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1. Introduction

Topological string theory on Calabi–Yau (CY) manifolds has been an important source of results
in string theory, gauge theory and mathematics (see for example [34, 33, 36, 43, 40] for reviews).
In the so-called local case, where the CY is non-compact, the theory can be solved exactly, by
using for example large N techniques in matrix models [15, 35, 13] or the theory of the topological
vertex [4].

Closed topological string amplitudes satisfy many interesting properties. In the local case,
and from the B-model point of view, they can be regarded as holomorphic objects associated to
an algebraic curve or Riemann surface. They depend on a choice of “symplectic frame”, i.e. on
a choice of symplectic basis for the homology of the Riemann surface, and they turn out to have
non-trivial transformation properties under a change of basis or modular transformation. Equiv-
alently, one can introduce a non-holomorphic dependence in the amplitudes which is governed
by the holomorphic anomaly equations of [10]. As shown in [1], the transformation properties of
the closed string amplitudes can be derived from the fact that the total closed string partition
function (summed over all genera) is a wavefunction [44]. Modular transformations correspond to
canonical transformations, which lift quantum-mechanically to integral transforms of the wave-
function. Therefore, a change of symplectic basis leads to an integral transform of the topological
closed string partition function.
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These properties of the closed topological string amplitudes can be also derived by using the
solution of the B-model in terms of matrix integrals [15, 35, 13]. This solution is based on the
topological recursion of Eynard and Orantin [21], which encodes as well the modular properties
of the resulting amplitudes. It was shown in [20] that the modular behavior of the closed string
amplitudes, as deduced from the topological recursion, agrees indeed with the wavefunction
behavior of the partition function found in [44, 1].

The topological recursion of [21] gives as well a method to compute the modular transforma-
tion of open string amplitudes. In this paper, we show that these properties can be summarized
by saying that the total open string partition function transforms as a wavefunction. This gen-
eralizes the results of [44, 1] to the open sector, since the closed string partition function can be
regarded as a specialization of the open string partition function where all the open moduli are
set to zero.

The wavefunction behavior of the open string partition function has practical applications,
since it makes possible to relate in a precise way open string amplitudes in different frames. One
interesting situation where this can be used is the calculation of vacuum expectation values (vevs)
of 1/2 BPS Wilson loops [16] in ABJM theory [8]. These vevs can be computed by localization,
in terms of a matrix model [28, 16]. It turns out that they are given by open topological string
amplitudes in a non-compact CY, local P1 × P

1 [38], but in the so-called orbifold frame [3]. As
an application of the main result of this paper, we obtain results for the vevs of 1/2 BPS Wilson
loops by first performing the calculation in the large radius frame, and then using the fact that
the open string partition function is a wavefunction. We find in this way all-genus results for
vevs of 1/2 BPS Wilson loops as integral transforms of topological string amplitudes at large
radius. These expressions are exact in k, the coupling of ABJM theory, but they are expanded
around the strong coupling limit. They correspond to the M-theory expansion of the amplitudes
discussed in for example [39, 30]. In particular, we rederive in this way the result for 1/2 BPS
Wilson loop vev with winding n derived in [30] in the M-theory regime, and we extend it to
other representations. Our method also makes it possible to calculate systematically worldsheet
instanton corrections, which are difficult to obtain in the Fermi gas approach of [30].

The wavefunction behavior of the open string amplitudes has been addressed before. In
[2, 6, 29], the behavior of the open string partition function has been studied as one changes the
open moduli, although as far as we know there is no general statement for this behavior. The
paper [41] studies the wavefunction behavior of the open string partition function in the compact
CY case.

This paper is organized as follows. In section 2 we review the definition and construction
of topological open string amplitudes and the topological recursion of Eynard and Orantin. In
section 3 we derive our main result, namely, we show that the total, topological open string
partition function, transforms as a wavefunction under modular transformations. In section 4
we use our main result to obtain expressions for 1/2 BPS Wilson loop vevs at all orders in the
genus expansion and expanded at strong coupling. Finally, in section 5 we end up with some
conclusions and prospects for future work.

2. Open topological string amplitudes and topological recursion

2.1 Open topological string amplitudes

In this paper we will study open topological string amplitudes in local CY geometries. There are
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two types of local CYs which are particularly interesting. The first ones are of the form

uv = H(x, y), H(x, y) = y2 − (W ′(x))2 + f(x), (2.1)

where W (x), f(x) are polynomials of degree d + 1, d − 1 respectively. The Riemann surface
H(x, y) = 0 associated to this geometry is the hyperelliptic curve

y2 = (W ′(x))2 − f(x), (2.2)

of genus n = d− 1. Dijkgraaf and Vafa conjectured in [15] that type B topological string theory
on these backgrounds is equivalent to a matrix model with potential W (x) and d − 1 cuts (see
[34] for a review).

A more interesting class of local geometries are toric CY manifolds, which are non-compact.
In this case, both open and closed topological string amplitudes have an enumerative meaning in
the A-model, which we now review briefly (see for example [33] for a presentation with appropriate
references). Closed string amplitudes at genus g can be expressed as a sum over instanton sectors.
These are labelled by a class β ∈ H2(X), where X is the CY target, and they read

Fg(t) =
∑

β∈H2(X)

Ng,β e
−β·t. (2.3)

In this equation, t denotes the vector of closed Kähler moduli. The rational numbers Ng,β are
Gromov–Witten invariants counting holomorphic maps from a Riemann surface of genus g, Σg,
to the CY X, and in the class β. It is useful to define the total closed string free energy as:

F (gs, t) =
∞∑

g=0

Fg(t)g
2g−2
s . (2.4)

Gopakumar and Vafa [24] showed that the generating functional (2.4) can be written as a gen-
eralized index that counts BPS states in M-theory compactified on X, and this leads to the
following structural result for F (gs, t):

F (gs, t) =

∞∑

g=0

∑

β

∞∑

m=1

ng,β
1

m

(
2 sinh

mgs
2

)2g−2

e−mβ·t, (2.5)

where ng,β , known as Gopakumar-Vafa invariants, are integer numbers.

In order to define open topological strings on a CY X, we need to specify boundary condi-
tions. This is done by choosing a brane wrapping a Lagrangian submanifold L ⊂ X. The free
energy of the open topological string theory can be obtained by summing the contribution of
open worldsheet string instantons in different topological sectors. These sectors classify maps
from an open Riemann surface Σg,h to X, in such a way that the boundaries of Σg,h are mapped
to L. They are labelled by two different kinds of data: the boundary part and the bulk part. The
bulk part is labelled by relative homology classes β ∈ H2(X,L). We will assume that b1(L) = 1
(as it happens for the Lagrangian submanifolds constructed in [7]) so that H1(L) is generated by
one nontrivial one-cycle. Then, the topological sector of the boundary is classified by winding
numbers ℓi specifying how many times the boundaries of Σg,h wrap the non-trivial one-cycle of
L. We will collect these integers into a single h-tuple denoted by ℓ = (ℓ1, · · · , ℓh).
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There are various amplitudes that we can consider, depending on the topological data that
we want to keep fixed. It is very useful to fix g and the winding numbers, and sum over all bulk
classes. This produces the following generating functional of open Gromov-Witten invariants:

Fg,ℓ(t) =
∑

β

Ng,β,ℓ e
−β·t. (2.6)

In this equation, the sum is over relative homology classes β ∈ H2(X,L). The quantities Ng,β,ℓ

are open Gromov-Witten invariants. They “count” in an appropriate sense the number of holo-
morphically embedded Riemann surfaces of genus g in X with Lagrangian boundary conditions
specified by L, and in the class represented by β, ℓ. They are in general rational numbers.

In order to consider all topological sectors, we have to introduce a U(∞) matrix V which
takes into account different sets of winding numbers ℓ. The total open topological string free
energy is defined by

F (V ) =

∞∑

g=0

∞∑

h=1

∑

ℓ

1

h!
g2g−2+h
s Fg,ℓ(t)TrV

ℓ1 · · ·TrV ℓh . (2.7)

Open topological string amplitudes have an integrality structure discovered in [42, 32]. It turns
out that the total free energy can be written as

F (V ) =
∑

β∈H2(X,L)

∞∑

g=0

∞∑

h=1

∑

ℓ

∞∑

m=1

1

h!
ng,β,ℓ

1

m

(
2 sinh

mgs
2

)2g−2

·
h∏

i=1

(
2 sinh

mℓigs
2

)
1

ℓ1 · · · ℓh
TrV mℓ1 · · ·TrV mℓhe−mβ·t.

