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1 Introduction

Localization has proven to be a powerful tool to study supersymmetric quantum field the-

ories (SQFT) on curved backgrounds.1 To identify localizable backgrounds one couples

supersymmetric matter field theories to classical supergravity: setting the supersymme-

try variations of the fermionic supergravity fields — both gravitinos and gauginos — to

zero, one obtains equations for the local supersymmetry spinorial parameters, a strategy

first exploited in [2]. These differential equations, that are often named generalized Killing

spinor equations, admit non-trivial solutions only for special configurations of the bosonic

fields of the supergravity multiplet. The relevant supergravity and the particular general-

ized Killing spinor equations depend on the global symmetries of the specific SQFT one is

interested in: indeed, conserved currents of the SQFT that one would like to probe couple

to gauge fields which must sit in supergravity multiplets.

It was observed in [3] and [4] that the generalized Killing spinor equations for certain

extended supergravities in 3 and 2 dimensions are equivalent to cohomological equations

which are obtained by setting to zero the BRST variations of fermionic fields of topological

gravity coupled to certain topological gauge systems. In this paper we will provide a

conceptual explanation of the equivalence between the generalized Killing spinor equations

of supergravity and the cohomological equations derived from topological gravity.

1The literature on supersymmetric localization is enormous. See [1] for an extensive overview of the

main recent results.
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Our starting point will be the BRST formulation of supergravity. We will revisit

this in section 2. The BRST structure of a given supergravity theory is specified by the

number of its local supersymmetries and by its bosonic local gauge symmetries. For each

local symmetry one introduces ghost fields — anti-commuting for bosonic local symmetries

and commuting for fermionic ones. The bosonic local gauge symmetries always include at

least local reparametrizations and local Lorentz transformations: on top of those one can

consider additional Yang-Mills local symmetries. These may be associated, for example,

to global R-symmetries of the matter SQFT to which supergravity can be coupled.

We will show that the BRST algebra of any supergravity theory takes the form

S2 = Lγ + δiγ(A)+φ (1.1)

Here S is obtained from the nilpotent BRST operator s by subtracting the transformations

associated to the bosonic gauge symmetries; Lγ is the Lie derivative along the vector field

γµ of ghost number 2

γµ = −1

2

∑
i

ζ̄i Γµ ζi (1.2)

where ζi, with i = 1, . . . , N , are the commuting supersymmetry Majorana ghosts2 and Γµ,

with µ = 1, . . . , d, are the Dirac matrices in curved space-time of dimension d; δc denotes

a gauge transformation with parameter c and iγ(A) is the contraction of the YM gauge

field A, belonging in the supergravity multiplet, with the vector field γµ; the scalar field φ

lives in the adjoint representation of the bosonic YM gauge symmetry group. φ, like γµ,

is a combination of ghost number 2 of the supergravity fields, bilinear in the commuting

ghosts ζi and it is independent of the other ghost fields.

The vector ghost bilinear γµ and the adjoint-valued scalar ghost bilinear φ completely

specify the supergravity BRST algebra — and thus the supergravity model. It should

be remarked that the vector ghost bilinear γµ has, for any supergravity, the universal

form (1.2); on the other hand the dependence of the adjoint-valued scalar ghost bilinear φ

on the bosonic fields is model dependent. We will provide explicit expressions for φ for the

supergravity theories that we discuss in this paper.

The algebra (1.1) encodes the connection between supergravity and topological the-

ories: indeed both the field γµ and the field φ admit a natural topological interpretation

on which we will elaborate in section 4. We will show that, under supergravity BRST

transformations, the ghost number 2 vector γµ transforms precisely as the superghost of

topological gravity while φ transforms as the superghost of a topological Yang-Mills mul-

tiplet. Explicitly, the supergravity BRST operator S acts on φ as follows

S φ = iγ(λ)

S λ = iγ(F )−Dφ

S F = −Dλ (1.3)

2For concreteness, we are taking the commuting ghosts to be Majorana spinors in Minkowski space-time

here and in the rest of the paper, with the exception of section 7. We take the Minkowski signature to

be (+,−, . . . ,−). When N is even it might be more convenient to work with Dirac spinors. When the

space-time dimension permits, one could adapt the discussion to Euclidean signature: this is what we do

in section 7 where we describe the application to localization of N = (2, 2) supergravity in two dimensions.
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where F is the field strength 2-form associated to bosonic Yang-Mills symmetries and λ

is a ghost number 1 combination of supergravity fields which we will call the (composite)

“topological gaugino”. λ is defined by the supergravity BRST variation of the gauge field

S A = λ (1.4)

The BRST transformations (1.3) are identical to the BRST rules of the topological Yang-

Mills multiplet (F, λ, φ) coupled to topological gravity, once one identifies the supergravity

bilinear γµ with the topological gravity superghost. The topological gravity BRST trans-

formations read indeed

S gµν = ψµν

S ψµν = Lγ gµν
S γµ = 0 (1.5)

where gµν is the metric and ψµν is the topological gravitino. The consistency of (1.5)

with (1.3) hinges on the supergravity transformations for the supersymmetry ghosts and

vierbein

S ζi = iγ
(
ψi
)

S ea =
∑
i

ζ̄i Γaψi (1.6)

where ψi are the gravitinos and ea = eaµ dx
µ the vierbein 1-forms. Note that the super-

gravity BRST rules (1.6) are universal, i.e. independent of the specific supergravity theory.

The fact that the supergravity transformations (1.6) imply, in particular, the invariance of

the bilinear (1.2) was observed first in [5].

In section 3 we will review the coupling, in generic dimensions, of topological gravity to

topological YM in any dimensions. This was worked out in [6] and [3] in a three-dimensional

context. It is well-known that the BRST operator of “rigid” topological YM is geometrically

the de Rham differential on the space A of gauge connections, equivariant with respect to

gauge transformations. Analogously, the BRST operator of topological gravity in (1.5) is

the de Rham differential on the space Met of metrics, equivariant with respect to space-

time diffeomorphisms. The BRST operator S in (1.3), which will be discussed in section 3,

is instead the de Rham differential on the space A ×Met, equivariant with respect to

both diffeomorphisms and gauge transformations. Independently of the application to

supergravity that we consider in this work, this operator should have applications to the

study of metric dependence of Donaldson invariants.

