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THE TOPOLOGY OF NORMAL SINGULARITIES

OF AN ALGEBRAIC SURFACE

AND A CRITERION FOR SIMPLICITY

By DAVID MUMFORD

Let a variety V^ be embedded in complex projective space of dimension m.

Let PeV. About P, choose a ball U of small radius e, in some affine metric

ds
2 = S^2 + Srf^2, ^ == Xy + iy^ affine coordinates. Let B be its boundary and M = B n V.

Then M is a real complex of dimension w—i, and a manifold if P is an isolated

singularity. The topology of M together with its embedding in B (== a 2 772 — i -sphere)

reflects the nature of the point P in V. The simplest case and the only one to be

studied so far, to the author's knowledge, is where 72=1,772=2, i.e. a plane curve

(see [3], [14]). Then M is a disjoint union of a finite number of circles, knotted and

linked in a 3-sphere. There is one circle for each branch of V at P, the intersection

number of each pair of branches is the linking number of the corresponding circles,

and the knots formed by each circle are compound toroidal, their canonical decomposition

reflecting exactly the decomposition of each branch via infinitely near points.

The next interesting case is 72=2,772=3. One would hope to find knots of a

3-sphere in a 5-sphere in this case; this would come about ifP were an isolated singularity

whose normalization was non-singular. Unfortunately, isolated non-normal points

do not occur on hyper-surfaces in any Cohen-MacGaulay varieties. What happens,

however, if the normalization of P is non-singular, is that M is the image of a 3-sphere

mapped into a 5-sphere by a map which (i) identifies several circles, and (ii) annihilates

a ray of tangent vectors at every point of another set of circles. In many cases the

second does not occur, and we have an immersion of the 3-sphere in the 5-sphere. It

would be quite interesting to know Smale's invariant in ^(V^) in this case (see [10]).

From the standpoint of the theory of algebraic surfaces, the really interesting

case is that of a singular point on a normal algebraic surface, and m arbitrary. M is

then by no means generally S3 and consequently its own topology reflects the singu-

larity P! In this paper, we shall consider this case, first giving a partial construction

of 7T^(M) in terms of a resolution of the singular point P; secondly we shall sketch the

connexion between H^(M) and the algebraic nature of P. Finally and principally,

we shall demonstrate the following theorem, conjectured by Abhyankar:

Theorem. — T^(M) == {e) if and only if P is a simple point of F (a locally normal

surface); and F topologically a manifold at P implies T^(M) = (^).
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6 D A V I D M U M F O R D

i . — ANALYSIS OF M AND PARTIAL CALCULATION OF ^(M)

A normal point P in F is given. A finite sequence of quadratic transformations

plus normalizations leads to a non-singular surface F' dominating F [15]. The inverse

image of P on F' is the union of a finite set of curves E^, Eg, . . ., E^. By further quadratic

transformations if necessary we may assume that all E^ are non-singular, and, if i 4=^5

and E^.nEy=)=0, then that E .̂ and E .̂ intersect normally in exactly one point, which

does not lie on any other E^;. This will be a great technical convenience.

We note at this point the following fundamental fact about E^ : the intersection

matrix S=((E^..E.)) is negative definite. (This could also be proven by Hodge's

Index Theorem.)

Proof. — Let H^ and Hg be two hyperplane sections of F, H^ through P, and Hg

not (and also not through any other singular points of F). Let (y)=H^—Hg.

Let H^ be the proper transform of H^ on F', and H^ the total transform of 1-4.

Then Hg^H^+S^E^, where m^>o, all i (here m^ is positive since m^===ord^.{f),

f a function that is regular and zero at P on F, and moreover P is the center of the

valuation of E .̂ on F).

Let S' = ((m^ E^. m • E • ) ) == M. S. M, where M is the diagonal matrix with M^ == m^.

To prove S' is negative definite is equivalent with the desired assertion. Now

note [a) S,,^o, if i^j, (6) IS;,==S(^E,.^,E,)=—(H,.m,E,)^o, all j\ For any
i i

symmetric matrix S', these two facts imply negative indefiniteness. To get definiteness,

look closer: we know also {c) SS^<o, for some j (since H^ passes through some E^),
i

and {d) we cannot split (1,2, .. ., n) == (^, ig, . . ., 4) u (j\, j^ . . . ,j^) disjointly so

that S .̂ ==o, any <2, b (since UE^. is connected by Zariski's main theorem [16]). Now

these together give definiteness: Say

o==Sa^a.S-==2a?S^+2 S a,a.S-
ij ' i<j

=I(IS;,)a^SS;,(a,--a,)2

where a^ are real. Then by (c), some a.==o, and by (rf), o^==a •, all i, j.

Our first step is a close analysis of the structure ofM. We have defined it informally

in the introduction in terms of an affine metric (depending apparently on the choice

of this metric). Here we shall give a more general definition, and show that all these

manifolds coincide, by virtue of having identical constructions by patching maps.

In the introduction, M is a level manifold of the positive 0°° fen.

^- |Z^+...+|ZJ2,

(Z^ affine coordinates near PeF). Now notice that M may also be defined as the level

manifolds o f p
2 on the non-singular F' (p2 being canonically identified to a fen. on F'). It

is as a "tubular neighborhood" of UE^.cF' that we wish to discuss M. Now the general

problem, given a complex KcE", Euclidean 72-space, to define a tubular neighborhood,
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THE TOPOLOGY OF NORMAL SINGULARITIES OF AN ALGEBRAIC SURFACE 7

has been attacked by topologists in several ways although it does not appear to have

been treated definitively as yet. J. H. G. Whitehead [13], when K is a subcomplex

in a triangulation of E", has defined it as the boundary of the star of K in the second

barycentric subdivision of the given triangulation. I am informed that Thorn [n]

has considered it more from our point of view: for a suitably restricted class of positive

C°° fens./such that /(P)=o if and only if PeK, define the tubular neighborhood

of K to be the level manifolds /=e, small e. The catch is how to suitably restrict/;

here the archtype for/-1 may be thought of as the potential distribution due to a uniform

charge on K. In our case, as we have no wish to find the topological ultimate, we shall

merely formulate a convenient, and convincingly broad class of such/, which includes
the p

2 of the introduction.