(2.8)

In this expression, ng,β,ℓ are integer invariants which generalize the Gopakumar–Vafa invariants
of closed topological strings (in fact, as shown in [32], the invariants ng,β,ℓ can be written in
terms of a more fundamental set of integer invariants, but we will not need them in this paper).

We will often write the free energy as

F (V ) =
∑

R

WRTrR V, (2.9)

where the sum is over U(∞) representations, while the total open string partition function is
defined as

Z(V ) = Zcl exp(F (V )). (2.10)

Here, we used the total closed string free energy (2.4) to define the closed string partition function,

Zcl = exp (F (gs, t)) . (2.11)

We will write Z(V ) sometimes as

Z(V ) =
∑

R

ZRTrR V. (2.12)

It was conjectured in [35, 13] that type B topological string theory on mirror of toric CY
manifolds can be solved in terms of the topological recursion of [21] (this conjecture has been
recently proved in [22]). Since this formalism describes as well the solution to the 1/N expansion
of matrix models, this generalizes the conjecture of [15] to backgrounds with an enumerative
meaning. We can then use the formalism of topological recursion to provide a unified description
of open and closed topological string amplitudes in local CY geometries.

– 4 –



2.2 Open strings and topological recursion

The formalism of topological recursion of [21] starts with an algebraic curve H(x, y) = 0 of genus
ḡ. We will choose a canonical basis of cycles on it:

AI ∩ BJ = δIJ , AI ∩ AJ = 0, BI ∩ BJ = 0, I, J = 1, · · · , ḡ. (2.13)

There are ḡ linearly independent holomorphic forms ωI on H(x, y) normalized on the A-cycles:
∮

AI

ωJ = δIJ , I, J = 1, · · · , ḡ, (2.14)

and the Riemann matrix of periods, τ , is a symmetric ḡ × ḡ matrix defined by
∮

BJ

ωI = τIJ . (2.15)

On the curve H(x, y) = 0 there exists a unique bilinear form B(p, q) with a unique double pole
at p = q without residue, and normalized on the A cycles:

B(p, q) ∼
p→q

dz(p)dz(q)

(z(p)− z(q))2
+ finite,

∮

A
B = 0. (2.16)

Here, z is any local parameter on the curve, and B is usually called the Bergmann kernel.
Following the procedure in [21, 20], we will now introduce a new set of cycles, A,B, depending

on an arbitrary complex symmetric matrix κ:

B := B − τA, A := A− κB. (2.17)

We then define a κ–modified Bergmann kernel B, normalized on these new cycles, and satisfying
thus

B(p, q) ∼
p→q

dz(p)dz(q)

(z(p)− z(q))2
+ finite,

∮

A
B = 0. (2.18)

This definition implies the relation

B(p, q) = B(p, q) + 2πi
∑

I,J

ωI(p)κ
IJ ωJ(q). (2.19)

With these ingredients, one defines recursively an infinite set of symmetric meromorphic

differentials W
(g)
h on the curve, as follows. Let ai be the branching points of the curve. If q is

near a branchpoint, there is by definition a unique point q such that x(q) = x(q). The starting
point of the recursion is

W
(g)
h = 0 if g < 0,

W
(0)
1 (p) = 0,

W
(0)
2 (p1, p2) = B(p1, p2).

(2.20)

The recursion is then given by

W
(g)
h+1(p, p1, . . . , ph)

=
∑

i

Resq=ai

dEq(p)

ω(q)

(
g∑

m=0

∑

J⊂H

W
(m)
j+1 (q, pJ)W

(g−m)
h−j+1(q, pH/J) +W

(g−1)
h+2 (q, q, pH)

)
.

(2.21)
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Notice that it follows that all W
(g)
h ’s have vanishing A-cycle integrals. In this equation, q is taken

to be near a branchpoint, and

ω(q) = (y(q)− y(q))dx(q), dEq(p) =
1

2

∫ q

q
B(ξ, p) (2.22)

where the integration path lies entirely in a vicinity of ai. If J = {i1, i2, . . . , ij} is a set of indices,
we write pJ = {pi1 , pi2 , . . . , pij}. In the equation above we have H = {1, 2, . . . , h}, and the
summation over J is over all subsets of H.

Once these differentials are constructed, one can compute the closed string free energies F (g)

for g ≥ 2 as

F (g) =
1

2g − 2

∑

i

Resq=aiΦ(q)W
(g)
1 (q), (2.23)

where Φ(q) =
∫ q

λ is any antiderivative of the meromorphic differential

λ = ydx, (2.24)

which satisfies
∂Iλ = (2πi)

1
2ωI . (2.25)

The meromorphic differentials W
(g)
h defined by the topological recursion are functions of two

types of variables. On the one hand, we have the open string moduli, which are the variables pi
upon which they depend. On the other hand, they depend on the closed string moduli, which are
the complex moduli of the spectral curve itself. These closed string moduli can be parametrized
by the A-periods of λ

tI =
1

(2πi)1/2

∮

AI

λ. (2.26)

In this formalism, both F (g) and the forms W
(g)
h depend as well on the matrix-valued pa-

rameter κ which we have introduced in (2.17). The usual topological string or matrix model
amplitudes are obtained by setting κ = 0 in the above formalism, i.e. by using the topological re-
cursion but with the standard Bergmann kernel. To recover the standard open string amplitudes
as defined for example in (2.7), we define the integrated forms Ag

h, h > 0 by

A
(g)
h (t, κ) =

∫
W

(g)
h (t, κ) , (2.27)

except for (g, h) = (0, 1) and (g, h) = (0, 2). In those cases we have

A
(0)
1 = −

∫
λ, (2.28)

and

A
(0)
2 =

∫ (
B(p1, p2)−

dp1dp2
(p1 − p2)2

)
. (2.29)

The differentials W
(g)
h have an expansion in inverse powers of the open string moduli pi, and the

integrated amplitudes have then an expansion of the form

A
(g)
h (t, κ, z1, · · · , zh) =

∑

ℓ

A
(g)
ℓ

(t, κ)zℓ11 · · · zℓhh , (2.30)
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where zi = p−1
i and, as above, ℓ = (ℓ1, · · · , ℓh). The coefficients of this expansion, evaluated at

κ = 0, are the topological open string amplitudes for boundary conditions specified by ℓ:

Fg,ℓ(t) = A
(g)
ℓ

(t, κ = 0). (2.31)

3. The topological open string partition function as a wavefunction

3.1 Symplectic transformations

The construction of the open and closed string amplitudes through the topological recursion
depends on a choice of symplectic frame, i.e. on a choice of a distinguished set of A, B cycles
on the curve H(x, y) = 0. A natural and important question in the study of topological string

theory and matrix models is: how do F (g) and W
(g)
h change under a change of symplectic frame?

We will refer to these transformations of the amplitudes as one changes the symplectic frame
as symplectic or modular transformations. In the case of the closed string free energies F (g),
a detailed answer was obtained in [1] by using the fact that, as pointed out in [44], the total
closed string partition function can be regarded as a wavefunction. This was based in turn on
the holomorphic anomaly equations of [10].