In the rest of this paper we apply to supersymmetric localization the topological struc-

ture that we have discovered sitting inside the supergravity BRST algebra. Supersymmetric

bosonic backgrounds are obtained by setting to zero the supergravity BRST variations of

all the fermionic supergravity fields. We will refer to the set of such backgrounds as the

localization locus. On the localization locus also the supergravity BRST variations of the

composite fields λ = S A and ψµν = S gµν , must vanish. The resulting equations will be

– 3 –
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analyzed in section 5. By imposing that the supergravity BRST variation of the topological

gravitino vanishes one gets the equation

S ψµν = Lγ gµν = Dµ γν +Dν γµ = 0 (1.7)

which expresses the request that the vector bilinear γµ be an isometry of the space-time

metric gµν . The fact that, on the localization locus, the vector bilinear γµ must be a Killing

vector of the space-time metric is well-known in the supergravity literature. The vanishing

of the supergravity BRST variation of the topological gaugino gives instead the equation

Dφ− iγ(F ) = 0 (1.8)

This equation is universal, in the sense that it is valid, on the localization locus, for any

supergravity in any dimensions. It appears to be a novel equation which has not been yet

explored in either supergravity or topological field theory literature.

Eq. (1.8) takes values in the adjoint representation of the total bosonic YM gauge

group: it splits therefore into an equation valued in the Lorentz local algebra and one in

the additional YM symmetry algebra. When either of these are non-abelian, the universal

localization equation (1.8) is non-linear. In this case, although equation (1.8) has topo-

logical roots, it does not directly defines a cohomological problem. To connect eq. (1.8)

to cohomology theory, we need to extract its gauge invariant content. To this end, let us

define the generalized Chern classes

Cn = Tr(F + φ)n = TrFn + · · ·+ Trφn (1.9)

which are gauge invariant polyforms. When the backgrounds F and φ satisfy the localiza-

tion equation (1.8) the generalized Chern classes obey the equation

Dγ Cn = (d− iγ)Cn = 0 (1.10)

The differential Dγ ≡ d− iγ is the coboundary operator defining the de Rham cohomology

of forms on space-time, equivariant with respect to the action associated to the Killing

vector γµ. We will refer to this cohomology as the γ-equivariant cohomology. Eq. (1.10)

says therefore that the generalized Chern classes Cn are the γ-equivariant extensions of the

ordinary Chern classes cn = TrFn.

The ordinary Chern classes cn are integer-valued when F is the curvature of an her-

mitian connection. We will compute explicitly the equivariant extensions of these classes

for N = (2, 2) supergravity in d = 2. It will turn out that the equivariant extensions

defined by this supergravity are integer-valued as well. We believe this integrality property

is a general feature of supersymmetric bosonic backgrounds, although we have not yet a

proof of this. At any rate, different values of the γ-equivariant classes (1.10) label different

branches of the localization locus. On each of these branches moduli spaces of inequivalent

localizing backgrounds may exist — all with the same (integral) values of the equivariant

Chern classes.

Eqs. (1.7), (1.8) and its consequence (1.10) are obtained by putting to zero the BRST

variation of specific (composite) fermions: the topological gravitino and gauginos, belonging
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in topological multiplets whose ghost number 0 components are (respectively) the metric

and the YM curvature. It should be stressed that these equations do not, in general, com-

pletely characterize the localization locus. One can obtain additional, independent, gauge

invariant cohomological equations for bosonic supersymmetric backgrounds by setting to

zero the variations of other, independent, gauge invariant composite fermions. In section 6

we will discuss how to construct gauge invariant composite fermions out of the (universal)

sector of supergravity which does not involve the auxiliary fields. These fermions sit in

topological gauge invariant multiplets whose ghost number 2 scalars involve only the su-

pergravity ghosts ζi. The 2-form components of these multiplets depend on the auxiliary

fields. They are not, in general, curvature of gauge fields associated to local symmetries.

To determine them one needs the knowledge of the full off-shell supergravity BRST rules.

Multiplets of this kind, that we will call gauge invariant topological multiplets, can be

constructed only for specific supergravity theories with suitable YM local gauge invariance.

In section 6 we will find and discuss examples of these multiplets for d = 2 N = (2, 2)

supergravity and d = 4 N = 2 supergravity with SU(2) YM gauge symmetry.

The localization equations associated to the gauge invariant topological multiplets also

take the form of γ-equivariant cohomology equations for classes of degree 2. These equa-

tions are very powerful. They do not appear to have the integrality properties of the

cohomology equations associated to the curvature topological multiplets. Their continuous

moduli spaces parametrize the inequivalent localizing backgrounds within a given topologi-

cal branch classified by the equivariant Chern classes in the equation (1.10). We will verify

this explicitly for N = (2, 2) d = 2 supergravity in section 7, where we will show that the

curvature topological multiplet for this theory can be expressed on the localization locus

as a quadratic function of the gauge invariant topological multiplets.

We postpone to future work an analysis of the localization equations associated to the

gauge invariant topological multiplets of N = 2 supergravity with SU(2) YM gauge sym-

metry in four dimensions. A complete study of these equations requires the knowledge of

the off-shell BRST transformations for this model. We believe that such a study might lead

to the solution of the long standing problem of the classification of localizing backgrounds

for N = 2 d = 4 supergravity.

2 The BRST formulation of supergravity

In the BRST framework one introduces ghost fields of ghost number +1 in correspondence

to each of the local symmetries. The bosonic local symmetries of supergravity are diffeo-

morphisms and YM gauge symmetries. We will denote by ξµ the anti-commuting vector

ghost field associated to diffeomorphisms, and by c the anti-commuting ghost associated

to the YM gauge symmetry which takes values in the adjoint representation of the YM

algebra. The YM gauge symmetries always include local Lorentz transformations. Beyond

local Lorentz gauge symmetry, we will also allow for additional YM gauge symmetries.

For the application to localization, for example, these additional YM gauge symmetries

include the R-symmetries of the supersymmetric quantum field theory whose coupling to

supergravity one is considering.

– 5 –



J
H
E
P
0
5
(
2
0
1
8
)
1
1
2

In correspondence with the N local supersymmetries, one introduces commuting su-

pergravity spinorial Majorana ghosts ζi, with i = 1, . . . N , whose BRST transformation

rules have the form

s ζi = iγ
(
ψi
)

+ diffeos + gauge transfs (2.1)

In this equation s is the nilpotent BRST operator

s2 = 0, (2.2)

ψi = ψiµ dx
µ are the Majorana gravitinos and γµ is the following vector bilinear of the

commuting ghosts3

γµ ≡ −1

2

∑
i

ζ̄i Γa ζi eµa (2.3)

where eµa are the inverse of the vierbein ea ≡ eaµ dxµ. The vector γµ has ghost number +2.

Both the Majorana ghosts ζi and gravitinos ψi carry a label i = 1, . . . N on which the

O(N) subgroup of the R-symmetry group acts. The full R-symmetry group can however

be as large as U(N).

