
Ark. Mat., 50 (2012), 291–304
DOI: 10.1007/s11512-010-0132-2
c© 2010 by Institut Mittag-Leffler. All rights reserved

The topological center of the spectrum
of some distal algebras

Ali Jabbari

Abstract. The topological center of the spectrum of the Weyl algebra W , i.e. the norm

closure of the algebra generated by the set of functions {n �→λni
; λ∈T and i∈N}, is characterized

in a recent paper by Jabbari and Namioka (Ellis group and the topological center of the flow

generated by the map n �→λnk
, to appear in Milan J. Math.). By the techniques essentially

used in the cited paper, the topological center of the spectrum of the subalgebra Wk, the norm

closure of the algebra generated by the set of functions {n �→λni
; λ∈T and i=0, 1, 2, ..., k}, will

be characterized, for all k ∈N. Also an example of a non-minimal dynamical system, with the

enveloping semigroup Σ, for which the set of all continuous elements of Σ is not equal to the

topological center of Σ, is given.

1. Introduction

The history of characterizing the topological center of the spectrum of a left-
invariant non-distal algebra on a group G goes back to a paper by Lau, Milnes and
Pym [18] (see also [19]). They showed that the topological center of the spectrum
of the largest compactification of any locally compact group G equals G itself. But,
similar results for distal algebras are rather meager (see [11]). A distal algebra is
a left-invariant conjugate-closed Banach algebra of distal functions. The spectrum
of any distal subalgebra A of �∞(Z), the Banach algebra of all bounded complex-
valued functions on Z, is an example of a compact admissible right-topological
group. Namioka [22], and also Milnes and Pym in [20] and [21], have studied the
structure of compact admissible right-topological groups, and Lau and Loy [17] have
investigated harmonic analysis on these groups.

Distal functions on groups were first introduced by Auslander and Hahn in [1].
By definition, a bounded function on a group G is distal if whenever {gn} ∞

n=1,
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{hi} ∞
i=1 and {kj } ∞

j=1 are nets in G such that for all g ∈G,

lim
n

lim
i

f(ggnhi) = lim
n

lim
j

f(ggnkj)

then limi f(ghi)=limj f(gkj), for all g in G. Later, Knapp [14] gave an analysis
and synthesis of distal functions on groups. He showed that the set of all distal
functions on a group G is itself a distal algebra. For a general reference on distal
functions on semigroups see [2].

Let T denote the unit circle in the complex plane. Then T is a compact
topological group under the complex multiplication. Let W denote the norm closure
of the algebra generated by the set of functions {n �→λni

;λ∈T and i∈N}, where, as
usual, N is the set of all positive integers. The algebra W has been studied from
different aspects: Knapp [14] showed that all of the elements of W are distal.
Later, Namioka [22, Theorem 3.6] gave a simpler proof of this fact. By using a
result of Furstenberg [6], Salehi [24] showed that all of the elements of W , called
the Weyl algebra, are uniquely ergodic, and he derived that W does not exhaust
all distal functions on (Z, +) [24, Theorem 2.14]. In [12] (see also [10]), by giving
a characterization of the Weyl algebra in a more general setting of semitopological
semigroups, the authors showed that the algebra W is actually a distal algebra.
In a recent work of Isaac Namioka joint with the author [11], they proved that,
for each irrational member λ of the unit circle, the shift-orbit closure Xf of the
function f(n)=λnk

is homeomorphic to a k-torus. Using this homeomorphism,
by generalizing an interesting result of Namioka [23], they also characterized the
topological center of the dynamical system Xf , as well as the topological center of
the spectrum of the Weyl algebra W .

Throughout this paper we fix k ∈N, k>1. Let Wk be the norm closure of the
algebra generated by the set of functions {n �→λni

;λ∈T and i=0, 1, 2, ..., k}. In [12]
(see also [10]), this algebra is generalized to arbitrary semitopological semigroups.
It is proved that Wk is left invariant, and hence is a distal algebra [12, Theorem 3.5].

The aim of the present paper is to determine the topological center of the spec-
trum M(Wk) of the distal algebra Wk (Theorem 1.1). To this end, we characterize
M(Wk) with the Ellis group Σ(Wk, U) of the distal flow (Wk, U) [11, Proposi-
tion 5.3], where U : Wk→Wk is the shift operator defined by U(g)(n)=g(n+1),
for all g ∈Wk and all n∈Z. Then we show that Σ(Wk, U) is homeomorphically
isomorphic to a subgroup of E(T)k (Theorem 3.1), where E(T) is the set of all
endomorphisms of the group T.

