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THE TOPOLOGY OF HOLOMORPHIC FLOWS

WITH SINGULARITY

by CESAR GAMACHO (1), NICOLAAS H. KUIPER (2) and JACOB PALIS (1)

Prologue and summary (3)

The integrals of the differential equations defined by a holomorphic vector field F

on a complex manifold are complex curves parametrized by C. The corresponding

action of C is called a holomorphic flow and the complex curves are its orbits. These

orbits, in general two-dimensional real surfaces, form a foliation ^(F) with singularities

at the zeroes of the vector field F. We study the topology of such foliations c^(F), in

particular near a singularity. A simple example on C2, which is rather general from

the point of view of topology as we will see later, is given by the differential equations

in complex numbers:

dz^ dz^

rfT^"'13 rfT^23

with solution in T==u-}-iv:

y _ _ _ _ _ p — — — U — — — W y . . y _____/,———U+lMy.,z-^ — e w-^, 2.2 — e w^,

through the point {w-^, w^). The solutions are real two-dimensional leaves of a foliation y

with singularity at oeC2. Special leaves (topologically cylinders) are the coordinate

axes (z-^ =h o == z^) and (z^ ==)= o == z-^. We see that every other leaf is transversal to [ z^ | == r,

to [^al^^ an(! t° the c( sphere " sup,[^-[==r for r>o. It is topologically a cone with

(deleted) top at oeC2. Starting from any point (^, ^3)3 it is seen to wrap around the

z-^-axis while converging to it for u == o, v —> oo:
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The authors are greatful for important critical remarks of the referee.



6 C. C A M A C H O , N . H. K U I P E R A N D J. P A L I S

and that it wraps around the z^-axis while converging to it for v = o, u -> oo:

z^==e~uw^, z^ = ̂ ^2 •

Such leaves that wrap converging along two coordinate axes will be called Poincare

leaves^ also in the more general case of linear differential equations, in normal form, on C^:

^t-^ ^^^ J=i, .. . ,772, TeC.

If 772^3 a different kind of leaf to be called a Siegel leaf may arise. A Siegel

leaf is a closed embedding of C in CS^ with minimal distance [ |^| |=p>o to the origin

oeC^ at a point ^. If we fix ^, then the points in the leaf at distance r>p from the

origin form an embedded circle, because the distance to o has at most one critical point (^)

on a leaf. For decreasing p>o, moving ^ to oeC"*, but keeping r = = i fixed, we have

the curious phenomenon that an increasing portion (with respect to length) of the

embedded circle is very near to the axes and a point moving on the circle wraps around

an axis a finite number of times, before going to the next. The finite number for the

j-th axis can be defined as the number ^ of intersection points of the leaf with a small

transversal section to thej'-th axis. It now happens that the sequence of ratios TZ./ST^

for j=i, . . .3 772, has as accumulation points as ^—^oeC^, that is as ST^->OO, exactly

the set of sequences of non-negative numbers (measures) q, . . ., c^\

A=={^o, ...,^o : 2;^=i, Sc^-^o}.

A is a topological invariant of the filiation y and it is the only one under the assumption that

no two of Xi, .. ., X^ are linearly dependent over R. This is theorem I of chapter I.

Note that A is empty in case o is not in the convex hull e^(Xi, . . ., X^) ofX^, . . ., X^ in C.

Let the foliation ^ be a member of a family 0, a topological space with a linear

or at least a differentiable structure, y is called topologically stable of codimension <_d

(or just stable in case d=o) in 0, if all members in some neighborhood U of y in 0

are completely classified up to homeomorphism by ^linear or differentiable real functions.

Theorem I (chapter I) can now be expressed as follows: Let 0^ be the set of

foliations coming from linear vector fields on C^ with z'=t=j=>\^RX.. The foliation y

is stable, respectively stable of codimension 2m— 4, in O^, in case o^Jf(Xi, .... Xj,

respectively oeJf^Xi, . . ., Xj.

Chapter II gives an application of the linear theory of chapter I to holomorphic

flows on the complex projective space P==CP(m). As we recall and prove again in § 8 every

vector field F on CP(m) arises naturally from a linear vector field a :C
n+l

->C
m+l as

the quotient by the action of C* == C—{ o } by scalar multiplication. At the m +1 singular

points in P, ^(F) has the topological invariants of chapter I. This gives the complete

topological classification of the foliations of such flows: Assuming that no three of the

eigenvalues Xg, . .., X^ of a are collinear in the complex plane C, y is stable, respectively stable

of codimension 2772—4, in case ^(Xp, ..., \J is an (m-\-i)-gon, respectively an m-gon in C. If
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more than one among Xg, .. ., X^ are inside ^(Xp, . . ., \J, then the topological classification

coincides with the classification under projective transformations taken together with complex conjugation

of C, and ^ is " stable of codimension 2m—2 ".

This is theorem II. We recall that holomorphic vector fields are rare on algebraic

smooth varieties that are different from the complex projective spaces CP(m). For a

precise statement see Lieberman [8].

Consider now the larger class 0 of foliations of all holomorphic vector fields with

an isolated singularity at oeC^:

^^F^^^+R^eC- zeC^ F(o)=o (i)

^=(DFo)(.),

a has eigenvalues X^, ..., X^.

The problem of finding a holomorphic local equivalence between F and a was considered

by Poincard [n] and Siegel [13], see also [i], [4], [is]:

Theorem of Poincare. — Assume that i4=j=>\^RXj and o^J^(Xi, . . . ,XJ. If

no relation:
m m

^==^k,\, A-,eZ^, ^^^ J=i , . . . , ^ ,

holds, then F is holomorphically equivalent to a near oeC^

Theorem of Siegel. — Assume that i=^j => \<^RX, and oeJ^(Xi, . .., \J. Then

for almost all A=={Xi , . . ., \J, with respect to Lebesgue measure, F is holomorphically

equivalent to cr near oeC^.

From these theorems we obtain easily in Chapter I, § 7, the characterization for

local stability of F near oeC^:

Corollary, — F is stable (of codimension zero) if and only if ^4=j=>\^RXj and

o^(Xi, ...,XJ.

The sufficiency of this condition is Guckenheimer's [5] stability theorem: Any two

foliations ^"(F) and ^'(F') of vector fields F and F' with singularity at oeC^, and

with spectra A of DFg and A' of DF^ in the Poincare domain, are locally homeomorphic.

In chapters III and IV we study the local problem for the Siegel case:

oeJ^(Xi, ...,XJ, z4=J^X^RX,.

We conjecture that the foliation ^'(F) near the isolated singularity of F at oeC^ is

homeomorphic to the foliation ^(a) of its linear part cr==(DF)o. We prove this for

m = 3 in chapter III (theorem III) and find therefore with theorem I: If oejf^Xi, Xg, ^3),

then (the germ at o of) y is stable of codimension two in the space 0 of (germs at zero of) foliations

of holomorphic vector fields with singularity at zero. This theorem is rather different from
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classical results concerning holomorphic equivalence to linear or other normal forms, in

which (< small35 and (< zero divisors " play an important role (Poincare, Siegel and

others. Compare Brjuno [i]).

In chapter IV (and chapter III, § n and § 12 for ^==3) we give a weak normal

form for any F (see ( i ) ) by proving the existence of a holomorphic change of coordinates after

which the remainder R(^) belongs to a specific simple class. In this weak normal form

the union of all Poincare leaves for <^(F) is already in the same stratified union V of

linear subspaces as for the corresponding linear case ^"(a). This is a first step in the

proof of our conjecture for 772^4, which we hope to give in another paper (1).

I. — LINEAR FLOWS

i. Introduction and main theorem.

Let ^'((r) be the holomorphic foliation or flow with singularity at o, defined by

the vector field F(^) in C^

^=F{z)=azeCm, TeC, aeGL(m, C) (2)

with real two-dimensional leaves:

z=e
arr

w, weV. (3)

Set: spectrum (J=A={^, . . . , \yJC C (4)

spectrum 27^^(7~1=A=={X^, ...,\J

^.=2^V1. (5)

The equivalence class of AC C under the natural action o/'GL(2, R) in C=R2 is denoted:

73(0). (6)

In § 2 we give the easy proof of the

Pro-theorem. — If a is diagonal^ then the topology of ̂ {a) is completely determined by ^(d).