The BRST transformations of the vierbein are universal

s ea =
∑
i

ψ̄i Γa ζi + diffeos + gauge transfs (2.4)

We will denote the action of diffeomorphisms with Lξ, the Lie derivative associated with

the vector field ξµ. The BRST transformations of the diffeomorphism ghost are

s ξµ = −1

2
Lξξµ −

1

2

∑
i

ζ̄i Γa ζi eµa (2.5)

It was noted in [5] that the BRST transformations (2.1) and (2.4) imply that the vector

ghost bilinear γµ transforms as follows

s γµ = −Lξ γµ (2.6)

This transformation law coincides precisely with the BRST transformation rule for the

superghost of topological gravity [7]. Indeed, the full BRST transformations of topological

gravity write

s γµ = −Lξγµ

s gµν = −Lξgµν + ψµν ,

s ξµ = −1

2
Lξξµ + γµ

sψµν = −Lξψµν + Lγgµν (2.7)

where gµν is the metric, ψµν is the topological gravitino and γµ the vector superghost.

From this it is apparent that also the supergravity BRST transformation rules (2.5) match

the topological gravity ones, once the topological gravity superghost is identified with the

supergravity ghost bilinear γµ according to (2.3). The formal coincidence of the topological

relations (2.7) with the supergravity ones (2.5), (2.6) is the first hint that a topological

sector hides behind the supergravity BRST rules. In the following we will bear this to light.

3To avoid confusions, we will denote with γµ the ghost bilinear and with Γa the Dirac matrices.
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3 Topological Yang-Mills coupled to topological gravity

We have seen in the previous section that some of the supergravity BRST transformation

rules take a form which is identical to the BRST transformations of topological gravity. In

order to uncover the full topological content of the supergravity BRST rules it is necessary

to discuss the coupling of topological gravity to topological Yang-Mills gauge theories.

This was derived, in the form we present here, in [6] and [3] in the specific context of

3-dimensional gauge theories.4 In this section we will describe this construction in generic

dimension and explain its geometric meaning.5

The coupling of topological gravity to topological Yang-Mills can be useful in different

contexts. The first one is when both topological gravity and Yang-Mills fields are dynami-

cal. This gravitational theory is relevant to study the cohomology of the space of space-time

metrics. One could also consider the situation in which only the YM degrees of freedom

are dynamical while the topological gravity fields play the role of classical backgrounds. In

this case the coupling to topological gravity probe the dependence of the quantum phys-

ical correlators of the YM theory on the background metric. It might be a useful tool to

study, among other things, the occurence of possibile quantum anomalies of the classical

topological invariance [6] or wall-crossing phenomena in Donaldson theory [12–14].

In the following sections topological YM and topological gravity fields will appear as

composites of the “microscopic” supergravity fields. In section 4 we will explain how such

composites emerge from the BRST formulation of supergravity: we will use the existence

of this topological structure inside supergravity to derive general information regarding

localization of supersymmetric gauge theories coupled to classical supergravity. In this

section — and only in this section — we think, instead, of topological YM and topological

gravity as fundamental “microscopic” theories.

The fields of the topological Yang-Mills theory include, beyond the gauge connection

A = Aaµ T
a dxµ, the topological gaugino λ = λaµ T

a dxµ of ghost number +1, the gauge

ghost c = ca T a of ghost number +1 and the super-ghost φ = φa T a of ghost number +2.6

The BRST rules of “rigid” topological YM — i.e. topological YM before coupling it to

topological gravity — read

s c = −1

2
[c, c] + φ

sA = −D c+ λ

s λ = −Dφ− [c, λ]

s φ = −[c, φ] (3.1)

4BRST transformations for topological gravity in d = 4 coupled to abelian gauge theory were written

also in [8]. Although those BRST rules and the one we are presenting in this section are related by a field

redefinition, we note that this field redefinition is essential to obtain gauge covariant BRST rules, and, thus,

gauge covariant localization equations.
5A generalization of this construction in d = 2 has been considered in [9], where the coupling of topo-

logical gravity to 2-dimensional Poisson sigma models [10, 11] has been worked out.
6The matrices T a, with the index a running over the adjoint representation of the gauge group, are

usually taken to be the generators of the Lie algebra of the gauge group in the fundamental representation.
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It is convenient to introduce an operator S, whose action is defined on all the fields but

not on the ghost field c. S is related to the nilpotent s by the relation

S ≡ s+ δc (3.2)

where δc denotes the gauge transformation with parameter c. We will refer to S as the

BRST operator equivariant with respect to local gauge transformations. The nilpotency

of s is equivalent to the algebra

S2 = δφ (3.3)

It is well known that the operator S defined in (3.1) and (3.2) has to be interpreted as the

de Rham differential on the space A of gauge connections, equivariant with respect to local

gauge transformations. Hence, the BRST cohomology of S corresponds, geometrically, to

the cohomology of A modulo local gauge transformations.

Coupling topological YM to topological gravity means to find an extension of the nilpo-

tent BRST operator s which includes local diffeomorphism transformations, with a ghost

parameter ξµ that transforms according to the BRST rules of topological gravity (2.7).

The request of nilpotency of s dictates the following deformation of (3.1)

S A = λ

S λ = iγ (F )−Dφ

S φ = iγ(λ) (3.4)

where F = dA + A2 is the gauge field strength 2-form, iγ denotes the contraction of

a form with the vector field γµ and S is equivariant both with respect to local gauge

transformations and to diffeomorphisms

S = s+ δc + Lξ (3.5)

The new equivariant S of topological YM coupled to topological gravity satisfies the relation

S2 = δφ+iγ(A) + Lγ (3.6)

The BRST transformations of the gauge ghost c are

s c = −1

2
[c, c]− Lξ c+ φ+ iγ(A) (3.7)

The equivariant S defined in (3.4)–(3.5) is the de Rham differential on the product

space A×Met, where Met is the space of space-time metrics, equivariant with respect to

the action of both local gauge transformations and diffeomorphisms.

We can re-cast the first equation of (3.4) and the BRST variation of the gauge ghost (3.7)

in terms of a curvature F of the superconnection c+A

δ (c+A) + (c+A)2 = F + λ+ φ ≡ F (3.8)

where

δ = s+ d+ Lξ − iγ (3.9)

– 8 –
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is nilpotent

δ2 = 0 (3.10)

The rest of the transformations (3.4) are equivalent to the Bianchi identity

δ F + [c+A,F] = 0 (3.11)

Therefore the gauge invariant generalized polynomials

cn(F) = TrFn (3.12)

are δ-invariant

(S + d− iγ) cn(F) = 0 (3.13)

In the context in which both YM and gravity are dynamical, eq. (3.13) expresses the fact

that the generalized forms cn(F) encode observables of the theory constructed purely in

terms of YM degrees of freedom. In the context in which only the YM degrees of freedom are

dynamical, eq. (3.13) gives rise to a (classical) Ward identity which controls the dependence

of quantum correlators of the observables associated to cn(F) on the background metric.

