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The topological gradient method:
From optimal design to image processing

Stanislas Larnier, Jérôme Fehrenbach and Mohamed Masmoudi

Abstract. The aim of this article is to review and extend the applica-
tions of the topological gradient to major image processing problems. We
briefly review the topological gradient, and then present its application
to the crack localization problem, which can be solved using the Dirich-
let to Neumann approach. A very natural application of this technique
in image processing is the inpainting problem, which can be solved by
identifying the optimal location of the missing edges. Edge detection is of
extreme importance, as edges convey essential information in a picture.
A second natural application is then the image reconstruction. A class
of image reconstruction problems is considered that includes restora-
tion, demosaicing, segmentation and super-resolution. These problems
are studied using a unified theoretical framework which is based on the
topological gradient method. This tool is able to find the localization
and orientation of the edges for blurred, low sampled, partially masked,
noisy images. We review existing algorithms and propose new ones. The
performance of our approach is compared with conventional image re-
construction processes.

Mathematics Subject Classification (2010). 94A08, 49Q10, 49Q12.

Keywords. Edge detection, topological gradient, anisotropic diffusion,
image denoising, demosaicing, image inpainting, image segmentation,
super-resolution.

1. Introduction

Topology optimization formulates a design problem as an optimal material
distribution problem. The search of an optimal domain is equivalent to finding
its characteristic function, it is a 0-1 optimization problem. It can be seen as
a generalization of shape optimization because it does not impose restriction
on the topology of the optimal shape, for example the number of connected
components of the domain or of its complementary.



2 Stanislas Larnier, Jérôme Fehrenbach and Mohamed Masmoudi

Different approaches make this problem differentiable:

➢ Relaxation, homogenization,
➢ Level set,
➢ Topological gradient.

The homogenization technique [3, 2, 22, 21] is based on relaxed formu-
lations leading to the introduction of some intermediate material or micro-
structures. The drawback is precisely that the optimal solution is not a clas-
sical design: it is a distribution of composite materials. Then penalization
methods must be applied in order to retrieve a feasible shape. This method
has mainly been applied to linear elasticity and particular objective functions.

The level set method [51, 50, 5, 60] can handle boundary propagation
with topological changes. In practice, the level set method can easily remove
holes but cannot create new ones. For this reason, in [4], the authors couple
the level set method with the topological gradient method, which allow the
creation of new holes in the optimization process.

This work focuses on the topological gradient [35, 57, 58, 46, 35, 38,
39, 7, 8, 47]. To present the basic idea, let Ω be a domain of Rd, d ∈ N\{0}
and j(Ω) = J(uΩ) a cost function to be minimized, where uΩ is a solution
to a given partial differential equation defined in Ω. Let x be a point in Ω
and ω1 a smooth open bounded subset in R

d containing the origin. For a
small parameter ρ > 0, let Ω\ωρ be the perturbed domain obtained by mak-
ing a perforation ωρ = ρω1 around the point x. The topological asymptotic
expansion of j (Ω\ωρ) when ρ tends to zero is the following:

j (Ω\ωρ) = j(Ω) + f(ρ)g(x) + o(f(ρ)). (1.1)

In this expansion, f(ρ) denotes an explicit positive function going to zero
with ρ and g(x) is called the topological gradient or topological derivative.
It is usually simple to compute and is obtained using the solution of direct
and adjoint problems defined on the initial domain. To minimize the criterion
j, one has to create holes at some points where the topological gradient is
negative.

The topological gradient has been applied to different kinds of topology
optimization problems:

➢ the elasticity case [35],
➢ the Poisson equation [38],
➢ the Navier-Stokes equation [6],
➢ the Helmholtz equation [8],
➢ the heat equation [9]
➢ the wave equation [9]

In this work, the topological gradient method is applied to image pro-
cessing problems. Topology optimization and image processing share a com-
mon goal: the partitioning of a given domain. In topology optimization, the
goal is to look for the optimal design and its complementary. In image pro-
cessing, a very common problem is to split the image in an edge set and its
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complementary. For this reason, topology optimization and image process-
ing problems share common mathematical methods like variational methods,
level set approaches, and topological gradient.

In our context, Ω is an open bounded domain of R2 and edges are mod-
eled by cracks. We have just to adapt the topological asymptotic expansion,
presented above 1.1, to the particular case of the crack. A crack σ(x, n, ρ)
is a straight line of length 2ρ, centered at the point x of Ω, and normal to
the unit vector n. For a small ρ ≥ 0, let Ωρ = Ω\σ(x, n, ρ) be the perturbed
domain by the insertion of a small crack.

The topological sensitivity theory provides a topological asymptotic ex-
pansion of j when ρ tends to zero. It takes the general form

j(Ωρ)− j(Ω) = f(ρ)g(x) + ◦(f(ρ)). (1.2)

To improve the minimization process, the topological gradient is defined by

g(x) = min
n

g(x, n).

Using this gradient type information, it is possible to build fast al-
gorithms. In most applications, a satisfying approximation of the optimal
solution is reached at the first iteration of the optimization process.

We will consider the inverse conductivity problem, also known as the
Calderon problem [26], consists in identifying the coefficients of a diffusion
operator from the knowledge of the Dirichlet to Neumann operator. This
problem has been widely studied in literature [33, 34, 42, 43]. In the particular
case of cracks identification, the problem seems to be more convenient to solve
thanks to the singularities of the solution. Only two measurements are needed
to recover several simple cracks [1, 18, 7]. From the numerical point of view,
several methods [10, 19, 20, 23, 24, 33, 49, 56] have been proposed, but the
topological gradient approach seems to be the most efficient method for crack
localization [7].

The basic idea of the application of topological gradient to image pro-
cessing is to adapt this crack localization method: an image can be viewed
as a piecewise smooth function and edges can be modeled by a set of singu-
larities or cracks [17, 14]. The idea of relaxing continuity constraints through
the choice of a non-constant diffusion coefficient is very natural [59], but
the topological gradient approach provides an accurate identification of the
discontinuities.