Already in case 772=2 equality and even real dependence of two eigenvalues

of c complicates the topology of ^{a) very much. We therefore assume that any two

eigenvalues are independent over R:

^J'^^^j, ?J==I, . . . , 7 7 Z . (7)

(1) Added in proof (May 1978): For a non linear flow F with singularity at oe C ,̂ we can now define the
topological invariant A, and it depends, in the same way as before, only on the linear part of F at o. This is
necessary but not sufficient to prove the conjecture also for n ̂  4. Dumortier and Roussarie [17] have important
related results on linearization.
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The convex hull of A =={^, ..., \^} in C is denoted ^f(A). The open set of unordered

m-tuples { A : (7)} consists of a connected component, the Poincare domain { A : o^J^(A)},
and its complement, the Siegel domain (1):

{A : oeJT(A)}.

^(o-) is topologically irrelevant in the case of the Poincard domain (Guckenheimer)

as we prove again (for later applications) by an explicit homeomorphism in § 6.

For the Siegel case the situation is different and we have (§ 5):

Main Theorem 1. — If the spectrum of or lies in the Siegel domain ((7) and oeJ^(A)), then

73(0-) is a topological invariant. It determines and is determined by the topology of the filiation ̂ (o-).

2. Proof of the pre-theorem.

In suitable coordinates, (i) (2) is expressed by:

^=X^T, z^e^w^e^^^, j=i, .. ̂ m. (8)

For a given diagonal (T, and analogously for o', recall that ^==2ni\j~
1
. We assume

first Xj==^Xp j==i, ..., m, geGL^^, R). The homeomorphism'.

h : (C- ^(o)) -> (C- ^((T'))

required for the pre-theorem is then defined as follows:

If z^z)=e^
T
J respectively o,

then z^h{z))==eW respectively o, where TJ=,gT^.

This is well defined because Tj is determined modulo X, and TJ modulo 5^. Moreover
the image of an (any) ^"(c^-leaf (8) is the set:

e^+^j^e^'w^

and this is an ^(o^-leaf.

The non-oriented elements (2) g of GL(2, R) are realized by composing with

one of them e.g. complex conjugation of C == R2. It sends (X^, .... Xj into (Xi, . . . , XJ.

The required homeomorphism of C" is given by complex conjugation:

h : (^i, ..., ^Jh-^i, ...,^J.

Remark.—If ;^)=^-^w, then ^A^))^0^^-^ for some real constants ^,
(Bj and the mapping h:

f I ̂ )) M^W
(arg z^}) = arg ^,(^) + p,ln| z^z) \

 (9)

(1) (Replacing Xy by Xj/| Xj |, we easily see that the Siegel domain is connected for m = 3 and 4, and it has
three components for m == 5). A more complicated definition of Siegel domain is customary in the theory of
holomorphic equivalence.

(2) J.-P. Francoise drew our attention to this case which we had overlooked.
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produces in thej'-th coordinate axis {z : z^==o for k^j} a spiraling homeomorphism (9)

for ^->ooroo, with the unit circle |^|=i pointwise fixed. It leaves invariant each of
the manifolds ^.=o and |^-|=i, as well as the piecewise smooth (am—i)-sphere:

S={z : sup^[=i}. (10)

Remark. — h preserves the additive group action of C=R2 (see T in (8)).

3. The foliation on W, the union of the Siegel leaves, is stable.

We assume (7). The real function [ [ z \ [2 == 2 z^ has a critical value on a leaf (8)
at a point z if and only if: 3

o==d^z^=^{z^dT+z^z,dT)

= Z; y^dT + ̂ dT) =o for dTeC

dT = i yields S ̂ .(X, + X .̂) =o

dT=i yields S^^(^—X^)==o.

The union M of the o-nearest points, z^=o, has therefore the equation:

M : ̂ ^j^0. ^o. (n)

No leaf has two (or more) critical points and every critical value is a minimum, because
for any T^+T^ the real function:

^S|^,|2, ^.W^-W^, j=^ ...,^,

is a sum of real exponential functions in ^eR, hence concave. A leaf with a minimum

is called a &^/ Z^a/. It is a closed embedding of C and can be characterised by its

critical point ^ = (^, . . ., ^J in M. 7^ union W o/ <z^ 5'̂ Z leaves is therefore the total

space of a trivial bundle, W==MxC->M, embedded in C^ by:

^^ J=^ •••^; (^T)eMxC

with base space M.

M is seen to be a manifold by putting in (n):

^.=^.+y^ x,=^+^, M : 2:(^+^)^,=:S(^+^)v,=o,

and by calculating the tangent space:

(^1. • • •, ̂ J : S (̂ .̂ . +^^-) ̂  = S (^ .̂ +^^) Vj = 0

with coefficient matrix of rank 2, because every determinant (JL^—^+O, for j4=^

by (7). The manifold M is a cone with deleted top oeC^ over the compact manifold:

M( i )={ .eM: II.II^S^-i}.

2^



THE TOPOLOGY OF HOLOMORPHIC FLOWS WITH SINGULARITY n

From (n), where ^.=^^0, we see that oeC is a weighted mean of the set of

complex numbers A={Xi , ...,U- Hence Siegel leaves can only exist (and M is
not empty) in the Siegel domain case oeJ^(A). In § 4 we will see that then:

^=={z: oe^({X,:jeJ(^)})} ^

where: ]{z)={j : ^)+o}. ^

It is open dense in C .̂

The (abstract) differentiable manifold M depends by (n) continuously on A, and
is therefore <(

 constant
3?

 on each component of the Siegel domain. Then also the topology \f the

restriction of the filiations ^-{a) \ W is locally constant (= stable), and gives therefore no topological
invariants.

4. Geometry in the T-plane of a leaf.

We assume (7), use coordinates as in (8) but ordered in such a way that:

o^argXi<argX2. . .<arg^<27r. (14)

The parameter T in the leaf of a point z is determined up to translations in C==R2.

The intersection of a leaf with the (( ball '5 B = { ^ : sup,|^.|^i} and with the manifolds

\
z
j\

==l
^ g^

 rise to interesting configurations in the T-plane of that leaf. We introduce
the configuration G==G{z) consisting of the half-planes (see (8) and fig. i):

^—{T: |^i}CC, j e j { z ) = : { j : ^+0}.

The boundary 8^ is a line parallel to and oriented by the vector X^.. We also
define the convex disc:

D(.)=na,CC; ^

which represents the intersection of the leaf with B, and its boundary, the oriented convex

polygon G=C{z). Let l{z)CJ{z) be the set of indices j involving edges 8^ of C(z).

Let the edge on 0o, be between vertices T,_ and T, where j is the cyclic successor ofj_

in I{z). For later use we define n,.eR by:

T>=T,-+^ (16)

27TO; is the increase of the argument of z, from T,_ to T,. The real number V. differs

from the integral number of those points on the edge T^T, where z, is real by at most one.

If the polygon G is bounded and if we set ^.=o for ji I (2), then clearly (see (i 6)
or fig. i):

^•X,=o. ^

ll
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a) Siegel leaf b) Poincare leaf

FIG. i

The complete configuration G*{z) of the leaf of z consists of the set G{z) of half planes a.

numbered by jej{z) with oriented boundaries c .̂, together with the set of those points

(marked in fig. i) on ^ where .̂ is real. G*{z) is to be considered modulo translations

of C=R2. The point oeC^ is represented by the empty configuration.

Lemma 1. — Every complete configuration that agrees with A=(Xi, . . .,\J determines

a unique leaf. A point TeC determines a unique point z in that leaf.

Proof. — If the half-plane a, is not in G(^), then z^z)==o on the leaf. If .̂ is

known at some point of the leaf (and ^ is known to be i at the marked points of ^a.!)

then the formulas (8) determine ^ at every other point T and for example at T{z).

So then z==z(T) and its leaf are determined.

Remark.—By letting ^eGL(2, R) with ^A==A' act on the T-plane C==R2 and

on all complete configurations with respect to A in R2, we obtain the homeomorphism h

of§ 2.

Lemma 2. — Assuming (7)3 every leaf of ^{a) outside oeC^ is of one of the following

kinds:

— A coordinate axis, topologically a cylinder, in case the polygon G[z) is one line. There

are m axes.

— A Siegel leaf [see (13)), a closed embedding ofC in C ,̂ with bounded or empty polygon C{z),

in case oe^({^ : J^=J{z)}).

— A Poincare leaf, an embedding ofC in C71, transversal to each <( sphere " sup.|^[ =r>o,

with unbounded polygon C{z), in case o^j^({\. : j e j { z ) } ) .