In the supergravity context eq. (3.13) implies — as we will show in the following sections

— cohomological differential equations which are satisfied by localizable backgrounds of

classical supergravity.

4 The topological structure of supergravity

The BRST formulation of supergravity involves both fields with zero ghost number and

ghost fields. As recalled in section 2, one must introduce both anti-commuting ghost

fields — which we denoted with ξ and c — associated with bosonic gauge invariance and

commuting ghost fields ζi associated with local supersymmetry. In the rest of this section

we will refer, somewhat unorthodoxly, both to zero ghost number fields and to commuting

ghosts ζi as “matter fields”. We will denote them collectively by M .

When acting on matter fields M the nilpotent BRST operator s has the form

sM = −LξM − δcM + M̂(M) (4.1)

Here δcM denotes the gauge group action on M with parameter c. Eq. (4.1) defines

therefore the composite field M̂(M), which is in general a function of the matter fields of

the theory — but not of the anti-commuting ghosts ξ and c. For example, from the BRST

rules (2.1), we deduce that

ζ̂ = iγ(ψ) (4.2)

The BRST transformation rules of the bosonic ghost associated to the gauge symmetries

have a slightly different structure

s ξµ = −1

2
Lξ ξµ + γµ

s c = −1

2
[c, c]− Lξ c+ ĉ (4.3)

– 9 –
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Here γµ ≡ ξ̂µ is the universal bilinear defined in (2.3). The second equation defines instead

ĉ which is a function of ghost number 2 of the matter fields: its specific form characterizes

the particular supergravity we are considering. By imposing nilpotency of s on M

0 = s2M (4.4)

and using the Jacobi identities associated to gauge and diffeomorphisms transformations

1

2
LLξ ξ φ− L

2
ξ φ = 0

1

2
[[c, c], φ]− [c, [c, φ]] = 0 (4.5)

one obtains the BRST rules for the composite field M̂(M):

s M̂ = −Lξ M̂ − δc M̂ + LγM + δĉM (4.6)

The structure of (4.1) and (4.6) makes it convenient to define an operator S [6], whose

action — defined on the matter fields only — is obtained by substracting from s both

diffeomorphisms and gauge transformations

SM ≡ sM + LξM + δcM (4.7)

Therefore, by definition,

SM = M̂(M) (4.8)

From (4.6) it follows that the function of the matter fields

S M̂ =
∂M̂

∂M
(M) M̂(M) (4.9)

must satisfy the relation

S M̂ = S2M = LγM + δĉM (4.10)

Therefore nilpotency of s on M implies that the operator S obeys the algebra

S2 = Lγ + δĉ (4.11)

Let us remark that (4.9) and (4.10) represent functional differential equations for the

composites M̂(M). When imposing nilpotency of s on M̂ we obtain instead

S2 M̂ = Lγ M̂ + δĉ M̂ + LS γM + δS ĉM (4.12)

We must therefore require

S γµ = 0

S ĉ = 0 (4.13)

The BRST equations (4.13) and (4.10) constitute a set of functional equations for the all

the composites — γµ, ĉ and M̂ . Constructing a supergravity theory amounts, in essence,

in solving such functional equations.

– 10 –
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We observed already in the previous section that the universal composite defined

in (2.3) does indeed satisfy the first of eqs. (4.13). Let us work out the constraints on

the form of ĉ which follow from the second equation in (4.13). The nilpotency of s on the

gauge symmetry ghost c gives

0 = s2 c =

[
c,−1

2
[c, c]− Lξ c+ ĉ

]
− L− 1

2
Lξ ξµ+γµ c+

+Lξ
(
−1

2
[c, c]− Lξ c+ ĉ

)
+ s ĉ

= −[c,Lξ c] + [c, ĉ] +
1

2
LLξ ξµ c− Lγ c+

−[Lξ c, c]− L2ξ c+ Lξ ĉ+ s ĉ

= [c, ĉ]− Lγ c+ Lξ ĉ+ s ĉ (4.14)

where we again used (4.5). Hence we obtain

s ĉ = −Lξ ĉ− [c, ĉ] + Lγ c (4.15)

On the other hand, since ĉ is a composite satisfying the second equation in (4.13), it must

be that

0 = S ĉ = s ĉ+ Lξ ĉ+ δc ĉ (4.16)

Comparing (4.15) with (4.16) one deduces the transformation rules of the functional ĉ

under bosonic gauge symmetry

δcĉ = −Lγ c+ [c, ĉ] (4.17)

In other words, ĉ does not transform homogeneously under gauge transformations. It must

then have the general form

ĉ = iγ(A) + φ (4.18)

where A is the gauge field 1-form associated to the algebra of the bosonic YM gauge

invariances (which include the local Lorentz transformations) and φ is a composite fields

with values in the adjoint of the YM Lie algebra. φ transforms homogeneously under gauge

transformations.

Summarizing, the algebra satisfied by S is

S2 = Lγ + δiγ(A)+φ (4.19)

The consistency condition S ĉ = 0 translates into the equation

S φ = iγ(S A) (4.20)

The composite S A = Â is the topological gaugino, which will be denoted by λ:

S A = λ (4.21)
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A and λ sit into a multiplet with values in the adjoint of the gauge algebra,

S A = λ

S λ = iγ (F )−Dφ

S φ = iγ(λ) (4.22)

These supergravity BRST transformation rules coincide with the BRST rules of topological

YM coupled to topological gravity that we wrote in (3.4). Both the topological gaugino λ

of ghost number +1 and the topological Yang-Mills superghost φ of ghost number +2 are

composite fields in terms of the supergravity fields. This composite topological multiplet

represents the universal topological sector which sits inside generic supergravity.

To give a concrete example, let us consider the d = 4, N = 1 “new minimal” super-

gravity.7 The local bosonic YM simmetries of this theory are local Lorentz transformations

and local U(1)R R-symmetry. Let c and cab be the corresponding anti-commuting ghosts,

with a, b = 1, . . . 4. The bosonic local simmetries act on the commuting Majorana spinorial

ghost ζ as follows

δc ζ =

(
i

2
cΓ5 +

i

4
cab σab

)
ζ (4.23)

Let ωab = dxµωabµ be the spin-connection and A(R) = dxµA
(R)
µ the U(1)R gauge field. The

1-form connection with values in the total bosonic YM Lie algebra is

A = −
(
i

2
A(R) Γ5 +

i

4
ωab σab

)
(4.24)

The BRST transformations of the Majorana gravitino field ψ = dxµ ψµ take the form

S ψ = −(d+A+) ζ = −D+ ζ (4.25)

where

A+ = A+ ea
(
i

2
Γ5Ha −

i

4
εabcd σ

cdHb

)
(4.26)

is a 1-form with values in the total bosonic gauge Lie algebra, Hµdx
µ is an auxiliary 1-form

field,8 and

Ha = eµaHµ (4.27)

The BRST transformations of Ha are

S Ha = − i
8
εabcd ζ̄ Γb ψcd (4.28)

where ψab ≡ eµa eνb ψµν = eµa eνb
(
D+
µ ψν −D+

ν ψµ).