Let us say that a positive 0° real fen. / on F' such that /(P) =o iff PeE,, is
admissible if

1) VPeE,—^E,, if Z=o is a local equation for E. near P, /== [ Z[2"*.^, where.?

is C°° and neither o nor oo near P.
2) If ^^E.nE,., and Z = = o , W = o are local equations for E.., E, respectively

then /= | Z \
2ni

. | W|2"'.^, where g is C" and neither o nor oo near P...

The following proposition is left to the reader.

Proposition: (i) IfF" dominates F', and/is admissible for UE,on F', and g : ¥ " - > ¥ '

is the canonical map, then Jog is admissible for ^^(UE;) on F'.

(ii) For a suitable F" dominating F', p
2
 is an admissible map for ^-^UE..).

Let me say, however, that in (ii), the point is to take F" high enough so that the

linear system of zeroes of the functions (Soc.Z;) less its fixed components, has no base
points.

What we must now show is that there is a unique manifold M such that, if/ is

any admissible fen., M is homeomorphic to {P|/(P)=g} for all sufficiently small e.

Fix a fen./to be considered. Notice that at each of the points P..,, there exist real C"
coordinates X,,., Y,,, U..,., V,,., such that

/^(X^.+Y^^.+Vl^a,,

a .̂ a constant, valid in some neighborhood U given by

X|+Y^<i

ui+vi<i.
Assume E. is X,,=Y.,==o, and E, is U..,=V,,=o.

Our first trick consists of choosing a C" metric (A)2 (depending on /), such
that within

^,JXi.+Y^<i/2

(U.+V^i/a '

ds^d^+dY^+du^+d^.
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8 D A V I D M U M F O R D

Such a metric exists, e.g. by averaging a Hodge metric with these Euclidean

metrics by some partition of unity. Now let

N, S,

"z and ^
Y Y

E, E,

be the normal 2-plane bundle to E, and normal S^bundle to E, in F' respectively.

Consider the map (exp),: N,->F' obtained by mapping N, into F along geodesies

perpendicular to E^. Let f, ==/o(exp),. Now for every point Q e E , — U ^ E , there

is a neighborhood W ofQeE^ and an s^ such that if £<2;o, the locus j^(P) ==£, TT,(P) eW

cuts once each ray in TT^^W) (because f^i is a well-defined pos. C00 fen. vanishing on

the zero cross-section, with non-degenerate Hessian in normal directions; this is the

standard situation of Morse theory, see [9]). Consequently, for any WcE, open,

such that E^.nW=0, ;'=f=z, there isans^ such that ifs<£o, the locus f(P) ==s canonically

contains a homeomorphic image of ^""^W) (recall (exp), is a local homeomorphism

near the zero-section ofN^-). Therefore, we see that the manifold M for which we are

seeking a definition independent of/, is to be put together out of pieces of S,; we need

only seek its structure near P^.. Let us therefore look in U'. Let us fix neighborhoods

U,,ofP,,eE, and U,, of P,,eE, by (U^.+Vi)<i/4 and (X|+Yi)<i/4 respectively.

Let E ; = E ^ — U U ^ for all L Now choose ^a^./y^ and so that if £<CO,/(P)=£
f ^ K

contains (^(E,*) and (^(E^*) canonically. Then in the local coordinates in U' about

P.,, ^(8E;)c{P|/(P)=s} equals

|(X,,, Y.,, U.,, V.,) m.+V^.= 1/4, X^+Y^^y'"'
î

and ^-^E;) c{P | ./(P) = s} equals

I / A^ \ ̂ l}

(X,, Y,,, U,, V,) |Xi+Y^=i/4, H.+VI- ̂
( \ ̂  I

(because of the Euclidean character of the metric ds
2 near P^, exp, takes the simplest

possible form!). Note [4^) '<i/8. Therefore, we see that ^-'(E^) and ^"'(E;)
\ a^' /

are patched by a standard "plumbing fixture":

{( ,̂ u,v)\{x2+f) ̂  1/4, (^+^2) ^ 1/4, [x2+f)n.{u2+v2)m=^<l|6n^m}

where n and m are integers.

One sees immediately that this is simply S1 X S1 X [o, i], and if we set M^ = ̂
1 (E,*),

then it simply attaches c)M^ to 8M^ Moreover, what is this attaching? There is a

coordinate system on both 8M.^ and 8M* via
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THE TOPOLOGY OF NORMAL SINGULARITIES OF AN ALGEBRAIC SURFACE 9

/—===, -——^==\ = ^ eS1 (in the usual embedding in E2)
^ \ /Y2 -L Y2 t /V2 -L V2 /
\V A^ + ^ i j V ^ij + Y^/

, "? -, . ^ — } ==Y] eS1 (in the usual embedding in E2)
/L^.+V2 V/U^.+V2,/— ̂  i • 19 v -' i] i • »^ /

and relative to these coordinates, the attaching is readily seen to be the identity. To

complete the invariant topological description of M, we need only to show that the

cycles {(S, T]^) [S^S1, ̂  fixed} and {(^, Y]) [So fixed, T] eS1} are invariantly determined

(since an identification of 2 tori is determined up to isotopy by an identification of a basis

of i-cycles). But on M^ for instance, the ist one is just the fibre of Ŝ . over a point

ofE^, and the and is the loop ^E^ lifted to S, so that it is contractible in ^^(U^); similarly

on M *̂, but vice versa.