Proof. — First suppose z^o for all j\ o<^({Xi, ...,\J), m>_2. We then
may assume:

o^argXi<argX2<...<arg^<-n; (18)

12
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and the half planes Oj clearly have an unbounded intersection. Along any real vector

{jieC==R2 for which:

!irg^m<^•Tg [L<n

attached at any point in the T-plane, the linear function on R2, l n [%[ , decreases for

^==1, 2, . . ., m. Then the leaf is transversal to every "sphere" sup[^|==r>o.

Topologically, the leaf is a cone over its intersection C{z) (homeomorphic to R) with

S=={z : sup |^ |== i}. For weR==G{z) (see fig. i b) converging to —oo (resp. oo)

the first (resp. last) coordinate converges in absolute value to i, and all others to zero.

The point weC{z) converges to the unit circle in the first (resp. last) axis. The leaf
is called a Poincare leaf.

The same argument applies to any z for which o^Jf^X. :^'eJ(^)}) in case J [ z )

contains at least two indices. We then restrict the argument to the coordinates z-

for which jej{z).

There remains the case where OGjf^^ : j e J ( z ' ) }). Then C{z) is either a bounded

polygon or empty. In both cases {T :sup^[^|<^N} is for large N>o a compact

convex set on the T-plane and | [ -2 ' | | has a minimum in the interior. So the leaf is a
Siegel leaf by the definition in § 3.

As announced in (12) we have:

W={.eC-: oe^({X,:yeJ(.)})}.

An immediate corollary of lemma i is (see fig. i):

Lemma 3. — The leaf'of' z, given A, is completely determined by the following <( coordinates ":

1)J(.),I(.) and ̂  for jel{z).

2) The maximum e-^^i of |^(T)| for TeC(^), sej{z)\l{z). This equals |^(T^.)|

for j_<.s<j in cyclic order j _ , j e l [ z ) .

3) The argument (pg=arg^, at the vertex T .̂eG, for j_<s^j.

In the case of a Siegel leaf, oej^({^ : jej}), all these, ICJ, ^., (B,, 9, mod 27r, can

be chosen arbitrarily, but for the condition:

v ^C^
2j 7L.X, == 0.
. j j

5. The topological invariant Y)(o) = A in the Siegel domain case.

We prove theorem i, knowing the pre-theorem, by giving a topological description

of the (m—^-dimensional convex polytope:

A={(q, ...,,J : ^oV;, 2 .̂= i, S^oJCR" (19)

A sequence of weights q, . . . , c^ in (19) which makes o the barycenter of A is invariant

under the action of GL(2, R) on A. Vice versa A determines A modulo that action.

13
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To see this take \[ == i, Xg = z, and determine Xj by taking ^ = o for k 4= i, 2 orjin(i9).

Hence A is equivalent to 'y]((y).

Let S, be a small section transversal to the foliation ^(o) at a point j^ on the

j-th axis and n^==^.(L) the number of intersection points with some Siegel leaf L. We

now define A' as the closure in R^ of the set ofm-tuples (q, ..., ^J of positive numbers,

for which there exists a sequence of Siegel leaves L^ (a== i, 2, . . .) such that for a-^oo:

n, . „ .
(20)n^oo and lim_—==^. for all j

^
nk

The definition of A' is purely topological. We prove that for every choice of Sp p:

Lemma 4. — A' == A.

Proof. — Under holonomic transport of Ŝ - with respect to the foliation, the

intersection numbers with any leaf remain constant. After such transport along a

curve in thej-th axis from p^ to the point with coordinates z^= i, ^==0 for k+j, we

may assume for some o<8<i:

S, (8)CS,CS,( i )CS={^: sup^|=i}

where: S .̂(8) =={z : z,= i, |^|<8S1 for k
^j}' (21)

The Siegel leaf of z meets Sj(8) and Sj inside S, hence in the convex polygon C{z) in

the T-plane and in marked points of ^oc.. Because the real functions In | z^\ == Re X^(T + c^)

on the T-plane R2 with level lines parallel to \, have constant gradients, no two of

which are R-linearly dependent by (7), there exists for any 8>o a number K>o such that:

|ln|^(T+^,)l-ln|^(T)||>[lnS|

for ^>K, for all k and j^k. In particular in the edge Tj_T^. (see fig. 2) of the

polygon C{z) (on which |^[^i for all k) we see that Sj and

S,(8): |^.|=i, |^(T)|<8<i for k^j (22)

contain all points:

T=T,.+^., K<t<^-K. (22')

T,-T,.+ .̂

^+(^-.K)X,

T,-+^

FIG. 2

14
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Counting intersection points (marked on ftx^) of a Siegel leafL^ we see from (21):

^(8))^^S,)=^^,(S,(i))^

From (22) we read that all marked points on the interval (22') belong to S,(8). There

remain at most 2(K+i) other marked points between Tj and T so that:

%-n,(S,(8))^2K+3.

Hence for all Siegel leaves'.

I^—^I^K+3- (23)

But by (17) 2;^.=o.

r<^

Then: 2-^=0.
-^v^
^

From (20) and (23) we obtain:

S c.\ == o.
3

We have proved A'C A. If we take any (q, .. ., c^) in A with ^->o for all j, then

there is by lemmas i and 3 a Siegel leaf L^ with:

^=0^., 7== i, . .., m.

For a=i, 2, 3, .. .3 a-^oo we have:

7^./ S 7^ == ̂ , hence lim ^/ S n^ = ̂

by (23). Consequently A'==A and theorem I is proved.

6. An explicit homeomorphism in the case of the Poincare domain.

Here we assume (7)3 (8), o^J^(A):

o^argXi<argX2.. . <argX^<arg [L<T:. (24)

Every leaf that is not an axis is a Poincare leaf, meeting S in a curve that is represented

in the T-plane by an unbounded convex polygon G. It has at least one vertex and is

transversal to the constant vector field (JL. The T-plane of a leaf is then naturally a

product:

T=To+^, ToeC, ^eR.

Taking all these products together we write <^(o) as the product of a i-foliation

^(G)=^'((y)nS and R, by the formulas for o^weC^ zeS, seVL:

w^e^z^ j= i , ...,m. (25)

Let cr' fulfil the same conditions as cr. In order to define a homeomorphism:

h : ^(c) -> ^-((/)

15
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it suffices by the last remark and (25) to define the restriction:

Ai=A|S : ^i((7)^^(CT')

of h to S. The map h^ will induce a map h^ from the set of leaves of ^(o) onto the

set of leaves of^\((j'). We begin with the definition of h^. Recall lemma i, § 4 saying

that for given A the leaves (except axes) are i-i-represented by complete configura-

tions G* modulo translation. We define h^ by claiming that it is expressed by the identity

in terms of the (< coordinates ?? of lemma 3, § 4. This does not work for the m axes.

We let AL map each axis onto itself. We now examine this definition of h^ in detail.

Equality of the first sets of" coordinates " in lemma 3 has the following consequences:

J'==J gives the invariance of (the union of all leaves in) ^==0 for j==i, . . .5 m.

IfC and C' are convex polygons corresponding with a leafy and its image leaf A^(y),

then P==I implies that the same coordinates among ^, . .., z^ take absolute value

one on edges of C and of G'. This determines a correspondence of edges.

C C'

^

FIG. 3

^/ ==^. for jel = I' determines, for given A, A', the lengths of the bounded edges of C'

of the leaf^i/y) once those ofG of the leafy are given. Therefore we now have obtained

a one-one-correspondence between polygons G and C' modulo translations, which
correspondence must lift to h^.

With equality of the second sets of cc coordinates 9? in lemma 3, we obtain the

necessary information on the absolute values of those coordinates ^., jej, for which

j^I, at certain vertices of G and G':

e-
ys

==\^^i)\=e^==\z^\

for j-^s^j, and j the successor of^_ in I.

16



THE TOPOLOGY OF HOLOMORPHIC FLOWS WITH SINGULARITY 17

With equality of the third sets of cc coordinates " in lemma 3, we complete the

definition of h^ because we obtain the necessary information on the arguments of the

coordinates ^ of certain vertices of G and C':

9;-arg^=^=arg^)

for J-^^J, j successor ofj_.

On one hand ^(T^.) is not defined if T^=ooeCuoo but no ambiguities arise

in case neither Tj nor T^ is oo, because V- == V. implies:

^(TD-^^Jocp;^)^^,).