7In the following paragraphs of this section we consider the Minkowskian theory and use conventions

and notations of [15]. In particular the normalization of the commuting ghosts and gravitinos differ by

those used in the rest of our paper.
8The auxiliary field Ha is constrained to have zero divergence, up to fermionic terms: more precisely its

Hodge dual ?H satisfy: ?H = dB + i
8
ψ̄ Γψ where B is a 2-form.
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Recalling the Fierz identity valid for Majorana spinors in four dimensions

ζ̄ Γa ζ Γa ζ = 0 (4.29)

one verifies that S satisfies the algebra (4.19) with

φ = −iγ(ea)

(
3 i

2
Γ5Ha +

i

4
εabcd σ

cdHb

)
(4.30)

Thus, the composite superghost φ for N = 1 d = 4 supergravity is iγ-trivial

φ = −iγ(∆) ∆ ≡ 3 i

2
Γ5H +

i

4
εabcd σ

cd eaHb (4.31)

When φ is iγ-exact, one can introduce a connection

A− ≡ A−∆ (4.32)

whose associated composite gaugino is

λ− ≡ S A− = λ− S∆ (4.33)

with

iγ(λ−) = 0 (4.34)

From the algebra (4.19) we obtain

S λ− = iγ(F )−Dφ− Lγ ∆− [iγ(A−),∆] =

= iγ(F−) (4.35)

where

F− ≡ dA− +A− 2 (4.36)

is the curvature of the connection A−.

We see therefore that when φ is iγ-trivial, there exists a connection A− and a cor-

responding topological multiplet F− = F− + λ− + φ−, with vanishing ghost number 2

component, φ− = 0. This is a special feature of N = 1 d = 4 supergravity: we will see in

the next sections that there exist supergravity models, with extended supersymmetry, for

which φ is not iγ-exact.

5 The universal cohomological equations for supersymmetric backgrounds

Bosonic supergravity configurations which are invariant under supersymmetry trasfor-

mations define classical backgrounds to which supersymmmetric quantum field theories

(SQFTs) can be coupled. SQFT coupled to such backgrounds are localizable, which means

that their partition function is one-loop exact. Supergravity bosonic backgrounds invariant

under supersymmetry are identified by generalized convariantly constant spinor equations

for the supergravity ghosts ζi, which are obtained by setting to zero the supersymmetric

variations of the spinorial fermionic fields — gravitinos and gauginos of supergravity.
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The results of the previous section show that localizable supergravity backgrounds

satisfy universal equations obtained by setting to zero the BRST variations of the composite

topological gravitinos and gauginos defined in (2.7) and (4.22). Vanishing of the BRST

variation of the composite topological gravitino leads to

Dµ γν +Dν γµ = 0 (5.1)

This equation says that a necessary condition for localization is that the composite vector

ghost bilinear (2.3) be a Killing vector of the space-time metric gµν , a condition which is

well-known in the localization literature.

The vanishing of the BRST variation of the composite topological gauginos leads in-

stead to the equation

Dφ− iγ (F ) = 0 (5.2)

where γµ is the Killing vector in eq. (5.1) and φ is the bilinear of supergravity ghosts

which we defined in the previous sections and which characterizes the supergravity BRST

algebra (4.19).

The topological equations (5.1)–(5.2) for the generalized Killing spinors ζi are univer-

sal, in the sense that they take the same form in any dimensions and for any supergravity

model, unlike the generalized Killing spinor equations.

It should be emphasized that equations (5.2) are obtained by setting to zero the su-

pergravity BRST variation of a specific (composite) fermion — the topological gaugino λ.

These equations therefore do not, in general, completely characterize the localization locus.

There might be more independent equations valid on the localization locus, obtained by

setting to zero the BRST variation of other (composite) fermions. For example, for the

N = 1 d = 4 new minimal supergravity, on top of equation (5.2), associated to the topo-

logical multiplet of the curvature F , setting to zero the BRST variation of the gaugino λ−

in (4.33), one obtains the equation

S λ− = iγ(F−) = 0 (5.3)

valid for supersymmetric backgrounds. Coming back to the general case, let us remark that

in equation (5.2), F and φ take values in the adjoint representation of the local bosonic

gauge symmetries. Therefore eqs. (5.1) split into two separate sets of equations with the

same form: one associated to local Lorentz symmetry and the other with additional local

YM symmetries.

When either of these symmetries are not abelian eqs. (5.1) are not gauge invariant:

their gauge invariant content is captured by the equations satisfied by the generalized Chern

classes (3.12):

(d− iγ) cn(F) = 0 (5.4)

where

cn = Tr
[
Fn + nFn−1 φ+ · · ·+ φn

]
n = 1, 2, . . . (5.5)

and γµ is the Killing vector satisfying (5.1).
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We see therefore that the generalized Chern classes evaluated for localizing back-

grounds are closed under the coboundary operator

Dγ = d− iγ D2
γ = −Lγ (5.6)

associated to the de Rham cohomology of forms on space-time, equivariant with respect to

the action of the Killing vector γµ. We will call the cohomology relative to the coboundary

operator Dγ the γ-equivariant (polyform) cohomology.

The γ-equivariant classes defined by the cn’s are invariants of the localization back-

grounds: they are the same for backgrounds which are equivalent under local BRST trans-

formations of supergravity. In other words the classes associated to the cn’s are functions

of the moduli of the space of inequivalent localizable backgrounds.

On the other hand it is possible that inequivalent localizable backgrounds give rise to

cn’s which are different representatives of the same γ-equivariant class. In the next section,

we will consider more independent, gauge invariant, composite fermions which can be

defined for certain supergravity models. Setting to zero their BRST variations one obtains

additional topological equations satisfied by supersymmetric backgrounds. In section 7 we

will show that these equations allow for a finer classification of the inequivalent localizable

backgrounds.

6 The gauge invariant ghost bilinears

We have seen in section 4 that for any supergravity theory there exists a scalar ghost bilinear

φ of ghost number +2 with values in the Lie algebra of the bosonic gauge symmetries which

characterizes the BRST algebra (4.19). The ghost bilinear φ is in general a functional of

both the supergravity ghosts ζi and the bosonic fields of ghost number 0 sitting in the

supergravity multiplet. The key property of φ, which can be read off eq. (4.22), is that its

BRST variation is iγ-exact:

S φ = iγ(λ) (6.1)

This property ensures that, on the localization locus, φ satisfies the topological equa-

tion (5.2).