As a straightforward application of the Calderon problem to image pro-
cessing, we consider the inpainting problem. The goal of inpainting is to fill
a hidden part of an image. In other words, if we denote by Ω the domain of
the original image and ω the hidden part of the image, our goal is to recover
the hidden part from the known part of the image in Ω\ω. Here the interior
of ω is not empty: it is not a sparse random set nor a narrow line.



4 Stanislas Larnier, Jérôme Fehrenbach and Mohamed Masmoudi

This problem has been widely studied and many methods have been
considered:

➢ Learning approaches (neural networks, radial basis functions, support
vector machine, . . . ); the learning data is taken in Ω\ω, then the ap-
proximate model is evaluated in ω [65, 66],

➢ Minimization of an energy cost function in ω based on a total variation
norm [28, 29],

➢ Morphological component analysis methods separating texture and car-
toon [32].

Crack detection allows to identify the edges of the hidden part of the image,
and the inpainting problem is then solved easily.

As a second application of this crack identification technique, we con-
sider a general image reconstruction problem. This paper addresses linear
inverse problems defined as follows. Let u be an original image, v the ob-
served image, L a linear observation operator and n an additive noise. These
quantities are related by

v = Lu+ n.

The objective is to reconstruct u from v. A typical example is the super-
resolution image reconstruction, the objective being to recover a high-definition
image from one or a number of noisy filtered and sub-sampled images [52, 37].
In this case, the observation operator L is the composition of a filter and a
sub-sampling operator.

The first contribution of this paper is to present a general framework
based on the specification of the observation operator L. This framework
is then applied to different image processing problems: image restoration,
inpainting, demosaicing, segmentation and super-resolution. In these appli-
cations, edge detection is crucial, as edges convey essential information in a
picture.

The topological gradient has been used in restoration, classification,
inpainting and segmentation [17, 14, 15, 16, 44]. This technique can be ap-
plied to gray-level and color images, but also to three-dimensional images, or
movies.

In the majority of previous works, only a part of the information derived
from the topological asympotic expansion is used. The edges are detected
using topological gradient and in a second step an isotropic diffusion is applied
with two coefficients: a small coefficient on the edges, and a large coefficient
on smooth parts. The second contribution of the present work is to propose a
reconstruction algorithm (Algorithm 2) that takes into account the complete
information provided by the topological asymptotic analysis: the edges are
detected, and their orientation is also used. This additional information is
used to define an anisotropic diffusion tensor on the edges. Outside the edges
the diffusion tensor is isotropic, and the diffusion coefficient depends on the
value of the topological gradient.
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The general framework and the reconstruction algorithm mentioned
above are illustrated by a variety of examples: restoration, segmentation, in-
painting, demosaicing and super-resolution. These examples are compared to
the existing isotropic reconstruction algorithm, and to conventional methods.

Section 2 recalls our method for crack localization using the topological
gradient. Section 3 presents the adaptation of this technique to inpainting.
Section 4 is dedicated to the presentation and theoretical study of the general
framework. In Section 5, the image reconstruction algorithm (Algorithm 2)
and the numerical implementation are presented. Section 6 considers the case
of the restoration algorithm [17, 15] where L is the identity map and pro-
poses an improvement of existing algorithms taking into account anisotropic
diffusion. Texture removal is also presented in this section. Demosaicing and
inpainting problems when L is only a sub-sampling operator are treated in
Section 7. Finally, Section 8 is dedicated to super-resolution image recon-
struction.

2. Crack localization problem

2.1. Dirichlet and Neumann problems

We recall in this section the crack detection technique presented in [7]. Let Ω
be a bounded open set of R2. We assume that there is a perfectly insulating
crack σ∗ inside the domain. We impose a flux φ ∈ H−1/2(∂Ω) on the boundary
∂Ω of Ω, and for a given crack σ ⊂ Ω, we consider the solution u ∈ H1(Ω\σ)
to















∆u = 0 in Ω\σ,

∂nu = φ on ∂Ω,

∂nu = 0 on σ.

(2.1)

In order to have a well-posed direct problem (2.1), we assume that
∫

∂Ω

φ ds = 0, (2.2)

and
∫

Ω\σ

u dx = 0. (2.3)

Moreover, the solution u to (2.1) has to satisfy u|∂Ω = T where T is a given

function of H1/2(∂Ω). This additional boundary condition could be satisfied
by finding optimal distributions of cracks inside the domain Ω.

As we have an over-determination in the boundary conditions, we can
define a Dirichlet and a Neumann problem:

Find uD ∈ H1(Ω\σ) such that















∆uD = 0 in Ω\σ,

uD = T on ∂Ω,

∂nuD = 0 on σ,

(2.4)
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and

find uN ∈ H1(Ω\σ) such that















∆uN = 0 in Ω\σ,

∂nuN = φ on ∂Ω,

∂nuN = 0 on σ.

(2.5)

The normal derivative of the solution is equal to zero on both sides of σ.
The gradient of the solution is tangent to the crack if we consider the domain
Ω\σ, but in the domain Ω the gradient is defined in the distribution sense
and is normal to the crack. We are on the edge of the image.

It is clear that for the actual crack σ∗, the two solutions uD and uN are
equal. The idea is then to consider the following cost function:

J(σ) =
1

2
‖uD − uN‖2L2(Ω), (2.6)

where uD and uN are solutions to problems (2.4) and (2.5) respectively for
the given crack σ.