This determines M uniquely. We have essentially found, moreover, not only M

but also for any fixed f, maps

<p :M-.UE,

^:{P|o</(P)^s}-^M

where ^ induces a homeomorphism of any {P[ /(P) =£'^e} onto M. Namely, define 9

on Mj by ^: projection into E .̂, and in IP near P .̂, define it as follows (fig. i):

<p((X,, Y,, U,,, V,)) = (o, o, U,,, V,)eE, ifU^.+V2.^ 1/4

=(o,o,^U,,,^V,)eE, ifX^+Y^H.+V2.^

=(^X,,^Y,,,o,o)eE, ifU^.+V^X^.+Y^i/4

=(X,,,Y,,,o,o)eE, ifXt+Y^i/^

where p^^+^ U^+V|)

^=T(T4+Vt,X^+Y|)

and where ^a, ?) = P-a ^

i — 4 a

As for ^, away from ?„, define ^ by first (exp)^"1, then the projection of N^—

(o-section) to S^, and then the identification ofS^. into M$ near P,., define it by identifying

those points whose ^ and T] coordinates are equal, and that have the same image in

E^uE^. under the map 9.

Note that 9 induces a map 9 : T^(M)—^(UE^), which is onto as all the "fibres"

are connected (
1
). In order not to be lost in a morass of confusion, we shall now restrict

ourselves to computing only H^ in general, and 7^ only if TI^(UE^) == (^). Note thats

this last is equivalent to (a) 1\ connected together as a tree (i.e. it never happens

E^nE^+o, E^nEg+o, . . ., E^_inE^=(=0, E^nE^=j=0 and A;>2 for some ordering of

the E^s), (^) all E .̂ are rational curves.

First, to compute H^(M), start with H,(UE^). Let UE^, as a graph, be ̂ -connected,

(1) M is, of course, not a fibre space in the usual sense. However, the map <p^ in question is onto for any
simplicial map such that the inverse image of every point is connected.

233



io D A V I D M U M F O R D

i.e. there exist some P^, ..., Pp such that if these points are deleted from UE,, then UEi

becomes a tree, but this does not happen for fewer P,. Choose such P,, and to U E, — U P,,

for each P^ add two points P '̂ and P^', one to each Ey to which P^ belonged. The result,

T, is, up to homotopy type, simply the wedge of the (closed) surfaces E^ (1). U E^ is

itself obtained from T by identifying thep pairs of points P^, P,"; therefore up to homotopy

A^+y^

Bsi^+v2

Fig. i

type, it is the wedge of E, and p loops. Therefore H^(UE,) =ZP+2S;^, where & is the

genus of E^.

Now 9^ induces an onto map H^(M)->H^(UE^), by passing modulo the commu-

tators. Let K be its kernel. Let o^ be the loop or cycle of M consisting of the fibre of

M over some point in E^— Uy ̂  ̂  Ey with the following sense: iff^ == o is a local equation for E^,

r«. _ , „-•\j^-•/ oc.i J z

or equivalently a, as a loop about the origin of a fibre of the normal bundle N, to E^

should have positive sense in its canonical orientation. I claim o^ generate K, and

their relations are exactly 2(E,.Ey)ay==o, z= i, ..., n.

(1) For example, proceeding surface by surface in any order, we may deform the complex UE^ so that all
the E. which meet some one E^ meet it at the same point.
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THE TOPOLOGY OF NORMAL SINGULARITIES OF AN ALGEBRAIC SURFACE n

Proof. — First introduce the auxiliary cycles (B,, on (p - l(E^=M^, whenever

E^ n Ey = (?„•) =(= 0. Namely, move the cycle a. along the fibres until it lies on 9 ~1 (?„•) c M, 3

and there call it (B^. By my construction of the patching of M^ and M-, we know

that P .̂ is what I called T], while a, is ^. Now compute the subgroup K, of H^(M,)

defined by
o-^K,^H,(M^H,(E,)->o

o->K——^Hi(M)->H,(UE,)->o.

As above, let V,y be a small disc on E, about P^, and E^=E,—UU^,

and M^==9-1(E^). Then M^ is a deformation retract of M^ and is, on the one hand

canonically the restriction of the bundle S^ to E^*, and on the other hand uncanonically

homeomorphic to S^E,". In this last description, o^ is canonically identified to

S1 x (point), while (B^ are identified to (point) x ^(U^-) only up to adding a multiple ofo^..

Therefore we see that K^ is generated by oc^, (B^., with one relation (1)

l(B^+Na,==o, some N.
j

To evaluate N, note that (B .̂ considered as cycles in S^ are locally contractible (i.e. in

the neighborhood of ^~
1
('P^) described by my plumbing fixture). It is well known

that when the oriented fundamental 2-cycle of E^ is lifted to S,, its boundary is (E?)oc^.

Therefore, this same lifting in M^ will have boundary Sp^+(Ef)a^. Now by the
j

Mayer-Vietoris sequence, H^(M) is generated by H^(M,), hence K is by K^, and has

extra relations imposed by the identification of cycles on M^nMy. Since H^(M,nM^)

is generated by ^ and (3.,, these relations are implicit in our choice of generators.

As a consequence of our result, since det(E^.E^) ==(i=[= o, K is a finite group of

order [A, and is the torsion subgroup of H^(M).

Now consider the case E^ rational, and UE^ tree-like. We shall compute T^(M),

using T^(M^) as building blocks. In order to keep these various groups, with their

respective base points, under control, it is necessary to define a skeleton of basic paths

leading throughout E^. Let Q^eE^— U E. be chosen as base point in E^. On E^,
i ^ ' i -

choose a path ^ as illustrated in Diagram II touching on each P^.eE^.. Lift all the ^

together into M by a map J, so that 9(^(^)) ==4'? an(^ so ̂ ^ at P"1^')? ̂ i)^^) +0-
Choose, e.g. ^(Q^i) as base point for all of M. Let G==U^- . Now the lifting s enables

us to give the following recipe for paths a^:

1. Go along J(G) from ^(Q^i) to a point P in M,.

2. Go once around the fibre of M^ through P in the canonical direction explained above.

3. Go back to J(Q,i) along s(G).

(1) In the map Hi(E^)->H^(E^), the kernel is generated by {3(U^-)} with the single relation 2^^(U^-) ==

3 (fundamental 2-cycle of E.) r^o,
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D A V I D M U M F O R D

This is clearly independent of the choice of P.