Let us recall that the BRST variation of the supergravity ghosts ζi is also iγ-exact

S ζi = iγ
(
ψi
)

(6.2)

It follows that scalar and gauge invariant ghost bilinears which are indepedent of extra

bosonic fields automatically satisfy (6.1). Hence, they give rise to cohomological equations

of the form (5.2). We will consider in this paper two supergravity models for which ghost

bilinears of this sort can be constructed.

The first one is N = (2, 2) supergravity in d = 2, where the gauge symmetry group is

SO(2)R. In this case it is convenient to collect the two Majorana ghosts ζi, with i = 1, 2, into

one single Dirac ghost ζ on which the gauge group SO(2)R ∼ U(1)R acts by multiplication

by a real phase.9 Then the two scalar bilinears

ϕ1 = ζ̄ ζ ϕ2 = ζ̄ Γ3 ζ (6.3)

9The following discussion is valid for both Minkowski and Euclidean signature.
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are gauge invariant and thus S-invariant modulo iγ :

S ϕi = iγ(λi) i = 1, 2 (6.4)

where

λ1 ≡ ψ̄ ζ + ζ̄ ψ λ2 ≡ ψ̄ Γ3ζ + ζ̄ Γ3ψ (6.5)

It follows from the BRST algebra (4.19) that the generalized forms

Hi ≡ ϕi + λi + Ĥ
(2)
i (6.6)

satisfy

δHi = (S + d− iγ) Hi = 0 (6.7)

The 2-forms Ĥ
(2)
i write

Ĥ
(2)
1 = ψ̄ ψ +H

(2)
1 Ĥ

(2)
2 = ψ̄ Γ3 ψ +H

(2)
2 (6.8)

where H
(2)
i , with i = 1, 2, are the graphiphoton field strengths.

As explained in the previous section, on the localization locus the following cohomo-

logical equations hold

dϕi − iγ
(
H

(2)
i

)
= 0 (6.9)

Scalar ghost bilinears of the same kind can be constructed also for N = 2 d = 4

supergravity in which the R-symmetry SU(2)R is gauged. In this case we can take the

commuting supersymmetry ghosts to be two-components spinors ζiα where α = 1, 2 is the

Lorentz spinorial index and i = 1, 2 is the index of the fundamental representation of

the gauge group SU(2)R, together with their conjugate ζ̄α̇i . Two independent scalar and

SU(2)R-invariant ghost bilinears are

ϕ = εαβ εij ζ
i
α ζ

j
β

ϕ̄ = εα̇β̇ ε
ij ζ̄α̇i ζ̄

β̇
j (6.10)

Again, thanks to (6.2), both ϕ and ϕ̄ are S-invariant modulo iγ

S ϕ = iγ

(
εαβ εij ψ

i
α ζ

j
β + εαβ εij ζ

i
α ψ

j
β

)
≡ iγ(Λ)

S ϕ̄ = iγ

(
εα̇β̇ ε

ij ψ̄α̇i ζ̄
β̇
j + εα̇β̇ ε

ij ζ̄α̇i ψ̄
β̇
j

)
≡ iγ

(
Λ̄
)

(6.11)

where ψiα and ψ̄α̇i are the gravitinos. Assuming the triviality of the coboundary operator

iγ , the algebra (4.19) ensures that ϕ and ϕ̄ sit in abelian topological gauge multiplets

T ≡ ϕ+ Λ + T (2)

T̄ ≡ ϕ̄+ Λ̄ + T̄ (2) (6.12)

satisfying

(S + d− iγ) T = 0 (S + d− iγ) T̄ = 0 (6.13)
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Obtaining the 2-forms T (2) and T̄ (2) as functionals of the fields of the supergravity multi-

plets requires the knowledge of the off-shell BRST transformations of N = 2 d = 4 Poincaré

supergravity with gauge group SU(2)R. Since these do not seem to be readily available in

the literature we will present this calculation elsewhere. At any rate one can anticipate

that the following cohomological γ-equivariant equations will hold on the localization locus

of N = 2, d = 4 supergravity

dϕ− iγ
(
T (2)

)
= 0 d ϕ̄− iγ

(
T̄ (2)

)
= 0 (6.14)

We expect these equations to play a central role in understanding the space of localizing

backgrounds of N = 2 d = 4 Poincaré supergravity.

7 An example: d = 2 N = (2, 2) supergravity

In this section we will work out the details of the topological structure of N = (2, 2) super-

gravity in d = 2 with Euclidean signature.10 The moduli space of localization backgrounds

for this supergravity theory has been fully analysed and described in [4], extending the

results of [17]. In the following we will see how the analysis of [4] fits into the framework

developed in this paper.

The ghost bilinear φ, characterizing the BRST algebra (4.19) of N = (2, 2) supergravity

in d = 2, has the general form

φ = φR (−i I) + φLor

(
i

2
Γ3

)
(7.1)

where −i I is the generator of the vectorial U(1)R gauge transformations on Dirac spinors,
i
2 Γ3 is the generator of the local Lorentz transformations, φR is the scalar ghost bilinear

associated to the U(1)R gauge symmetry and φLor the one relative to the Lorentz local

transformations. The BRST transformations of the gravitino Dirac field ψ = dxµ ψµ write

S ψ = −D ζ − i

2
H2 dx

µ Γµζ −
i

2
H1 dx

µ Γ3Γµζ , (7.2)

where

D ζ ≡ dxµ
(
∂µ +

i

2
ωµ Γ3 − i Aµ

)
ζ . (7.3)

and Hi = ?H
(2)
i , with i = 1, 2, are the scalars dual to the field strengths of the two

graviphotons. Taking into account the Fierz identity

Γµ ζζ̄ Γµζ = (ϕ1 − ϕ2 Γ3) ζ (7.4)

one derives from S2 ζ the values for the ghost bilinears φR and φLor

φLor = R(0) = −ηij ϕiHj

φR = F(0)
R =

1

2
εij ϕiHj (7.5)

10For a description of N = (2, 2) supergravity in two dimensions see, for example, [16].
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where ηij is the Lorentzian metric η11 = −η22 = 1 and εij is the Levi Civita tensor in 2

dimensions. The universal topological equations (5.2) for supersymmetric backgrounds read

dφLor − iγ
(
R(2)

)
= 0

dφR − iγ
(
F (2)
R

)
= 0 (7.6)

These equations mean that the polyforms of degree 2 associated to the curvature and the

field strength of the U(1)R gauge field

R = φLor +R(2)

FR = φR + F (2)
R (7.7)

are γ-equivariantly closed:

Dγ R = 0 Dγ F = 0 (7.8)

We explained in section 6 that, for N = (2, 2) d = 2 supergravity, one can construct,

starting from the gauge invariant ghost bilinears (6.3), two more equivariant forms Hi of

degree 2, which satisfy the γ-equivariant cohomology equations (6.9)

Dγ Hi = 0 (7.9)

on the localization locus.

