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Abstract

This paper introduces a new four-parameter lifetime model called the Topp Leone Generated Weibull (TLGW) distri-
bution. This distribution is a generalization of the two parameter Weibull distribution using the genesis of Topp-Leone
distribution. We derive many of its structural properties including ordinary and incomplete moments, quantile and gen-
erating functions and order statistics. Parameter estimation using maximum likelihood method and simulation results to
assess effectiveness of the distribution are discussed. Also, for the first time, we introduce a regression model based on
the new distribution. We prove empirically the importance and flexibility of the new model in modeling various types of
real data sets.

Keywords: Topp-Leone distribution, Weibull distribution, order statistics, parameter estimation, regression model, simu-
lation

1. Introduction

The Weibull distribution has an undeniable popularity in probability and statistics due to its versatility of modeling real
world data. Yet there are many cases where the classical Weibull distribution is unable to capture true phenomenon under
study. Therefore, several of its generalizations have been proposed and studied. A generalized form of Weibull distribution
is obtained by inducting one or more parameter(s) to the 2-parameter Weibull distribution. It has been proven that several
of these generalized distribution are more flexible and are capable of modeling real world data better than the classical
Weibull distribution. A state-of-the-art survey on the class of such generalized Weibull distributions can be found in Lai,
Xie, & Murthy (2001) and Nadarajah (2009).

Some generalization of the Weibull distribution studied in the literature includes, but are not limited to, exponentiat-
ed Weibull (Mudholkar & Srivastava, 1993; Mudholkar, Srivastava, & Freimer, 1995; Mudholkar, Srivastava, & Kollia,
1996), additive Weibull (Xie & Lai, 1995), Marshall-Olkin extended Weibull (Ghitany, Al-Hussaini, & Al-Jarallah, 2005),
beta Weibull (Famoye, Lee, & Olumolade, 2005), modified Weibull (Sarhan & Zaindin, 2009), beta modified Weibull
(Silva, Ortega, & Cordeiro, 2010), transmuted Weibull (Aryal & Tsokos, 2011), extended Weibull (Xie, Tang, & Goh,
2002), modified Weibull (Lai, Xie, & Murthy, 2003), Kumaraswamy Weibull (Cordeiro, Ortega, & Nadarajah, 2010), Ku-
maraswamy modified Weibull (Cordeiro, Ortega, & Silva, 2012), Kumaraswamy inverse Weibull (Shahbaz, Shazbaz, &
Butt, 2012), exponentiated generalized Weibull (Cordeiro, Ortega, & Cunha 2013), McDonald modified Weibull (Merovci
& Elbatal, 2013), beta inverse Weibull (Hanook, Shahbaz, Mohsin,& Kibria, 2013), transmuted exponentiated general-
ized Weibull (Yousof et al., 2015), McDonald Weibull (Cordeiro, Hashimoto, & Ortega, 2014), gamma Weibull (Provost,
Saboor, & Ahmad, 2011), transmuted modified Weibull (Khan & King, 2013), beta Weibull (Lee, Famoye, & Olumolade,
2007), generalized transmuted Weibull (Nofal, Afify, Yousof, & Cordeiro, 2015), transmuted additive Weibull (Elbatal
& Aryal, 2013), exponentiated generalized modified Weibull (Aryal & Elbatl, 2015), transmuted exponentiated additive
Weibull (Nofal, Afify, Yousof, & Louzada, 2016), Marshall Olkin additive Weibull (Afify, Cordeiro, Yousof, Saboor, &
Ortega, 2016) and Kumaraswamy transmuted exponentiated additive Weibull (Nofal, Afify, Yousof, Granzotto,& Louza-
da, 2016) distributions.