We recall that a modular or symplectic transformation for a curve H(x, y) = 0 of genus ḡ is
implemented by a symplectic matrix

Γ =

(
A B
C D

)
∈ Sp(2ḡ,Z) (3.1)

where the ḡ × ḡ matrices A, B, C, D, with integer-valued entries, satisfy

ATD − CTB = 1ḡ, ATC = CTA, BTD = DTB. (3.2)

The cycles of the curve change as

(
B
A

)
→
(
A B
C D

)(
B
A

)
, (3.3)

while the period matrix τ of the curve changes as

τ → (Aτ +B)(Cτ +D)−1. (3.4)

The formalism of [21] reviewed in the previous section gives a direct way of deriving the
modular properties of the amplitudes, through the incorporation of the κ parameter. In fact,
there are two equivalent ways of understanding these properties, as emphasized in [1]. In the
first point of view, one considers the topological string amplitudes, which are the holomorphic

objects F (g)(t, 0) and W
(g)
h (t, 0) for κ = 0. Then, under a modular transformation implemented

by Γ, the amplitudes change as follows,

W
(g)
h (t, 0) → W

(g)
h (t, κ),

F (g)(t, 0) → F (g)(t, κ),
(3.5)

where

κ = −(τ + C−1D)−1. (3.6)
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One important fact of these transformation properties is that the open string moduli do not
change under a modular transformation. However, open string amplitudes evaluated in different
regions of moduli space require different parametrizations of these moduli, and one needs to
redefine them by an overall factor which depends on the closed string moduli, as first found in
[5]. In general, one has

pi → pi exp

[
∑

I

(
aItI + bIt

bare
I

)]
, (3.7)

where tbareI are the “bare” closed string moduli, corresponding to complex deformation parameters
of the spectral curve, and aI , bI are rational numbers which can be found by a detailed analysis
of the geometry, see for example [13] for a detailed explanation. This is often called the open
string mirror map, or the choice of open flat coordinate. There is then a canonical choice of open
moduli, given by the solution of the topological recursion, and other choices can be obtained by
using (3.7).

As shown in [20], the transformation of the closed string amplitudes in (3.5) is equivalent to
the statement of [44, 1] that the closed string partition function transforms as a wavefunction.
More precisely, it was shown in [20] that the total κ-dependent partition function

ln (Z(t, κ)) = F (t, κ) =

∞∑

g=0

g2−2g
s F (g)(t, κ) (3.8)

can be obtained as an integral transform of the partition function with κ = 0, Z(η, 0) =
expF (η, κ = 0),

Z(t, κ) =

∫
dη e−S(t,η,κ)g−2

s +F (η,0), (3.9)

where

S(t, η, κ) =
1

2
(η − t)κ−1(η − t) + (η − t)I∂IF

(0)(t, 0) +
1

2
(η − t)I∂2

IJF
(0)(t, 0)(η − t)J . (3.10)

The integral transform is evaluated in a genus expansion, by doing a saddle-point evaluation of
the integral for small gs.

In the second point of view on modular transformations, one considers the amplitudes
W g

h (t, κ), F
(g)(t, κ) with

κ = −(τ − τ)−1. (3.11)

In this case, the resulting amplitudes are modular invariant, as shown in [21], but they inherit a
non-holomorphic dependence through the conjugate τ appearing in (3.11). It was shown in [20]
that, for the choice of κ in (3.11), the closed string amplitudes F (g)(t, κ) satisfy the holomorphic
anomaly equations of [10], specialized to local geometries [31].

The purpose of this paper is to generalize to the open string sector the results of [20] con-
cerning the wavefunction behavior of the closed string partition function. As we will illustrate in
a moment, the transformations (3.5) are quite complicated when written down for the individual
amplitudes. It is a non-trivial fact that, when we organize the amplitudes in terms of parti-
tion functions, these transformation properties can be elegantly summarized by a wavefunction
behavior, i.e. by an integral transform of the partition function.
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d

dκ

g

k

=
1

2

1

2
+

∑

h
g − h

l k − l

2i− 1

2i− 12i
2i

g − 1

k

Figure 1: A graphic representation of the equation (3.13).

3.2 The wavefunction behavior

In order to show that the total open topological string partition function transforms as a wave-
function, one has to be more explicit about the transformations (3.5), i.e. one should compute

W
(g)
h (t, κ) and F (g)(t, κ) in terms of W

(g)
h (t, 0) and F

(g)
h (t, 0). As explained in [20], the basic

observation is that the κ dependence of the W
(g)
h ’s enters only through the Bergmann kernel,

therefore each W
(g)
h is a polynomial in κ of degree at most 3g − 3 + 2h:

W
(g)
h (t, κ) =

3g−3+2h∑

m=0

κm
dmW

(g)
h

dκm
(t, 0). (3.12)

In order to obtain this polynomial, it is convenient to compute dW
(g)
h /dκ. This was done in [21]

and the result is:

2πi
∂

∂κIJ
W

(g)
h (pH) =

1

2

∮

r∈BJ

∮

s∈BI

W
(g−1)
h+2 (pH , r, s)

+
1

2

∑

m

∑

L⊂H

∮

r∈BI

W
(m)
|L|+1(pL, r)

∮

s∈BJ

W
(g−m)
h−|L|+1(pH/L, s).

(3.13)

In particular, for k = 0,

2πi
∂

∂κIJ
F (g) =

1

2

∮

r∈BJ

∮

s∈BI

W
(g−1)
2 (r, s) +

1

2

g−1∑

m=1

∮

r∈BI

W
(m)
1 (r)

∮

s∈BJ

W
(g−m)
1 (s), g ≥ 2.

(3.14)
The recursion relations (3.13) and (3.14) can be written in terms of diagrams [20] where the

W
(g)
h ’s and F (g)’s are represented by Riemann surfaces with g holes and h legs sticking out. The

integrals over B cycles are represented by legs which start and end on Riemann surfaces. This is
illustrated in Fig. 1.

Notice that the equations (3.13) have the same structure that the topological recursion itself.

They can be iterated to calculate the expansion (3.12), in terms of integrals of W
(g)
h (t, 0) around

B-cycles. For example, one finds, for W
(1)
1 (t, κ),

W
(1)
1 (t, κ) = W

(1)
1 (t, 0) +

κIJ

2πi



1

2

∮

BI

∮

BJ

W
(0)
3 +

∮

BI

W
(1)
1

∮

BJ

W
(0)
2




+
κIJκMN

(2πi)2



1

2

∮

BI

∮

BJ

∮

BM

W
(0)
3

∮

BN

W
(0)
2


 .

(3.15)
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It is illuminating to verify this transformation law in the case of an elliptic curve by using the

explicit expressions for the W
(g)
h . This we do in the Appendix.

After using the recursion relations we end up with integrals of the form

∮

B

· · ·
∮

B︸ ︷︷ ︸
n

W
(g)
h , (3.16)

where h ≥ n. We can rewrite them as derivatives with respect to t. We have that [21]

∮

B

· · ·
∮

B︸ ︷︷ ︸
n

W
(g)
h = (−1)n∂nW

(g)
h−n , h > n+ 1, g ≥ 0 , (3.17)

∮

B

· · ·
∮

B︸ ︷︷ ︸
n

W
(g)
h = (−1)n∂nW

(g)
1 , h = n+ 1, g > 0 , (3.18)

∮

B

· · ·
∮

B︸ ︷︷ ︸
n

W
(0)
h = 2πi (−1)n−1 ∂n−1ω , h = n+ 1, g = 0 , (3.19)

∮

B

· · ·
∮

B︸ ︷︷ ︸
n

W
(g)
h = (−1)n∂nF (g) , h = n, g ≥ 0 , (3.20)

where the derivatives are w.r.t.
ǫ = (2πi)−

1
2 t. (3.21)

For example, using this, (3.15) can instead be written as (derivatives are now w.r.t. t)

W
(1)
1 (t, κ) = W

(1)
1 (t, 0)− (2πi)

1
2κIJ

(
1

2
∂IωJ + ∂IF

(1)ωJ

)

− (2πi)
1
2

2
κKMκNP∂K∂M∂NF (0)ωP .

(3.22)

We are interested in studying the κ transformation of the the integrated open string amplitudes
(2.27), which will be of the form

A
(g)
h (t, κ, z1, . . . , zh) =

3g−3+2h∑

m=0

κm
dmA

(g)
h

dκm
(t, 0, z1, . . . , zh). (3.23)

We will denote,

A
(g)
0 = F (g) . (3.24)

In the following we will always use (3.17)-(3.20) to express the results in terms of derivatives.
As explained above the results of the κ-expansion can be represented graphically in terms of
surfaces. We will use the following prescription to represent our result graphically:
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+

+

3

4

+21

1

2

+
κ

2

[

21A
(1)
1 (t,κ, z) =

]

+

1

2

+
κ
2

22 · 2!

3

4

2
1

3
4

2

1

+ 34

2

1

Figure 2: Graphs that contribute to A
(0)
1 (t, κ, z) after iterating (3.13).