Having obtained the map h^ we now define a point set bijection h^ : S->S, which is

a lift of AL , by assigning to the point T = T^_ + t\j on the polygon C of a leaf y of ^\( a)

the point T'==TJ_+^ on the polygon C' of the leaf ^(y) of ^(c/), and similarly

in case T^_=oo with T=T^—^.. In particular vertices of G go to vertices of C'.

We define h^ to be the identity map on each axis. It remains to prove that h^ is

continuous. Then also h^
1 is continuous by interchange of ^'(cr) and ^(cr').

Proof. — For a given A, the set of all leaves with a fixed set of nonzero coordinates J

is homeomorphically represented by the set of all its complete configurations (lemma i)

in its natural topology. This space is also seen to be homeomorphically represented

(embedded) by the following sets of c( coordinates 9? of lemma 3:

^(T,)=^-^+^ j,<s^j for T,+oo+T,_

,̂CT,J for T^O) (26)

=.,(T,) for T,.=O);

j is the successor of j__ in I.

Recall that T^=t=oo is a point in the polygon (i-leaf) G, at which z^\ takes its

maximal value <_i. If this value is smaller than one, then %g is automatically zero.

As h is the identity in these (< coordinates " we conclude that the restriction of h

to [z :J=={j : ^-4=o}}nS induces a homeomorphism of the space of those i-leaves

in S, and then h^ is a homeomorphism of that part of S onto itself as well.

The formulas (26) tell even more, because we can include the values ^==0 in

the consideration and let s run through all indices between the first, j^, and the last, j^

of J. Therefore we can conclude that h^ is a homeomorphism onto itself on each of
the sets:

^OfiJe)^^ ^+0, ^+o, ^,==0 for j<j\<je and ^.=o for j>j'JnS,

and in particular on the open dense set:

0.{i,m)={z: ^4=0, ^=f=o}nSCS.

We next prove that h is also continuous at any point w^Q(^J,), w not on an axis:

^=(^i;^i;!x;ni)=(o;^i;o)=(o, .. . ,o;^, ...,^;o, . . . , o )

^=1=03 ^=t=05 Jb<Je9

17
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18 C. C A M A C H O , N . H. K U I P E R A N D J. P A L I S

By the above consideration h is continuous at and near w, on the subspace defined by

2:1=0 and ^m=o. So we can restrict our study of continuity to points:

z
 = {

z
!; hi; ^ni) with ^ii= ̂ n •

The point weS is represented by some point T{w) on the configuration G{w). The

configuration G{z), in the T-plane of the leaf of z, is then obtained from G(w) by adding

half-planes a, for the coordinates in ^ (^. :j<jb) and half-planes for the coordinates

in z^ {z- :j>je)- Let | [ ^ — w [ | = = 8 . If 8 is small then all the new boundaries ^

will meet C(w) far away from its vertices and from T(w) on either of the two unbounded

edges (fig. 3). Then the point w and the point z are represented by the same point

of G(w). (See the equations for a leaf.) The i-i-correspondence h^ preserves this

property of far-ness concerning the images G'(Ai(w)) and G\h^{z)). Moreover vice

versa far-ness of the new half-plane boundaries ^aj implies that | ̂  | is small for j<j\

and j'>je» Therefore continuity follows:

p(,)-^)|[=0(8).

By the equations (26), we find for any point zeS not on thej-th axis, but so that

|^)|=i:

^h(z))=z,{z).

This identity relation is also the definition of h on thej'-th axis. With a " far-away 9?

argument concerning other coordinates, this proves continuity also at axis-points in S.

7. A corollary on stability admitting non linear perturbations as well.

Corollary 1. — Let F be a holomorphic vector field in C ,̂ F(o)=o, and let <j=DFo

have the spectrum {X^, ...,X^}. Then F is locally stable (of codimension zero) near oeC^*

if and only if i^j => X^RXj, and o^Jf^Xi, . . ., \J.

Proof. — If oeJ^(Xi, . .., \J, then we can approximate F, by SiegePs

theorem ([13], [12]), by another vector field F, F(o)==o, which is holomorphically

equivalent to its linear part S^DFo, and whose spectrum V is in the Siegel domain.

By theorem I 5' is not stable, so F is not stable. On the other hand, if z'4=J' => ^RXj

and o^J^(A), Guckenheimer [2] proved that ^(cr) meets every sphere

S,: IHI^S^r^o

transversally, hence in a real i-foliation, and that the leaves are the orbits of a Morse-

Smale vector field with m closed orbits. From the structural stability of these vector

fields [10] follows the local stability of F, also under small non-linear perturbations.

So it remains to show that whenever o^J^(A) and two eigenvalues are dependent

over R then F is not stable. Suppose XgGRX^, 0(^f(Xi, . . . ,Xj. Arbitrarily near

to F we find F' with { ^ , . . . , X ^ } in the Poincar^ domain: o^Jf(Xi, . . . ,Xj ,

18



THE TOPOLOGY OF HOLOMORPHIC FLOWS WITH SINGULARITY 19

w

i^j => X^R?^', dW moreover obeying the conditions Xj—S^\ '=f=o for any non-negative

integers k-^y . . . , A ^ . By Poincar^ [n] F' is locally holomorphically equivalent to its

linear part. It has Poincare leaves only except for the cylindrical coordinate axes.

Arbitrarily near to F we also find F" with {X^, . . ., X^} obeying the following conditions:

oeJf^Xi', ...,?0, •^=r\^ r rational, X^RXj' for i^j, i>_2, j>,2, and:

X;'-S^X,'=t=o

for any non-negative integers k-^y . . . , k^. By Poincare [i i] F" is locally holomorphically

equivalent to its linear part cr". But all leaves of CT" in the linear subspace with equations

z^ =z^=, . .=^==0 are cylinders, so e^'(F') and e^'(F") are not homeomorphic near

zero, and F is not stable.

II. — HOLOMORPHIC FLOWS ON CP(m)

8. Holomorphic flows on CP(m) arise from linear vector fields on C^4"1.

Here we prove the (known)

Lemma. — Every holomorphic vector field over 'P==CP{m) originates naturally from a

linear vector field on C^1 (^eC^4-1, aeGL(m+ i, C)).

Proof. — Consider the embedding of the trivial one dimensional vector bundle

over C^4'1 = Cy
^+l

—{0} into the (trivial) tangent bundle, given by the following inclusion

of total spaces:

{{Z,[LZ) : ^eCm+l,(JLeC}CCW+lxCW+ l.

The first bundle has the section [A=I. This section, as well as the embedding, is

invariant under the action of C*=C—{o}:

\.{z, w)={\z, \w), XeC*.

The quotient is an embedding of vector bundles over P that can be completed in an

exact sequence with the tangent bundle T of P:

0-^6->7]-)-T-^0.

6 is trivial with non zero section ((JL=I) . Cech cohomology of P with coefficients in

the sheaves of germs of sections of these bundles, gives rise to a long exact sequence

that begins with groups of global cross sections Ho=F:

o^nP.e^C^nP.T^C^^ see below)

-> r(P, T) -^ Hi(P, sheaf6)==Ho,i(P, C)=o.

19
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Hence L is surjective onto the set ofholomorphic vector fields r(P, r). Each holomorphic

section of F(P, T)) lifts to a holomorphic vector field F(^) on C^^that is invariant under

the action of C*:

XF(^, ..., ;?J==F(X^, ...,^J.

Differentiation with respect to ^ yields

X^.F(^, ...,^)=a,F(x^ ...,^j.x.

The holomorphic vector field

^.F(X^, . . . ,X^)=a,F(^, ...^J

is bounded near OEC
m+l

, hence it extends over zero, with value oeC^1. Then:

a,F(^o, . . ., zj== ̂ F(o, ..., o) ^constant.

F(-2') is linear and the lemma is proved.

9. The topological invariants.

Let y be the flow of a holomorphic vector field on the projective space CP(m),

which comes from the linear vector field on C^^41:

^=^ z=e^w, ^weC^, TeC. (27)

As before Z=(^ZQ, . . . , z^) is a set of homogeneous coordinates for

CP^^C^1—^})/^.