In this paper we introduce a new generalization of the Weibull distribution using the genesis of the Topp-Leone distribution
and is named as Topp-Leone Generated Weibull (TLGW) distribution. Consider the Topp-Leone generated family of
distributions proposed by Rezaei, Sadr, Alizadeh & Nadarajah (2016) with its probability density function (pdf) and
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cumulative distribution function (cdf) given by,

fT LG(x) = 2αθg(x)[G (x)]θα−1
[
1 −G (x)θ

] [
2 −G (x)θ

]α−1
, x ≥ 0 (1)

FT LG(x) =
{
G (x)θ

[
2 −G (x)θ

]}α
, x ≥ 0 (2)

respectively. In this paper we will use this generalization to the Weibull (W) distribution whose pdf and cdf are given,
respectively, by

g(x) = βηβxβ−1 e−(ηx)
β

(3)

and

G(x) = 1 − e−(ηx)
β

. (4)

By inserting (3) and (4) into (1), we can write the pdf of the TLGW distribution as

fT LGW (x) = 2αθβηβxβ−1 e−(ηx)
β
(
1 − e−(ηx)

β
)θα−1

[
1 −

(
1 − e−(ηx)

β
)θ] [

2 −
(
1 − e−(ηx)

β
)θ]α−1

(5)

The corresponding cdf of TLGW distribution is given by

FT LGW (x) =
(
1 − e−(ηx)

β
)αθ [

2 −
(
1 − e−(ηx)

β
)θ]α

(6)

Figure 1 illustrates the graphical behavior of the pdf of TLGW distribution for selected parameter values. As we shall see
in the sequel, this is a rather flexible family compared to the Weibull distribution.
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Figure 1. Probability density function of TLGW distribution

In order to derive mathematical and statistical properties of the TLGW distribution, the series expansion of its pdf and cdf
will be useful. The cdf in (6) can be expressed as

F(x) =
∞∑

k=0

ΥkΠ[(α+k)θ] (x) (7)
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whereΥk = (−1)k 2α−k
(
α
k

)
andΠ(α+k)θ(x) =

(
1 − e−(ηx)

β
)(α+k)θ

.Observe thatΠγ(x) =
(
1 − e−(ηx)

β
)γ

is the cdf of exponentiated-
Weibull (exp-W) distribution with power parameter γ. This means the TLGW distribution can be expressed as a linear
mixture of the exp-W distribution. Similarly, pdf (5) can be expressed as

f (x) =
∞∑

k=0

Υkπ[(α+k)θ] (x) (8)

with

πγ(x) = γβηβxβ−1 e−(ηx)
β︸           ︷︷           ︸

g(x;β,η)

[
1 − e−(ηx)

β
]γ−1

︸             ︷︷             ︸
G(x;β,η)γ−1

.

Equation (8) reveals that the density of X can be expressed as a linear mixture of exp-W densities. So, several mathematical
properties of the new family can be obtained from those of the exp-W distribution.

The paper is unfolded as follows. In Section 2, we obtain some mathematical properties including moments, cumulants,
generating function, residual, reversed residual life functions, stress-strength model and order of the proposed distribution.
In Section 3, we provide a useful characterization of the new distribution. In Section 4, the model parameters are estimated
by maximum likelihood and a simulation study is performed. In Section 5, we present a regression model based on the
TLGW distribution with censored data. In Section 6, the usefulness of the new distribution is illustrated by means of four
real data sets, where we prove empirically that it outperforms some well-known lifetime distributions. Finally, Section 7
offers some concluding remarks.

2. Mathematical Properties

In this section we will provide some mathematical properties of the TLGW distribution including the moments, incomplete
moments, mean deviations, order statistic etc.

2.1 Moments, Cumulants and Generating Function

The rth ordinary moment of X is given by µ′r = E(Xr) =
∫ ∞
−∞ xr fT LGW (x) dx. For any r > −β, we have

µ′r =
∞∑

k,h=0

Ψk,h Γ

(
1 +

r
β

)
, (9)

where

Ψk,h = Υk
(−1)h Γ ((α + k) θ + 1)

h!ηrΓ ((α + k) θ + 1 − h) (h + 1)
r+β
β

.