Note that M(Wk) is the set of all multiplicative means μ on Wk, that is,
μ(1)=1, μ(f)≥0 whenever f ∈Wk and f ≥0, and μ(fg)=μ(f)μ(g) for all f, g ∈Wk.
M(Wk) is a weak∗ compact subsemigroup of W ∗

k , with the product 〈μ∗ν, f 〉=
〈μ, Tνf 〉, where Tνf(n)=ν(Unf) for all μ, ν ∈M(Wk), f ∈Wk and n∈Z.
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Let H be the torsion subgroup of T, and let V denote the quotient space T/H .
Then V is a vector space over Q. Let Hom(V, T) denote the set of all Q-vector space
homomorphisms from V into T. The following is the main result of this paper.

Theorem 1.1. Let k ∈N, with k>1. The topological center of M(Wk) is iso-
morphic to the group Z×Hom(V, T) with the group structure

(p, θ)(q, θ′)= (p+q, θθ′( · )(p+q)k −pk −qk

).

We remark that the topological center of M(W ) is essentially characterized
in [11].

Finally, we prove that the set of all continuous elements of Σ(Wk, U) is isomor-
phic to Z (Theorem 3.10), which along with Theorem 1.1 shows that there exists
a non-minimal dynamical system with the Ellis group Σ such that the topological
center of Σ is different from Σc, the set of all continuous elements of Σ (see [11,
Lemma 4.3]).

Remark. The notion of topological center began with the earlier works of Isik–
Pym–Ülger [9], Lau [15] and Lau–Losert [16]. In recent years there has been sig-
nificant interest in the subject. Interested readers are referred to the recent papers
and references contained in [3] and [4].

2. Preliminaries

A dynamical system is a pair (X, T ), where X is a Hausdorff space and T is
a homeomorphism from X onto X . The dynamical system (X, T ) is said to be
compact if X is a compact Hausdorff space. We always assume that the space XX

is provided with the product topology. The closure Σ(X, T ) of the set {Tn ;n∈Z}
is a sub-semigroup of XX called the enveloping semigroup of the dynamical system
(X, T ). With the relativization of the product topology from XX , the mapping
σ �→σ ◦τ : Σ→Σ is continuous for all τ ∈Σ, in other words, Σ=Σ(X, T ) is a Hausdorff
right-topological semigroup with the topology of pointwise convergence; and it is not
left-topological, in general. The topological center Λ(Σ) of Σ is defined as follows,

Λ(Σ) = {τ ∈ Σ ; σ �→ τ ◦σ : Σ→Σ is continuous}.

Λ(Σ) is a sub-semigroup of Σ containing {Tn ;n∈Z}. Also, for each x in X , the orbit
closure of x is Σ(x) and the map σ �→σ(x) : Σ→X is continuous. A compact dy-
namical system (X, T ) is called distal if limα Tnαx=limα Tnαy for some net {nα}α

in Z and x, y ∈X implies that x=y. It was Ellis [5, Proposition 5.3] who showed



294 Ali Jabbari

that a compact dynamical system is distal if and only if its enveloping semigroup is
a group (whose identity is the identity mapping of X). The enveloping semigroup
of a distal dynamical system is called the Ellis group of the dynamical system. A
closed non-empty subset M of a dynamical system (X, T ) is called minimal if M is
invariant (i.e. TnM ⊆M for all n∈Z) and no proper closed subset of M is invariant.
It is readily seen that M is minimal if and only if Σ(x)=M for each x in M . A
minimal dynamical system is a dynamical system (X, T ) for which the phase space
X is minimal. Two dynamical systems (X, T ) and (X ′, T ′), or briefly X and X ′,
are isomorphic if there exists a homeomorphism Γ: X→X ′ such that Γ◦T =T ′ ◦Γ.

By �∞(Z) (or �∞), we mean the Banach space of all bounded complex-valued
functions on Z, with the supremum norm. The topology of �∞ is the weak∗ topol-
ogy, where �∞ is regarded as the dual space of �1(Z). Recall that the weak∗ topology
of �∞ coincides with the topology of pointwise convergence on norm-bounded sub-
sets. Define the shift operator U : �∞→�∞ by U(g)(n)=g(n+1) for all g ∈�∞ and
all n∈Z. It is clear that the shift operator U is a continuous map of �∞ into itself.
Therefore the pair (�∞(Z), U) is a dynamical system. Namioka [22, Lemma 3.1]
showed that the enveloping semigroup Σ(�∞, U) of the flow (�∞, U) is compact.
We observe here that each element of Σ(�∞, U) is a multiplicative bounded linear
transformation of norm 1 of the Banach space �∞ into itself. The object of the
present paper is the dynamical system (Wk, U), where Wk is given the topology
induced by that of �∞. With a proof similar to the proof of [11, Theorem 5.1],
one can readily verify that Σ(Wk, U) is a compact right-topological group. Also,
it is easily seen that the topological center of Σ(Wk, U) coincides with its “cen-
ter” in the group theoretic sense (just because of the commutativity of the acting
group Z).

