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§1 Introduction.

Let End be the set of n-tuples (p1, . . . , pn) of mutually coprime monic polynomials of
degree d. Equivalently (in terms of the roots of the polynomials) End is the set of n-tuples
(ξ1, . . . , ξn) of positive divisors in C of degree d, such that ξi ∩ ξj = ∅ whenever i 6= j. A
positive divisor ξ in C of degree d is simply an element

∑d
i=1 αi of the symmetric product

Spd(C) ∼= Cd, so the set End acquires a natural topology as an open subspace of the n-fold
product of Sd(C). It is therefore a complex manifold of dimension dn.

Example 1.1 En1 is the space F (C, n) of n-tuples of distinct points in C.

Example 1.2 E1
d is the space Spd(C).

Example 1.3 E2
d may be identified with the space of rational functions C ∪∞ → C ∪∞

of degree d which take the value 1 at ∞.

The fundamental group of End was computed by Epshtein:

Proposition 1.4 [Ep]. If d ≥ 2, then π1E
n
d
∼= Zn(n−1)/2.

If d = 1, the group π1E
n
d is by definition the group of pure braids on n strings. It is

non-abelian if n > 2. Our first main result permits the computation of some of the higher
homotopy and homology groups of End .

Theorem 1.5. There is a map End → Ω2
0(

∨n CP∞) which is a homotopy equivalence up
to dimension d.

(A homotopy equivalence up to dimension d is a map which induces isomorphisms on
homotopy groups πi for i < d, and an epimorphism for i = d.)

The space E2
d of rational functions was investigated by Segal ([Se]), who obtained theo-

rem 1.5 in the case n = 2. As in the case n = 2, the space End admits a description in terms
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of “rational maps”. Let Xn be the subspace of CPn−1 consisting of points [z1; . . . ; zn] such
that at most one homogeneous coordinate is zero. In other words,

Xn = CPn−1 −
⋃
i6=j

Hij

where Hij = {[z1; . . . ; zn] | zi = zj = 0}. We may identify End with the space Hol∗d(S
2, Xn)

consisting of holomorphic maps f : S2 → Xn which satisfy the conditions f(∞) = [1; . . . ; 1]
and [f ] = d ∈ Z ∼= π2Xn. The space Xn is an example of a “subspace arrangement”, i.e.
the complement of a finite number of linear subspaces (see [Bj]). As a consequence of
theorem 1.5 we shall obtain the following closely related result:

Theorem 1.6. The inclusion Hol∗d(S
2, Xn) → Map∗d(S

2, Xn) is a homotopy equivalence
up to dimension d.

Here, Map indicates the space of smooth (or continuous) maps. For n = 2 we have
Xn = CP 1, and theorem 1.6 reduces to the main theorem of [Se].

Our approach is similar to that of [Se] in that we show first that the homotopy groups of
End “stabilize” as d→∞, and then that “En∞” (suitably defined) is homotopy equivalent
to Ω2

0(
∨n CP∞). The major new feature of our approach lies in the first step. In [Se] the

homotopy stabilization was obtained by first proving a homology stabilization theorem,
and then by showing that the action of the fundamental group was nilpotent on the
homology of the universal covering space. In addition, the homology stabilization theorem
itself involved a rather mysterious application of Poincaré Duality. Our method has the
virtue that the passage from homology to homotopy is much simpler and perhaps more
natural. In §2 we show that for each d > 1 there is an inclusion jd : End → End+1 which is an
acyclic map up to dimension d, that is, the homomorphism Hi(End ; j∗dL)→ Hi(End+1;L) is
an isomorphism for i < d and an epimorphism for i = d, for any local coefficient system L

on End+1. Since an acyclic map between two spaces with abelian fundamental groups is a
homotopy equivalence, this, together with Epshtein’s result (proposition 1.4) implies that
jd is in fact a homotopy equivalence up to dimension d. For the sake of completeness and
because Epshtein’s proof lacks detail, we give a proof of proposition 1.4 in an Appendix.
In §3 we observe that the method of [Se] shows that the space “En∞” is actually homotopy
equivalent to a component of Ω2(

∨n CP∞). As this part of the argument closely follows
the lines of [Se] we shall omit most of the details.