Our result can now be stated: firstly, the o^ generate T^; secondly, their only

relations are {a) o^ and o^ commute if E^nE^=j=0, (&) if ^= (Ef), and E .̂ , E .̂ , .... Ey

are those E .̂ intersecting E^, written in the order in which they intersect 4-, then

e==^^ ...,oc,^.

To prove this, we use the following theorem of Van Kampen (see [8], p. 30):

if X and Y are subcomplexes of a complex Z, and Z == XuY, while XnY is connected,

then T^(Z) is the free product of T^(X) and T^(Y) modulo amalgamation of the sub-

Fig. 2

groups T^(XnY). Now since E^ is tree-like, M can be gotten from the M^ by successively

joining on a new M^ with connected intersection with the part so far built up. Let T^(MJ

be mapped into TT^(M) by mapping a loop in M^- with base point s[Q^^ to one in M with

base point ^(Q,i) by simply tagging on to both ends of it the section of^(G) joining these

two points. Then TT^(M) is simply the free product of the 7^(M^) with amalgamation

of the loops in M^nM . Now recalling the structure of M *̂, we have an exact sequence

that splits:

o^(Si)^(M;)^(E:)^o

(S1 the fibre of M,, a i-sphere). The path o^ is clearly a generator of^S1) here, and

hence in the center ofT^(M^).

Now the important thing to notice is that if E^ meets Ey, then o^ in ^(My) can

be moved by modifying the point P on J(G) where o .̂ detours around the fibre S1; in

particular, it may do this at j(^)nj(^.). In that position the loop o .̂ may be regarded

canonically as in T^(M,). Under the identification of T^(M^) to ^i(M^) and the

projection TT of this group onto T^(E^), what happens to the loop oCy ? Recalling the

patching map on the boundaries of M *̂ and My* which was examined above, we see that

this path proceeds along G from Q .̂ to near P^., then circles around the boundary ofLL-
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THE TOPOLOGY OF NORMAL SINGULARITIES OF AN ALGEBRAIC SURFACE 13

in a positively oriented direction, then returns along G to Q^. Referring again to our

diagram, we see the relation ^=71(0^) . 'rc(o^). . . . .Tc(ocy ). Now it is well-known that

these loops n{^) generate the fundamental group of the w-times punctured sphere,

and that this is the unique relation. Consequently, looking at the above exact sequence,

it is clear that o^, a - , . . ., a^ (when distorted into M .̂ as indicated above) generate T^(M^).

Moreover, the only relations among these generators are, therefore, that a, and o .̂

commute, and a, . . . . .a^. £7^(S1), i.e.=00^. But, using our results on H^(M), N=—(Ef).

It follows that o^ generate T^(M) with relations {a) and (&), and that the only

additional relations are those coming from the amalgamation of T^(M^nMy) ==Z+Z.

But o^ and a. are generators here, and as loops in M .̂ and My, these have already been

identified. Hence we are through, Q.E.D.

II. — ALGEBRO-GEOMETRIC SIGNIFICANCE OF Hi(M)

( a ) Local Analytic Picard Varieties and Unique Factorization.

We shall study in this section two questions of algebro-geometric interest in the

solution of which the topological structure of M, in particular its homological structure,

is reflected. The first of these is the problem of the local Picard Variety at PeF.

Generally speaking, this, as a group, should be the group of local divisors at P modulo

local linear equivalence to zero. (We shall be more precise below.) However, if by

divisor one refers to an algebraic divisor and by local one means in the sense of the

Zariski topology, one sees by example that the resulting group has little significance:

it is not local enough. Ideally, one should mean by an irreducible local divisor a

minimal prime ideal in the formal completion of the local ring of the point in question.

However, I have been unable to establish the structure of the resulting Picard group.

A compromise between these two groups is possible over the complex numbers. Take

as divisors analytic divisors, and the usual complex topology to interpret local. There

results a local analytic Picard variety that is quite accessible. In this section, we shall

first analyze the group of local analytic divisors near U E^ modulo local linear equivalence

and then consider the singular point P. Here by local analytic divisors we mean formal

sums of irreducible analytic divisors defined in a neighborhood of U E^ (including the

divisors E, themselves). Such a sum, S^D,, is said to be locally linearly equivalent

to zero if there exists a neighborhood UofUE^ where all D^ are defined and a meromorphic

function/on U such that f/) ==2n,(D^nU). This quotient we shall call the local analytic

Picard Variety at UE,, or Pic (UE,).

Denote by Q the sheaf of germs of holomorphic functions on F'; by ^cO. the

sheaf of germs of non-zero holomorphic functions. One has the usual exact sequence:
exp(2TO'a;) »

o->Z-^ ——> Q ->o

where Z is the constant sheaf of integers. Let TC: F'-^F be the regular projection

from the non-singular surface F' to the singular F.
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14 D A V I D M U M F O R D

Proposition. — PK^UE^^R1^)^*)?.

Proof. — Define PK^uE^-^R1^)^*)?, by associating to S^D,, defined

in UDUE,, the following i-cocycle: assume PeV, n^V) cU, assume fy is a

local equation for S^D, in V,, {V,} a covering of V, then U^J^H^V,}, (T)

induces an aeH^Tir^V), £T), hence an a^R^KQ^v, hence an ^(R^O*)?.