The relation (7.5) between the scalar components of the equivariantly closed forms Hi,

R and FR can be extended to the following relations between polyforms

FR =
1

2
εij Hi L (Hj)

R = −ηij Hi L (Hj) (7.10)

where the equivariant form L (Hj) is defined in eq. (A.8) of the appendix A. These relations

show that the universal equations for the curvatures (7.8) are in fact consequence of the

equations for the gauge invariant ghost bilinears (7.9). They also connect the cohomology

classes of the Hi with those of R and FR. To see this, let us introduce one more equivariantly

closed polyform

R̂ = −1

2
ηij HiHj = −1

2

(
γ2 + k dγ2

)
(7.11)

where we used the Fierz identity ϕ2
1−ϕ2

2 = γ2. Note that, since L is a derivative,11 one has

R = L
(
R̂
)

(7.12)

It follows from (7.11) that

R̂(p±) = H1(p±)H1(p±)−H2(p±)H2(p±) = 0 (7.13)

Hence R̂ is cohomologically trivial12 and∣∣H1(p±)
∣∣ =

∣∣H2(p±)
∣∣ (7.14)

11We show this in appendix A.
12As mentioned in the appendix A, R̂ and R = L(R̂) do not need to be cohomologous.
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Let us therefore put

H1(p±) = σ±H2(p±) (7.15)

where σ± is the relative sign between H1(p±) and H2(p±). Moreover, from the second of

eqs. (7.10) we obtain

L (H1)(p±) = − R(p±)

H1(p±)
+

H2(p±)

H1(p±)
L (H2(p±)) (7.16)

Plugging this inside the first of eqs. (7.10) one arrives to:13

FR(p±) =
1

2

(
H1(p±)L (H2)(p±)−H2(p±)L (H1)(p±)

)
=

=
1

2

H2(p±)

H1(p±)
R(p±) =

1

2
σ±R(p±) (7.17)

This equivariant cohomology identity — valid for any localizing background — neatly

generalizes the equation F (2) = ±1
2 R

(2) for ordinary 2-form curvatures which was found

long ago to define the topologically twisted N = 2 models.

In particular eqs. (7.17) together with (A.18) show that the γ-equivariant cohomology

classes of both the curvatures polyforms FR and R are (semi)-integral. This should be

contrasted with the cohomology classes of the Hi’s which, as shown in [4], depend on a

continuous parameter labelling inequivalent localization backgrounds. We believe that this

phenomenon is a general property of the γ-equivariant curvature polyforms of supergravity,

although we do not have yet a general proof of it.

8 Conclusions

In this paper we showed that a topological structure sits inside supergravity. We did this

by writing the BRST algebra of supergravity in the form

S2 = Lγ + δiγ(A)+φ , (8.1)

where S is the supergravity BRST operator — equivariant with respect both gauge trans-

formations and diffeomorphisms — Lγ is the Lie derivative along the vector γ ≡ γµ ∂
∂ xµ

and δc denotes a gauge transformation with parameter c. The two fields γ and φ are bilin-

ears of the commuting supersymmetry ghosts ζi, where i = 1, . . . N and N is the number

of local supersymmetries. The vector field γ is given by

γµ = −1

2

∑
i

ζ̄iΓµζi (8.2)

This expression is universal in the sense that it is valid for any supergravity theory in any

dimension. On the other hand, the scalar field φ, which is valued in the adjoint represen-

tation of the bosonic YM gauge symmetry group, is a ghost bilinear whose dependence on

the bosonic fields of supergravity is non-universal, i.e. it is theory dependent.

13From this relation we derive in particular that
∫
S2 F (2)

R = 1
2

(
σ+ +σ−

)
. Therefore, the first Chern class

of the gauge field can take values −1, 0, 1 according to the signs σ±, in agreement with [4] and [17].
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Our central observation is that both γµ and φ have a topological meaning: they can

be identified, respectively, with the superghost of topological gravity and the superghost

of a topological Yang-Mills theory whose gauge group is the product of the local Lorentz

transformations and the Yang-Mills symmetries of the supergravity theory under consid-

eration.

This identification relies on the fact that the supergravity BRST transformations of

the ghost bilinears γµ and φ coincide precisely with the BRST rules of topological gravity

S gµν = ψµν

S ψµν = Lγ gµν
S γµ = 0 (8.3)

and of topological Yang-Mills coupled to topological gravity:

S A = λ

S λ = iγ (F )−Dφ

S φ = iγ(λ) (8.4)

The BRST variations (8.4) are not familiar in the topological Yang-Mills literature,

although they already appeared in [3] in a three-dimensional context. In this paper we

wrote them down for any dimension and discussed their geometrical interpretation. We

believe that these transformations could be of interest to study, for example, the metric

dependence of Donaldson invariants — regardless of the application to supergravity that

we explored in this article.

It was observed in [3] and [4] that the conditions for unbroken supersymmetry in

certain off-shell supergravities with extended supersymmetry can be recast in terms of

cohomological equations. In [3] and [4] these cohomological equations were obtained by

setting to zero the BRST variations of fermionic fields of topological gravity coupled to

some additional topological gauge multiplets.

In this paper we gave a conceptual explanation of this equivalence, by exploiting the

topological structure of supergravity captured by the BRST transformations laws (8.3)

and (8.4). By setting to zero the BRST variations of the fermions in (8.3) and (8.4) we

obtained equations for supersymmetric backgrounds

Lγ gµν = 0

Dφ− iγ (F ) = 0 (8.5)

These equations lead to the γ-equivariant cohomology equations (5.4), for the equivariant

Chern classes of the supergravity Yang-Mills gauge bundle.

From the same BRST algebra (8.1) we derived additional equations, valid on the

localization locus, for certain gauge invariant scalar ghost bilinears ϕ. These equations

also take the form of γ-equivariant cohomology equations

dϕ− iγ
(
T (2)

)
= 0 (8.6)
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The scalar gauge invariant ghost bilinears ϕ can be constructed only for certain extended

supergravity with specific Yang-Mills groups. The corresponding bosonic 2-forms T (2) are

model dependent. In the last section of this paper we have analyzed in detail supergravity

with N = (2, 2) in d = 2 for which two such bilinears ϕ can be constructed. We have seen

how the γ-equivariant cohomological equations (8.5) and (8.6) are related to each other,

thus providing an a priori explanation of the results presented in [4].

Another theory for which two gauge invariant scalar bilinears ϕ can be constructed is

N = 2 d = 4 supergravity. The study of the cohomological equations (8.6) and (8.5) for

this theory might lead to the classification of localizing backgrounds for this theory — a

long standing problem to which we hope to come back in the future.