In §4, we shall indicate the following generalizations of theorems 1.5 and 1.6 to the
case of n-tuples of monic polynomials with “arbitrary coprime conditions”. Let I be any
collection of subsets of {1, . . . , n} with |Λ| ≥ 2 for all Λ ∈ I. Let

EId = {(ξ1, . . . , ξn) ∈ Spd(C)n | ∩i∈Λ ξi = ∅ for all Λ ∈ I}.
Define the generalized wedge product

∨I CP∞ to be the subset of the n-fold product
(CP∞)n consisting of points (x1, . . . , xn) such that, for each Λ ∈ I, xi is equal to the
basepoint of CP∞ for at least some i ∈ Λ. Then we have the following generalization of
theorem 1.5:
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Theorem 1.7. There is a map EId → Ω2
0(

∨I CP∞) which is a homotopy equivalence up
to dimension d.

Similarly, if we define XI by

XI = CPn−1 −
⋃
Λ∈I

HΛ,

where HΛ = {[z1; . . . ; zn] | zi = 0 for all i ∈ Λ}, then theorem 1.6 generalizes as follows:

Theorem 1.8. The inclusion Hol∗d(S
2, XI) → Map∗d(S

2, XI) is a homotopy equivalence
up to dimension d.

We conclude with some comments on the wider significance of these results. Theorem
1.7 can be regarded as giving a simple “homotopy model” (namely EId) for a double loop
space (i.e. Ω2(

∨I CP∞)). In a future article [GKY], our method will be used to give a
model for the space Ω3S3. The problem of finding such a model for ΩnSn was posed in
[Mc].

The significance of theorem 1.8 is that it produces a non-trivial family of complex
manifolds XI for which the natural inclusion Hol(S2, X) → Map(S2, X) is a homology
equivalence up to some dimension depending on the component. Several other isolated
instances of this phenomenon are known; a survey appears in [Gu1]. The explanation
for the phenomenon is thought to be Morse theoretic in nature, i.e. the fact that the
holomorphic maps form the set of absolute minima of the energy functional on (a fixed
component of) the space of smooth maps, when X is a Kähler manifold. At present,
however, no proof along these lines is known, so it is of interest to construct new families
of examples or counter-examples.

In [Gu2] the stabilization method developed here is an essential step in proving a version
of theorem 1.8 for compact “toric varieties”; such varieties provide important connections
between algebraic geometry and combinatorics (see [Od],[Fu]). The variety XI is actually
an example of a non-compact toric variety; it seems likely that by using the method of
[Gu2] one can extend theorem 1.8 further to non-compact toric varieties.

Acknowledgements: The authors are very grateful for the assistance and hospitality
provided to them by the Mathematics Department of Tokyo Institute of Technology. They
thank J. W. Havlicek for his comments on an earlier version of this paper. The first author
is indebted to F. R. Cohen for bringing the reference [Ep] to his attention.

§2 Stabilization.

Let U be an open subset of C. Let d1, . . . , dn be positive integers.
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Definition: Let Ed1,...,dn(U) be the set of n-tuples (p1, . . . , pn) of mutually coprime monic
polynomials such that deg pi = di and the roots of pi lie in U , for i = 1, . . . , n. If U = C
we write Ed1,...,dn(U) = Ed1,...,dn . If d1 = · · · = dn = d we write Ed1,...,dn(U) = End (U).

Thus, Ed1,...,dn(U) is a natural generalization of the space End .

For d = 0, 1, 2, . . . , choose distinct points xd+1,1, . . . , xd+1,n in the region {d ≤ |z| <
d+ 1}. Then we have an inclusion map

jd : End (|z| < d)→ End+1(|z| < d+ 1)

(ξ1, . . . , ξn) 7→ (ξ1 + xd+1,1, . . . , ξn + xd+1,n).