It is well known that aeH^TTT'^V), tV) is uniquely determined by S .̂D,, hence

so is a".

To see that 2^D,->a" is i — i, say a"=o. Therefore 3V cV say, Res^a'^o,

i.e. Res^-i(v/)(a) ==o. Therefore the covering [V^nTr'^V')}^^'} has a refinement{V^}

such that there exist non-zero functions g^ on V^ such that g^ /^ ==/^ /./^ (for some

map T from the indices of{V^} to those of{Vj such that V^cV^). Therefore /=JTfc

defines a function throughout TT'^V) such that (/) =S^D,. ^

To see that S^D^a" is onto (R^H*)?, let ^^(R^)^)? be represented

by peH^Tr'^V), 0*) and let this define the line bundle L over TT'^V) in the usual

way. Let / be the sheaf of germs of cross-sections of L: a coherent sheaf. Now by

a result of Grauert and Remmert (cf. Borel-Serre [2], p. 104), (R°7r)(^) is coherent

on F. But (R°TT:)(^) is not the zero sheaf on F (at all points Q+P, /(^{^
Q
'^)[/)q),

hence there exists some element Se(R°T:)(^')p, S=t=o. S corresponds to a section

in /^-^'^ for some open V'9P,V'cV. Therefore, the line bundle 'L\n~
l
(y) has a

section S. But if (B is represented by a cocycle^ with respect to a covering {V^} of V,

then S is given by a set of holomorphic functions^ on V^ such that fj=fi{fi-)' It

follows that fi=o define a divisor which is represented by p.

A. Grothendieck has posed the problem, for any proper map f : V^-^Vg (onto),

to define a relative Picard Variety of the map f. It seems clear, in the classical case,

that if Q* is the sheaf of holomorphic units on V^, (R^)^*) is the logical choice

although no nice properties have been established in general so far as the writer knows.

In our case, (Py)^"^, for Q/+=P, is simply (i), but at P, we have seen it to be Pic(UE,).

We now wish to show that in our case, (R1/)^*)? is an analytic group variety. This

is seen by the exact sequence for derived functors:

o -> (R°TT) (Z) -> (R°^) (i2) -^ (R°7r) (Q*) ->

-^ (R^) (Z) ̂  (R^) (Q) -^ (R^) (tT) ̂

-^R^KZ)-^...

(i) Note first that if A:e(R°7r)(Q*)p, then x is a non-zero function on Tr"1^),

PeV, and necessarily constant on UE^. which is connected and compact, therefore,

at least on some TC^V'), PeV /cV,.y=exp (27^), y a holomorphic function on Tr'^V'),

hence A:=9(j),^e(R°7r)(Q)p.

(ii) Note secondly that (RSr^Z^H^UE,, Z), since for PeV, V small, ^(V)

is contractible to UE^.
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(iii) Note thirdly that if i>o, {R
i
'^:){Q.)^=={o) for Q+P, and being a coherent

sheaf, for Q^= P must be a finite dimensional vector space over C.

(iv) Note fourthly that if yeH^UE,, Z^R^^Z)?, there exists ae(R17^)(n*)p

such that ^a=y. To show this, note that H^UE^, Z,)^^, {n== number of irreducible

curves in UE,) with generators y^ whose value on the 2-cycle Ey is 8,y; it is enough to

verify it for the generators y^-. But let D^ be an irreducible analytic curve through

Q^eE^.— U E^, with a simple point at Q^ and tangent transversal to that of E .̂ at Q .̂ If
j ^ i

D^-xx^R1?!)^*), I claim (po^==Y^. This is left to the reader. Therefore, we obtain

o-.H^UE,, Z^R^O^p-^Pic (UE^-.H^UE,, Z)->o

?1
C^ some N.

(v) Note lastly that 7 maps H^UE^, Z) into a c/oW subgroup of (R^)^)?,

hence the connected component of Pic(UEJ is an analytic group. If this were false,

there would be a real sum of elements of H^UE^., Z) that was zero without having to

be, i.e. {^^^(TT"1^), R) (with respect to some covering {U^-}) such that {a^}^o

in the sheaf 0. (in some n~
l
(y

rf
), V'cV). In other words, a^=/^—fy, f^ holomorphic

in U,. But let p^ be a real, C00 function on U .̂ such that o^r==A—^ (Poincare's lemma).

Then f^—j^.=F,rf^==(o and ^.==7], are defined all over Tc""1^'), co—7]=rfF. I

claim actually all the periods of T] are zero (which implies ^=df, and {a^}^o in

H^UE^, R) and we are through). First of all, the periods off] equal those of co. Look

at its periods on the i-cycles of any E^: since T] is real, all the periods of the holomorphic

differential co are also real. But it is wellknown that then all the periods of co must

be identically zero, and therefore co reduces to ^ero on paths in E^. Since this is true

for all z, co has no periods along any path in UE^, and since Tc~ l(V /) is contractible to UE^.,

(o has no periods at all. Therefore neither does Y] and we are through.

There is another way of looking at Pic(UE,). Namely, let o be the local ring

of (convergent) holomorphic functions at P, i.e. (R°7r)(^)p (by the theorem of Riemann,

cf. the report of Behnke and Grauert ([i], p. 18)). Now every divisor D' in n^V),

except for the E/s, defines a divisor D in V, hence a minimal prime ideal p in 0. Let us

set Pic(P) equal to the group of ideal classes in o: i.e. to the semi-group of pure rank i

ideals a ofo, modulo the principal ideals (1). Then the association of D to p defines a

map from Pic(UE^) -»Pic(P), (if we define the image of each E, to be (i) , the identity).