2.2. Minimization by topological asymptotic analysis

We consider in this section the two corresponding adjoint states, respectively
solutions in H1(Ω) to

{

−∆pD = −(uD − uN ) in Ω,

pD = 0 on ∂Ω,
(2.7)

and
{

−∆pN = +(uD − uN ) in Ω,

∂npN = 0 on ∂Ω.
(2.8)

The variation of the cost function j(ρ) := J(uσ(x,n,ρ)) induced by the
insertion of this small crack is given by the topological gradient theory [7]:

j(ρ)− j(0) = f(ρ) g(x, n) + o(f(ρ)), (2.9)

where f(ρ) = πρ2 and g is given by

g(x, n) = − [(∇uD(x).n)(∇pD(x).n) + (∇uN (x).n)(∇pN (x).n)] . (2.10)

The solutions uD, uN , pD, and pN are calculated in the initial domain Ω
without any crack. The topological gradient can then be rewritten in the
following way

g(x, n) = nTM(x)n, (2.11)

where M(x) is the 2× 2 symmetric matrix defined by

M(x) = −sym
(

∇uD(x).∇pD(x)T +∇uN (x).∇pN (x)T
)

. (2.12)

We can deduce that g(x, n) is minimal when the normal n is the eigenvector
associated to the smallest (i.e. most negative) eigenvalue of the matrix M(x).
In the following, this eigenvalue will be considered as the topological gradient.

We can then define a simple and very fast numerical algorithm. First,
we solve the two direct problems (Dirichlet and Neumann), and the two
corresponding adjoint problems. Then, at each point x of the domain, we
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Figure 1. Left: actual cracks; right: superposition of the
actual cracks and a topological gradient isovalue. Figure ex-
tracted from [7].

compute the matrix M(x) and its two eigenvalues. The crack likely lies in
the most negative gradient regions.

Applying the procedure described above, an example of localization of
the unknown cracks using the topological gradient is shown in Figure 1 (ex-
tracted from [7]). The most negative values of the topological gradient are
located around the actual cracks, and these results are obtained in only one
iteration.

3. Application to inpainting problems

Our image inpainting approach is based on the hypothesis that the image
is regular outside edges. We suppose even that it is harmonic (∆u = 0).
Of course, this assumption is not valid in real applications, but it gives a
theoretical justification of our algorithm, which still works if the image is not
harmonic outside edges. The basic idea is then to create a harmonic extension
of the image from boundary estimation of u and ∂nu. This analytic extension
is unique when it exists. The cracks identification process gives the boundary
of the domain of validity of the extension.

3.1. Algorithm

We denote by Ω the image and ∂Ω its boundary, ω the missing part of the
image and γ its boundary. In the following v represents the image we want
to restore, T will represent here the value of the image on the boundary of
the missing zone, and φ will be the corresponding flux. We have then T = v
and φ = ∂nv in the corresponding domains. Theoretically, we have to assume
v to be enough regular, for example in H2(Ω), but it will be possible to work
with v in L2(Ω).
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We now consider the problem of finding uα ∈ H1(Ω), solution to the
following equation:

{

−α∆uα + uα.χΩ\ω = v.χΩ\ω in Ω,

∂nuα = 0 on ∂Ω,
(3.1)

where α is a small positive number. This equation can be rewritten as

find uα ∈ H1(Ω) such that















−α∆uα + uα = v in Ω\ω,

∆uα = 0 in ω,

∂nuα = 0 on ∂Ω.

(3.2)

When α → 0, it is in some sense equivalent when v is regular to find
the solution uN ∈ H1(Ω\γ) to















uN = v in Ω\ω,

∆uN = 0 in ω,

∂nuN = ∂nv on γ,

(3.3)

which can be seen as a Neumann problem in ω.
From a numerical point of view, we will solve equation (3.2) with a very

small positive α and we will consider that it is our Neumann problem. The
Dirichlet problem does not require any special care.

The inpainting algorithm is then the following:

Inpainting algorithm:

• Calculation of uD and uN , respectively solutions to















uD = v in Ω\ω,

∆uD = 0 in ω,

uD = v on γ,

(3.4)

where uD ∈ H1(Ω), and














−α∆uN + uN = v in Ω\ω,

∆uN = 0 in ω,

∂nuN = 0 on ∂Ω,

(3.5)

where uN ∈ H1(Ω) (the normal derivative is the same on the two sides
of γ).

• Calculation of pD and pN the two corresponding adjoint states, respec-
tively solutions to















pD = 0 in Ω\ω,

−∆pD = −(uD − uN ) in ω,

pD = 0 on γ,

(3.6)
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and














pN = 0 in Ω\ω,

−∆pN = +(uD − uN ) in ω,

∂npN = 0 on γ.

(3.7)

• Computation of the 2 × 2 matrix M(x) (see eq. (2.12)) and its lowest
eigenvalue λmin at each point of the missing domain ω.

• Definition of cracks localization: {x ∈ ω ; λmin(x) < δ < 0}, where δ is
a negative threshold.

• Calculation of u solution to the Neumann problem (2.5) taking into
account the cracks location.

It is not so easy to take into account cracks, but from a numerical point
of view, cracks are modeled by a small conductivity.

This algorithm has a complexity of O(N. log(N)), where N is the num-
ber of pixels. See [15] for more details.

3.2. Numerical results

We have applied our algorithm to the inpainting of a real color image.

Figure 2 shows respectively the occluded part by a black word (a), the
identified missing edges (b) and the corresponding inpainted image by our
algorithm (c). One can see that the reconstruction of the missing part of
the image is very satisfactory, and all the occluded part has been treated at
the same time. We also applied a TV inpainting algorithm (see e.g. [30] for
details about this method) to the same image, and the result is shown in
Figure 2-(d).

Figure 3 allows to compare more in details the original image (a) and
the inpainted images using topological gradient (b) and total variation (c)
algorithms. One can notice the remarkable sharp edges produced by our al-
gorithm, as contrast to TV inpainting that slightly blurs edges.

There is no need to split the image into several parts, and the occluded
part can have any geometry. It can even be a part of the image boundary, as
our algorithm also works when the intersection of the inpainting domain and
the boundary of the image is not empty. This comes from the fact that the
crack localization algorithm can be very easily adapted to incomplete data on
the boundary [14]. Moreover, the reconstruction is done in only one iteration
of the topological gradient algorithm, which consists in 5 resolutions of a
PDE (the two direct and two adjoint problems, and then one direct problem)
in the domain Ω representing the image. Using a discrete cosine transform
and a preconditioned conjugate gradient approach, it is possible to speed up
these resolutions, and we obtain finally a O(N. log(N)) complexity where N
is the number of pixels (see [15] for more details).
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Figure 2. Inpainting of a color image: occluded image (a);
identified missing edges by the topological gradient (b); cor-
responding inpainted images using our algorithm (c) and a
TV inpainting algorithm (d). Figure extracted from [16].