By giving a new characterization of Weyl algebras in a more general setting
of semitopological semigroups S, it is shown in [12] that, for each σ ∈Σ(�∞, U),
σ(Wk)⊂Wk, that is Wk is left-invariant and therefore a distal algebra. Hence
the enveloping semigroup Σ(Wk, U) of the dynamical system (Wk, U) is {σ|Wk

;
σ ∈Σ(�∞, U)}, where σ|Wk

denotes the restriction of σ to Wk.

For each f ∈�∞, let Xf denote the orbit closure of f with respect to the shift
mapping U . Then U(Xf )⊆Xf . Therefore (Xf , U) is a dynamical system as well.
In fact Xf ={σf ;σ ∈Σ(�∞, U)}. It follows that Xf ⊂Wk for each f ∈Wk. Thus
Σ(Xf , U)={σ|Xf

;σ ∈Σ(Wk, U)}. Now, because of the continuity of the restriction
mapping, the enveloping semigroups Σ(Wk, U) and Σ(Xf , U), for f ∈Wk, are also
compact. Finally, we remark that a function f ∈�∞ is distal if and only if the
dynamical system (Xf , U) is distal. The structure of distal flows is essentially
studied in [7].
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3. The Ellis group of the dynamical system (Wk, U)

Let us recall some results from [11]. The binomial coefficients are extended as
follows: Let j ∈N and n∈Z, then(

n

0

)
=1 and

(
n

j

)
=

1
j!

n(n−1)...(n−j+1).

Fix an irrational (i.e. a non-root of unity) element λ∈T. Define f ∈T
Z by f(n)=λnk

for all n∈Z. It is a result of [11] that there exists a continuous map T : T
k→T

k

such that the mapping Γ: T
k→Xf defined by

(1) Γ(x1, x2, ..., xk)(n) =λnk

x
Qk−1(n)
1 x

Qk−2(n)
2 ...x

Q1(n)
k−1 xk

(for (x1, x2, ..., xk)∈T
k and n∈Z) is an isomorphism between the dynamical systems

(Tk, T ) and (Xf , U) [11, Theorem A], where for each n∈Z and j ∈ {0} ∪N,

(2) Qj(n) =
(

n+[ j/2]
j

)
.

By using this isomorphism, it is also proved that the mapping Θ: Σ(Xf , U)→
E(T)k−1 ×T defined by Θ(σ)=(θ1, θ2, ..., θk−1, u) is a homeomorphic embedding
into E(T)k−1 ×T [11, Theorem B], where (θ1, θ2, ..., θk−1, u) is associated with σ=
limα Umα ∈Σ, that is for each j ∈ {1, 2, ..., k −1}, θj ∈T

T, is given by

(3) θj(x) = lim
α

xQj(mα),

and

(4) u = lim
α

λmk
α ∈ T.

Finally, if σ ∈Λ(Σ(Xf , U)), then there exists an integer p such that θj =( )Qj(p),
for each j ∈ {1, 2, ..., k −1} [11, Lemma 4.5].

To characterize the topological center of Σ(Wk, U), we need some preliminar-
ies. Let σ ∈Σ(Wk, U), and let {mα}α be a net in Z such that σ=limα Umα . By
taking a subnet of mα if necessary, we may assume that for each j ∈ {0, 1, ..., k −1},
limα xQj(mα) exists for each x∈T and limα xmk

α exists for each x∈T. For each
j ∈ {0, 1, ..., k −1} define θj ∈T

T by

(5) θj(x) = lim
α

xQj(mα)

for all x∈T. Also define θ : T→T by

(6) θ(x) = lim
α

xmk
α .

With this introduction, we can prove the next theorem.
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Theorem 3.1. Let Σ=Σ(Wk, U), and define the mapping Θk : Σ→E(T)k by
Θk(σ)=(θ1, ..., θk−1, θ), where σ, θ1, ..., θk−1 and θ are defined as in the paragraph
preceding the theorem. Then Θk is a homeomorphic embedding into E(T)k.