This is quite clear once one sees that every meromorphic function^m '^:~
l
(y) is a quotient

(1) The composition law is the "Kronecker" product treated so elegantly by Hermann Weyl [12], cf. chapter 2,
namely:

(a, 6) —> rank i component of a. 6

= U (a.6) :m»1

n=l
where m = maximal ideal of °

(:) == residual quotient operation.
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16 D A V I D M U M F O R D

of two holomorphic functions in some ^(V'), V'cV: but given/, consider the coherent

sheaf / given by {g\[fg) is a positive divisor}. (R°7r)(^) is coherent, hence there

exists ^(R0^)^)?, and if /^== ̂ , then f==g^lg^ is the desired decomposition. Now

the map Pic(UE,)-^Pic(P) is onto as every minimal prime ideal pco defines some

divisor through P. Its kernel is immediately seen to be generated by the E, themselves.
Hence we see

Proposition:
 l v i)

 ̂  Pic(P)
{^•EJ

Corollary. — We have

o -> HI(UE,, Z) -^ (Rirr) (Q)p ̂  Pic(P) -> H,(M)o -> o

where H^(M)()== torsion subgroup ofH^(M) and ^ associates to the divisor D through P,
the i-cycle DnM.

Proof of Corollary: Note that S^E, is never in the image of (R^)^)? since that

would require (S^E,,E^.)=o for all j. To see the exactness at ^, note that the

co-kernel of 9 is obtained by associating to a divisor STZ.D^ (where we may assume

E,nE^.n (USuppD^) =0, all i^j) the formal sum

I (I^A.E,)Y. modulo W.E,)^,
k \ i I k )

the Yft as in (iv) above. But ^ is given by associating to S^.D,, the element

S(2^D,.E,)a,,

in terms of our basis for Hi(M)o in (I); but by our enumeration of the relations on the oc^

we see y^ can be interchanged with oc^.

Do these results have purely algebraic counterparts? First, note that it is hopeless

to expect that the ideal structure of Og (== algebraic local ring of P on F) will reflect the

homology of the singularity so well. This is seen in the following example: Take a

non-singular cubic curve E in the projective plane, and let P^, .... P^ be points on E

in general position except that on E the divisor S^P,=5 x (plane section). Blow up

every point P, to a divisor E,, and call F' the resulting surface. On F', the proper

transform E' of E is exceptional: it is shrunk by the linear system of quintics through

the P .̂. Then E^—E^. as a divisor in Pic(E') is in the component of the identity, but

as an algebraic divisor is not algebraically locally equivalent to zero: in fact F' is regular,

hence algebraic and linear equivalence are the same, but since Tr^ (E,— Ey) ̂  o, E,— E.
is not locally linearly equivalent to zero.

However, I conjecture that the ideal class group of o* (= completion of Oo and o)

is identical to that of 0, and that sums of formal branches through UE^. modulo holomorphic

linear equivalence (in the sense of Zariski [17]) gives Pic(UE,). If this is so, it should

give Pic(UE^) an algebraic structure, which would be a decided improvement on our

results. At present, I am unable to prove these statements.
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( b ) Intersection Theory on Normal Surfaces.

We consider here the problem of defining, for divisors A, B through P on F, {a)

total transforms A', B' on F', and (6) intersection multiplicities i(A.B; P). This

problem has been posed by Samuel (see [7]) and considered by J. E. Reeve [19]. In

this case, I suggest the following as a canonical solution:

a) To define A'^AQ+S^E^., where Ao is the proper transform of A, require

(A\E,)==o,z==i, 2, . . . , T Z ,

or

(AO.E,) +Sr,(E,.E,) =o, z= i, 2, ..., /z.

Since det(E^.E.) =^=(=0, this has a unique solution.

b) To define z(A.B; P), set it equal to

(A'.B') over P

== S [^(Ao.Bo;P')+S^(E,.Bo;P /)]
P'overP

= S [i(Ao.Bo;P')+S^-(Ao.E.;P')]
P'overP

where
jA'^Ao+Sr.E,; B^Bo+S^.E,.

We note the following properties:

(i) A=(/)F, then A
f
=={f)^, hence A=B implies A'=B\

Proof. -For ((/)?.. E,) =o.

(ii) A effective, then all r^ are positive.

Proof. — Say some r,<o. Say also r^m^<_r^m^ allj, where the Hiy are the same

as in the proof of negative definiteness. Then we see:

o^Sr,(E,.E,)=Sr,/m,(m,E,.E,),
i i

^r,/m,S(^E,.E,)^o.

Therefore, if E,nE^=t=0, r^m^r^m^ and r^o. As UE, is connected, this gives

ultimately r^m^=fi, independent of i. But then also (SwyE^.E,) ==o, all i, which

contradicts property (c) in the proof just referred to.

(iii) i(A.B; P) is symmetric and distributive.

(iv) A and B effective, then ^'(A.B; P) is greater than o.

(v) i(A.B; P) independent of the choice of P.

Proof. — To show this, it suffices, since any two non-singular models are dominated

by a third, see Zariski [15], to compare F' with F" gotten by blowing up some point P'

over P. But let A', B' be the total transforms of A, B on F', and A", B" those on F",

and let T be the map from F" to F'. Then with respect to T, A" is the total transform
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18 D A V I D M U M F O R D

of A' on F", and B" that ofB'. In that case it is well-known that, for any point set S in F'

(including all the points of any common components of A', B'), (A'.B')g=== (A^.B'^-i/g).

(vi) A' is integral if and only if 2 (A^. E,) a, == o in H^(M).

Proof. — S(Ao.E,)a,==o if and only if there are integers ky such that

(Ao.E,)=2A,(E,.E,),

i.e. if the relation S(Ao.E,)a,=o is an integral sum of the relations defining H^(M).

But this is equivalent to (AQ+S^.E^.E,) ==o for all i, i.e. A'==Ao+2A;,E,, ^.integral.

QJE.D.

The element S(Ao.E,)a, has this simple interpretation: if M is chosen near enough

to P, it represents the i-cycle AnM. We see that this is again the fundamental map:

(Group of Local Divisors at P)-^H^(M) considered in the final corollary of part {a).

