

[
|rρ(ρx)|.‖(u0 + hρ)(ρx)‖ + |(u0 + hρ)(ρx)|‖rρ(ρx)‖

+ |rρ(ρx)|‖rρ(ρx)‖
]
‖ϕ‖+ c|rρ(ρx)||ϕ|,
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where all the norms and semi-norms are taken in H1(B \ ω). Next, easy manipulations yield
∣
∣
∣
∣

∫

∂ω

[ν∂n(rρ(ρx)) − ρprρ(ρx)n].ϕds
∣
∣
∣
∣ ≤ [c|rρ|1,Ωρ + c‖rρ‖1,Ωρ + c|rρ|1,Ωρ‖rρ‖1,Ωρ ]‖ϕ‖

≤ c

(− ln ρ)3/2
‖ϕ‖.

Therefore,
|E3(ρ)| ≤ c

(− ln ρ)3/2
·

(4) A change of variable and a Taylor expansion of v0 computed at the origin yield

|E4(ρ)| ≤ cρ‖ν∂n(hρ(ρx))− ρphρ(ρx)n‖−1/2,∂ω .

Then, arguing as for the estimation of E3(ρ), we obtain that

‖ν∂n(hρ(ρx))− ρphρ(ρx)n‖−1/2,∂ω ≤ c|hρ|1,Ωρ ≤
c√− ln ρ

,

from which we deduce
|E4(ρ)| ≤ cρ√− ln ρ

·
(5) We have

E5(ρ) =
−1
ln ρ

∫

ωρ

(ν∆Hρ −∇PHρ)dx.

For a chosen q ∈]1, 2[, the Hölder inequality yields

|E5(ρ)| ≤ −cln ρ
(‖Hρ‖W 2,q(Ω) + ‖PHρ‖W 1,q(Ω)

) ‖1‖Lq/(q−1)(ωρ)

≤ −c
ln ρ

ρ2−2/q.

4.5. Calculus of δJ
4.5.1. Recall of some estimates

In both Sections 3.2 and 3.3, we have split uρ−u0 in the domain Ωρ into uρ−u0 = hρ + rρ and we have proved
that 





‖hρ‖1,DR = O(f(ρ)),
‖hρ‖0,Ωρ = O(f(ρ)),

|hρ|1,Ωρ = O(
√
f(ρ)),

‖rρ‖1,Ωρ = O(f(ρ)),
with f(ρ) = ρ in 3D, f(ρ) = −1/ lnρ in 2D. It follows directly






‖uρ − u0‖1,DR = O(f(ρ)),
‖uρ − u0‖0,Ωρ = O(f(ρ)),

|uρ − u0|1,Ωρ = O(
√
f(ρ)).

(4.6)

Let us now turn to the checking of equation (3.2) for the values of δJ announced in Theorem 3.1. The three
examples of functional are studied successively.
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(1) Case 1. This is an immediate consequence of the differentiability of J and estimates (4.6).
(2) Case 2. We have

Jρ(uρ)− J0(u0)−DJ0(u0)(uρ − u0) = [Jρ(uρ)− J0(uρ)] + [J0(uρ)− J0(u0)−DJ0(u0)(uρ − u0)]

= −
∫

ωρ

|ud|2dx+
∫

Ωρ

|uρ − u0|2dx+
∫

ωρ

|u0|2dx.

On the one hand, from the regularity of ud and u0, we derive

∫

ωρ

|ud|2dx+
∫

ωρ

|u0|2dx = o(f(ρ)).

On the other hand, estimates (4.6) imply

∫

Ω

|uρ − u0|2dx = o(f(ρ)).

It follows that δJ = 0.
(3) As in the previous case, the calculus gives

VJ (ρ) := Jρ(uρ)− J0(u0)−DJ0(u0)(uρ − u0)

= −ν
∫

ωρ

|∇ud|2dx+ ν

∫

Ωρ

|∇(hρ + rρ)|2dx+ ν

∫

ωρ

|∇u0|2dx.

Thanks to the regularity of u0 and ud in the vicinity of the origin, the first and the third terms behave
like a o(f(ρ)). We are now focusing on the second term.
(a) Let us first study the 3D case. It follows from estimates (4.1) and (4.2) that

VJ (ρ) = ν

∫

Ωρ

|∇hρ|2dx+ o(f(ρ)).