Proof. Let σ=limα Umα =limβ Unβ ∈Σ. Let y ∈T, and let j ∈ {1, 2, ..., k −1}.
Let f ∈T

Z be the function defined by f(n)=yj!Qj(n). Since j!Qj(n) is a polyno-
mial of degree j with integral coefficients, one has f ∈Wk. Hence limα Umα(f)(0)=
limβ Unβ (f)(0). Thus limα yj!Qj(mα)=limβ yj!Qj(nβ). Since each x∈T can be writ-
ten of the form yj! for some y ∈T, it follows that

(7) lim
α

xQj(mα) = lim
β

xQj(nβ).

Again let x∈T. Then the function g ∈T
Z defined by g(n)=xnk

, n∈Z, is an element of
Wk. Hence limα Umα(g)(0)=limβ Unβ (g)(0). Therefore limα xmk

α =limβ xnk
β . From

this and (7), it follows that Θk(σ) depends only on σ, not on the choice of the net
representing σ. Hence Θk is well-defined. To show that Θk is one-to-one, assume
that σ, τ ∈Σ are such that Θk(σ)=Θk(τ)=(θ1, ..., θk−1, θ). Then we must prove that
σ=τ . Since σ and τ are bounded linear transformations on Wk, and since Wk is the
norm-closed subalgebra of �∞ generated by the set Ak={n �→xni

;0≤i≤k and x∈T},
it is enough to show that σ(f)=τ(f) for all f ∈Ak. To this end, fix x∈T. First, let f

be the function n �→xnk

. Then for each m∈Z, (Umf)(n)=x(n+m)k

=f(n)xS(m)xmk

with S ∈ S(k −1), where S(k −1) is the set of all integral linear combinations of the
functions Q1, Q2, ..., Qk−1, as defined in Section 4 of [11]. Let S(m)=

∑k−1
j=1 ajQj(m)

with aj ∈Z. Let {mα}α be a net in Z such that limα Umα(g)=σ(g) for each g ∈Wk,
as in the beginning of this proof, then

σ(f)(n) = f(n) lim
α

xS(mα) lim
α

xmk
α = f(n)

k−1∏
j=1

θj(xaj )θ(x).

Similarly τ(f)(n)=f(n)
∏k−1

j=1 θj(xaj )θ(x). Therefore by the hypothesis, σ(f)=τ(f).

Now, for i∈ {1, 2, ..., k −1}, let fi ∈Ak be defined by fi(n)=xni

. A similar, but sim-
pler, proof applies to show that σ(fi)=τ(fi), for all i=1, 2, ..., k −1. Hence σ=τ .
Finally, to show that Θk is continuous, we must prove that for each x∈T the map
ϕ : σ �→θ(x) and the maps ϕj : σ �→θj(x), for j=1, 2, ..., k −1, are continuous on Σ.
For the latter, fix j=1, 2, ..., k −1 and x, y ∈T with x=yj!. If g ∈Wk is defined by
g(n)=yj!Qj(n), then ϕj(σ)=θj(x)=θj(yj!)=σ(g)(0), hence the continuity of ϕj fol-
lows from the continuity of the map σ �→σ(g)(0) on Σ. It remains to prove that
ϕ : σ �→θ(x) is continuous for all x∈T. To this end, fix x∈T. Define f ∈Wk by
f(n)=xnk

. Then ϕ(σ)(x)=θ(x)=σ(f)(0). Hence the continuity of ϕ follows from
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the continuity of the map σ �→σ(f)(0) on Σ(Wk, U). That is, Θk is continuous
on Σ. �

In the next lemma, we show that for an element σ, with Θk(σ)=(θ1, ..., θk−1, θ),
to be in the topological center of Σ it is enough that the first k −1 components are
continuous elements of E(T).

Lemma 3.2. Let Σ and Θk : Σ→E(T)k be as in Theorem 3.1. Let σ ∈Σ
and let Θk(σ)=(θ1, ..., θk−1, θ). Then σ ∈Λ(Σ) if and only if θi is a continuous
endomorphism of T for each i∈ {1, 2, ..., k −1}.