In conclusion, we found two types of “composite” BRST topological multiplets sitting

inside supergravity: the first are the curvature multiplets, whose 2-form components are

the Lorentz and Yang-Mills curvatures. They transform precisely as topological gravity

coupled to topological Yang-Mills. They are universal in the sense that they exist for

any supergravity theory. The second kind of composite topological multiplets only exist

for certain extended supergravities: in this paper we discussed them in detail for the

N = (2, 2) d = 2 supergravity example. We plan to report on other examples in the future.

These multiplets are gauge invariant and their 0-form components are scalar bilinears of

supergravity commuting ghosts. Their top 2-form components involve auxiliary fields.

For N = (2, 2) in d = 2 supergravity we found compact quadratic relations — ulti-

mately descending from Fierz identities — between these two kinds of topological multi-

plets: these relations express the curvature composite topological multiplets in terms of the

gauge invariant composite multiplets. In a sense this shows that, when they exist, the com-

posite gauge invariant topological multiplets, built upon the scalar superghost bilinears,

are more “fundamental” than the curvature multiplets.

It would be important to understand if these relations extend to other models: we

already checked that they indeed generalize to N = 4 d = 2 supergravity. We will report

about this in a forthcoming paper. It would be of great interest to know if relations of this

sort hold also for higher dimensional models, most notably for N = 2 d = 4 supergravity.

It is conceivable that relations between curvatures and gauge invariant topological mul-

tiplets — beyond having the application to localization of supersymmetric matter that we

focused on in this paper — would also give important informations about the dynamics of

supergravity itself. Indeed, when such relations hold, the full space of supersymmetric con-

figurations of supergravity is completely described by the moduli space of the equivariant

cohomology associated with the gauge invariant multiplets. One is tempted therefore to

speculate that also the quantum fluctuations of the supergravity multiplets around those

supersymmetric configurations be described by some effective theory which involves only

the gauge invariant topological multiplets.
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A Equivariant cohomology in dimension 2

In this appendix we collect some facts regarding equivariant forms of degree 2 in 2 dimen-

sions, which are needed to derive the relations (7.10) between the curvature polyforms of

N = (2, 2) in d = 2 supergravity and the gauge invariant polyforms Hi, with i = 1, 2.

Degree 2 γ-equivariant forms Φ are polyforms

Φ = Φ(2) + Φ(0) (A.1)

with

Dγ Φ = 0 (A.2)

where Dγ = d− iγ is the γ-equivariant exterior derivative associated to the Killing vector

γµ that we introduced in (5.6). In dimension 2, the 0-form and the 2-form component of a

γ-equivariant form of degree 2 are related by

Φ(2) = k dΦ(0) (A.3)

where the 1-form k is the “inverse” of the Killing vector γµ14

k ≡ gµν γ
ν

γ2
dxµ γ2 ≡ gµν γµ γν

iγ(k) = 1 (A.4)

The 2-form Φ(2) in (A.3) depends on the choice of a metric gµν . However, different metrics

with the same Killing vector γµ give rise to 1-forms k which differ by 1-forms δk which are

both d and iγ closed

iγ(δk) = d (δk) = 0 (A.5)

Therefore polyforms with (A.3) corresponding to different metrics are cohomologous

δΦ(2) = d
(
δkΦ(0)

)
δΦ(0) = iγ

(
δkΦ(0)

)
= 0 (A.6)

Let us also observe that the product of two γ-equivariant forms of degree 2 in 2

dimensions is again a γ-equivariant form of degree 2, i.e. the set of γ-equivariant forms of

degree 2 in 2 dimensions has a ring structure:

Φ1 Φ2 = Φ
(2)
1 Φ

(0)
2 + Φ

(2)
0 Φ

(0)
1 + Φ

(0)
1 Φ

(0)
2

Dγ (Φ1 Φ2) = 0 (A.7)

14Since γµ may have zeros, k may have poles. However, one can show that Φ(2) defined in (A.3) is regular

when Φ(0) satisfies the equivariance equation (A.2).
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Moreover, given a metric, one can introduce a linear operation L which when acting on a

γ-equivariant form of degree 2 gives another γ-equivariant form of degree 2:

L (Φ) = ?

[
Dµ

(
1

γ2
Dµ Φ(0)

)]
+ ?Φ(2) ≡

≡ ?
(

∆γ Φ(0)
)

+ ?Φ(2)

Dγ L (Φ) = 0 (A.8)

where we introduced the γ-dependent Laplacian

∆γ Φ(0) ≡ Dµ

(
1

γ2
Dµ Φ(0)

)
(A.9)

for 0-forms15. L acts as a derivative with respect to the product (A.7)

L
(
Φ1 Φ2

)
= L (Φ1) Φ2 + Φ1 L (Φ2) (A.10)

It should be kept in mind the L does not map γ-equivariant forms to cohomologous ones.

Let us observe the cohomology class of a γ-equivariant form Φ of degree 2 on the 2-

dimensional sphere is parametrized by the values of the polyform at the two zeros p± of

the Killing vector γµ:

Φ(p±) = Φ(0)(p±) (A.11)

The cohomological invariant obtained by evaluating Φ on the sphere is related to Φ(p±)

by the localization formula∫
S2

Φ =

∫
S2

Φ(2) = Φ(0)(p+)− Φ(0)(p−) (A.12)

Let us introduce the equivariantly closed polyform

R̂ = −1

2
ηij HiHj = −1

2

(
γ2 + k dγ2

)
(A.13)

where we used the Fierz identity ϕ2
1 − ϕ2

2 = γ2. Note that

R = L
(
R̂
)

= φLor +R(2) (A.14)

From (A.13) one obtain the following expression for the γ-equivariant extension of curvature

2-form:

R =
1

2

√
g εµν D

µ γν +R(2) =

= iγ

(
?
d γ2

2 γ2

)
− d ?

(
d γ2

2 γ2

)
(A.15)

15Since γµ may in general have zeros, the action of ∆γ on a generic 0-form is not always well-defined.

However it can be shown that ∆γ Φ(0) is regular when Φ(0) is the 0-form component of a γ-equivariant form

of degree 2.
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This equivariant form depends on the metric and the corresponding Killing vector. Under

a variation of the metric δ gµν , keeping the Killing vector fixed, it varies by cohomologically

trivial terms

δR(2) = d δω(1) δφLor = iγ(δ ω(1))

δω(1) = δ

(
?
dγ2

2 γ2

)
(A.16)

In particular

δR(p±) = 0 (A.17)

Therefore the γ-equivariant cohomology class of R is independent of the metric and can be

computed, for example, using the round metric:

R(p±) = ±1 (A.18)

Open Access. This article is distributed under the terms of the Creative Commons
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