1. For each A
(g)
h (t, 0) we draw a Riemann surface with g holes and h legs sticking out.

2. For each derivative ∂I acting on A
(g)
h (t, 0) we draw a puncture on the Riemann surface.

3. For each element κIJ we draw a propagator connecting the Ith puncture to the J th puncture.

By integrating (3.22) we find,

A
(1)
1 (t, κ, z) = A

(1)
1 (t, 0, z) + κIJ

(
1

2
∂I∂JA

(0)
1 (t, 0, z) + ∂JA

(1)
0 (t, 0)∂IA

(0)
1 (t, 0, z)

)

+
1

2
κKMκNP∂K∂M∂NA

(0)
0 (t, 0)∂PA

(0)
1 (t, 0, z).

(3.25)

This can be represented graphically as in Fig. 2. In a similar way we obtain for the amplitude
at genus zero and three boundaries,

A
(0)
3 (t, κ, z1, z2, z3) = A

(0)
3 (t, 0, z1, z2, z3) + 3

∑

σ∈S3

1

3!
κIJ∂IA

(0)
2 (t, 0, zσ(1), zσ(2))∂JA

(0)
1 (t, 0, zσ(3))

+ 3
∑

σ∈S3

1

3!
κIJκKL∂IA

(0)
1 (t, 0, zσ(1))∂KA

(0)
1 (t, 0, zσ(2))∂L∂JA

(0)
1 (t, 0, zσ(3))

+ κIJκKLκMN∂IA
(0)
1 (t, 0, z1)∂KA

(0)
1 (t, 0, z2)∂MA

(0)
1 (t, 0, z3)∂J∂L∂NA

(0)
0 (t, 0),

(3.26)
The graphs contributing to this result, up to order κ, are shown in Fig. 3. For the amplitude at
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+21 +2 1 21

+ +2 1 +21 2 1

y y z y y z
y z y

y z y y z zy yy

y

y

z

+
κ

2 · 3!

1

3!
A

(0)
3 (t,κ, x, y, z) =

1

3!

+O(κ2)

Figure 3: Graphs that contribute to A
(0)
3 (t, κ, x, y, z) after iterating (3.13), up to order κ.

genus one and two boundaries,

A
(1)
2 (t, κ, z1, z2)

= A
(1)
2 (t, 0, z1, z2) + κIJ

(
1

2
∂I∂JA

(0)
2 (t, 0, z1, z2) + ∂IA

(1)
0 (t, 0)∂JA

(0)
2 (t, 0, z1, z2)

+2∂IA
(0)
1 (t, 0, z1)∂JA

(1)
1 (t, 0, z2)

)
+ κIJκKL

(
1

2
∂IA

(0)
2 (t, 0, z1, z2)∂J∂L∂KA

(0)
0 (t, 0)

+
1

2
∂I∂KA

(0)
1 (t, 0, z1)∂J∂LA

(0)
1 (t, 0, z2) +

1

2
∂IA

(0)
1 (t, 0, z1)∂J∂K∂LA

(0)
1 (t, 0, z2)

1

2
∂IA

(0)
1 (t, 0, z2)∂J∂K∂LA

(0)
1 (t, 0, z1) + ∂I∂LA

(0)
1 (t, 0, z2)∂KA

(0)
1 (t, 0, z1)∂JA

(1)
0 (t, 0)

+∂I∂LA
(0)
1 (t, 0, z1)∂KA

(0)
1 (t, 0, z2)∂JA

(1)
0 (t, 0) + ∂IA

(0)
1 (t, 0, z1)∂KA

(0)
1 (t, 0, z2)∂J∂LA

(1)
0 (t, 0)

)

+ κIJκKLκMN

(
1

2
∂IA

(0)
1 (t, 0, z1)∂KA

(0)
1 (t, 0, z2)∂J∂L∂M∂NA

(0)
0 (t, 0)+

1

2

(
∂I∂KA

(0)
1 (t, 0, z1)∂MA

(0)
1 (t, 0, z2) + ∂I∂KA

(0)
1 (t, 0, z2)∂MA

(0)
1 (t, 0, z1)

)
∂L∂J∂NA

(0)
0 (t, 0)

1

2

(
∂I∂KA

(0)
1 (t, 0, z1)∂LA

(0)
1 (t, 0, z2) + ∂I∂KA

(0)
1 (t, 0, z2)∂LA

(0)
1 (t, 0, z1)

)
∂M∂J∂NA

(0)
0 (t, 0)+

+∂IA
(0)
1 (t, 0, z1)∂LA

(0)
1 (t, 0, z2)∂K∂J∂MA

(0)
0 (t, 0)∂NA

(1)
0 (t, 0)

)

+ κIJκKLκMNκPQ

(
1

2
∂IA

(0)
1 (t, 0, z1)∂KA

(0)
1 (t, 0, z2)∂L∂J∂MA

(0)
0 (t, 0)∂P∂Q∂NA

(0)
0 (t, 0)

+
1

2
∂IA

(0)
1 (t, 0, z1)∂KA

(0)
1 (t, 0, z2)∂P∂L∂MA

(0)
0 (t, 0)∂J∂Q∂NA

(0)
0 (t, 0)

)
.

(3.27)
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Figure 4: A graphic representation of a disconnected (left) and connected (right) surface.

As in [1, 20], we would like to write these transformations in terms of an integral transform. We
will first make an educated guess based on the above results, and then we will give a combinatorial
proof in the next subsection. To proceed, we introduce the open string amplitudes to all genera
and fixed number of boundaries,

Ah(z1, . . . , zh) =
∑

g≥0

g2g−2+h
s A

(g)
h (z1, . . . , zh). (3.28)

The above results for the κ-dependence of the open string amplitudes can be obtained from the
following integral formulae,

A1(t, κ, z) =

∫
dη A1(η, 0, z)e

−S(t,η,κ)g−2
s +F (η,0)

∣∣∣∣
connected

,

A2(t, κ, z1, z2) =

∫
dη (A2(η, 0, z1, z2) +A1(η, 0, z1)A1(η, 0, z2)) e

−S(t,η,κ)g−2
s +F (η,0)

∣∣∣∣
connected

,

A3(t, κ, z1, z2, z3) =

∫
dη
(
A3(η, 0, z1, z2, z3) + 3

∑

σ∈S3

1

3!
A2(η, 0, zσ(1), zσ(2))A1(η, 0, zσ(3))

+A1(η, 0, z1)A1(η, 0, z2)A1(η, 0, z3)
)
e−S(t,η,κ)g−2

s +F (η,0)

∣∣∣∣
connected

.

(3.29)
In these equations, S(t, η, κ) is given in (3.10), and one performs the integrals by doing a saddle-
point expansion at small gs. As in [20], the terms obtained when doing this expansion can be
written in terms of the same diagrams that we considered before. One finds both connected and
disconnected diagrams. To understand what connected means in this context, let us consider the
following example:

κIJκMN∂I∂JA
1
2(t, 0, z1, z2)∂M∂NA2

1(t, 0, z3),

κIJκMN∂I∂MA1
2(t, 0, z1, z2)∂N∂JA

2
1(t, 0, z3).

(3.30)

The diagrammatic representation of the above surfaces is given in Fig. 4. The first one consists
of two disconnected parts, while in the second one the two surfaces are linked together, i.e. they
are connected.

This suggests the following expression for the κ-dependence,

Ah(t, κ, zH) =

∫
dη


Ah(η, 0, zH) +

h∑

a=2

1

a!

∑

(L1,...,La)

A|L1|(η, 0, zL1) . . . A|La|(η, 0, zLa)




× e−F (η,0)−S(t,η,κ)g−2
s

∣∣∣∣
connected

(3.31)
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where Li ⊂ H,Li 6= ∅ and
∑a

i=1 Li = H. We can reorganise (3.31) into a more elegant expression
by including as well disconnected diagrams:

exp



∑

h≥0

1

h!

∑

ℓ

Aℓ(t, κ)TrV
ℓ1 · · ·TrV ℓh




=

∫
dη exp



∑

h≥0

1

h!

∑

ℓ

Aℓ(η, 0)TrV
ℓ1 · · ·TrV ℓh


 e−S(t,η,κ)g−2

s

(3.32)

where Aℓ is defined as in (2.30), but summed to all genera,

Ah(t, κ, z1, . . . , zh) =
∑

ℓ

Aℓ(t, κ)z
ℓ1
1 · · · zℓhh . (3.33)

In writing these expressions, we have used the dictionary

TrV ℓ1 · · ·TrV ℓh ↔ 1

h!