The spectrum A={X() , . . ., \} of <j is a projective invariant of the flow, but should now

be considered modulo the group of all translations and similarities in C. (If we replace T

by co~ ̂ 5 then A C C is multiplied by coeC*, and if we replace ^OT^ by ^OT-XT^, XeC,

this translates X, to Xj—X for j=o, .. ., w.) If a is diagonisable we have in preferred

coordinates the flow <^(A):

dz.
— X ^ . , z^e^w^ j=o, . . . ,m. (28)1 — \ ^ . _^.T,

dt

It has a singularity at each of the vertices of the coordinate simplex. Outside the

coordinate hyperplane ^ = o, we take ^ == i and non-homogeneous coordinates

z^z^=Zy and we obtain the linear flow on C^:

^-^(A) : ̂ -i, z^e^-^w, j^k. (29)

In order to have \—\ and Xj—\ real independent for every i^j^k^i

(condition (7)), we make the

Assumption. — For X^ Xp X^eA, i^j^k^i, X^, X^, \ are not collinear in the

plane C. (30)

20



THE TOPOLOGY OF HOLOMORPHIC FLOWS WITH SINGULARITY 21

By theorem i, ̂  has only the non-trivial topological invariant 7](a)==A in case

the spectrum A^=={(Xj—X^), j^k} is in the Siegel domain, that is in case \ is in the

interior ofJ^(A), and no topological invariant otherwise. We now formulate:

Theorem II. — A complete set of topological invariants of a holomorphic flow j^'(A) (27)

on CP(m), under the general position assumption (30), consists of the topological invariants of

chapter I at the m 4- i singular points. In other words:

A) If the boundary ^J^(A) of the convex hull J^(A) is an {m + i)-gon, then there are no topological

invariants9, y is stable.

B) If ^J^(A) is an m-gon with one eigenvalue, say \, in the interior, then

{2m^-\)-\j^k}CC

modulo action of GL(2, R), is the only topological invariant.

G) If J^(A) has at least two eigenvalues in its interior, then A, modulo translations, similarities

and reflections in C = R2, is a topological invariant. It is the only one because it clearly is

the complete invariant of^ under projective transformations and complex conjugation of CP(m).

We first prove case C by determining the topological invariant. In § 10 we prove

case A. We shall not elaborate on the proof of case B which goes along the same line

as case A. For m = 2 cases B and C do not occur, and case A was proved in [16].

For case G we assume (30) for A and A'. Let h: ̂ (A) ->^(A') be a

homeomorphism of CP(m) onto itself sending leaves of <^(A) onto leaves of ^"(A').

It sends any singular point onto a singular point with the same local topological invariants.

We may assume after projective transformation of j^(A') in CP{m) that each of the

m + i singular points is invariant under h.

Let \Q and X^ be interior points of J^(A). The corresponding singular points

are then of Siegel type for ^"(A) and the same holds for their images under h which

are singular points for ^"(A'). Then \Q and \[ are also interior points of^(A'). We

can assume XQ = Xo == o and X^ = \[ = i by permitted changes of coordinates and

parameters (translations and similarities).

By theorem i, there exists ^eGL(2, R), k=o, i, such that for all j:

&(2^(^—X,)-l)=2m(X;-X,)-l.

Hence if ^,^eR, are such that:

(k == o) 27^X3"1 = XQ 27^X2"1 +j/o 2m

and: {k== i) 27^^(X3—I) - l=^27^^(X2—I)~ l+^27^^(o—I)~ l ,

then the same equations hold for X^ and Xg. Elimination of ^3 yields (for given

^05 J^ ^l^l);

^ ^2 ^^ ^2-1

XQ+VQ^ ^1+^1^2-1)

21



22 G. C A M A C H O , N . H. K U I P E R A N D J. P A L I S

which is a quadratic equation in X^ with real coefficients. If one solution is Xg, then

another is Xg = ̂  or Xg and it follows that g^ is either the identity (Xg == Xg) or the

reflection: complex conjugation (X^^). The topology of ^(A') is therefore deter-

mined by A == A' modulo translations, similarities and reflections, and case C is proved.

Observe that the foliation of A' ==A is obtained from that of A by complex conjugation,

a homeomorphism of CP(m) onto itself.

10. Stable holomorphic flows on CP(m).

Here we prove case A of theorem II:

Theorem II A. — The holomorphic flow ^(A) on CP{m) is stable in case &^(A) is a

convex (m+ I)-^0^-

proof. — Let Xo, X^, . .., X^ be cyclic successive vertices ofJf^A) (fig. 4). Let

O/, be the singular point {z : ^.==o, j^k, ^=i}eCP(m) and let 0^0^ denote the
<( edge55, a cylinder {z : ^.=o for j=t=A,^ ^+o, ^4=0}. The flow ̂  on ^+o, as

expressed in (29), has a singularity at 0 ,̂ and it is in the case of the Poincar^ domain

as described in § 6. Thus the leaf of a " general " point z (that is: ^.4=0 Vj) wraps

around the axes (==" edges5') O^O/, and O^O^+i while converging to them. This

7.+1

a)

FIG. 4

being the case for all k we see that a general leaf wraps around and converges to all
<c edges 5' of the (< (m+ i)-gon " Oo, O^, . . . , 0^, and converges to all vertices as well.

Projecting into RP(m) by taking absolute values of all coordinates we get the interior

of an embedded two-disc whose boundary is the ordinary (m+ i)-gon Og, Oi, . . ., 0^

of the R-coordinate simplex in RP(m) (fig. 4 6).

In § 6 we saw that the topology of ̂  is completely determined by the i-flow

in which it meets the " sphere 9) S==S^; in homogeneous coordinates:

Sfe : { ^ : N=sup|^|}.
j+fc
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The intersection of a leaf with S^ is represented in the T-plane by a convex unbounded
polygon:

c,=aD,cc

boundary of the disc D^CC that represents the intersection with

B ,={^ : |^|=sup|^.|}CCP(^).
j

As UB^=CP(m), therefore UD^C for a c( general95 leaf.

We now define the graph GR=GR(^) of a leaf of a point zeCP(m) as the union:

GR=UG,={TEC: 3 k : |^|=sup|.,|}.
k j ^ k

In fig. 5 we give some example of graphs.

DJD,

m == 2 m==s m =4

w=5 w=5

FIG. 5

The intersection D^nD^CC is ri^r a% interval parallel to the vector

^=27ri(X,-^)-1

23
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with end points T^ and (see (29) and fig. 6):

T^ == T.̂  + ̂ . 27ri(X, — ̂ ) -1

(3i)

for some o<^^oo, or a point and we put ^==0, or ^TZJ^ and ̂  is not defined. For

cyclic successors k and ^+i , % ^+1 is oo.

Let T^ denote the endpoint of the infinite segment D^nD^i (fig. 5 and 6):

FIG. 6

We intersect the graph with a huge convex 2-disc which is then divided in e^ = m + i

cells, and has e^ vertices and e^ edges, including m + i vertices and m + i edges on the

boundary of the disc. The Euler characteristic of the disc is I==CQ—^i+^2- I11 general

every vertex is on three edges: y^ ==2^. Then the number of vertices is ^=2m.

Among these are m—i vertices of GR. There are e^=^m edges, of which m + i on

the boundary of the disc and m + i leading to this boundary. There remain m—2

bounded edges on GR giving rise to m—2 positive numbers ̂ , for m—2 specific pairs

of indices j, k. Given this set, any m—2 positive numbers ^ yield up to translation

a unique graph GR compatible with A : D^.nD^ is parallel to X^. By admitting

values ^ = o for some of these index pairs we cover also the cases where more than

three edges meet in a vertex.

For z such that ^ =)= o for all j, we know that in its leaf:

^+1
(T,)=i for A = o , . . . , m

and we define the argument ^ by:

^)(T.)-^.
h I

Lemma 5 a. — Let A be given. The leaf of zey == US^;, ^•=l=o Vj, determines and is

determined by the set of" coordinates'? {%^}, a set ofm— 2 non negative numbers, for a specific set of

index pairs { j , k), and the m arguments cp^ mod 27r, j=o, ..., m— i.

That the leaf z determines the " coordinates" is clear. Now suppose the
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u coordinates55 given. Given A, the numbers ^ for a given k determine the convex

disc D^ but for translations. We attach D^ to D^i along the common infinite edge

for ^=o, i, . . ., TTz—i. The finite sides fit also. We see that the m—2 numbers ^

determine the graph GR but for translations. Knowing 9^, we know

h+ilh

at the point T^eGR. But in any other point TeGR we read from the formula:

(^+l/^(T)=^--X^T-^(^^/^)(T,).