Henceforth, Y[(α+k)θ] denotes the exp-W distribution with power parameter [(α + k) θ] . Setting r = 1 in (9), we have the

mean of X. The rth central moment of X, say Mr, follows as Mr = E(X − µ)r =
r∑

h=0
(−1)h

(
r
h

)
(µ′1)r µ′r−h. The skewness and

kurtosis measures also can be calculated from the ordinary moments using well-known relationships. The cumulants (κn)
of X follow recursively from κn = µ′n −

∑n−1
r=0

(
n−1
r−1

)
κr µ

′
n−r , where κ1 = µ′1, κ2 = µ′2 − µ′21 , κ3 = µ′3 − 3µ′2µ

′
1 + µ

′3
1 , etc. The

moment generating function (mgf) of X is given by MX (t) = E
(
et X

)
. Clearly, It can be derived using equation (9), for

r > −β, as

MX (t) =
∞∑

k=0

Υk M[(α+k)θ] (t) =
∞∑

k=0

Υk

∞∑
r=0

tr

r!
µ
′

r =

∞∑
r,k,h=0

Ψk,h
tr

r!
Γ

(
1 +

r
β

)
.

The effect of the parameters α and θ on mean, variance, skewness and kurtosis, for given values of β = 2 and η = 2, are
displayed in Figures 2 and 3.
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Figure 2. Plots of mean and variance of TLGW distribution
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Figure 3. Plots of skewness and kurtosis of TLGW distribution

2.2 Incomplete Moments and Mean Deviations

The main applications of the first incomplete moment refer to the mean deviations and the Bonferroni and Lorenz curves.
These curves are very useful in economics, reliability, demography, insurance and medicine. The sth incomplete moment,
say φs (t), of X for s > −β can be expressed from (8) as

φs (t) =

∞∑
k=0

Υk

∫ t

−∞
xs π[(α+k)θ] (x) dx

=

∞∑
k,h=0

Υk
(−1)h Γ ((α + k) θ + 1)

h!ηsΓ ((α + k) θ + 1 − h) (h + 1)
s+β
β

Γ

1 + s
β
,

(
η

y

)β . (10)

The mean deviations about the mean [δ1 = E(|X − µ′1|)] and about the median [δ2 = E (|X − M|)] of X are given by
δ1 = 2µ

′

1F(µ′1)− 2φ1(µ′1) and δ2 = µ′1 − 2φ1 (M), respectively, where µ′1 = E (X), M = Median(X) = Q(0.5) is the median,
F(µ′1) is easily calculated from (4) and φ1 (t) is the first incomplete moment given by (10) with s = 1. A general equation
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for φ1 (t) can be derived from (10) as

φ1 (t) =
∞∑

k,h=0

Υk
(−1)h Γ ((α + k) θ + 1)

h!ηΓ ((α + k) θ + 1 − h) (h + 1)
1+β
β

Γ

1 + 1
β
,

(
η

y

)β .
2.3 Residual and Reversed Residual Life Functions

The nth moment of the residual life, say mn(t) = E[(X − t)n | X > t], n = 1, 2,. . . , uniquely determines F(x). The nth
moment of the residual life of X is given by mn(t) = 1

R(t)

∫ ∞
t (x − t)ndF(x). Therefore,

mn(t) =
1

R(t)

∞∑
k,h=0

Υ⋆k
(−1)h Γ ((α + k) θ + 1)

h!ηnΓ ((α + k) θ + 1 − h) (h + 1)
r+β
β

Γ

(
1 +

n
β
,
(
η

t

)β)
,

where Υ⋆k = Υk
n∑

r=0

(
n
r

)
(−t)n−r. Another interesting function is the mean residual life (MRL) function or the life expectation

at age t defined by m1(t) = E [(X − t) | X > t], which represents the expected additional life length for a unit which is
alive at age t. The MRL of X can be obtained by setting n = 1 in the last equation. The nth moment of the reversed
residual life, say Mn(t) = E [(t − X)n | X ≤ t] for t > 0 and n = 1, 2,. . . , uniquely determines F(x). We obtain Mn(t) =

1
F(t)

∫ t
0 (t − x)ndF(x). Then, the nth moment of the reversed residual life of X becomes

Mn(t) =
1

F(t)

∞∑
k,h=0

Υ⋆⋆k
(−1)h Γ ((α + k) θ + 1)

h!ηnΓ ((α + k) θ + 1 − h) (h + 1)
n+β
β

Γ

(
1 +

n
β
,
(
η

t

)β)
,

where Υ⋆⋆k = Υk
n∑

r=0
(−1)r

(
n
r

)
tn−r. The mean inactivity time (MIT) or mean waiting time (MWT), also called the mean

reversed residual life function, is given by M1(t) = E[(t − X) | X ≤ t] and it represents the waiting time elapsed since the
failure of an item on condition that this failure had occurred in (0, t). The MIT of the TLGW distributions can be obtained
easily by setting n = 1 in the above equation.