Since End (|z| < d) is homeomorphic to End , jd defines (up to homotopy) a “stabilization
map” jd : End → End+1. The main theorem of this section is:

Theorem 2.1. The stabilization map jd : End → End+1 is a homotopy equivalence up to
dimension d.

The case n = 2 of this theorem was proved in [Se] (see proposition 5.1 and corollary 6.3).
Our proof of theorem 2.1 will in particular give a new proof of Segal’s theorem.

Let f : X → Y be a continuous map between path connected spaces. Recall that f is
said to be acyclic if for any coefficient system L on Y the induced map

f∗ : H∗(X; f∗L)→ H∗(Y ;L)

is an isomorphism, where f∗L is the induced local system on X. If f∗ is an isomorphism
for i < d and an epimorphism for i = d, we shall say that f is acyclic up to dimension d.
We shall prove

Theorem 2.2. The stabilization map jd : End → End+1 is acyclic up to dimension d.

If d > 1, theorem 2.1 follows from theorem 2.2, proposition 1.4, and the next well known
result (proposition 1.4 of [HH]).

Proposition 2.3. Let d > 1. Let f : X → Y be a map between path connected spaces.
Then f is a homotopy equivalence up to dimension d if and only if f is acyclic up to
dimension d and π1f : π1X → π1Y is an isomorphism.

If d = 1, theorem 2.1 follows directly from theorem 2.2 and the fact (which we shall prove
in the Appendix) that π1E

n
2 is abelian.

We turn now to the proof of theorem 2.2. It will use the following lemma:
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Lemma 2.4. Let X be the subspace of C obtained by removing k distinct points. Let
id : Spd(X) → Spd+1(X) be the inclusion given by “adjoining a basepoint”. Then id is a
homotopy equivalence up to dimension d.

Proof. Since X is homotopy equivalent to the bouquet of circles
∨k

S1, it suffices to
prove the lemma for this space. From the known homology of

∨k
S1, it may be shown

(by induction on d) that id is acyclic up to dimension d. Alternatively, a proof may be
given using the method of Proposition (A.2) of [Se]. For d ≥ 2, the fundamental group of
Spd(

∨k
S1) is abelian, so the lemma follows from proposition 2.3. We omit the details. ¤

We shall deduce theorem 2.2 from a slightly more general theorem, which involves
stabilizing with respect to just one of the variables. Let x be a point in the region {1 ≤
|z| < 2}. Then we have an inclusion

j : Ed1,...,di,...,dn(|z| < 1)→ Ed1,...,di+1,...,dn(|z| < 2)

(ξ1, . . . , ξi, . . . , ξn) 7→ (ξ1, . . . , ξi + x, . . . , ξn).

Up to homotopy, j defines a map j : Ed1,...,di,...,dn → Ed1,...,di+1,...,dn . Theorem 2.2 is a
direct consequence of:

Theorem 2.5. The stabilization map j : Ed1,...,di,...,dn → Ed1,...,di+1,...,dn is acyclic up to
dimension di.

Proof. It suffices to give the proof in the case i = 1. Let L be a local coefficient system
on the space Ed1+1,d2,...,dn . We shall also use the letter L to denote its restriction to any
(open or closed) subspace. Consider the projection map p1 : Ed1,...,dn → Ed2,...,dn which
sends (q1, . . . , qn) to (q2, . . . , qn). We have a commutative diagram:

Ed1,d2,...,dn
j−−−−→ Ed1+1,d2,...,dn

p1

y p1

y
Ed2,...,dn

=−−−−→ Ed2,...,dn .

If the vertical maps were fibrations, we could attempt to prove the theorem by applying
lemma 2.4 to the restriction of j to the fibres. The long exact sequence of homotopy groups
would then give us a homotopy equivalence of total spaces up to dimension d1. However,
the vertical maps are fibrations only over certain subspaces, as we shall now explain.