By the results of part {a), moreover, we can interpret (vi) as saying: A' is integral if and

only if A is locally analytically equivalent to zero (i.e. A is in the connected component

of Pic (P)). Essentially, our definition of intersection multiplicity on a normal surface

is the unique linear theory that has the correct limiting properties for divisors that can

be analytically deformed off the singular points.

III. — THE CASE ^ (M) == [e)

We shall prove the following theorem, stronger than that announced above:

Theorem. — Let F be a non-singular surface, and E,, i== i, 2, .. .3 n, a connected

collection of non-singular curves on F, such that E.nE is empty, or consists of one

point on a transversal intersection, and E^nE^nE^ is always empty. Let M be a tubular

neighborhood of UE,, as defined in section I. If {a) T^(M) =(<?), and {b) ((E,.E^.))

is negative definite, then UE, is exceptional of first kind, i.e. is the total transform of

some simple point on a surface dominated by F and birational to it.

Proof. — As above, T^(M) = [e) implies that all E, are rational, and connected

together as a tree. Now suppose that UE, is not exceptional of first kind. Assume

that among all collections ofE, with all the properties of the theorem, there is no collection

not exceptional with fewer curves E,. As a consequence, no E, of our collection has

the two properties {a) (E,2) = — i, {b) E, intersects at most two other Ey. For if it did,

one could shrink E, by Castelnuovo's criterion, preserving all the properties required

(that the negative definiteness is preserved is clear as follows: the self-intersection of a

cycle of the E .̂'s on the blown down surface equals the self-intersection of its total transform

on F which must be negative). We allow the case where there is only one E,. Now

the central fact on which this proof is based is the following group-theoretic proposition:

Proposition. — Let G,, z = = i , 2 , 3 , be non-trivial groups, and a^ an element

of G,. Then denoting the free product of A and B by A*B, it follows

G^G^Gg/modulo {a^a^=e) is non-trivial.
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Proof.—First of all, if oo^ n^ n^ n^> i, then Z^ *Zy, *Z^ l(a^a^=e) is non-trivial,

where Z^ denotes the integers modulo A, and each ^ is a generator. For, as a matter

of fact, these are well-known groups easily constructed as follows: choose a triangle with

angles TT/T^, TT:/^, and TT/T^ (modular if some ^=00), in one of the three standard

planes. Reflections in the three sides of the triangle generate a group of motions of

the plane, and the group we seek is the subgroup, of index 2, of the orientation preserving

motions in this group. Secondly, reduce the general statement to this case by means of:

(#) If 72= order of a^ in G^, and a^ is identified to a generator of Z^CG^, then

G^G^G^I{a^a^==e) trivial => Z^G^G^I{a^a^==e) trivial.

To show this, let Vi.==G^G^I {{0^0^=0), and note that H is isomorphic to

Z^G^G^I{a^a^==e). Let n' be the order of a^ in H. Then G^G^G^I(a^a^==e)

is the free product of GJ{d'[ '==e) and H with amalgamation of the subgroups generated

by a^ and a~['
1
. But by 0. Schreier's construction of amalgamated free products

(see [5], p. 29) this is trivial only if H is, hence (#). Now the proposition is trivial if

any a^==e', hence let n^= order (^-)> i. By [#) iterated, G^G^G^{a^a^==e) trivial

implies Z^ *Z^ *Z^ l{a^a^==e) trivial, which is absurd. Q.E.D.

Returning to the theorem, we wish to show the absurdity of T^(M)==(^), while

no E^ is such that (a) (E?) = = — i , and (&) E^ meets at most two other Ey. There are

two cases to consider: either some E^ meets three or more other Ey; or every E^ meets

at most two other Ey (this includes the case of only one E,).

Case 1. — Let E^ meet Eg, . .., E^, where m is at least 4. For 1=2, 3, . .., m,

let T^ be the set of E^s (besides E^) such that E .̂ is connected to E^ by a series of E^

other than E^. The T/s are disjoint. Let M, be the manifold bounding a

neighborhood of T^ as above. Let G^TT^M^-), and G =TT^(M) /modulo 04==^, where 04

represents, as in (I), the loop about E^. Then by the results of (I),

G=Ga*G3, . . ., *GJ(a2(X3.. . .. a^==^),

if the G, are ordered suitably, and â . in G, represents a loop about E .̂. Now m>_^

and T^(M)=(^), hence G==(^), hence by the above theorem, there exists an i (say

i==2) such that G^==n^M^) == (^). By the induction assumption, the tree of curves Tg

is exceptional of first kind. Therefore, by Zariski's theorem on the factorization of

anti-regular transformations on non-singular surfaces (see [18]), some Ey in Tg enjoys

the properties (a) and (b) with respect to Tg. Then E .̂ would also enjoy them in UE,

(which is impossible) unless E^Eg, in which case Ey could meet only two other E ;̂

(say E^i, E^g) in Tg, but would meet three other E^ in UE,. Pursuing this further,

apply the same reasoning to the curve Eg which meets exactly three other E^. Again,

either some curve shrinks, or else either E^, E^.^? or
 ^m+2 ^as ln ^Y case property (<z),

i.e. self-intersection — i. But then compute ((Eg^- E^)2) (i == i, m + i, or m + 2 according

as which E^ has property (a)), and we get o, contradicting negative definiteness of the

intersection matrix.
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Case 2. — It remains to consider the case where no E^ intersects more than two

others. Then the E .̂ are arranged as follows:

• • •

Fig. 3

In this case, it is immediate that T^ is commutative, hence ==Hi. It is given (in
additive notation) by the equations:

^i — a^ . . . . . . . . . . . =o

—ai+^ag — 03 . . . . . =o

— ocg+A^. . .... ==o

—O^-i+^nO^
 =

 °3

where A:,=—(E?). Assume all k^2, and prove

(
k^ — i o o . . . . . . . . O x

—i A;2 —i o . . . . . . . . o ^
pi=det o —i k^ — i . . . . . . . . o )>i ,

o. . . . . . . . . o -i V

hence the equations have a solution mod (JL. To show this, use induction on n, using

the stronger induction hypothesis k^> i, k^ ..., k^> 2, allowing k, to be rational. Then
note the identity:

/ k^ — i o . . . o \ / (^— i/^) — i . . . o

—i k^ — i . . . o ^ , , f — i A ; o . . . o
det 2 =^det 3

\ 0 . . . . . . . . . . — I k^/ \ o . . , . . . — i ^

This completes the proof of our theorem.