(a) (b) (c)

Figure 3. Inpainting of a color image: zoom of original im-
age (a); topological gradient inpainted image (b); TV in-
painted image(c). Figure extracted from [16].
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4. General framework

This work addresses the general problem of reconstructing an image u ∈
L2(Ω) given some noisy observations Lu + n in a Hilbert space E, where Ω
is the (rectangular) domain where the image u is defined. The observation
space E depends on the specific application as well as the linear observation
operator L : L2(Ω) −→ E. The norm on the space E will be written ‖.‖E .
Table 1 summarizes the different applications presented in this work. These
will be detailed in Sections 6 to 8.

Specific application space E Lu

Restoration L2(Ω) u

Inpainting L2(Ω\ω) u|Ω\ω

Super-resolution with one image IRm×n ((ϕ ∗ u)(xi))1≤i≤mn

Super-resolution with k images (IRm×n)k ((ϕ ∗ u)(xj
i ))1≤i≤mn,1≤j≤k

Table 1. Applications of the general problem (2.1). The
subset ω ⊂ Ω is the region where the image has to be re-
covered, ϕ is a filter (e.g. a Gaussian filter) and xi ∈ Ω,

i = 1, . . . ,mn or xj
i ∈ Ω, i = 1, . . . ,mn, j = 1, . . . , k are the

sampling points.

The general image reconstruction problem can be summed up by:
{

given v = Lu+ n,

reconstruct u.
(4.1)

4.1. The reconstruction problem

The first idea to recover the original image is to minimize the following func-
tional for u ∈ H1(Ω):

‖c1/2∇u‖2L2(Ω) + ‖Lu− v‖2E , (4.2)

where c is a positive constant or a positive definite tensor. The first term
in Equation (4.2) ensures that the recovered image u is regular, and the
second term measures the discrepancy with the data. The reconstruction is
improved by considering a diffusion coefficient c(x) that depends on the space
variable. In order to improve this method, nonlinear isotropic and anisotropic
methods were introduced, we can cite here the work of Perona and Malik [53],
Catté et al. [27] and more recently Weickert [62, 63] and Aubert [11]. Partial
differential equations is not the only way to solve the restoration problem, as
a representative to statistical methods, we can cite [31].

The present paper proposes an alternative construction of the space-
dependent coefficient c(x) based on topological asymptotic analysis. This
construction is detailed in Section 5.1. We will assume in all this work that
the following hypothesis is satisfied:
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Hypothesis 4.1. 1. L is a linear bounded operator on E.

2. If u = k in Ω with k ∈ IR then Lu = k.

In other words constant images in Ω are mapped to constants in E, with
the same value. The adjoint operator L∗ of L is also bounded.

The minimization of Equation (4.2) is equivalent to find u ∈ H1(Ω)
such that

{

−∇ · (c∇u) + L∗Lu = L∗v in Ω,

∂nu = 0 on ∂Ω,
(4.3)

where ∂n denotes the normal derivative to ∂Ω.
The corresponding variational formulation can be written as:

{

find u ∈ H1(Ω) such that

a0(u,w) = ℓ0(w) ∀w ∈ H1(Ω),
(4.4)

where a0 is the bilinear form, defined on H1(Ω)×H1(Ω) by

a0(u,w) =

∫

Ω

c∇u∇w dx+

∫

Ω

Lu Lw dx,

and ℓ0 is the linear form defined on L2(Ω) by

ℓ0(w) =

∫

Ω

L∗v w dx.

Lemma 4.2. Assume c is a positive constant or a positive definite tensor. For

u ∈ H1(Ω), define ‖u‖a =
√

a0(u, u). Under Hypothesis 4.1, ‖.‖a is a norm

equivalent to the norm ‖.‖H1(Ω)

Lemma 4.2 follows directly from the general Poincar inequality and
Hypothesis 4.1.

Theorem 4.3. Under Hypothesis 4.1, the variational problem (4.4) has a

unique solution.

Proof. To simplify the proof, the case c = 1 is considered.
The first assertion of Hypothesis 4.1 implies that a0 is a continuous

bilinear form. Lemma 4.2 proves that a0 is coercive. The following inequality

∀w ∈ L2(Ω) |ℓ0(w)| ≤ ‖L∗‖ ‖v‖E ‖w‖L2(Ω)

proves that ℓ0 is a continuous linear form. The result follows from the Lax-
Milgram theorem. �

4.2. Perturbation of the domain and edge detection

The solution u of the problem (4.2), or equivalently (4.3) is an element of
H1(Ω). This is a limitation of the method since it does not allow discontinu-
ities in the recovered image. To overcome this limitation, discontinuities are
included in the domain in the form of insulating cracks. This generalizes the
concept introduced for the restoration equation in [17].

At a given point x0 ∈ Ω, we insert a small insulating crack σρ = x0 +
2ρσ(n) where σ(n) is a centred unit line segment, n is a unit vector normal to
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Figure 4. Cracked domain.

the crack and 2ρ is the length of the crack. Let Ωρ = Ω\σρ be the perturbed
domain created by inserting this crack. The perturbed solution uρ ∈ H1(Ωρ)
satisfies











−∇ · (c∇uρ) + L∗Luρ = L∗v in Ωρ,

∂nuρ = 0 on ∂Ω,

∂nuρ = 0 on σρ.

(4.5)

The corresponding variational formulation is given by
{

find uρ ∈ H1(Ωρ) such that

aρ(uρ, w) = ℓρ(w) ∀w ∈ H1(Ωρ),
(4.6)

where aρ is the bilinear form, defined on H1(Ωρ)×H1(Ωρ) by

aρ(u,w) =

∫

Ωρ

c∇u∇w dx+

∫

Ωρ

L∗Lu w dx,

and ℓρ is the linear form, defined on L2(Ωρ) by

ℓρ(w) =

∫

Ωρ

L∗v w dx.