2.4 A Stress-Strength Model

Stress-strength model is the most widely approach used for reliability estimation. This model is used in many applications
of physics and engineering such as strength failure and system collapse. In stress-strength modeling, R = Pr(X2 < X1) is
a measure of reliability of the system when it is subjected to random stress X2 and has strength X1. The system fails if
and only if the applied stress is greater than its strength and the component will function satisfactorily whenever X1 > X2.
R can be considered as a measure of system performance and naturally arise in electrical and electronic systems. Other
interpretation can be that, the reliability, say R, of the system is the probability that the system is strong enough to
overcome the stress imposed on it. Let X1 and X2 be two independent random variables have TLGW(α1, θ1, η, β) and
TLGW(α2, θ2, η, β) distributions . Then, we can write

R =
∫ ∞

0
f1 (x;α1, θ1, η, β) F2 (x;α2, θ2, η, β) dx =

∞∑
k, j=0

Ωk, j

∫ ∞

0
π[(α1+k)θ1]+[(α2+ j)θ2] (x) dx,

where

Ωk, j =
(−1)k+ j 2α1+α2−k− j

(
α1
k

)(
α2
j

)
((α1 + k) θ1)[

(α1 + k) θ1 + (α2 + j) θ2
]

and

π[(α1+k)θ1+(α2+ j)θ2] (x) =
[
(α1 + k) θ1 + (α2 + j) θ2

]
βηβxβ−1e−(ηx)

β
[
1 − e−(ηx)

β
][(α1+k)θ1+(α2+ j)θ2]−1

.

Thus, R can be simply expressed as

R =
∞∑

k, j=0

Ωk, j.
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2.5 Order Statistics

Let X1, . . . , Xn be a random sample from the TLGW distribution and let X(1), . . . , X(n) be the corresponding order statistics.
The pdf of ith order statistic can be written as

fi:n (x) =
f (x)

B (i, n − i + 1)

n−i∑
j=0

(−1) j
(
n − i

j

)
F j+i−1 (x) , (11)

where B(·, ·) is the beta function. Substituting (5) and (6) in (11) the pdf of Xi:n can be expressed as the pdf of Xi:n can be
expressed as

fi:n (x) =
n−i∑
j=0

∞∑
r,k=0

m j,r,k πr+k (x) .

where

m j,r,k =
r (−1) jΥr f j+i−1,k

(r + k) B (i, n − i + 1)
and f j+i−1,k can be obtained recursively from

f j+i−1,k =
1

(kb0)

k∑
m=0

[
m ( j + i) − k

]
Υmf j+i−1,k−m,

for k ≥ 1 with f j+i−1,0 = b j+i−1
0 . Then, the density function of the TLGW order statistics is a mixture of exp-W density.

Based on the last equation, we note that the properties of Xi:n follow from those of Yr+k. For example, the moments of Xi:n
can be expressed as, for q > −β,

E
(
Xq

i:n

)
=

n−i∑
j=0

∞∑
r,k=0

m j,r,kE
(
Yq

r+k

)
=

n−i∑
j=0

∞∑
r,k,h=0

m⋆j,r,k,hΓ
(
1 +

q
β

)
, (12)

where

m⋆j,r,k,h = m j,r,k
(−1)h Γ (r + k + 1)

h!ηqΓ (r + k + 1 − h) (h + 1)
q+β
β

.

The L-moments are analogous to the ordinary moments but can be estimated by linear combinations of order statistics.
They exist whenever the mean of the distribution exists, even though some higher moments may not exist and are relatively
robust to the effects of outliers. Based upon the moments in equation (12), we can derive explicit expressions for the L-
moments of X as infinite weighted linear combinations of the means of suitable TLGW order statistics. They are linear
functions of expected order statistics defined by

λr =
1
r

r−1∑
d=0

(−1)d
(
r − 1

d

)
E (Xr−d:r) , r ≥ 1.