∑

σ∈Sn

h∏

i=1

zℓiσ(i). (3.34)

Notice that the quantity appearing in (3.32) is just the total open free energy F (V ). Therefore,
(3.32) says that the κ-dependent open free energy is obtained from the original one by the same
integral transform.

We can now use this integral transform to obtain the modular transformation of the open
plus closed string amplitudes, generalizing in this way the result of [1, 20] to the open sector.
We will now put the formula (3.32) in the form presented in [1]. This will also take care of the
transformation of F (0). Let us consider a symplectic transformation (3.1), and let us define the
bilinear functional associated to Γ,

SΓ(x, x̃) = −1

2
(C−1D)JKxJxK + (C−1)JKxJ x̃K − 1

2
(AC−1)JK x̃J x̃K . (3.35)

This is the bilinear entering the integral transform of [1] for the closed string amplitudes,

Z(x̃) =

∫
dx e−SΓ(x,x̃)g

−2
s Z(x). (3.36)

Given x̃, let xcl be defined by

x̃I = CIJ∂JF
0(xcl) +DI

Jx
J
cl, (3.37)

which is the saddle-point for the integral transform (3.36). One has the following relationship,

SΓ(x, x̃) = S(xcl, x,−(τ + C−1D)−1) + SΓ(xcl, x̃) , (3.38)

where we have set η = x, t = xcl. The first term in the r.h.s. in (3.38) leads to the integral kernel
appearing in (3.32). The second term leads to a constant factor

exp(g−2
s SΓ(xcl, x̃)) (3.39)
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in front of the integral. This factor just gives the correct modular transformation of F (0), which
is not incorporated in (3.32). If we now define,

Ah(x̃, z1, . . . , zh) := Ah(xcl,−(τ + C−1D)−1, z1, . . . , zh),

Ah(x, z1, . . . , zh) := Ah(x, 0, z1, . . . , zh),
(3.40)

where the quantities in the r.h.s. are defined in (3.28), and we modify (3.32) by using (3.35), we
obtain the following formula for the modular transformation of the open string partition function,

exp



∑

h≥0

1

h!

∑

ℓ

Aℓ(x̃)TrV
ℓ1 · · ·TrV ℓh




=

∫
dx exp



∑

h≥0

1

h!

∑

ℓ

Aℓ(x)TrV
ℓ1 · · ·TrV ℓh


 e−SΓ(x,x̃)g

−2
s .

(3.41)

This generalizes (3.36) to the open sector.

One can also use (3.32) to study the non-holomorphic dependence of the quantitiesAℓ(t,−(τ−
τ)−1). Since the non-holomorphic dependence in the r.h.s. of (3.32) is only due to the one ap-
pearing in S(t, η,−(τ − τ)−1), the open string partition function satisfies the same holomorphic
anomaly equation as the closed string partition function. It is easy to show that one recovers, in
particular, the holomorphic anomaly equation for open string amplitudes derived in [20].

3.3 A proof

We now prove the relationship (3.32), i.e. we prove that the Feynman expansion of the integral in
the r.h.s. generates the terms which are obtained by iterating (3.13). Our proof is a generalization
of the one for the closed string sector in [20].

The main idea is that we have the same kind of diagrams appearing in both sides of (3.32)
and we have to check that each of them appears with the same multiplicity.

We consider first the l.h.s. and we start by looking at a single surface A
(g)
h (t, κ, z1, . . . , zh).

By iterating (3.13), the κ-expansion in (3.23) can be written as

A
(g)
h (t, κ, z1, . . . , zh) =

3g−3+2h∑

m=0

∑

I1,...,I2m

κI1,I2 . . . κI2m−1,I2m

1

2mm!

∑

Gh
m

AGh
m
, (3.42)

where Gh
m is a connected, degenerate surface with h legs sticking out and m propagators connect-

ing 2m points labelled by 1, . . . , 2m, in such a way that the point labelled by 2i− 1 is connected
by a propagator to the point labelled by 2i. Each of the surfaces AGh

m
is of the form 1

r∏

i=1

∂miA
(gi)
hi

(t, 0, z1, . . . , zhi
), (3.43)

1 The notation ∂miAgi
hi
(t, 0, z1, . . . , zhi

) means that there are mi derivatives acting on Agi
hi
(t, 0, z1, . . . , zhi

).
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where ∑

i

mi = 2m,

∑

i

hi = h,

∑

i

(2gi − 2) + 2m = 2g − 2.

(3.44)

Many Gh
m graphs gives the same contribution, hence it would be useful to count them only once

and add a multiplicity factor.

• Let {h1, . . . , hr} = {L1, . . . , L1, L2, . . . , L2, . . . , La, . . . , La}, where Li appear with multi-
plicity ni. The number of such terms is given by

h!

(L1!)n1 · · · (La!)na
. (3.45)

• For a fixed choice of {(L1, n1), . . . , (La, na)} we have an additional factorNGh
m
, which counts

the inequivalent ways of relabeling the punctures in such a way that 2i− 1 is linked to 2i
for i = 1, . . . ,m.

Hence each diagram appears with a multiplicity factor

h!

(L1!)n1 · · · (La!)na

NGh
m

2mm!
. (3.46)

As explained in [20] we have
NGh

m

2mm!
=

1

s
, (3.47)

where 1/s is the multiplicity factor arising from Wick’s theorem applied to

∫
dη exp



∑

h≥0

∑

ℓ

Aℓ(η, 0)TrV
ℓ1 · · ·TrV ℓh


 e−S(t,η,κ)g−2

s . (3.48)

Hence

MGh
m
:=

1

(L1!)n1 · · · (La!)na

NGh
m

2mm!
, (3.49)

is the multiplicity factor arising from Wick’s theorem applied to

∫
dη exp



∑

h≥0

1

h!

∑

ℓ

Aℓ(η, 0)TrV
ℓ1 · · ·TrV ℓh


 e−S(t,η,κ)g−2

s . (3.50)

It follows that A
(g)
h (t, κ, z1, . . . , zh)/h! is obtained by considering all connected diagrams fulfilling

(3.44) coming from

∫
dη exp



∑

h≥0

1

h!

∑

ℓ

Aℓ(η, 0)TrV
ℓ1 · · ·TrV ℓh


 e−S(t,η,κ)g−2

s . (3.51)
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From the Fourier transform point of view, imposing the selection rule (3.44) is natural since it is

equivalent to pick up only the terms which are proportionals to g2g+h−2
s in the genus expansion,

with h legs sticking out. As an example of this procedure, we show in Fig. 3 the graphs that

contribute to A
(0)
3 (t, κ, x, y, z) up to first order. We see that the multiplicity factor is precisely

(3.49).

Let us consider the full term in the l.h.s. of (3.32). The argument of the exponential is made
of products of connected surfaces. By expanding it we obtain a sum involving terms of the form:

s∏

i=1


M

Gh(i)

m(i)

r(i)∏

j=1

∂m
(i)
j A

(g
(i)
j )

h
(i)
j

(t, 0, z1, . . . , zh(i)
j

)




ñi

1

ñ1! · · · ñs!
, (3.52)

where each term 
M

Gh(i)

m(i)

r(i)∏

j=1

∂m
(i)
j A

(g
(i)
j )

h
(i)
j

(t, 0, z1, . . . , zh(i)
j

)


 (3.53)

denotes a connected surface appearing with multiplicity ñi. Hence the total multiplicity factor
is

s∏

i=1

(
M

Gh(i)

m(i)

)ñi 1

ñi!
. (3.54)

This is precisely the symmetry factor arising from Wick’s theorem applied to r.h.s. of (3.32).
Indeed the multiplicity factor is inversely proportional to the equivalent ways of relabeling the
punctures. This has two sources:

1. The equivalent ways of relabeling the puncture inside a given connected surface.

2. The equivalent ways of relabeling the puncture between disconnected surfaces.

As explained above the first contribution is

M
Gh(i)

m(i)

, (3.55)

while the second one is given by the overall factor

1

ñ1! · · · ñs!
. (3.56)