The Green formula and a change of variable yield successively

VJ (ρ) = −
∫

∂ωρ

(ν∂nhρ − phρn).hρds+ o(f(ρ))

= −ρ
∫

∂ω

(ν∂nHρ − PHρn).Hρds+ o(f(ρ)).

Using estimates (4.3), we obtain

VJ(ρ) = −ρ
∫

∂ω

(ν∂nH − PHn).Hds+ o(f(ρ)).

Then, by the jump relation of the single layer potential,

VJ (ρ) = −ρ
∫

∂ω

η.u0(0)ds+ o(f(ρ)),

from which we deduce the announced expression of δJ .
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Figure 2. The domain and the boundary conditions.

(b) In 2D, the first step consists in applying the Green formula, which brings

VJ (ρ) = −
∫

∂ωρ

[ν∂n(hρ + rρ)− (phρ + prρ)n].u0ds+ o(f(ρ)).

Arguing as for the estimation of E3(ρ), E4(ρ) and E5(ρ), we obtain successively

VJ (ρ) = −
∫

∂ωρ

(ν∂nhρ − phρn).u0ds+ o(f(ρ))

= −
∫

∂ωρ

(ν∂nhρ − phρn).u0(0)ds+ o(f(ρ))

= − −1
ln ρ

∫

∂ωρ

(ν∂nH − PHn).u0(0)ds+ o(f(ρ)).

Finally, using (3.12) and the fact that (E,Π) is the fundamental solution, this latter expression
reads also

VJ (ρ) =
−1
ln ρ

4πν|u0(0)|2 + o(f(ρ)),

which provides the expected value of δJ .

5. A numerical example

We illustrate the use of the topological asymptotic analysis on a shape optimization example which has been
treated in [11] in the context of the Stokes equations (i.e. the viscosity is considered as infinite). The model
represents a purification tank in which, for engineering reasons, some obstacles have to be inserted in order to
approximate a target flow ud. The goal is to find the best locations for these obstacles. The geometry (2D) and
the boundary conditions are given in Figure 2. The initial velocity and pressure fields u0 and pu0 satisfy the
Navier-Stokes equations in Ω:

{−ν∆u0 +∇u0.u0 +∇pu0 = 0,
div u0 = 0.
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Figure 3. The direct and adjoint flows (Re = 4).

The cost functional to be minimized is defined by

J(u) =
∫

Ωd

|u − ud|2dx,

ud =
(

2× Vmean × 0.4(y + 0.8)
1.62

, 0
)

,

where Vmean is the mean velocity of the fluid at the inlet. For that criterion, the topological asymptotic is given
by Theorem 3.1 with δJ = 0: the topological gradient at the point x0 reads

g(x0) = 4πνu0(x0).v0(x0).

The obstacles are only allowed to be inserted in the right part of Ω \Ωd. The topological optimization algorithm
used here is the following.

• Initialization: choose Ω0 = Ω and set k = 0.
• Repeat until target is reached:

(1) solve the direct and adjoint problems in Ωk;
(2) compute the topological gradient g;
(3) seek x∗ = argmin(g(x), x ∈ Ωk);
(4) set Ωk+1 = Ωk \B(x∗, r0);
(5) k ← k + 1.

The radius r0 is fixed and chosen by the designer, here r0 = 0.03. We present two experiments. For the first
one, we have taken Vmean = 10. This corresponds to a Reynolds number Re = VmeanL/ν, L being the inlet
section, equal to 4. The direct and adjoint flows and the topological gradient computed for the initial geometry
are represented in Figures 3 and 4. Figure 5 illustrates the direct flow obtained after three iterations as well as the
target flow. A convergence history of the cost functional is given in Figure 6. In the second configuration (Fig. 7),
we have taken Vmean = 50 (Re = 20). For higher Reynolds numbers, the appearance of turbulent structures makes
inappropriate an optimization process based on the insertion of separated obstacles.
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Figure 4. The topological gradient at the first iteration (Re = 4).

Figure 5. The direct flow after 3 iterations and the target flow (Re = 4).
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Figure 6. Convergence history (Re = 4).
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Figure 7. The direct flow after 3 iterations and the convergence history (Re = 20).
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