Let Ekd1,...,dn be the subset of Ed1,...,dn consisting of n-tuples (q1, . . . , qn) such that the
polynomial q2 . . . qn has at most k distinct roots. Let

Xk
d1,...,dn = Ekd1,...,dn − E

k−1
d1,...,dn

,
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i.e. the subset where q2 . . . qn has exactly k distinct roots. Let

Y kd2,...,dn = p1(Xk
d1,...,dn) = Ekd2,...,dn − E

k−1
d2,...,dn

.

The map p1 restricts to a map p1 : Xk
d1,...,dn

→ Y kd2,...,dn and we have a commutative
diagram:

Xk
d1,d2,...,dn

j−−−−→ Xk
d1+1,d2,...,dn

p1

y p1

y
Y kd2,...,dn

=−−−−→ Y kd2,...,dn .

In this diagram the vertical maps are fibrations with fibres

Spd1(C− {k distinct points}), Spd1+1(C− {k distinct points})

respectively. The map j restricts on fibres to the map of lemma 2.4. Hence, from the
long exact sequence of homotopy groups we see that j : Xk

d1,d2,...,dn
→ Xk

d1+1,d2,...,dn
is a

homotopy equivalence up to dimension d1, and hence that

(∗) j : Xk
d1,d2,...,dn → Xk

d1+1,d2,...,dn is acyclic up to dimension d1.

We shall use this to prove, by induction on k, that the following statement holds:

(†)k j : Ekd1,d2,...,dn → Ekd1+1,d2,...,dn is acyclic up to dimension d1.

(Observe that (†)d2+···+dn gives the statement of the theorem.) The induction begins with
k = n − 1, because En−1

d1,...,dn
= Xn−1

d1,...,dn
. Let us assume the truth of (†)k′ for all k′ with

k′ < k. To show that Ekd1,d2,...,dn → Ekd1+1,d2,...,dn
is acyclic up to dimension d1, we shall

use a Mayer-Vietoris argument based on the diagram

Ekd1,d2,...,dn Ek−1
d1,d2,...,dn

∪Xk
d1,d2,...,dn

j

y j

y
Ekd1+1,d2,...,dn

Ek−1
d1+1,d2,...,dn

∪Xk
d1+1,d2,...,dn

,

together with the facts (from (∗) and (†)k−1) that the vertical map(s) on the right hand
side are acyclic up to dimension d1.

To do this, we construct an open neighbourhood Ukd1,...,dn of Ek−1
d1,...,dn

in Ekd1,...,dn ,
homotopy equivalent to Ek−1

d1,...,dn
, such that j restricts to a map

j : Ukd1,d2,...,dn → Ukd1+1,d2,...,dn ,

and such that the restriction

j : Ukd1,d2,...,dn ∩X
k
d1,d2,...,dn → Ukd1+1,d2,...,dn ∩X

k
d1+1,d2,...,dn
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is acyclic up to dimension d1. We then obtain (†)k by applying the Five Lemma to the
Mayer-Vietoris exact sequences of the open coverings

Ekd1,...,dn = Ud1 ∪Xk
d1,...,dn , Ekd1+1,d2,...,dn = Ud1+1 ∪Xk

d1+1,d2,...,dn .

Let Ukd1,...,dn = Ek−1
d1,...,dn

∪ F kd1,...,dn , where F kd1,...,dn consists of all n-tuples (q1, . . . , qn)
in Xk

d1,...,dn
such that, amongst the k distinct roots of q2 . . . qn, there exists a “cluster”

of roots z1, . . . , zl (with l > 1) which are “far” from all other roots of q1 . . . qn. More
precisely, the condition to be satisfied by z1, . . . , zl here is that there exists some number
ε, with 0 < ε < 1, such that

(C1) For 1 ≤ i, j ≤ l, |zi − zj | < ε,

(C2) if z is a root of q1 . . . qn and z /∈ {z1, . . . , zl}, then |z− zi| ≥ 100ε for i = 1, . . . , l, and

(C3) {z1, . . . , zl} is maximal with respect to properties (C1),(C2).