When ρ = 0 (i.e. the crack is reduced to a point) the solution of the variational
formulation (4.6) coincides with the solution u of the unperturbed problem
(4.4).

The edge detection method consists in looking for a crack σ such that
the energy j(ρ) = Jρ(uρ) = 1

2

∫

Ωρ

|∇uρ|
2 is as small as possible [17]. This

amounts to state that the energy outside the edges is as small as possible.
The efficiency of topology optimization comes from the fact that the

asymptotic variation of j(ρ) as ρ → 0 can be computed rapidly for any
location x0 and orientation n of the crack. It requires only to solve the direct
problem (4.4) and the following adjoint problem

{

find p0 ∈ H1(Ω) such that

a0(w, p0) = −∂uJ(u0)(w) ∀w ∈ H1(Ω).
(4.7)

The precise statement is detailed in the following

Theorem 4.4. When ρ → 0 the cost function j has the following asymptotic

expansion

j(ρ)− j(0) = ρ2g(x0,n) + o(ρ2), (4.8)
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where the topological gradient g is given by

g(x0,n) = −πc(∇u0(x0).n)(∇p0(x0).n)− π|∇u0(x0).n|
2. (4.9)

The function u0 and p0 are supposed locally regular around x0.

Proof. The following asymptotic expansions are proved in [7, 17, 14, 8]:

i)

Jρ(uρ)− Jρ(u0) = ∂uJ(uρ)(uρ − u0) + ρ2δJ1 + o(ρ2), (4.10)

where

δJ1 = −π|∇u0(x0).n|
2; (4.11)

ii)

Jρ(u0)− J0(u0) = o(ρ2); (4.12)

iii)

(aρ − a0)(u0, pρ) = ρ2δa+ o(ρ2), (4.13)

where the adjoint state pρ is defined by
{

find pρ ∈ H1(Ωρ) such that

aρ(w, pρ) = −∂uJ(uρ)(w) ∀w ∈ H1(Ωρ),
(4.14)

and

δa = −πc(∇u0(x0).n)(∇p0(x0).n); (4.15)

iv)

(ℓρ − ℓ0)(pρ) = o(ρ2). (4.16)

Using Equations (4.10), (4.12), (4.14) and (4.6) we have

j(ρ)− j(0) = Jρ(uρ)− J0(u0)

= (Jρ(uρ)− Jρ(u0)) + (Jρ(u0)− J0(u0))

= ∂uJ(uρ)(uρ − u0) + ρ2δJ1 + o(ρ2)

= (aρ − a0)(u0, pρ) + a0(u0, pρ)− aρ(uρ, pρ) + ρ2δJ1 + o(ρ2)

= (aρ − a0)(u0, pρ)− (ℓρ − ℓ0)(pρ) + ρ2δJ1 + o(ρ2).

Applying Equations (4.13) and (4.16) end the proof. �

The direct state u0 and the adjoint state p0 are computed in the initial
domain without cracks. The topological gradient can be written g(x,n) =
n
TM(x)n, where M(x) is the 2× 2 symmetric matrix defined by

M(x) = −πc
∇u0(x)∇p0(x)

T +∇p0(x)∇u0(x)
T

2
−π∇u0(x)∇u0(x)

T . (4.17)

For a given x, g(x,n) takes its minimal value when n is the eigenvector
associated to the lowest eigenvalue λmin(x) of M(x). This value is by defi-
nition the topological gradient associated to the optimal orientation of the
crack σρ at the location x. M(x) is composed of two terms, see Equation
(4.17). The second term takes into account the structure tensor, like other
methods in anisotropic diffusion [62] and corrects it with information given
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by the adjoint state included in the first term. The solution of the adjoint
state contains information of higher order and is less sensitive to noise.

The edges are located at points x where λmin(x) is the most negative
and their orientation is given by the corresponding eigenvector.

4.3. Example of edge detection: the case of a noisy image

The potential of topological gradient to detect edges and their orientation is
illustrated here using an ellipse representation of the tensor M(x) (4.17). In
this first example the observation space is E = L2(Ω) and the observation
operator is L = Id.

Figure 5 presents an image (Barbara) perturbed by an additive Gaussian
noise, and the topological gradient value λmin(x) defined as the smallest
eigenvalue of the matrix M(x) defined by Equation (4.17).

Figure 5. From left to right, noisy Barbara image and topo-
logical gradient.

Figure 6. Ellipse representation of M(x): parts of noisy
Barbara image 5. From left to right: scarf, books and table.
The orientation of the axes of the ellipse is given by the
eigenvectors of M(x), the ratio of the semi-axes is the ratio
of the eigenvalues, and the color of the ellipse depends on
the value of λmin(x): the more negative is λmin, the redder
is the ellipse.
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Figure 6 shows details of the image together with ellipses that represent,
at each pixel of the image, the topological gradient tensor M(x) (4.17). The
orientation of the axes of the ellipse is given by the eigenvectors of M(x),
the ratio of the semi-axes corresponds to the ratio of the eigenvalues, and the
color of the ellipse depends on the value of λmin(x): the more negative is λmin,
the redder is the ellipse. The following observations confirm the efficiency of
topological asymptotic analysis: the ellipses are oriented along the texture
edges (the orientation is correct), and the homogeneous regions are in dark
blue (the topological gradient is not very negative in homogeneous regions).

5. Algorithms and numerical implementation

5.1. Algorithms

In previous works on image processing using topological gradient [17, 15, 14,
16] the tensor c is an isotropic tensor taking only two values: c0 in the smooth
part of the image and a small value ǫ on the edges. The edges are detected
with a threshold δ on the topological gradient values. These ideas are sum-
marized in Algorithm 1, which is the isotropic diffusion (ID) reconstruction
algorithm. It is a generalization with an arbitrary observation operator L of
the algorithm presented in [17].