Corollary. — Pa normal point of an algebraic surface F. IfF has a neighborhood U

homeomorphic to a 4-cell, P is a simple point ofF.

Proof. — Let W be the intersection of an affine ball about P with F, as considered

in the introduction, and so small that its boundary M lifted to a non-singular model F7

dominating F qualifies as a tubular neighborhood of the total transform of P. It suffices

to show that 7Ti(M) == (^), in view of the theorem just proven. Let U' be a 4-cell-

neighborhood of P contained in W, and let W be an affine ball about P contained

in U'. We have constructed in section I a continuous map ^ from U'— (P) to M that
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induces the canonical identification ofM as the boundary ofW to M (as the boundary

of W). Therefore if y is any path in M, regard y ^ a path in the boundary of W; as

a path in V—(P) (which is homotopic to a 3-sphere) it can be contracted to a point;

but then ^ maps this homotopy to contraction of y as a path in M. Q.E.D,

IV. — AN EXAMPLE

It is instructive to note that there exist singular points P, for which H^(M) = (o),

while, of course, TC^(M) 4= (^). Take P to be the origin of the equation 0=^+^4-^5

where p, q, and n are pairwise relatively prime. Look at the equation as — (^)71 = x^ -\-y^\

this shows that M is an Tz-fold cyclic covering of the 3-sphere | x |2 + \y |2 == i? x,jy complex,

branched along the points x
p
-\-Jy

q
==o, i.e. along a torus knot, K, in S3. Therefore M

is a manifold of the type considered by M. Seifert [20], p. 222$ he shows H^(M) = (o).

The singular point o == x
2
 -{-jy

3 + ̂  is of particular interest as illustrating the

possibility of a singular point on a surface whose local analytic Picard Variety is trivial

contrary to a conjecture of Auslander. To show Pic(P) (P= (0,0,0)), is trivial

amounts to showing (R17^;)(Q)p== (o), where TT: F'->F is the map from a non-singular

model to o==A:2+J/3+^5 (since we know H^(M) == (o) already). Let us choose a

slightly better global surface F (our statement being local, we are free to choose a

different model ofA(F) outside a neighborhood ofP): namely take F() to be the double

plane with sextic branch locus B : u{u^ + ̂ s5), where u,jy, ̂  are homogeneous coordinates.

FQ has two singularities: one is over j /==^==o and this is P; the other is over u==^=o

— call it Q; Let F^ be the result of resolving Q^ alone, and Fg be the non-singular surface

obtained by resolving P and Q .̂ Let n : Fg—^F^. We must show (R^^O^p^o).

But since (R1^)^^) is (°) outside ofP, it is equivalent to show H°(Fi, (R^^Opj) == (o).
First of all, note that Fg is birational to P2: indeed o == x

2 +./ + ̂  is uniformized by the

substitution:

x==l|u3v^u+v)\Jy=—I|u2v\u+vY, ^=— i/W^+z/)3.

Therefore 0=11^2, ^pj ==11 ,̂ Q^). Now consider the Spectral Sequence of

Composite Functors:

H^(F„(R^)(^))^?(F„QJ.

Noting that (R°7T:) (Gipj == ̂ , it follows:

a) KP(F,,^)-(o)

b) d^: H°(F,, (Ri7r)(^))->IP(F,, ̂ )

is i — i , onto.

Therefore, it suffices to show H^F^, Q^) = (o), or o>^(Fi) (==dim H^—dimH1).

Now unfortunately pa^o) == 13 since, in general, if G is a double plane with branch

locus of order 2 m, pa{G) == (w— l
)[

m—2)/2 (none of the singularities ofG being resolved,
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of course) (1). To compute A,(Fi)? embed F^ in a family of double planes FQ ^ where

the branch locus B^ for FQ ^ is

^y+^+oc^).
Now FQ ^ have singularities over M = ^ = o of identical type for all a, hence one may

resolve these, and obtain a family of surfaces F^ containing F^. But since B^, for

general a, has no singularity except u = ^ == o, the general F^ ^ is non-singular. Now by

the invariance of ^ [21], A(Fi)-A(Fi,a) ^dim H^,, C2) =dim H°(F^, ^(K)), K

the canonical class on F^. But if co is the double quadratic differential (i.e. of type

A[dx^dy)
2 locally) on P2 with poles exactly at B^, one can readily compute (Y^O)), where

f^: ¥^ ^—»-P2; it turns out strictly negative, and as it represents 2 K, it follows

^(F^)=dimH°(F^,n(K))=o.

For details on the behaviour ofp^ of double planes, which include our result as a particular

case, see the works of Enriques and Campedelli cited in [4], p. 203-4, and the doctoral

thesis of M. Artin [Harvard, 1960].
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(1) This may be seen by means of a suitable resolution of (R°/)(OQ),/: G->P2 being its double covering.
It is, however, classical: cf. [4], p. 180-2 using the formula:

4-Pa
 ==n +^—3 n—^/3—2 wnere n = 2? k=o,

TV=m—i, and
P = (2 m—i) ( 2 m — 2 ) / 2 =pa (Branch Locus).
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