It is clear that the stabilization map restricts to a map

j : Ukd1,d2,...,dn → Ukd1+1,d2,...,dn .

By following a suitable “gravitational flow” obtained by thinking of roots of q2 . . . qn as
heavy particles, we see that Ukd1,...,dn is homotopy equivalent to Ek−1

d1,...,dn
. Similar consid-

erations show that Ukd1,...,dn is an open neighbourhood of Ek−1
d1,...,dn

.

It remains to prove that the stabilization map

j : V kd1,d2,...,dn → V kd1+1,d2,...,dn

is acyclic up to dimension d1, where V kd1,...,dn = Ukd1,...,dn ∩X
k
d1,...,dn

. To do this we observe
that V kd1,...,dn is a space of the same type as Ek−1

d1,...,dn
, hence the result follows by another

application of the inductive hypothesis (†)k′ . ¤

Remark 1: The Mayer-Vietoris argument used above may in fact be replaced by an argu-
ment based on Poincaré Duality (see [Ko]).

Remark 2: It is a corollary of the proof of theorem 2.5 that if d1 ≥ d2 + · · · + dn then
the stabilization map j : Ed1,d2,...,dn → Ed1+1,d2,...,dn is a homotopy equivalence. This is
because the stabilization map

Spd(C− {k distinct points})→ Spd+1(C− {k distinct points})

is a homotopy equivalence when d ≥ k, as Spd(C − {k distinct points}) ' (S1)k and the
stabilization map is, up to homotopy, the identity map on (S1)k.
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§3 The stabilized space.

The inclusions

En1 (|z| < 1)
f1−−−−→ En2 (|z| < 2)

f2−−−−→ En3 (|z| < 3)
f3−−−−→ . . .

defined in the last section allow us to construct the stabilized space

En∞ =
⋃
d≥1

End (|z| < d).

In this section we shall sketch the proof of the following result:

Theorem 3.1. There is a homotopy equivalence En∞ → Ω2
0(

∨n CP∞).

Together with theorem 2.1, this gives theorem 1.5. The argument is quite analogous to
the proof in [Se] for the case n = 2. Segal’s method, based on earlier ideas of Gromov,
has been used in other similar situations (cf. [Mc],[Gu1]), and so we shall comment on the
proof only very briefly.

The map in question arises from a “scanning map”

Sd : End → Ω2
dE

n(S2,∞),

where En(S2,∞) denotes the space of n-tuples of positive divisors in S2 = C∪∞ modulo
the equivalence relation which identifies two n-tuples if they agree on C. If D(z) denotes
the open unit disc with centre z, then one defines a map S∗d : C× End → En(S2,∞) by

S∗d(z, (ξ1, . . . , ξn)) = (ξ1 ∩D(z), . . . , ξn ∩D(z)).

Since one can identify the pair (D(z), ∂D(z)) canonically with (S2,∞), the formula does
define such a map, and one obtains a continuous extension S∗d : S2×End → En(S2,∞) with
S∗d(∞, ) = (∅, . . . , ∅). The adjoint map is the required map Sd : End → Ω2En(S2,∞).
This maps into a component of Ω2En(S2,∞) as End is connected, and we denote this
component by Ω2

dE
n(S2,∞).

On taking the limit as d→∞ one obtains (up to homotopy) a map

S : En∞ → Ω2
0E

n(S2,∞).

Theorem 3.2. S is a homotopy equivalence.

Proof. This is similar to the proof in §3 of [Se] (cf. also [Mc],[Gu1]). Indeed, the proof
of proposition 2 in §3 of [Gu1] carries over word for word to the present case, on replac-
ing “(n + 1)-tuples of coprime polynomials” by “n-tuples of mutually coprime polynomi-
als”. ¤

The proof of theorem 3.1 is completed by the following result:
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Proposition 3.3. En(S2,∞) is homotopy equivalent to
∨n CP∞.