3. Characterizations

In this section we present certain characterizations of TLGW distribution. These characterizations are based on the ratio
of two truncated moments. Due to the nature of this distribution, we believe that these may be the only possible charac-
terizations of TLGW distribution. Our first characterization result employs a theorem due to Glänzel (1987) see Theorem
1 in Appendix A. Note that the result holds also when the interval H is not closed. Moreover, it could also be applied
when the cdf F does not have a closed form. As shown in Glänzel (1990), this characterization is stable in the sense of
weak convergence.

Proposition 3.1. Let X : Ω→ (0,∞) be a continuous random variable and let q1 (x) =
(
1 − e−(ηx)β

)θ(1−α)
[
2 −

(
1 − e−(ηx)β

)θ]1−α

and q2 (x) = q1 (x)
[
1 −

(
1 − e−(ηx)β

)θ]
for x > 0. The random variable X belongs to the family (5) if and only if the function

ξ defined in Theorem 1 has the form

ξ (x) =
2
3

[
1 −

(
1 − e−(ηx)β

)θ]
, x > 0.

Proof. Let X be a random variable with pdf (5), then

(1 − F (x)) E
[
q1 (x) | X ≥ x

]
= α

[
1 −

(
1 − e−(ηx)β

)θ]2
, x > 0,
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and

[1 − F (x)] E
[
q2 (x) | X ≥ x

]
=

2α
3

[
1 −

(
1 − e−(ηx)β

)θ]3
, x > 0,

and finally

ξ (x) q1 (x) − q2 (x) = −1
3

q1 (x)
[
1 −

(
1 − e−(ηx)β

)θ]
< 0 f or x > 0.

Conversely, if ξ is given as above, then

s′ (x) =
ξ′ (x) q1 (x)

ξ (x) q1 (x) − q2 (x)
=

2θβηβxβ−1e−(ηx)β
(
1 − e−(ηx)β

)θ−1

1 −
(
1 − e−(ηx)β

)θ , x > 0,

and hence

s (x) = ln
{[

1 −
(
1 − e−(ηx)β

)θ]−2
}
, x > 0.

Now, in view of Theorem 1, X has density (5).

Corollary 3.1. Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) be as in Proposition 3.1. Then X has
pdf (5) if and only if there exist functions q2 and ξ defined in Theorem 1 satisfying the differential equation

ξ′ (x) q1 (x)
ξ (x) q1 (x) − q2 (x)

=
2θβηβxβ−1e−(ηx)β

(
1 − e−(ηx)β

)θ−1

1 −
(
1 − e−(ηx)β

)θ , x > 0.

Corollary 3.2. The general solution of the differential equation in Corollary 3.1 is

ξ (x) =

[
1 −

(
1 − e−(ηx)β

)θ]−1
[
−

∫
2θβηβxβ−1e−(ηx)β

(
1 − e−(ηx)β

)θ−1
(q1 (x))−1 q2 (x) dx + D

]
,

where D is a constant. Note that a set of functions satisfying the differential equation in Corollary 3.1, is given in
Proposition 3.1 with D = 0.However, it should be also noted that there are other triplets (q1, q2, ξ) satisfying the conditions
of Theorem 1.

4. Parameter Estimation

Subsection 4.1 provides procedures for maximum likelihood estimation of the TLGW distribution. Subsection 4.2 assesses
the performance of the maximum likelihood estimators (MLEs) in terms of biases and mean squared errors by means of
a simulation study.

4.1 Parameter Estimation

Several methods for parameter estimation have been proposed in the literature but the maximum likelihood method is
the most commonly employed one. The maximum likelihood estimators enjoy desirable properties and can be used for
constructing confidence intervals and regions and also in test statistics. The normal approximation for these estimators,
in large samples, can be easily handled either analytically or numerically. So, we consider the estimation of the unknown
parameters of this family from complete samples only by maximum likelihood. Let x1, . . . , xn be a random sample from
the TLGW distribution. Let τ = (α, θ, β, η)T be the 4 × 1 parameter vector. To determine the MLE of τ, we use the
log-likelihood function (ℓ) of TLGW distribution given by