Proof. Let σ ∈Λ(Σ). An observation similar to the one at the beginning of the
proof of [11, Theorem E], with W replaced by Wk, shows that σ|Xf

∈Λ(Σ(Xf , U))
for each f ∈Wk. Let λ be an irrational member of T, and let f(n)=λnk

. Then σ|Xf
∈

Λ(Σ(Xf , U)). Now we can apply Lemma 4.4 of [11]. (In that lemma, σ ∈Σ(Tk, T )
is expressed as σ=limα Tmα , but since, by [11, Theorem A], the dynamical systems
(Xf , U) and (Tk, T ) are isomorphic, this is equivalent to writing σ|Xf

=limα Umα

in this section. Recall that U : T
Z→T

Z is the shift map and T : T
k→T

k is the
map satisfying U ◦Γ=Γ◦T , where Γ: T

k→Xf is the isomorphism of Theorem 1.1
in [11], as defined in (1) of the present paper.) Let Θk(σ|Xf

)=(θ1, ..., θk−1, u) as in
Theorem B of [11] (or as illustrated at the beginning of this section). Then by [11,
Lemma 4.4] θ1, θ2, ..., θk−1 are all continuous. Conversely, let σ ∈Σ, let Θk(σ)=
(θ1, ..., θk−1, θ), and assume that θi ∈T

T is continuous for all i=1, 2, ..., k −1. Hence
for each i=1, 2, ..., k −1, θi=( · )ni for some ni ∈Z. As we remarked in Section 2,
Σ=Σ(Wk, U) is a compact right-topological group, and the topological center of
Σ coincides with its center in the group theoretic sense. Hence, to prove that
σ ∈Λ(Σ) is to prove that σ ◦τ =τ ◦σ for all τ ∈Σ. So fix τ =limβ Unβ ∈Σ and let
Θk(τ)=(θ′

1, ..., θ
′
k−1, θ

′). Since σ and τ are bounded linear transformations on Wk

and since Wk is generated by Ak={n �→xni

;x∈T and i=0, 1, 2, ..., k}, it is enough
to show that σ ◦τ(f)=τ ◦σ(f) for all f ∈Ak. First note that for each i∈ {1, 2, ..., k}
the polynomial mi is an element of S(i), the set of all integral linear combinations
of Q1(m), ..., Qi(m) [11]. (For instance, m=Q1(m)∈ S(1), m2=2Q2(m)−Q1(m)∈
S(2), ... .) For simplicity, we shall confine the proof for the special case k=3, since
it contains all the necessary ideas. So let k=3, fix x∈T and let f ∈Wk be defined
by f(n)=xn3

. Let σ and τ be as above. Then

σ ◦τ(f)(n) = lim
α

lim
β

U (mα+nβ)f(n) = lim
α

lim
β

f(mα+nβ+n)

= lim
α

lim
β

x(mα+nβ+n)3 .(8)
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But, for each n∈Z and for all α, β one has

(mα+nβ +n)3 = n3+3n2(Q1(mα)+Q1(nβ))

+ 3n(2Q2(mα)−Q1(mα)+2Q1(mα)Q1(nβ)+2Q2(nβ)−Q1(nβ))

+ 3(2Q2(mα)−Q1(mα))Q1(nβ)+3Q1(mα)(2Q2(nβ)−Q1(nβ))

+m3
α+n3

β .

Hence

(9) σ ◦τ(f)(n) = f(n)[(θ1θ
′
1)

3n(n−1)(θ2θ
′
2)

6n(θ1 ◦θ′
1)

6(n−1)(θ2 ◦θ′
1)

6(θ1 ◦θ′
2)

6θθ′](x).

Similarly
(10)

τ ◦σ(f)(n) = f(n)[(θ1θ
′
1)

3n(n−1)(θ2θ
′
2)

6n(θ′
1 ◦θ1)6(n−1)(θ′

2 ◦θ1)6(θ′
1 ◦θ2)6θθ′](x).

Now, since θi=( · )ni one has θi ◦θ′
j(x)=θ′

j(x)ni =θ′
j(x

ni)=θ′
j ◦θi(x). Therefore, it

follows from (9) and (10) that σ ◦τ(f)=τ ◦σ(f). A similar argument shows that
σ ◦τ(g)=τ ◦σ(g) for all g ∈Ak defined by g(n)=xni

, with i=1, 2, ..., k −1. That is
σ ◦τ =τ ◦σ. Thus σ ∈Λ(Σ(Wk, U)). �

The proof of the next lemma is similar to [11, Lemma 4.5], but we shall give it
here for the sake of completeness.

Lemma 3.3. Using the notation of Lemma 3.2, let σ be an element of Σ and
let Θk(σ)=(θ1, ..., θk−1, θ). Then σ ∈Λ(Σ) if and only if there exists an n∈Z such
that θj(x)=xQj(n) for each j ∈ {1, 2, ..., k −1} and each x∈T.