4. Application: the ABJM 1/2 BPS Wilson loop

As an application of the general result of this paper, we will now present expressions for the
vevs of 1/2 BPS Wilson loops of ABJM theory, in different representations. Since the results
are obtained as an integral transform of topological vertex results, they are exact in the string
coupling constant but perturbative in the exponentiated Kähler parameter. Therefore, they
correspond to an expansion at large N with k fixed, which is the M-theory expansion of the
Wilson loop amplitudes.
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4.1 ABJM theory and topological strings

The partition function and vevs of BPS Wilson loops in ABJM theory can be computed through
localization (see [37] for a review and a list of references). The result of this computation is
a matrix integral [28] which in turn can be related [38] to topological string theory in the CY
manifold known as local P1 × P

1. This manifold has two Kähler moduli. In the large radius
frame, they correspond to the sizes T1, T2 of the two P

1’s. ABJM theory is described by the
“slice”

T = T1 = T2. (4.1)

The appropriate frame for the matrix model calculation in ABJM theory is the so-called orbifold
frame of [3], and the strong coupling limit of ABJM theory corresponds to the large radius
regime of topological string theory. One can then compute ABJM quantities at strong coupling
by first computing the amplitudes in the large radius frame, and then performing a modular
transformation.

In the case of the partition function, one can use the integral transform formula of [1] to
obtain the partition function of ABJM theory at strong coupling [39]. Let us review this in some
detail. In the orbifold frame, the natural periods are

λ =
N

k
, (4.2)

which is the ’t Hooft coupling of the gauge theory, and the dual period ∂λF0, where F0 is the genus
zero free energy. In the large radius, the natural periods are T (the diagonal Kähler modulus in
(4.1)) and the derivative ∂TF

LR
0 . There is only one effective class, labelled by an integer d, such

that β · T = dT . The closed string free energy in the large radius frame is given by

FLR(λ, gs) =
T 3

6g2s
+

T

12
+A(gs) +

∑

g≥0

∑

d>0

Ng,d e
−dT g2g−2

s , (4.3)

where Ng,d are Gromov–Witten invariants in the local P1 ×P
1 geometry and A(gs) is the contri-

bution of constant maps. The topological string coupling constant is related to k by2

gs =
4πi

k
. (4.4)

There is a symplectic transformation relating the periods in the orbifold frame, to the periods in
the large radius frame: (

∂λ̃F̃0

λ̃

)
=

(
0 1
−1 2

)(
∂
T̃
F̃LR
0

T̃

)
(4.5)

where

λ̃ =
4π2

c
λ, T̃ =

πi

2c
T, c2 = 2πi, (4.6)

and
F̃0 = F0 − π3iλ,

F̃LR
g = (−1)g−1

(
FLR
g − δg,0

π2T

3

)
.

(4.7)

2In [38, 17, 39] one sets gs = 2πi/k, but then the resulting topological string free energy at genus g and large
radius differs by a factor of 4g−1 from the standard one. The normalization used in this paper is more suited to
comparisons with standard large radius results.
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d 0 1 2 3 4 5

g = 0 1 2 3 10 49 288
g = 1 0 0 0 0 8 144
g = 2 0 0 0 0 0 22

Table 1: The integer invariants ng,d,(1).

Then, according to (3.36), the total partition functions are related by the following formula:

exp
[
F (λ)− π3iλ/g2s

]
=

∫
dT̃ exp

[
−T̃ 2/g2s + T̃ λ̃/g2s + F̃LR(T̃ )

]
. (4.8)

Let us introduce a variable µ through

T =
4µ

k
− πi. (4.9)

Then, one finds the expression

Zcl(N, k) = eA(k)

∫
dµ exp

{
2µ3

3kπ2
− µN +

k

24
µ+

1

3k
µ+O

(
e−

4µ
k

)}

= eA(k)Ai
[
C−1/3(N −B)

] (
1 +O(e−2π

√
2λ)
)
,

(4.10)

where we used the following integral representation of the Airy function,

Ai(z) =
1

2πi

∫

C
dt exp

(
t3

3
− zt

)
, (4.11)

and C is a contour in the complex plane from e−iπ/3∞ to eiπ/3∞. In (4.10),

C =
2

π2k
, B =

k

24
+

1

3k
. (4.12)

The result (4.10) was first obtained in [23] by studying the holomorphic anomaly equations. The
function A(k) has been studied in detail in [25].

4.2 Wilson loops

It is possible to construct 1/2 BPS Wilson loops in ABJM theory and to evaluate their vevs
through localization [16]. These Wilson loops are labelled by Young tableaux R, and their vevs
reduce to an average in the matrix model of [28]. This has been recently tested in perturbation
theory, to two loops, and for the fundamental representation, in [11]. In [38] it was shown that
the matrix model averages are topological open string amplitudes associated to an outer brane
in local P1 × P

1, again in the so-called orbifold frame. We can now generalize to the open string
sector the observation of [39] for computing the closed string partition function in the orbifold
frame: we first evaluate the open string amplitudes in the large radius frame, and then perform
an integral transform to obtain the result in the orbifold frame, which gives the Wilson loop vevs.

The open string amplitude for an outer brane in local P1 ×P
1 can be computed by using for

example the topological vertex [3]. The topological vertex formalism computes directly the open
string partition function Z(V ), and explicit results for the first ZR defined in (2.12) can be easily
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d 1 2 3 4 5

g = 0 1 2 8 48 336
g = 1 0 0 0 7 148
g = 2 0 0 0 0 20

d 1 2 3 4 5

g = 0 1 2 8 36 208
g = 1 0 0 0 7 112
g = 2 0 0 0 0 20

Table 2: The integer invariants ng,d,(1,1) (left) and ng,d,(2) (right).

obtained. Equivalently, one can list the integer invariants ng,d,ℓ appearing in (2.8). We find, for
the fundamental representation,

Z

Zcl
=

1

q − q−1

[
1 + 2Q+ 3Q2 + 10Q3 +

(
33 + 8

(
q2 + q−2

))
Q4

+
(
132 + 56

(
q2 + q−2

)
+ 22

(
q4 + q−4

))
Q5 + · · ·

]
.

(4.13)

The integer invariants for ℓ = (1) and ℓ = (1, 1), (2) are listed in tables 1 and 2, respectively.
When using our general result (3.41) we have to be careful with the open string mirror map.

In the computation of large radius open string amplitudes with the topological vertex, we are
implicitly using an open string modulus Ṽ . Let V be the open string modulus at the orbifold
point, appropriate for the matrix model of [3, 28]. Then, one has the relationship [13, 38, 17]

Ṽ = −Q−1/2V = −eT/2V, (4.14)

where we denoted
Q = e−T . (4.15)

We will now test (3.41) for h = 1, 2, 3 boundaries.

4.2.1 One boundary

We will denote simply by Aℓ the open string amplitudes evaluated in the orbifold frame, which
corresponds to ABJM vevs, and by ALR

ℓ
the amplitudes evaluated at large radius, computed for

example by the topological vertex. To study the disk invariants, we specialize (3.41) for ℓ = (l)
and we pick only terms of the form TrV l. We find,

Zcl(λ, k)
∑

l≥1

Al(λ)TrV
l

=
∑

l≥1

∫
dµALR

l (T ) exp

[
2µ3

3kπ2
− µN + µ

(
k

24
+

1

3k

)
+A(k) +O

(
e−

4µ
k

)]
Tr Ṽ l.

(4.16)

We will now calculate the amplitudes by doing an expansion in Q, which corresponds to a
worldsheet instanton expansion. From the results in table 1 we find, for l = 1

ALR
1 =

1

2i sin
(
2π
k

)
(
1 + 2Q+ 3Q2 + · · ·

)
, (4.17)

and through the integral transform (4.16) we obtain, for the leading contribution,

Alead
1 =

1

2 sin(2π/k)

(
Ai
(
C−1/3

(
N − k

24 − 1
3k − 2

k

))

Ai
(
C−1/3

(
N − k

24 − 1
3k

))
)
. (4.18)
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This reproduces the result derived in [30] with Fermi gas techniques (up to an extra factor of 2,
due to the fact that we are expanding in gs =

4πi
k rather than gs =

2πi
k ). Our formalism makes

it possible to calculate subleading corrections to this result coming from worldsheet instantons.
In particular, the subleading order in Q in (4.17) leads to the following exponentially small
correction to (4.18),

Asl
1 = − 1

sin(2π/k)
W (−1) +

1

2 sin3(2π/k)
W (−1)− 1

2 sin3(2π/k)
W (−2)W (1), (4.19)

where

W (n) =
Ai
(
C−1/3

(
N − k

24 − 1
3k − 2n

k

))

Ai
(
C−1/3

(
N − k

24 − 1
3k

)) . (4.20)

Higher order corrections can be computed straightforwardly from the topological vertex. The
corrections in (4.19) and higher order should be interpreted, in the large N type IIA superstring
dual, as due to closed string worldsheet instantons attached to the disk instanton responsible for
the leading order behavior (4.18).