So for every point TeGR we know without ambiguity Z ^ / Z Q , z^z^, . .., zjz^_^ that

is the set of non-zero homogeneous coordinates

(^05 ^15 • • - 5 zm)'

If the point T is on D^.nD^ with vertex T^eC, then T as well as the corresponding

point ZECy can be characterized by o<^t<n^ for which

T=T^+^(X,-X,)-i. (32)

For a point z for which some (at most m—2) coordinates vanish, the same

considerations apply to the remaining (at least three) non-zero coordinates, its leaf,

its graph (with less domains D^), etc. We get therefore:

Lemma 5. — Let A be given. The leaf of a point zey= U S^ with m' + i (at least

three) non-zero coordinates determines and is determined by:

J^-0^ ^+o},

m'—2 non negative numbers ^, and m' arguments ̂  mod 27r, j , kej{z).

Now let A, A' be given and let BJ^(A) and a^(A') be convex {m + i)-gons. Define

a i-i correspondence h : y->y by the identity in terms of the "coordinates55 of

lemma 5 and the coordinate t of (32) on D^nD^ outside the cc edges55, and by the

ordinary identity map on O^O^n^.

End of the proof. — Clearly h maps S^C<99 onto itself. It is not exactly the same

as the map h which we defined on S in § 6, but the same continuity arguments remain

valid. So h \ Sj, is a homeomorphism and it extends to a leaf preserving homeomorphism

ofB^; onto itself for each k (cone). This combines into the required homeomorphism:

h : (CP(;7z), J^(A)) -> (CP(^), ^(A')).

In case B of theorem II, we let {\=) ̂ o==o be in the interior ofj^(Xi, . . ., Xj

and we proceed as above. C ;̂ is a convex polygon, unbounded for ^=)=o, bounded

or empty in general in case ^==0. The graph GR(-s') of a leaf may therefore contain

one cycle whose numbers ^ then necessarily obey:
VI i"̂ / » _ 1

2jn^ =o.

Apart from some special care concerning the case where Co is empty, the proof of II B
follows the above pattern.

25

4



26 C. C A M A C H O , N . H . K U I P E R A N D J . P A L I S

III. — NON LINEAR FLOWS NEAR A SINGULARITY IN DIMENSION m==3

n. A simple solution of a formal power series problem (m general).

We now start the study of the topology of a flow near a singularity at oeC^

defined by:

d- = F(0 = az + R(z) GC- ze^ (33)
a 1

where F is holomorphic, F(o)==o, GZ==(DV)QZ is the first term of the Taylor series

of F and R is the rest. We assume again for the eigenvalues of a:

^J^ V11^-? ij=='i, . .., w. (7)

In suitable linear coordinates (33) is expressed as:

dz. / \ . / \
_=^+?^i, ..., ^J, J-i, ...^ (34)

9. is considered as a convergent power series starting with terms of degree ^2:

^-S^Q^

where Q,=(?i, ..., ?J, ^=^^2...^ is of degree ||QJ|=?i+?2+ • • • +9m

in z^ . . . , ^.

Formal power series lemma 6 (known). — TAw m.̂  fl unique solution in formal power series:

Z^W^HW^ ...,wJ, ?:,== S^Q ,̂ ^=i,...,m (35)

wAz'cA transforms (34) n^o

^=X^,+^i, ...,^J, +j== 110^2^^ (36)

wA^ ^Q = o ^ ^a^ .̂Q = ̂ Xi + ... + q^— X, + o
(37)

fl^rf ^•Q=0 m case ^=:0'

Proof. — Substitution of (35) in (34) yields with (36):

^+S^(x^+^)==x,(^+^) +9^1+^1, ...,^+U.
M 1 fc ^^fc

Substract (36) to get:

S^^-^.+^,==9,(^+^, ...)-S^. (38)
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, r\ .

As S (—— ufi j \w^— \j ufi = S,Q w^ 3 we find the equivalent equations:
k \ °'^k I

S(^Q+^)^=V,(»'l+^ ...)-S^^. (38)
Q A; CuUi.

The terms on the right hand side of degree [| Q,|[= n do not involve coefficients of terms

of2y, ^-, J==i , . . ., w, of degrees ^^. By (37) we compute unique values ^-Q and ^.Q

for [Q^]=n, once we know them for [[QJ[<TZ.

The unique power series ^ and ^ satisfy (38). From (38) with (34) and (35)

we can deduce the equations (j==i, .. ., m):

^-S^0 fcr ^-^-^-fc.
The determinant of the coefficient matrix is near one for (^i, . . ., w^) near (0,0, . . ., o),

so that (36) holds:

W,==o, j=i, . . . ,w.

Our unique power series give solutions indeed, and lemma 9 is proved.

12. Holomorphic normal forms for m==3.

First normal form: Lemma 7. — If m==3, oeJ^(Xi, Xg, Xg), (7), ^z ^r^ exists a

holomorphic change of coordinates (35) near oeC3, transforming (34) into the (not unique)

normal form:

dw.
—=^Wj+w^w^, j=i,2,3 (39)

y^.= ̂ .( î, ^2? ^s) holomorphic near oeC3.

Proo/'. — Because oeJ^(X^, Xg, ^3), we conclude from geometry in the plane C

that if 8iQ==(<7i—^^i+^^+S^s? l^iol^S and 8>o small, then

?i^2, ^i, ^3^1

and similarly for j'=2, 3. The ideal Y generated by the polynomial w-^w^w^ contains

therefore among others all polynomials uft = w^-w^w^
3 for which |SjQ|<8 for somej.

As in § ii there is a formal power series solution (35) transforming (34) into (36)3

but now, instead of (37), such that

^Q==O if ^eY, ^Q=O if z^Y (40)

because all small divisors \^q\<S (in particular zero divisors) are avoided in the computation

of ̂  from (38). In order to prove that .̂ is convergent near oeC3, we use the following

notations concerning power series ^. The series ^ (in SiegePs notation [g~|, see [14]) is
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obtained from ^ by replacing each coefficient by its absolute value. ^ is obtained from ^

by taking all arguments equal (w^=w for j=i, . . ., m):

I(w)==I(^,w, ...,w).

We write (with Siegel) ^<T] to express that [SQ^I ̂ l ^^Q f01' a!! Q^ Clearly if1|
is convergent near oeC, then ^ is convergent near oeC"*, and then ^ is convergent

near oeC^.

From (38) and |8jQ|^:S we obtain:

8^S8,Q|^|^+^9^i+^, ...)+S^^. (41)
Q A; (7Z^

The power series at the extreme left has no terms in the ideal Y. So we can delete

the last part in the form at extreme right which is in Y, and obtain:

8^-<^(wi+^i, ^2+^2. • • • ) •

Hence 2:^8-12:9^+^+.. . +L. w+^i+. .. +L. • • •)• (42)

We define a new power series ^=^(^)= S ̂ ^n by:
yi^i

^==21.. (43)
3

Recall that Scp^i, . . . ,wJ is given, convergent near o, and it begins with terms

of degree ̂ 2. Therefore Ao>o and A>o exist such that:

^'•w^-^,- (44)

(42). (43) aid (44) yield

^ Wf
i—A(w+^^)

^ A,w{i+u)_ ^ (A^i+M))6. (45)

I — A W ( I -\-U) k=0

oo

We compare (45) with the equation for the power series v{w)== S ̂ n, y(o)=o:
n== 1

'=.A•:L'(^)-A.g(•+<j.(A•°(•+'>)'• W

y(w) is unique and convergent near oeC because

/ dv\
^= — ==Ao+o.

W^/w-O

By choosing \>o big enough we find v^>u^>o for the first non zero coefficient u^

of u. Then by induction with respect to n while reading and comparing (45) and (46)
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we obtain the majoration v^u^o for all n. Then u, ^., ^ and ^ are convergent
near o and lemma 9 is proved.

We push the normalisation further in the

Second normal form: Lemma 8. — With the conditions of lemma 7 there exists a holomorphic

change of coordinates (35) near oeC3 transforming (34) into the normal form

dw.
^=X^(i +w^w^ j=i, 2, 3. (47)

Proof. — By lemma 7 we can assume for (34):

dz,
^=^+?j, <p,eY, J=i,2,3. (48)

Again we formally solve:

?(^Q+^)^=9^i+^^2+^,..Q+S^^ (35)
-v ^? C'UD-1.

but now instead of (37) or (40) we claim

^,Q=O if z^e^., ^.Q=O if ^T,

where Y,CY is the ideal generated by z^z^z^. We can solve because |8,J>8>o
for ufi^l

By induction with respect to | [QJ |=TZ we see that the formal power series ^.

belongs to Y, and for all Q, by construction, ^.Q+O implies that ^ufi^. For j==
 3

!

for example we can therefore write

Si= w^w^(w^ w^)

^==w^w^w^{w^ w^ w^)

and consequently for k= i, 2, 3, ^-^ has a factor z^jwj and belongs to the ideal Y2.
ac- k

So does ^—^ for j==2, 3. The power series .̂ has no terms in ^D^. We can
n?

then repeat the arguments with the equations (41)-(46), neglecting terms in Y2, and

conclude the convergence of ^ j=i, 2, 3 near oeC3. Lemma 10 is proved.