ℓ(τ) = n ln 2 + n lnα + n ln θ + n ln β + nβ ln η + (β − 1)
n∑

i=1

ln (xi) −
n∑

i=1

(ηxi)
β

+ (θα − 1)
n∑

i=1

ln si +

n∑
i=1

ln
(
1 − sθi

)
+ (α − 1)

n∑
i=1

ln
(
2 − sθi

)
,
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where si =

(
1 − e−(ηxi)

β
)
. Let zi =

∂si
∂β
= (ηxi)

β

e−(ηxi)β ln (ηxi) and qi = βη
β−1xβe−(ηx)

β

. Then the components of the score
vector are given by

∂ℓ(τ)
∂α

=
n
α
+ θ

n∑
i=1

ln si +

n∑
i=1

ln
(
2 − sθi

)
,

∂ℓ(τ)
∂θ

=
n
θ
+ α

n∑
i=1

ln si −
n∑

i=1

sθi ln si(
1 − sθi

) − (α − 1)
n∑

i=1

sθi ln si(
2 − sθi

) ,
∂ℓ(τ)
∂β

=
n
β
+ n ln η +

n∑
i=1

ln (xi) −
n∑

i=1

ln(ηx)
(ηx)−β

+ (θα − 1)
n∑

i=1

zi

si
−

n∑
i=1

θzisθ−1
i

1 − sθi
− (α − 1)

n∑
i=1

θzisθ−1
i

2 − sθi

and

∂ℓ(τ)
∂η

=
nβ
η
− βηβ−1

n∑
i=1

x
β

i + (θα − 1)
n∑

i=1

qi

si
− θ

n∑
i=1

qisθ−1
i(

1 − sθi
) − (α − 1)

n∑
i=1

qisθ−1
i(

2 − sθi
) .

Now, setting the nonlinear system of equations ∂ℓ(τ)
∂α
= 0, ∂ℓ(τ)

∂θ
= 0, ∂ℓ(τ)

∂β
= 0 and ∂ℓ(τ)

∂η
= 0 and solving them simul-

taneously yields the MLE τ̂ = (α̂, θ̂, β̂, η̂)T . To solve these equations, it is usually more convenient to use nonlinear
optimization methods such as the quasi-Newton algorithm to numerically maximize ℓ. For interval estimation of the pa-
rameters, we obtain the 4 × 4 observed information matrix J(τ) = { ∂2ℓ

∂r ∂s } (for r, s = α, θ, β, η), whose elements can be
computed numerically. Under standard regularity conditions when n → ∞, the distribution of τ̂ can be approximated by
a multivariate normal N4(0, J(̂τ)−1) distribution to construct approximate confidence intervals for the parameters. Here,
J(̂τ) is the total observed information matrix evaluated at τ̂.

4.2 Simulation Study

In this section, we present some simulations for different sample sizes to assess the accuracy of the MLEs. Simulating
random variables from well defined probability distributions has been discussed in the computational statistics literature,
e.g; the inverse transformation method, the rejection and acceptance sampling technique, etc. An ideal technique for
simulating from the TLGW distribution is the inversion method. We can simulate random variable X by

X =
1
η

− ln

1 −
(
1 −

√
1 − U

1
α

) 1
θ




1
β

,

where U is a uniform random number in (0, 1). For selected combinations of θ, α, β and η we generate samples of sizes
n = 50, 100, 200, 300, 500 and 1000 from the TLGW distribution. We repeat the simulations N = 1, 000 times and eval-
uate the mean estimates and the root mean squared errors (RMSEs). The empirical results obtained using the statistical
computing software R are given in Tables 1 and 2. It can be observed that as sample size increases the mean squared error
decreases. Therefore, the maximum likelihood method works very well to estimate the parameters of TLGW distribution.
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Table 1. Empirical means and the RMSEs of TLGW distribution
θ = 0.5 α = 1.5 β = 2.0 η = 2.0

n θ̂ α̂ β̂ η̂

50 0.6557 3.5869 3.6344 2.4805
(1.7665) (4.6465) (3.0606) (6.6074)

100 0.6102 2.9638 2.9702 2.0982
(0.7534) (3.0763) (2.0948) (0.8570)