Proof. Assume that σ ∈Λ(Σ). Then by the previous lemma, each θj is con-
tinuous. This means that for some nj ∈Z; θj(x)=xnj for each x∈T. Hence it is
enough to show that for each j=1, 2, ..., k −1, ( · )nj =( · )Qj(n1). Let {mα}α be a net
in Z such that σ=limα Umα . Fix a prime number p>(k −1)!. Then for η=e(1/p),
θ1(η)=limα ηmα =ηn1 , hence mα=n1 (mod p) eventually. Here recall that for each
t∈R, e(t)=e2πit. Note that Z (mod p) is a field. Since p>j!, the division by j! is
well defined in Z (mod p), and we see that Qj(mα)=Qj(n1) (mod p) eventually,
for j=2, ..., k −1. Therefore limα e((1/p)Qj(mα))=e((1/p)Qj(n1)). It follows that
for each integer q with 0<q<p, one has limα e((q/p)Qj(mα))=e((q/p)Qj(n1)). On
the other hand limα e((q/p)Qj(mα))=θj(e(q/p))=e(q/p)nj . Thus e(q/p)Qj(n1)=
e(q/p)nj . Now since x �→xQj(n1) and x �→xnj are both continuous functions on
T and the set {e(q/p);0<q<p, p>(k −1)! and p is prime} is dense in T, we have
xQj(n1)=xnj for each x∈T. The converse is clear from the previous lemma and the
fact that for each j the map x �→xQj(n1) is continuous on T. �
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Remark 3.4. Notice that the previous lemma implies that each element σ ∈
Λ(Σ) determines a unique element (n, θ) of the space Z×E(T), such that θ(x)=xnk

for all x∈H , where H denotes the torsion subgroup of T.

Let H be as above. Then T=H ×V , where V is isomorphic to T/H . Hence
V is a divisible torsion-free subgroup. Consequently, it is a linear space over the
rationals Q [8, Appendix A]. As remarked in [11], for v, w∈V and q ∈Q, the linear
space “addition” v+w is the complex multiplication vw and the multiplication by
scalar qv is actually the power vq . For instance, 1

2v is actually v1/2 which is the
unique member u∈V such that u2=v.

Let Hom(V, T) denote the set of all homomorphisms from the vector space V

(over Q) into T. Then Z×Hom(V, T) is a group with the group structure defined as
follows: for (p, θ), (q, θ′)∈Z×Hom(V, T), (p, θ)(q, θ′)=

(
p+q, θθ′( · )(p+q)k −(pk+qk)

)
.

We are going to show that Λ(Σ) is isomorphic to Z×Hom(V, T). To this end,
let Φ: Λ(Σ)→Z ×Hom(V, T) be defined by Φ(σ)=(n, θ), where σ, n and θ are as in
the above remark. To show that the map Φ is an isomorphism of groups, we need
some preliminaries.

Note that we shall confine to the case k=3, since this case exhibits all the
necessary ideas (even the ideas for the case k=2). The general case is then derived
similarly.

Now, as in [11], let {vγ ;γ ∈Γ} be a Q-basis of V . Similar to Lemmas (i) and (ii)
of [11] we have the following lemmas.

Lemma 3.5. For each ε>0, each finite subset F of Γ, each h∈N and each
θ ∈Hom(V, T) there is an m∈N such that

(a) m≡0 (mod d) for each integer d, 0<d≤h;
(b) |(v1/d

γ )m −1|<ε for each γ ∈F and for each d∈ {1, 2, ..., h};
(c) |(v1/d

γ )m2 −1|<ε for each γ ∈F and for each d∈ {1, 2, ..., h};
(d) |(v1/d

γ )m3 −θ(v1/d
γ )|<ε for each γ ∈F and for each d∈ {1, 2, ..., h}.

Proof. Consider the following statements:
(b′) |(v1/h!

γ )m −1|<ε/h! for each γ ∈F ;
(c′) |(v1/h!

γ )m2 −1|<ε/h! for each γ ∈F ;
(d′) |(v1/h!

γ )m3 −θ(v1/h!
γ )|<ε/h! for each γ ∈F .

It is proved in [11, Lemma (i)] that the statements (b) and (c) are implied by (b′)
and (c′), respectively. We show that the statement (d) is also implied by (d′). First,
recall that if x, y ∈T, then for each n∈N, |xn −yn| ≤n|x−y|. Now assume (d′). Then
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for each d∈ {1, 2, ..., h},

|(v1/d
γ )m3

−θ(v1/d
γ )| = |((v1/h!

γ )m3
)h!/d −(θ(v1/h!

γ ))h!/d| <
h!
d

ε

h!
=

ε

d
≤ ε.

Let F ={γj ;j ∈ {1, 2, ..., p} } for some p∈N. For each j ∈ {1, 2, ..., p} choose ξj ∈[0, 1)
such that v

1/h!
γj =e(ξj). For j ∈ {1, 2, ..., p}, let

φ1
j (t) = ξj(th!), φ2

j (t) = ξj(th!)2 and φ3
j (t) = ξj(th!)3.