13. Local stability of codimension two.

Theorem III. — The filiation '̂(F) defined by a holomorphic vector field F{z) near oeC3,

with singularity at o such that the set of eigenvalues {Xi, Xg, Xg} of (D/)o=a is in the Siegel

domain, is locally homeomorphic to thefoliation of its linear part ̂  {a). The invariant A (=73)

of chapter I characterises the topology completely. ^"(F) is locally stable of codimension two.
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By lemma 8 we can assume (34) in the form

^=X^.(i +z^z^, j=i, 2, 3. (49)

The three coordinate planes are invariant and they already contain linear vector fields.

There exist o<£o<i and K>o such that ^•(^, z^, z^) is convergent and [xK1^

for sup,[^|<£o. Assume £oK<i. By substituting e3^. for ^, J=i , 2, 3 with o<s<£o,

we obtain new equations instead of (49) with new functions ^ for which we can assume

convergence in the c< unit ball" sup^|<^i and moreover:

|Xj|<^8. (50)

We will first construct a homeomorphism h^ of S onto S, carrying the leaves of

^(F)=^(F)nS onto those of ^\((y)==^'((7)nS, and which is the identity on

Vi=VnS, where

V={> : ;?i^3=o}.

Our strategy will be to let h^ preserve the strata of S and to let h^ be identity on

[z : |^| =|^|=i} (see fig. 7).

The first part of theorem III will then follow from general considerations, and

the last part is a consequence of theorem I.

For later estimation purposes we write the unit disc in C:

Q={ueC : M<i} (5i)

and f(Q)={f{u) : ueQ} for any function/of ueC.

We assume argXi<argX2<argX3<argXi+27r so that with ^•==27riXj~1:

ReXaXi>o, Re^X^o. (52)

The leaves of^'(cr) are transversal to S except at the points where |^[ == \z^\ = \z^ == i.

The same holds for the slightly perturbed ^(F). Any i-leaf in S meets [^| = |^| == i

in at most one point z(To)={z^(To), z^To), ^(To)) with parameter value To say;

it meets |^[ = \z^\ ==i in z{T-^; it meets |^[ = \z^\ ==i in ^(Tg). This will be made

clear in the following calculations. We start at t==o from a point:

^(To) = (^i, ̂ -N, e^), N>o. (53)

We shall perform the calculations only in the special case 01=02=03=0, hence

^(To)^!,^,!). (53')

The general case (53) is formally but not essentially more complicated. We follow

its i-leaf in S with respect to ^(F) in |2'i|=i, substitute

^=^, t^o (54)

in (49), and find:
. dinz^ dT

2 7 T Z = — — , — — = X i ( l + ̂ 2^Xl) -^--
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If s>o is small enough, depending only on X^, Xg, T^, then (see (50) and (51))

y/T*

.^^(i+^i^^Zi)"1^!1}-^ sup |^2:2^|9

rfT

"A"
eXi+e7^

(55)

(56)

The sup is here over the segment from To to T^ where, as we see below in (57)5 \z^\

increases up to its value i at T^ at which we set t == T^ . Similarly | z^ \ decreases between To

and TI . In the T-plane the curve from Tp to T^ is for small s almost parallel to X^ by (56).

See fig. 7.

FIG. 7

Next we use (55) and the equation (49) for z^ to get, for small s>o:

11 j'~f^

———== Xa(i + 2'i^3X2),, e^i + s6 sup | z^z^\ 6C ̂  + s .̂

We integrate:

lnz2e—N+(XaX^+s 6 sup[Zl^2^3 |e) fC—N+(X2X^+s 6 e)f

del

Inl^-N+CReX^+e^-N+Ya^ Y3>0.

Analogously for Zy:

lnz3e(X3Xl+e6sup|z^^2^3|e)fC(X3Xl+s6e)<

ln[z3|<(ReX3Xl+£6)^-Ya<, Ya>0-

From (59) and (61) it follows that

Yzln l^ l+Ysln l^K—YzN.

(57)

(58)

(59)

(60)

(61)
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As ln[<2'i[=i, In^l^o, In^l^o:

ln|^^^|=ln|^|+ln[^|<max('-I,-T-2 ').Nd£-Y4N
\ Y3/

SUpl^^l^-^. (62)

1^2(Ti)|=i for ^=%i, and substituting (62) in (58) gives an estimate for 7^:

o=ln|^(Tl) |e-N+(ReX2Xl+£6^Y 4 N6)% /^C~N+ReX2Xl(I+^~Y 4 N9)%^.

Then for e small enough:

2N N
%i<_——^-, hence %i-———^ ^s5^-^ Re ̂ X^e4^-^. (63)

Re XgXi Re X^

The corresponding answer for a i-leaf of ^"(a) starting at the same point

.TO^To)^!,^,!),

is obtained by putting s==o. We use primes for the linear case ^"(cr):

^'=—— (63')
-Ke AgAi

The difference is small for large N:

12n{^-^)\== | In ̂ (Ti)-ln ^(T,)| = jarg ̂ (Ti)-arg ̂ (TOI^^N.-^. (64)

Substituting (62) and ^=%i in (58) gives:

In ^(T^e-N+^i+s^'^O)^

ln^(TO=-N+X^' (65)

Hence |ln ^(Ti)-ln ^(T,)| = | arg ^(Ti)-arg ^(T^l^s2^-^^ (66)

Substituting (62) and t='n^ in (60) gives:

In^^e^+s^-^e)^

In z^T[) === \^^ = N^/Re X^Xi

Hence |ln ^(Ti)-ln ^(T^l^s2]^-"^. (68)

We conclude from (64), (66) and (68) that the mapping ^(Ti)->^'(Ti) of

Sn{^ : |^|==[^[=i, 2:34=0}

onto itself tends to the identity map in ^3=0 (for N->oo). This is equally true starting

from (53) instead of (53'). The same calculations for the i-leaf segments T^Tg in

[ - 2 ' 3 J = i give the analogous conclusions/or the mapping ^(Tg)—^'^).

We now define the map

^==(S,^(F))^(S,^(o))

by the following conditions:

a) The restriction of h^ to the union V=={.2' : z^z^z^==o} of the Poincar^ leaves

is the identity.
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b) h^ leaves invariant each stratum of the stratification ofSby |^|=i, J=i, 2, 3.

c ) On the stratum [^[==[^31=1, ^ is the identity map. In our notation c ) means
h
l{

z
{

T
Q))==

zr
(

T
o)=

z
(

T
o)'

 As ^^y Siegel i-leaf in S meets |^3|=[^[==i, c) determines

for each Siegel ^.(F) -leaf its image ^{a)-leaf. In view of b) we have by intersection:

^(Ti))=^TO if |^[=[^|=i, ^+o at ^(T^).

This agrees continuously with the identity at -$'3=0 (see a}). Similarly for

^(.(T^^TO.

d ) A point on the edge T^T^ of an ^i(F)-leafwith total ^-argument-length 2im^,

is determined by a rotation number t, o<_t<_^, if we start from z(To), or V—t if

we start from z(T^) (see (54)). It is analogous for the edges T^Tg and TgTo by cyclic

permutation of i, 2 and 3=0. The same applies to the linear case ^(o), which we

continue to distinguish in the notation by primes. The action of h^ on the points of

an ^(F)-leaf onto its image ^(cr)-leaf, is given by proportional rotation numbers:

^j^^/^ J^^ ^3-

For n—^co these quotients converge to i. (64) tells this for j=i. For j=3 it follows

by studying T^Tg instead of T^Ti. The value 2im^ is the ^-argument difference

between z{To) and ^C^), which can be read also going along two edges via z(T^). The

formulas then tell again that also %'/%2 tends to i for N->oo.

If we keep t==t^ or ^-—^ fixed for somej and let N go to oo, then the map of

the initial point in the <^i(F) -leaf converges to the identity map of a point of a Poincare-

^i(F)-leaf in V. Therefore h^ agrees continuously with the identity map on V, it is

continuous as is its inverse. Then h^ is the desired homeomorphism.