Notice that the above formulae give all genus results: since the topological vertex expressions
sum up the genus expansion, order by order in the degree, the expressions resulting from their
integral transform sum up the genus expansion in the type IIA dual of ABJM theory, and can
be therefore lifted to M-theory.

One can also use the fact that, for d = 0, the only non-zero integer invariant ng,d,ℓ occurs
for g = 0 and ℓ = (1), to derive

ALR
n =

1

2ni sin(2nπ/k)
+ · · · (4.21)

at leading order in Q. This is due only to multicovering of the n = 1 amplitude. Therefore we
find

Alead
n =

1

2n sin(2nπ/k)
W (n), (4.22)

which also agrees with the result in [30] .
We can now test the above all-genus results against explicit computations done directly in

the orbifold frame. Following [17], we use the following genus expansion

A1 =
∑

g≥0

g2g−1
s A

(g)
1 . (4.23)

The quantities A
(g)
1 have been computed for g = 0 [38] and g = 1 [17], and they are naturally

expressed in terms of the parameter κ introduced in [38] through

λ(κ) =
κ

8π
3F2

(
1

2
,
1

2
,
1

2
; 1,

3

2
;−κ2

16

)
. (4.24)

This can be inverted, at strong coupling κ ≫ 1, as

κ = eπ
√

2λ̂

(
1 +

(
−2 +

1

π
√
2λ̂

)
e−2π

√
2λ̂ +O

(
e−4π

√
2λ̂

))
, (4.25)

where

λ̂ = λ− 1

24
. (4.26)
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It has been shown in [38] that at genus zero the exact expression for the 1/2 BPS Wilson loop
vev is

A
(0)
1 = iκ(λ), (4.27)

up to a factor of 1/2 as mentioned after (4.18). This is indeed reproduced by our formalism,
since we find, from the genus expansion of (4.18) and (4.19), that

A
(0)
1 = i e

√
2λ̂π + i

(
1√
2λ̂π

− 2

)
e−

√
2λ̂π +O

(
e−3π

√
2λ̂

)
, (4.28)

which agrees with (4.27) after using (4.25).

We now look at the genus one results. From (4.18) and (4.19) we have

A
(1)
1 =

3− 4
√
2λ̂π + 4λ̂π2

96iλ̂π2
eπ
√

2λ̂

− 6 + 5
√

2λ̂π + 4λ̂π2 − 20
√
2λ̂3/2π3 + 16λ̂2π4

192iλ̂2π4
e−π

√
2λ̂ +O

(
e−3π

√
2λ̂

)
.

(4.29)

This can be compared with the expression obtained from the W
(1)
1 (p) computed in [17]. We find

perfect agreement.

4.2.2 Two boundaries

Let us now look at the terms proportional to (TrV )2 in (3.32):

Zcl(λ, k) (A1,1(λ) +A1(λ)A1(λ)) (TrV )2

=

∫
dµ
(
ALR

1,1(T ) +ALR
1 (T )ALR

1 (T )
)

× exp

[
2µ3

3kπ2
− µN + µ

(
k

24
+

1

3k

)
+A(k) +O

(
e−

4µ
k

)](
TrṼ

)2
.

(4.30)

The integrand in the second line can be computed by using the topological vertex, or equivalently
the results for the integer invariants in table 2. As before, we first look at the leading order in
the worldsheet instanton expansion, and we find, after the integral transform,

Alead
1,1 (λ)

=
1

4 sin2(2πk )


Ai(C

−1/3(N − k
24 − 1

3k − 4
k ))

Ai
(
C−1/3

(
N − k

24 − 1
3k

)) −
(
Ai
(
C−1/3

(
N − k

24 − 1
3k − 2

k

))

Ai
(
C−1/3

(
N − k

24 − 1
3k

))
)2

 .

(4.31)

Similarly, the subleading term is given by

Asl
1,1 =

(
1

2
+

1

4 sin4(2π/k)
− 1

sin2(2π/k)

)
W (0) +

1

2 sin4(2π/k)
W (−2)W (1)W (1)

+

(
1

sin2(2π/k)
− 1

2 sin4(2π/k)

)
W (1)W (−1)− 1

4 sin4(2π/k)
W (2)W (−2).

(4.32)
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The annulus amplitude (4.31) has a genus expansion given by

A1,1 =
∑

g≥0

g2gs A
(g)
1,1 . (4.33)

We find, at genus zero,

A
(0)
1,1 = − e2

√
2π
√

λ̂

8
√
2π
√
λ̂
+

√
2− 8

√
2λ̂π2 + 32λ̂3/2π3

32λ̂3/2π3
+O

(
e−2π

√
2λ̂

)
. (4.34)

We can compute this quantity by using Akemann’s expression for the annulus correlatorW
(0)
2 (p, q)

[9], which has an expansion

W (p, q) =
∑

k,l≥1

klA
(0)
k,l p

−k−1q−l−1 . (4.35)

The explicit expression for W (p, q) is given in terms of data of the spectral curve of the ABJM
matrix model,

W (p, q) =
1

4(p− q)2

(√
(p− x1)(p− x2)(q − x4)(q − x3)

(p− x4)(p− x3)(q − x1)(q − x4)
+

√
(p− x4)(p− x3)(q − x1)(q − x2)

(p− x1)(p− x2)(q − x4)(q − x3)

)

+
(x1 − x3)(x4 − x2)

4
√
σ(p)σ(q)

E(k)

K(k)
− 1

2(p− q)2
.

(4.36)

Here, xi are the branch points of the spectral curve, which is elliptic, k is an appropriate elliptic
modulus, and E(k), K(k) are elliptic integrals. Explicit expressions for all these quantities can
be found in [17], section 8.1, or [30], section 2. The result obtained in this way matches with
(4.34).

4.2.3 Three boundaries

We finally discuss very briefly a simple check for the amplitude with three boundaries. Using the
integral transform, we find, at leading order in the worldsheet instanton expansion,

A1,1,1 =

(
1

2 sin
(
2π
k

)
)3 (

W (3)− 3(W (2)−W (1)2)W (1)−W (1)3
)
+ · · · . (4.37)

This has a genus expansion

A1,1,1 =
∑

g≥0

g2g+1
s A

(g)
1,1,1. (4.38)

At genus zero we find, from (4.37),

A
(0)
1,1,1 =

i

64

(1− 3π
√

2λ̂)

(π
√
2λ̂)3

e3π
√

2λ̂ +O
(
eπ
√

2λ̂

)
. (4.39)

We can compare this with the explicit expression extracted from the W
(0)
3 (p, q, r) presented in

for example [13] (and applied to the spectral curve of the ABJM matrix model). The result at
leading order matches again with (4.39).
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5. Conclusions and open problems

In this paper, motivated by the results in [30], we have generalized the results of [20] to the open
sector, and showed that the intricate combinatorics of the κ-dependence in [21] can be simply
summarized by the statement that the total open string partition function is a wavefunction.
Notice that in our derivation the open moduli played no significant role, since the open mirror map
simply involves multiplying them by an overall factor, and the only source of non-holomorphic
dependence is the factor κ already present in the closed sector. Cleary, it would be very interesting
to generalize this wavefunction behavior under modular transformations to the case of compact
CY manifolds. This can be probably worked out as a consequence of [41].