Algorithm 1 (ID) Generalization of the algorithm for isotropic diffusion [17]

Input: perturbed image v, diffusion coefficient c0, ǫ > 0, threshold δ < 0.
Output: restored image u.

1: Initialization: c = c0.
2: Computation of u0 and p0, solutions of direct and adjoint problems, see

Equations (4.4) and (4.7).
3: Computation of the tensor M(x) using equation (4.17).
4: Computation of the smallest eigenvalue λmin(x) of M(x) at each point

of the domain.

5: Set c(x) =

{

ǫ if λmin(x) < δ

c0 otherwise

6: Computation of u, solution to problem (4.4).

The present work proposes to take into account the whole information
provided by topological asymptotic analysis, i. e. edge orientation and jump
amplitude. These quantities allow to define a diffusion tensor c(x) that is
adapted to the image content.

More precisely the tensor M(x) is computed using Equation (4.17). Let
the smallest eigenvalue of M(x) be denoted λmin(x). The valley bottoms are
local minima of λmin along the horizontal direction, the vertical direction or
one of the diagonals. The edges are valley bottoms where λmin is below a
threshold δ. The diffusion tensor c(x) is anisotropic along the edges with the
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principal direction given by M(x), and c(x) is isotropic outside the edges.
This is detailed in Algorithm 2.

Algorithm 2 (AD) Algorithm to solve the image reconstruction problem (4.1)

Input: perturbed image v, diffusion coefficient c0, ǫ > 0, threshold δ < 0.
Output: restored image u.

1: Initialization: c = c0.
2: Computation of the solutions u0 and p0 of the direct and adjoint prob-

lems, see Equations (4.4) and (4.7).
3: Computation of the tensor M(x) using Equation (4.17).
4: Computation of the eigenvalue decomposition: M(x) = (PDP−1)(x).
5: Extraction of the valley bottoms of λmin.
6: Set

c(x) =























P (x)

(

ǫ 0

0 c0

)

P−1(x) if x is in a valley and λmin(x) < δ,

c0 exp((λmin(x)− δ)/|δ|)Id otherwise.

7: Computation of u, solution of (4.4) with a diffusion tensor c(x).

5.2. Numerical implementation

The algorithms were coded in MATLAB and equations (4.1) and (4.7) were
solved with a finite difference method.

Our experiments used 8-bits images. The intensity of these images was
divided by 255, so we considered normalized images with an intensity in
the interval [0, 1]. When an additive Gaussian noise is addded, the standard
deviation of the noise is denoted σ.

The different reconstructions are compared quantitatively using Peak
Signal to Noise Ratio (PSNR) expressed in dB and the Structural SIMilarity
(SSIM) [61]. Let I2 be a degraded image of an original image I1, m and n
be the image dimensions and ch the number of channels. The PSNR of I2 is
given by the following formula:

PSNR(I2) = 10 log10

(

mnch
∑

m,n(I1(i, j)− I2(i, j))2

)

.

The SSIM of I2 is given by the following formula:

SSIM =
(2µ1µ2 + c1)(2σ1,2 + c2)

(µ2
1 + µ2

2 + c1)(σ2
1 + σ2

2 + c2)
,

where µ1 is the average of I1, µ2 is the average of K, σ2
1 is the variance of I1,

σ2
2 is the variance of I2, σ

2
1,2 is the covariance of I1 and I2, c1 = (k1L)

2 and

c2 = (k2L)
2 two variables to stabilize the division by a weak denominator

(where L is the dynamic range, usually 2#bits per pixel − 1, and k1 = 0.01,
k2 = 0.03 by default)
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In order to perform a comparative evaluation, benchmark methods had
to be chosen among many reconstruction methods for each application con-
sidered (restoration, demosaicing, super-resolution). Our choice was driven
by two criteria :

➢ the use of well-established methods,
➢ the availability of efficient codes.

In these methods, some parameters often have to be adjusted. These param-
eters were chosen to optimize the results.

The color images were treated with a vectorial minimization problem,
involving the resolution of vectorial problems. The topological asymptotic
expansion is still given by Equation (4.8), (4.9) and (4.17), where all functions
are vectorial, i.e. the topological gradient is the sum of the corresponding
expressions for each channel [13].

6. The observation operator is L = Id

A classical way to restore an image u from its noisy version v ∈ L2(Ω) is to
find u ∈ H1(Ω) which minimizes the following functional:

‖c1/2∇u‖2L2(Ω) + ‖u− v‖2L2(Ω). (6.1)

It is equivalent to solve the following PDE:
{

−∇ · (c∇u) + u = v in Ω,

∂nu = 0 on ∂Ω,
(6.2)

where c is a positive constant or a tensor and ∂n denotes the normal derivative
to ∂Ω. It is a particular case of Equation (4.3) with the observation operator
L = Id. This equation and improvements using anisotropic diffusion have
been the subject of numerous works [53, 54, 62, 11].

In Section 6.1, our Algorithm 2 is compared to the existing Algorithm
1 and to the Non-Local Means method [25] on one example. Section 6.2
is dedicated to results obtained when the same equation is used to remove
texture. The main interest is the possibility to obtain a cartoon image without
texture.

6.1. Image restoration

A 512×512 pixels image was perturbed by an additive Gaussian noise of stan-
dard deviation σ = 0.1. The resulting image is the House image, see Figure 7
(left). The results of the anisotropic restoration Algorithm 2 is presented in
Figure 7 (center left). In order to illustrate the difference between Algorithm
1 (ID) and Algorithm 2 (AD), details are shown in Figure 8 (c) and (d).
It can be seen that the restoration of edges is more accurate using the AD
restoration.

A 512×512 pixels image was perturbed by an additive noise following
a uniform distribution between [−0.176, 0.176]. The resulting image is the
Barbara image, see Figure 7 (center right). The results of the anisotropic
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Figure 7. Noisy and AD restoration of House and Barbara images

(a) Original image. (b) Noisy image.