There remains to define with the help of h^ a homeomorphism h : ̂ '(F)->^'((T)

near oeC3. Let Up be the neighborhood of V in K=={z : s\ip.\z,\<_i} that is the

union of all ^(F)-leaves in B at euclidean distance ([^[I^S \z |2) smaller than
i j

some p with o<p<- from 0(=C3. The restriction ^'(F)[Up is transversal to S and

to S^=={-2' : |[^| |==:T} for T>p. Recall that in each Siegel leaf of ̂ (o) the function [[-2: |[

has exactly one critical point, where | [ -2 ' [ | has a minimum, and the critical points form

together a manifold M. These two properties are stable under our small perturbations

and hold equally well for ^(F). This can be seen also by a calculation of rfS^==o.

Gall the manifold of nearest Siegel leaf points M^ First observe that:

^(F) (Upn(.: IMI:4j)

is homeomorphic (^) to e^(F)x -, i . Extend this homeomorphism with the help

of the 11^ | |-gradient lines in each ^(F)-leaf in Up to obtain a homeomorphism:

^(^KUpYM^o^j^x^i].
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The union of the Siegel leaves in this fbliation is a trivial 2-disc fibration with

base space UpUM^ from which a cross-section UpUM1' is deleted. We recover it

by compactifying each Siegel-leaf with one point, and we recover ^(F)|U by

compactifying the space so obtained with one more point, the origin oeC3. The
foliation ^(F) | Up of ^(F) near o is now up to topological equivalence completely

determined by ^(F) [ (UpUS), and the same holds for ^(cr). Therefore the existence

of A! carries with itself the existence of a homeomorphism of ^"(F) | Up onto ^(d) [ U'

where Up is obtained from a in the same way as Up from F. Theorem III is proved!

IV

14. Holomorphic reduction to normal forms, m>_^.

We terminate this paper with the necessary preparation for a proof (that we hope
to give later) of the stability of codimension 2m— 4 for Siegel domain type singularities
of vector fields on C"1, m>3 (see footnote (1) on page 8).

Theorem (IV.i). — Given, as before, near oeC™, the equations

dz dz.

dT : TT^^4"^9 ^J^VR^ zj==i,...,m (7), (34)

we can assume after a suitable holomorphic change of coordinates that the union V(F) of the Poincare

leaves and the axes equals the unperturbed set

V((T)=V={^: if{j^ ...J^=^: ^o}, then o^{\, ...,^)}.

This follows from the reduction to normal form:

Theorem (IV. 2). — Assuming (7), (34), there is a holomorphic change of coordinates

^=^•+^1. •••^J (35)

transforming (34) into

dw,
^=^.+^+x, (69)

such that ^(^i, ..., wj is in T, the ideal in the ring of convergent power series generated by

the monomials w^W{ for which oeJf^X,, \, \),

^j== 2; W,W^W{^{,
oe.^(\,x^) t K € ^K€

and /,(wi, ..., w^) is a sum of scalar multiples of terms, finite in number,

^-W, ...,<, ^L>0,...^>0,

for which S^ is a Poincare zero divisor:

•̂Q = 9i\ +... + qr\- ̂  = o (70)
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and there is an open half plane for some coeR:

{XeC : Re^°X>o} (71)

to which X^, ..., X, and Xj belong.

Corollary. — The theorem of Dulac [4]. This is the special Poincare domain case

o^J^Xi, ..., Xj, for which Y is empty, hence ^==o in (69).

Proof of VCV(F) in theorem (IV. i), from (IV. 2).

We shall assume that the vector field F has the form (69) with the condition of

theorem (IV. 2). The set V is a finite union of maximal linear subspaces, and we first

prove that any one of them, say Vo, is invariant under F. There is no loss of generality

in assuming that Vo is defined by equations

Vo : ^i^-'^^-o (72)

for some r, which implies that, for some <o,

\e{\: Re^X>o}, for ^<_i<_r. (73)

We have to prove that, on VQ, (72) implies that

dz.
—==0 for j^r+i.
a i

To see this substitute (72) in the right hand side of:

dz,
^=X,^+^,+^, j^r+i.

Then X .̂ = o; ^ = o because the definition of T implies that every term in ^' contains

one of the Z( for which Re^X^<o, that is i>r and ^==o; /,=o because if it has

a nonzero term ^==^1...^ then Re (^8^) =Re(^(^+ .. . +^.x,—X,))>o

and SJQ cannot be zero. Then the left hand side vanishes as well.

The nonlinear vector field F defines in the invariant part (73) of V a Poincare

domain vector field near o. So this part, like any part near o ofV, lies in V(F) and:

VCV(F).

We do not give the proof here of the stronger assertion:

V=V(F)

which is an elaborate calculation.

Proof of theorem (IV. 2). — As in § n we can obtain a (unique) formal solution

for ^ from equations (38) but now with the conditions

^Q=O if z^Y,

^.Q==O if z^eT or if 8^=0,

^Q==O if w^e^V or if 8,Q=t=o.

We have to prove that ^ is convergent near oeC" for j==i, ..., m.
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We first prove the

Lemma 9. — There exist »o>o and 8>o such that if

w^i^V, S,Q+O, ||QJ|=<7i+...+^"o,

then |^|>8.IIQ.II.

As uft==wj
1
... w'j'fV, q^>o, ..., g^>o, we conclude that X^, •••,\ are contained

in some open half plane { X :Re^*"X>o}. If X, is not in that half plane, hence

Re^Xj^o, then:

|8,J>Re^8,Q=Re^(^+.. .+^^-X,.)

^Re^(^+...+<7^)

^IIQH min(Re^,..., Re ̂ /^IIQIIS^o.

If X,, is in that half plane, hence Re e^^^C^o, then for ||Q,||>KO large:

|^|>Re^8,Q=Re^(^+.. .+<^)--Re^X,

^IIClll^-c^llQllfs,-^).
\ ^o /

We need to consider only a finite number of half planes, that is of values of o, and

can choose 8>o small and HQ big to satisfy lemma 9.

We make a preliminary change of coordinates by finite polynomials, to arrange

that S - Q will be o for ||QJ|^^o5 below. We can do this because we can do it in formal

finite power series.
Next we proceed as in § 12. In order to prove that ty is convergent, it suffices

to prove the convergence of ^ = S ] tyQ |. ̂ Q, hence of ^ = S ^n^ (where ^ is defined

as in § 12, which means ^== S l^'ol)? hence of u==u{w) defined by (the factor n

will be needed below!): I I Q I I = = n

wu==1, S nC^vf. (74)
3 n^no

(With respect to notation we recall that: iffi means w^1...!^, whereas w"' means

the n-th power of one variable w.)

For the calculation to follow we also observe that if we let w^ == w^. . . = w^ == w,

IIQ.II=^r^+...+^=^ then w^w^.^w^=wn, and

S^W ... ̂ -^(W ... <m^-^=^~l (75)

For example:

s s-y- = ,̂̂ -1.
| |Q | |=n \A 8W^ J J
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We study the solutions of (38) modified according to (69):

SS,Q^^+^+Z,=9^i+^ ...,^+^)-S^(^+^).

We replace coefficients of all formal power series in this equation by their absolute values,

delete all terms of the ideal Y that we see, use the lemma, and apply obvious majorations
to obtain (compare § n):

^IIQII.|^|.^<<S|8,^|^

^9,K+^i, ...,^+L)+(2^)(2x/). (76)

We sum (76) overj, substitute w^=w^ ...=;»„,== w, use (74) and (75) and apply

considerable majorations. We also use that, for some A()>O and A>o,

^sc"^-

and; SS-̂ S.̂ "-™,..-̂ ,,.
j k ^k 3^ ^

Then we find:

^^+^
i—A(w+wu) k K '

n ^A-i^^s^).
i—A^(i +u) k

 fwl
 '

(77)

S ̂  is a (finite) polynomial in w., that starts with terms of degree ̂ 2. Now compare (77)
00

with the equation for y=2z^^:

-^^-^ w
which has a convergent solution near w==o, because

ldv\
-r -AO+O.

\dw/w=o

For Ao>o big enough we obtain:

y,>^,, r^no

where Uy is the first nonzero term of the power series u.

Then by comparing (77) and (78) we find by induction on n : o<_u^<v^ and

also u is convergent. Then .̂ (j=i, . . . , m ) is convergent, and theorem (IV. 2)
is proved.
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