A nice application of our general result is the computation of vevs of 1/2 BPS Wilson loops
in ABJM theory. These are simply given by integral transforms of open string amplitudes in
the large radius frame. The expressions for these amplitudes in terms of integer invariants,
which include all genera but are perturbative in the exponentiated Kähler coupling, correspond
precisely, after the integral transform, to the M-theory expansion of Wilson loop vevs. By using
the large N dual, we obtain in this way a genus resummation in type IIA superstring theory.

One important open problem which we have not addressed here is the computation of mem-
brane instanton corrections to the Wilson loop vevs of ABJM theory. These corrections are
known to be present in the free energy on the three-sphere [18, 39] and they can be computed
within the Fermi gas formalism [39, 26, 14, 27]. It would be very interesting to know whether
they are present in the case of Wilson loops, and if so, what is their value.

In this respect there is however one interesting difference between the vevs of 1/2 BPS
Wilson loops and the free energy. For the free energy, the contribution of worldsheet instantons
is singular for all integer values of k. This singular behavior is not physical (the original matrix
integral is well-defined for all k > 0), and as shown in [26] these singularities are cancelled by
membrane instantons. In the case of vevs of 1/2 BPS Wilson loops with winding numbers ℓ,
there are singularities for the values of k which divide 2ℓi, for all i = 1, · · · , h (this follows
from the integrality structure (2.8)). For example, for the winding ℓ = (1), the vev is singular
for k = 1, 2. However, as pointed out in [30], these singularities are physical, since the matrix
integral computing the vevs actually diverges for these values. Therefore, the contribution of
membrane instantons is not required to cancel out singularities, as in the case of the free energy,
and it might be zero. It would be interesting to further explore this issue.
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A. A check of modular transformation properties

As explained in section (3.1) the κ-dependence in the quantities W
(g)
k encodes the information

about how it transforms under a modular transformation. In this appendix we perform an explicit
check of this statement for a simple case of a local Calabi–Yau manifold. A particular class of
manifolds considered in this paper are those having an underlying algebraic curve which is given
in ”exponentiated” variables by

y2(x) = M2(x)σ(x), (A.1)
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where

σ(x) =
2s∏

i=1

(x− xi) (A.2)

and M(x) is some transcendental function. Let us consider the simple case s = 2 and M(x) = 1.
In this case we have a curve of genus one, i.e. an elliptic curve. The cuts defining the A and
B-cycles are given by

A1 = (x1, x2), A2 = (x3, x4), B1 = (x2, x3) . (A.3)

We will consider an S-duality transformation defined by

A = D = 0, B = −C = 1 (A.4)

in (3.3). According to (3.5) the quantity W
(1)
1 (p) will transform as (3.15) with κ = −τ−1. We

can test this by using explicit expressions in terms of the end points of the cuts for the various
quantities appearing in (3.15).

We have [9, 19]

W
(0)
3 (p1, p2, p3) =

1

8

4∑

i=1

M2(xi)σ
′(xi)χ

(1)
i (p1)χ

(1)
i (p2)χ

(1)
i (p3), (A.5)

W
(1)
1 (p) =

1

16

4∑

i=1

χ
(2)
i (p) +

1

8

4∑

i=1

(
2αi −

∑

j 6=i

1

xi − xj

)
χ
(1)
i (p), (A.6)

where

χ
(1)
i (p) =

1

M(xi)
√
σ(p)

(
1

p− xi
+ αi

)
,

χ
(2)
i (p) = −M ′(xi)

M(xi)
χ
(1)
i (p) +

1

M(xi)
√
σ(p)

1

(p− xi)2
− 1

3

1

M(xi)
√

σ(p)

∑

j 6=i

αj − αi

xj − xi
,

(A.7)

and the αi are given by

α1 =
1

(x1 − x2)

[
1− (x4 − x2)

(x4 − x1)

E(k)

K(k)

]
,

α2 =
1

(x2 − x1)

[
1− (x3 − x1)

(x3 − x2)

E(k)

K(k)

]
,

α3 =
1

(x3 − x4)

[
1− (x4 − x2)

(x3 − x2)

E(k)

K(k)

]
,

α4 =
1

(x4 − x3)

[
1− (x3 − x1)

(x4 − x1)

E(k)

K(k)

]
.

(A.8)

The S-duality transformation for W
(1)
1 (p) is given by exchanging the roots

x1 ↔ x3 (A.9)
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in (A.6). Doing this we find after a little work that

W
(1)
1 (p) → W

(1)
1 (p) +

1√
σ(p)

4∑

i=1

F (p, xi, τ), (A.10)

where

F (p, xi, τ) =
1

4

Ki

(p− x̃i)
−
∑

j 6=i

(
1

48

Kj −Ki

x̃j − x̃i
+

1

8

Ki

x̃i − x̃j

)
+

1

4
(2Ki + 2KiRi +K2

i ), (A.11)

with

K1 = − 1

(x3 − x2)

[
(x4 − x2)

(x4 − x3)

iπ

2K(k)2τ

]
, R1 = − 1

(x3 − x2)

[
(x4 − x2)

(x4 − x3)
(1− E(k)

K(k)
)

]
,

K2 = − 1

(x2 − x3)

[
(x1 − x3)

(x1 − x2)

iπ

2K(k)2τ

]
, R2 = − 1

(x2 − x3)

[
(x1 − x3)

(x1 − x2)
(1− E(k)

K(k)
)

]
,

K3 = − 1

(x1 − x4)

[
(x4 − x2)

(x1 − x2)

iπ

2K(k)2τ

]
, R3 = − 1

(x1 − x4)

[
(x4 − x2)

(x1 − x2)
(1− E(k)

K(k)
)

]
,

K4 = − 1

(x4 − x1)

[
(x1 − x3)

(x4 − x3)

iπ

2K(k)2τ

]
, R4 = − 1

(x4 − x1)

[
(x1 − x3)

(x4 − x3)
(1− E(k)

K(k)
)

]
,

x̃i =





xi if i = 2, 4
x3 if i = 1
x1 if i = 3





(A.12)
and τ is the standard elliptic modulus

τ = i
K(k′)
K(k)

(A.13)

where

k′2 = 1− k2 . (A.14)

Using the same approach as in for example [13] we can compute the integrals around the B-
cycles of the quantities W

(0)
2 (p1, p2), W

(1)
1 (p) and W

(0)
3 (p1, p2, p3), which are needed on the r.h.s

of (3.15), in terms of elliptic functions. Without showing the full computation let us give a few

important ingredients. For W
(0)
2 (p1, p2) we have [12],

∮

B

W
(0)
2 = 2πiω = − π

2K(k)

√
(x1 − x3)(x2 − x4)√

σ(p)
. (A.15)
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For the integrals of the quantities χ
(1)
i (p) in (A.5) we find

∮

B

χ
(1)
1 = − 4√

(x1 − x3)(x2 − x4)

π

2

1

K(k)

x2 − x4
(x1 − x2)(x1 − x4)

,

∮

B

χ
(1)
2 = − 4√

(x1 − x3)(x2 − x4)

π

2

1

K(k)

x3 − x1
(x1 − x2)(x2 − x3)

,

∮

B

χ
(1)
3 = − 4√

(x1 − x3)(x2 − x4)

π

2

1

K(k)

x4 − x2
(x3 − x4)(x3 − x2)

,

∮

B

χ
(1)
4 = − 4√

(x1 − x3)(x2 − x4)

π

2

1

K(k)

x1 − x3
(x3 − x4)(x4 − x1)

.

(A.16)

In order to compute
∮
B
W

(1)
1 it is useful to observe that

x3∫

x2

dx

(xi − x)2
√

|σ(x)|
= K(k′)

1

3

∑

j 6=i

α̃j − α̃i

x̃j − x̃i
. (A.17)

The quantities α̃i and x̃i in (A.17) are obtained from αi and xi by everywhere exchanging the
indices 1 and 3, as in (A.12).

After computing the relevant integrals and putting everything together we find that indeed

− 1

2πiτ


1

2

∮

B

∮

B

W
(0)
3 +

∮

B

W
(1)
1

∮

B

W
(0)
2


+

1

(2πiτ)2


1

2

∮

B

∮

B

∮

B

W
(0)
3

∮

B

W
(0)
2




=
1√
σ(p)

4∑

i=1

F (p, xi, τ) ,

(A.18)

where F (p, xi, τ) is defined in (A.11). This is what we wanted to show.
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