Then the polynomials φ1
j (t), φ

2
j (t) and φ3

j (t), 1≤j ≤p, satisfy the hypothesis of Satz
14 of H. Weyl [25] since ξ1, ξ2, ..., ξp are independent (mod 1) over Q. It follows
that the sequence

{(φ1
1(n), ..., φ1

p(n), φ2
1(n), ..., φ2

p(n), φ3
1(n), ..., φ3

p(n)) ; n ∈ N}

is dense in (R/Z)3p. Hence the image of this sequence under the map e is dense
in T

3p. Thus, for some n, m=nh! satisfies conditions (a), (b′), (c′), and (d′). Hence
the lemma is proved. �

Lemma 3.6. Given θ ∈Hom(V, T), there is a net {nα}α in N such that
(a) limα xnα =1 for each x∈T;
(b) limα xn2

α =1 for each x∈T;
(c) limα xn3

α =θ(x) for each x∈V .

Proof. As in the proof of [11, Lemma (ii)], let F be the family of all finite
subsets F of Γ and let D=F ×(0, ∞)×N. Partially order D as follows: for α=
(F, ε, h) and α′ =(F ′, ε′, h′)∈D, α≤α′ if and only if F ⊂F ′, ε≥ε′ and h≤h′. Then
clearly D is a directed set. For each α=(F, ε, h), let nα be an integer m∈N satisfying
the conditions (a)–(d) of Lemma 3.5.

The fact that (a) and (b) are satisfied follows from a proof similar to the proof
of Lemma (ii) of [11].

For each γ ∈Γ let Vγ be Qvγ ={vr
γ ;r ∈Q}. Suppose x∈V . Then there is an

F ∈ F such that x∈
∏

{Vγ ;γ ∈F }. It remains to prove (c) for the case x∈Vγ for
each γ ∈Γ, so let x∈Vγ . Then x=(v1/d

γ )c for some c∈Z and d∈N. Hence in order
to prove (c) for x∈Vγ , it is sufficient to show (c) for x=v

1/d
γ . Let ε>0 and let

α=({γ}, ε, d)∈D. If β=(G, δ, h)≥α in D, then γ ∈G, δ ≤ε and d≤h. Hence by
Lemma 3.5(d), |(v1/d

γ )n3
β −θ(v1/d

γ )|<δ ≤ε whenever β ≥α. This completes the proof
of (c). �
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Corollary 3.7. Let (q, θ)∈Z×Hom(V, T). Then there is a net {mα}α in N

such that for all x∈T,

lim
α

xmα =xq, lim
α

xm2
α =xq2

and lim
α

vm3
α = θ(v) for each v ∈ V.

Proof. Let {nα}α be the net given by Lemma 3.6 for θ′ ∈Hom(V, T) instead
of θ, in which θ′(v)=θ(v)v−q3

for all v ∈V . For each α, let mα=nα+q. Then the
first two equations follow from (a) and (b) of Lemma 3.6. Similarly

lim
α

vm3
α = lim

α
v(n3

α+3n2
αq+3nαq2+q3) = θ′(v)vq3

= θ(v)v−q3
vq3

= θ(v). �

Corollary 3.8. For each (q, θ)∈Z×Hom(V, T), there is a net {mα}α in Z

such that the following conditions are satisfied :
(a) limα xQ1(mα)=xQ1(q) for each x∈T;
(b) limα xQ2(mα)=xQ2(q) for each x∈T;
(c) limα xm3

α =θ(x) for each x∈V .

Proof. Let {mα}α be the net given in the Corollary 3.7. Since Q1(n)=n for
each n∈Z, (a) is obvious. Now 2Q2(n)=n2+n. Again by Corollary 3.7, we have
limα y2Q2(mα)=y2Q2(q) for each y ∈T. For each x∈T, let y ∈T be chosen so that
x=y2. Then (b) follows easily. The statement (c) is trivially part (c) of Corol-
lary 3.7. �

Proof of Theorem 1.1. It is enough to show that the map Φ is an isomorphism
of groups. From Lemma 3.3 and the results preceding Lemma 3.5, Φ is well defined
and is clearly one-to-one. In order to show that Φ is onto, it is clear from (5) and
(6) that for each (n, θ)∈Z×Hom(V, T) we must find a net {mα}α such that for each
j ∈ {1, ..., k −1} and for each x∈T,

xQj(n) = lim
α

xQj(mα) and lim
α

vmk
α = θ(v) for all v ∈ V.