(PSNR 20.94 dB)

(c) ID restoration.

(PSNR 29.47 dB)

(d) AD restoration.

(PSNR 31.46 dB)

Figure 8. Parts of House image (from left to right): original
image, noisy image, ID and AD restorations.

restoration Algorithm 2 is presented in Figure 7 (right). The details presented
in Figure 9 (c) and (d) show the interest of anisotropic diffusion along the
edges.

In presence of an additive Gaussian noise, a comparative study with the
Non-Local Means (NLM) [25] was performed to restore an image that is not
composed of self-similar texture (Mandrill, Figure 10). We use the toolbox
provided by [55].
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(a) Original image. (b) Noisy image.

(PSNR 19.86 dB)

(c) ID restoration.

(PSNR 25.09 dB)

(d) AD restoration

(PSNR 25.93 dB)

Figure 9. Parts of original Barbara image, noisy one, ID
and AD restorations.

Figure 10. From right to left: noisy, NLM and AD restora-
tions of Mandrill image.

It must be noted that on images that contain self-similar texture (e.g.
Barbara), the results provided by the NLM outperform our diffusion method.
This is sensible since in the NLM algorithm, the denoised value at a pixel
x is a mean of the values of all pixels whose Gaussian neighborhood looks
like the neighborhood of x. The efficiency of this algorithm on a self similar
image is therefore foreseeable.

Mandrill Figure 10

Noisy NLM AD

PSNR 20.16 22.63 23.00

SSIM 0.552 0.708 0.702

Table 2. Comparative results of restoration using Non-
Local Means (NLM) and Algorithm 2 (AD).

Figure 10 shows the Mandrill (512×512×3) color image with an additive
Gaussian noise of standard deviation σ = 0.09 and the restorations with NLM
and AD. The three channels (RGB) were treated separately. The Non-Local



Topological gradient in image processing 21

(a) Original image. (b) Noisy image.

(PSNR 20.16 dB)

(c) Non-Local Means.

(PSNR 22.63 dB)

(d) AD restoration.

(PSNR 23.00 dB)

Figure 11. Parts of original Mandrill image, noisy one,
NLM and AD restorations.

Means and AD restorations provide similar results in terms of quality (see
Table 2 and Figure 11 (c) and (d)).

This restoration algorithm is not only useful to suppress noise, it can also
help removing JPEG artifacts. A 512×512×3 pixels color image is perturbed
by a JPEG compression using the GNU Image Manipulation Program [36].
The resulting image is the Peppers image, see Figure 12 (left). The results of
the anisotropic restoration Algorithm 2 is presented in Figure 12 (right).

Figure 12. Suppression of JPEG artefacts.

6.2. Image segmentation

The objective of cartoon plus texture decomposition is to remove the texture
of an image while preserving its main features. This can be achieved by
using a large diffusion coefficient in Equation (6.2). In order to prevent edge
degradation, the following isotropic diffusion coefficient was used:

c(x) =

{

ǫ in ω
1
ǫ outside ω
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where ω ⊂ Ω represent the edge set. The following problem adapted from
(6.2) was solved:



















−∇ · (ǫ∇uǫ) + uǫ = v in ω,

−∇ ·

(

1

ǫ
∇uǫ

)

+ uǫ = v in Ω\ω,

∂nu = 0 on ∂Ω,

The segmentation provides an image composed of homogeneous regions.
The suppression of texture or the separation of an image between cartoon
part (smooth regions) and texture part is a developing task [12, 64]. Figure
13 presents a texture removal example with an image of a cross stitch.

Figure 13. Texture removal.

7. The observation operator L is a mask operator

Let ω be the missing part of the image. The observation operator is L :
L2(Ω) 7→ L2(Ω\ω) defined by Lu = u|Ω\ω. To solve inpainting problems, the

following functional is minimized with u ∈ H1(Ω):

‖c1/2∇u‖2L2(Ω) + ‖Lu− v‖2L2(Ω\ω), (7.1)

where the anisotropic tensor c(x) is computed using Algorithm 2.
Section 7.1 addresses the problem of denoising a salt and pepper im-

age, by considering that ω is the union of the pixels where the gray-level is
saturated in black or white (gray-level 0 or 255 for 8-bit images). Section
7.2 proposes a unified approach to perform demosaicing and image denoising
simultaneously.

7.1. Salt and Pepper denoising

In Figure 14, the gray-level Lena image (1024 × 1024) suffers from a Salt
and Pepper noise, and 80% of the pixels are affected. The pixels in black
and white are identified, their union is the unknown region ω. The results
of Algorithm 1 and Algorithm 2 on this problem are presented in Figure 14.
The anisotropic diffusion provides better results in term of visual quality and
PSNR assessment.
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Figure 14. From left to right, first line, original Lena im-
age and noisy image (PSNR 6.30 dB), second line, isotropic
restoration (PSNR 32.78 dB) and anisotropic restoration
(PSNR 35.66 dB).

7.2. Demosaicing and denoising

Demosaicing, also called the color filter array (CFA) interpolation, refers to
the problem of reconstructing a color image from the charge-coupled device
(CCD) samples. A color filtering array is a mosaic of color filters in front of
the image sensor. While there are many kinds of color filters in use in digital
cameras, the most commonly used is the Bayer filter. It is a grid composed
of squares representing the three primary colors, see Figure 15. To be noted
that there are twice as many green photo sensors as red or blue, as the human
eye is more sensitive to green light.

To reconstruct a color image from the uncompleted data, interpolation
is needed to fill in the blanks. This specific inpainting application is called
demosaicing. Demosaicing and image denoising are treated simultaneously
with our method and the results are presented in Figure 16.
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Figure 15. The Bayer filter grid.

(a) Noisy Bayer filtered image. (b) AP restoration.

(c) TLS restoration. (d) AD restoration.