Proof. The case n = 2 is proposition 3.1 of [Se]. For n > 2, the same method may be
used. ¤

This also completes the proof of theorem 1.5. To prove theorem 1.6, it suffices to show
that the inclusion map Hol∗d(S

2, Xn) → Map∗d(S
2, Xn) agrees up to homotopy with the

scanning map Sd : End → Ω2
dE

n(S2,∞). This can be done following the idea of [Se]; an
explicit proof may be obtained from §3 of [Gu1] by replacing “(n + 1)-tuples of coprime
polynomials” by “n-tuples of mutually coprime polynomials”.

§4 Generalizations.

To prove theorem 1.7 it suffices to prove the generalizations of theorem 2.5 and theorem
3.1. We begin with the generalization of theorem 2.5:

Theorem 4.1. The stabilization map j : EId1,...,di,...,dn → EId1,...,di+1,...,dn
is acyclic up to

dimension di.

Proof. It suffices to give the proof in the case i = 1. For any n-tuple (q1, . . . , qn) of monic
polynomials, let q be the monic polynomial whose roots are

⋃
Λ∈I{∩ξi | i ∈ Λ, i 6= 1}, where

ξi denotes the roots of qi. Let L be a local coefficient system on the space EId1+1,d2,...,dn

(and hence on any subspace). Consider the projection map p1 : EId1,...,dn → EId2,...,dn
which sends (q1, . . . , qn) to (q2, . . . , qn). We have a commutative diagram:

EId1,d2,...,dn
j−−−−→ EId1+1,d2,...,dn

p1

y p1

y
EId2,...,dn

=−−−−→ EId2,...,dn .

Let Ekd1,...,dn be the subset of EId1,...,dn consisting of n-tuples (q1, . . . , qn) such that q
has at most k distinct roots. Let

Xk
d1,...,dn = Ekd1,...,dn − E

k−1
d1,...,dn

,

i.e. the subset where the polynomial q has exactly k distinct roots. Let

Y kd2,...,dn = p1(Xk
d1,...,dn) = Ekd2,...,dn − E

k−1
d2,...,dn

.
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The map p1 restricts to a map p1 : Xk
d1,...,dn

→ Y kd2,...,dn and we have a commutative
diagram:

Xk
d1,d2,...,dn

j−−−−→ Xk
d1+1,d2,...,dn

p1

y p1

y
Y kd2,...,dn

=−−−−→ Y kd2,...,dn .

In this diagram the vertical maps are fibrations with fibres

Spd1(C− {k distinct points}), Spd1+1(C− {k distinct points})

respectively. The map j restricts on fibres to the map of lemma 2.4. Hence, by applying
the long exact sequence of homotopy groups we see that j : Xk

d1,d2,...,dn
→ Xk

d1+1,d2,...,dn

is a homotopy equivalence up to dimension d1, and hence that

(∗) j : Xk
d1,d2,...,dn → Xk

d1+1,d2,...,dn is acyclic up to dimension d1.

As in the proof of theorem 2.5 we can use this to prove, by induction on k, that the
following statement holds:

(†)k j : Ekd1,d2,...,dn → Ekd1+1,d2,...,dn is acyclic up to dimension d1

The statement of the theorem is given by (†)k for k sufficiently large. ¤

In order to deduce that the stabilization map j : EId → EId+1 is a homotopy equivalence
up to dimension d, we need to know in addition that π1E

I
d is abelian (for d ≥ 2). Let I2

be the subset {Λ ∈ I | |Λ| = 2}. (Recall that we are assuming |Λ| ≥ 2 for all Λ ∈ I.)
Then there is an inclusion EId → EI2d , and this induces an isomorphism on fundamental
groups, since EI2d is a manifold and EI2d − EId has real codimension 4. Similarly there is
an inclusion End → EI2d , and this induces an epimorphism on fundamental groups, since
EI2d − End has real codimension 2. Since π1E

n
d is abelian, it follows that π1E

I
d is abelian.

We obtain a stabilized space En∞ as in the case of End , and the method of the proof of
theorem 3.1 carries over to give the following result.