This follows from Corollary 3.8 above for the case k=3, and as we remarked, the
general case is completely analogous. It remains to show the group structure on
Z×Hom(V, T) induced by the map Φ.

Let λ∈T be irrational, and let f ∈T
Z be defined by f(n)=λnk

. Recall that
U : T

Z→T
Z is the shift map and T : T

k→T
k is the map satisfying U ◦Γ=Γ◦T , where

Γ: T
k→Xf is the isomorphism of Theorem 1.1 in [11]. Let g ∈Xf be arbitrary. Then

there is an x=(x1, x2, ..., xk)∈T
k such that Γ(x)=g. Hence for each m∈Z,

(11) Um(g)(0) = g(m)=Γ(x)(m) =λmk

x
Qk−1(m)
1 x

Qk−2(m)
2 ...x

Q1(m)
k−1 xk.
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Now suppose σ ∈Λ(Σ(Wk, U)) and Φ(σ)=(p, θ)∈Z×Hom(V, T). Then there is a net
{mα}α in Z such that limα Umα =σ, limα xQj(mα)=xQj(p) for each j ∈ {1, 2, ..., k −1}
and each x∈T, and limα λmk

α =θ(λ). Suppose that σ, τ ∈Λ(Σ) and that Φ(σ)=
(p, θ), Φ(τ)=(q, θ′) and Φ(σ ◦τ)=(r, θ

′ ′
). If u=θ(λ), v=θ′(λ) and w=θ

′ ′
(λ), then it

is not hard to verify that w=uvλ(p+q)k −(pk+qk) and r=p+q. Therefore Φ(σ ◦τ)=
(p+q, θθ′( · )(p+q)k −(pk+qk)). This completes the proof of the Theorem 1.1. �

Remark 3.9. Let Gk denote the set Z×Hom(V, T), given the group operation
defined in the proof of Theorem 1.1. Then G1 is Z×Hom(V, T) with the group
operation (p, θ)(q, θ′)=(p+q, θθ′). The groups G1 and Gk seem to be different,
but they are actually isomorphic by the map φ : Gk→G1 defined by φ((p, θ))=
(p, θ( · )−pk

).

Finally, we are going to prove the next result, which, comparing with Theorem 1.1,
shows that Lemma 4.3 of [11] (or [13, Proposition 2.1]), on the equivalence of the
topological center of the enveloping semigroup S, corresponding to any minimal
flow, with the set of all continuous elements of S, is not generally valid for non-
minimal flows. Let Σc(Wk, U) denote the set of all continuous elements of Σ(Wk, U).

Theorem 3.10. For each k>1, Σc(Wk, U)={Un ;n∈Z}.

Proof. Assume that σ=limα Umα ∈Σc(Wk, U). Clearly σ ∈Λ(Σ(Wk, U)). Let
Θk(σ)=(θ1, ..., θk−1, θ), as in Theorem 3.1. Then by Lemma 3.3 there exist an
integer n such that θj =( · )Qj(n) for each j, 1≤j ≤k −1. On the other hand,
Θk(Un)=(( · )Q1(n), ..., ( · )Qk−1(n), ( · )nk

) and Θk is one-to-one, hence it remains to
show that θ=( · )nk

. First, we show that θ is continuous. To this end, let {xβ }β

be an arbitrary net in T which converges to x∈T. We show that θ(xβ)→θ(x).
Let fβ , f ∈Wk be defined by fβ(n)=xnk

β and f(n)=xnk

for all n∈Z. Then fβ→f

(pointwise) in Wk. Hence, by the continuity of σ,

θ(xβ) = lim
α

(xβ)mα
k

=σ(fβ)(0)→σ(f)(0) = lim
α

xmk
α = θ(x).

That is, θ is continuous. Therefore, θ=( · )m for some m∈Z. Let p be any prime
number. Since limα xmα =xn, for all x∈T, we have mα=n (mod p) eventually.
Therefore mk

α=nk (mod p) eventually. Thus limα e((1/p)mk
α)=e((1/p)nk). It fol-

lows that for each integer q with 0<q<p, one has limα e((q/p)mk
α)=e((q/p)nk). On

the other hand, limα e((q/p)mk
α)=θ(e(q/p))=e(q/p)m. Hence e(q/p)nk

=e(q/p)m.
Now since x �→xnk

and x �→xm are both continuous functions on T and the set
{e(q/p);0<q<p, p>(k −1)! and p is prime} is dense in T, we have xnk

=xm=θ(x)
for each x∈T. The theorem is now proved. �
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