Figure 16. Demosaicing and denoising of a color image.
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For this example, the Mandrill original image (1024× 1024× 3) is used.
Figure 16 (a) is a Bayer filtered image perturbed by an additive Gaussian
noise of standard deviation σ = 0.1. Algorithm 2 was compared with two
existing methods. Figure 16 (b) presents the reconstruction with the Alter-
nating Projection technique (AP) [40]. The AP is a benchmark method in
demosaicing applications, and is not designed for denoising. The result is
given to get an idea of the noise amount.

The coupling demosaicing-denoising has been treated in [41] using a
Total Least Square method (TLS). The result of the TLS image denoising
method from [41] is presented in Figure 16 (c). The reconstruction obtained
with Algorithm 2 is Figure 16 (d). The quality of the results and computa-
tional aspects are summarized in Table 3. Is is clear that our Algorithm 2
provides similar results in terms of quality as Total Least Square and this
with a lower computational load.

Mandrill Figure 16

AP TLS AD

PSNR 19.85 23.89 24.62

SSIM 0.5119 0.7438 0.7600

CPU (s) 14 3420 170

Table 3. Comparative results for demosaicing and denois-
ing using Alternative Projections (AP), Total Least Square
(TLS) and Algorithm 2 (AD).

8. Case of super-resolution

The purpose of super-resolution techniques is to obtain a high resolution
image from one or several low resolution images [52, 37]. Let k be the number
of low resolution images. The observation operator is L : L2(Ω) → E =
(IRm×n)k and it is the composition of a convolution by a filter followed by k
subsampling operators. In the examples below a Gaussian noise is added to
the observations.

To solve super-resolution problems, the following functional is mini-
mized with u ∈ H1(Ω):

‖c1/2∇u‖2L2(Ω) + ‖Lu− v‖2E , (8.1)

where the anisotropic tensor c(x) is computed using Algorithm 2.

Section 8.1 shows the capability of Algorithm 2 to treat one or many
noisy filtered and sub-sampled images. In Section 8.2, a comparison with a
Total Variation algorithm is proposed.
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8.1. Super-resolution with one or many filtered and sub-sampled images

For this example, the original Lena color image (512 × 512 × 3) is used.
The image is convolved with a Gaussian 5× 5 filter with standard deviation
τ = 5. The sub-sampling operation keeps one pixel out of nine and three low-
resolution images are sub-sampled differently. An additive Gaussian noise
of standard deviation σ = 0.075 is added to each low-resolution image. In
Figure 17 (center), only one filtered and sub-sampled image is used for the
reconstruction. In Figure 17 (right), the observations are k = 3 filtered and
sub-sampled images.

Figure 17. Images from left to right: original, noisy filtered
and sub-sampled, restored (PSNR 19.28 dB), three noisy
filtered and sub-sampled, restored (PSNR 20.24 dB).

8.2. Comparison with Total Variation algorithm

The results of Algorithm 2 were compared with a TV-L2 algorithm [45, 48].
A grey-level image is sub-sampled by a factor 2 in each direction with a mean
2×2 filter. A Gaussian noise with standard deviation σ = 0.05 is added to the
sub-sampled image. Figure 18 presents the original Man image (512 × 512),
the observed image, the image restored with a TV-L2 algorithm and the
image recovered using Algorithm 2. Table 4 presents quantitative estimators
of the quality of reconstructions, the tests are performed on Man, Barbara
and Boat images. The quality of the reconstruction with our Algorithm 2
outperforms the TV-L2 method.

Man Barbara Boat

TV AD TV AD TV AD

PSNR 24.81 28.07 22.63 24.32 24.03 27.41

SSIM 0.652 0.753 0.598 0.623 0.626 0.728

Table 4. Comparative results of super-resolution using TV-
L2 optimization (TV) and Algorithm 2 (AD).
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(a) Original image.

(b) Noisy low-resolution image.

(c) TV restoration. (d) AD restoration.

Figure 18. Super resolution of Man image.

9. Conclusion

This paper recalls that the crack detection technique based on the topological
gradient can be applied to many applications in image processing. It provides
an excellent frame for solving all these image processing problems. This tech-
nique can be applied to color images as well as grey-level images, but also
three-dimensional images, or movies, without any trouble.

This work presents too a general approach to image processing using
topological asymptotic analysis. This approach leads to the proposal of a
general reconstruction algorithm (Algorithm 2) that incorporates two novel-
ties: the observation operator L is a general linear operator satisfying mild
hypotheses (Hypothesis 4.1), and an anisotropic diffusion is performed to
reconstruct the image. The fact that the observation operator is general al-
lows an extension of the scope of topological asymptotic methods in image
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processing to new problems: image demosaicing and super-resolution image
reconstruction. The introduction of anisotropic diffusion improve the results
obtained with existing algorithms using topological gradient in image restora-
tion and inpainting (Algorithm 1). The results obtained were also compared
to reference methods, and show better or similar quality in terms of PSNR
and SSIM.
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Université Paul Sabatier, 118 route de Narbonne,
F-31062 Toulouse Cedex 9, France
e-mail: stanislas.larnier@math.univ-toulouse.fr
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Université Paul Sabatier, 118 route de Narbonne,
F-31062 Toulouse Cedex 9, France
e-mail: mohamed.masmoudi@math.univ-toulouse.fr


	1. Introduction
	2. Crack localization problem
	2.1. Dirichlet and Neumann problems
	2.2. Minimization by topological asymptotic analysis

	3. Application to inpainting problems
	3.1. Algorithm
	3.2. Numerical results

	4. General framework
	4.1. The reconstruction problem
	4.2. Perturbation of the domain and edge detection
	4.3. Example of edge detection: the case of a noisy image

	5. Algorithms and numerical implementation
	5.1. Algorithms
	5.2. Numerical implementation

	6. The observation operator is L=Id
	6.1. Image restoration
	6.2. Image segmentation

	7. The observation operator L is a mask operator
	7.1. Salt and Pepper denoising
	7.2. Demosaicing and denoising

	8. Case of super-resolution
	8.1. Super-resolution with one or many filtered and sub-sampled images
	8.2. Comparison with Total Variation algorithm

	9. Conclusion
	Acknowledgments
	References