Theorem 4.2. There is a homotopy equivalence EI∞ → Ω2
0(

∨I CP∞). ¤

Thus we obtain theorem 1.7. The proof of theorem 1.8 presents no new difficulties, and
we omit it.
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Appendix: The fundamental group.

We shall re-prove Epshtein’s result on the fundamental group of the space End . For our
main theorem we only need to know that π1E

n
d is abelian (for d ≥ 2), but in view of the

brevity of the arguments in [Ep] we shall give a complete proof here.

Proof of proposition 1.4. It is well known that π1E
n
1 may be identified with the groupH(n)

of pure braids on n strings, i.e. braids on n strings which give the trivial permutation of
the endpoints. (For a recent exposition of these matters, see [Ha], whose notation we
shall follow.) In a similar way, elements of π1E

n
d may be represented by braids on nd

strings, but with certain identifications corresponding to the fact that the roots of the i-th
polynomial (for i = 1, . . . , n) are not required to be distinct. Indeed, it is easy to see that
π1E

n
d may be identified with a quotient group of H(nd); the equivalence relation may be

described geometrically by saying that two (or more) strings corresponding to roots of
the i-th polynomial are allowed to collide, and then separate, in an arbitrary (continuous)
fashion.

First, we shall show that π1E
n
d is abelian if d ≥ 2. The group H(nd) is generated by

elementary braids aij , where aij moves the j-th string once around the i-th string, as
shown below:

i j

ai,j

We shall show that the images [aij ] in π1E
n
d of the elements aij commute. It suffices to

show that the pairs (a) [a12], [a23], (b) [a12], [a13] commute, as all other cases either are
trivial or are easily obtained from these two.
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To see that [a12][a23] = [a23][a12], we use the following sequence of homotopies:

1 2 3 1 2 31 2 3 1 2 3

[a12][a23] [a23][a12]

To see that [a12][a13] = [a13][a12], we use the following sequence of homotopies:

12 3 12 3 12 312 3

[a13][a12] [a13][a12]
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Next we shall show thatH1E
n
d
∼= Zn(n−1)/2, which will complete the proof of proposition

1.4. We shall make use of the stabilization map j : F (C, n) ∼= En1 → End . It is known that
H1F (C, n) ∼=

⊕
i<j Z a′ij where a′ij is the image of aij ∈ π1F (C, n) under the Hurewicz

homomorphism. There is a transfer map r : H1E
n
d → H1E

n
1 defined in a similar way to

the map in proposition 5.3 of [Se] (which is the case n = 2). It follows from this that
the map j∗ : H1F (C, n) → H1E

n
d is injective. But by theorem 2.2, j∗ is surjective, so

H1E
n
d
∼= H1F (C, n) ∼= Zn(n−1)/2. ¤

As a special case, we obtain the theorem of Jones ([Se]) that π1E
2
d
∼= Z.
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(1992), 113–155.

[Gu2] Guest, M.A., The topology of the space of rational curves on a toric variety, preprint.

[Ha] Hansen, V.L., Braids and Coverings, L.M.S. Student Texts 18, Cambridge Univ. Press, 1989.

[HH] Hausmann, J.-C. and Husemoller, D., Acyclic maps, L’Enseignement Math. 25 (1979), 53–75.

[Ko] A. Kozlowski, Stabilization of homology groups of spaces of mutually disjoint divisors, RIMS
(Kyoto University) Kokyuroku 8 (1992), 108–116.

[Mc] McDuff, D., Configuration spaces of positive and negative particles, Topology 14 (1975), 91–107.

[Od] Oda, T., Convex Bodies and Algebraic Geometry: An Introduction to the Theory of Toric Vari-
eties, Springer (Berlin), 1988.

[Se] Segal, G.B., The topology of spaces of rational functions, Acta Math. 143 (1979), 39–72.

Department of Mathematics, University of Rochester, Rochester, New York 14627, USA

Toyama International University, Kaminikawa, Toyama 930-12, Japan

Department of Mathematics, The University of Electro-Communications, Chofu, Tokyo
182, Japan

14