200 0.5622 2.4859 2.5936 1.9948
(0.5062) (2.3428) (1.3669) (0.4574)

300 0.5528 2.3607 2.4361 1.9857
(0.4576) (2.0398) (1.0502) (0.3922)

500 0.5865 2.1773 2.2545 2.0171
(0.4487) (1.7359) (0.7393) (0.3690)

1000 0.5599 1.9159 2.1635 2.0049
(0.3763) (1.1891) (0.5083) (0.2988)

Table 2. Empirical means and the RMSEs of TLGW distribution
θ = 2.0 α = 0.5 β = 1.5 η = 2.5

n θ̂ α̂ β̂ η̂

50 3.0078 1.3099 2.1327 2.9353
(3.4059) (10.4155) (1.8721) (2.3342)

100 2.9044 0.6648 1.7716 2.6559
(2.8306) (0.6846) (0.9444) (0.9228)

200 2.8347 0.5538 1.5785 2.6469
(2.2698) (0.4076) (0.4318) (0.5841)

300 2.7806 0.5285 1.5396 2.6439
(2.0799) (0.3081) (0.3188) (0.5508)

500 2.6320 0.5084 1.5199 2.6043
(1.7402) (0.2567) (0.2367) (0.4239)

1000 2.4849 0.5019 1.5100 2.5806
(1.4294) (0.2098) (0.1781) (0.3650)

5. The Log-Topp Leone Generated Weibull Regression Model With Censored Data
Let X be a random variable having the density function (5). The random variable Y = log(X) has a log-Topp Leone
Generated Weibul (LTLGW) distribution, whose density function (parameterized in terms of β = 1/σ and η = exp(−µ))
can be expressed as

f (y) =
2α θ
σ

exp
[( y − µ
σ

)
− exp

( y − µ
σ

)] [
1 −

{
1 − exp

[
− exp

(y − µ
σ

)]}θ]
×

{
1 − exp

[
− exp

(y − µ
σ

)]}α θ−1
[
2 −

{
1 − exp

[
− exp

(y − µ
σ

)]}θ]α−1

, (13)

where −∞ < y < ∞, σ > 0 and −∞ < µ < ∞.

We refer to equation (13) as the (new) LTLGW distribution, say X ∼ TLGW(α, θ, σ, µ), where µ is a location parameter,σ
is a dispersion parameter and α and θ are shape parameters. Thus,

if X ∼ LTLGW(α, θ, η, β) then Y = log(X) ∼ LTLGW(α, θ, σ, µ).

The plots of (13) in Figure 5 for selected parameter values show great flexibility of the density function in terms of the
parameters α and θ.

The survival function corresponding to (13) becomes

S (y) = 1 −
{
1 − exp

[
− exp

(y − µ
σ

)]}α θ [
2 −

{
1 − exp

[
− exp

(y − µ
σ

)]}θ]α
. (14)
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Figure 4. Plots of the LTLGW density for some parameter values. (a) For different values of α ∈ (1.0, 5.0) and
β ∈ (1.0, 5.0) for µ = 0 and σ = 0. (b) For different values of α ∈ (0, 1.0) and β ∈ (0, 1.0) for µ = 0 and σ = 0.

We define the standardized random variable Z = (Y − µ)/σ with density function

π(z;α, θ) = 2α θ exp
[
z − exp (z)

] {
1 − exp

[− exp (z)
]}α θ−1

[
1 − {

1 − exp
[− exp (z)

]}θ] [2 − {
1 − exp

[− exp (z)
]}θ]α−1

. (15)

In many practical applications, the lifetimes are affected by explanatory variables such as the cholesterol level, blood
pressure, weight and many others. Parametric regression models to estimate univariate survival functions for censored
data are widely used. A parametric model that provides a good fit to lifetime data tends to yield more precise estimates of
the quantities of interest. Based on the LTLGW density function, we propose a linear location-scale regression model for
censored data linking the response variable yi and the explanatory vector vT

i = (vi1, . . . , vip) as follows

yi = vT
i γ + σzi, i = 1, . . . , n, (16)

where the random error zi has density function (15), γ = (γ1, . . . , γp)T , σ > 0, a > 0 and b > 0 are unknown parameters.
The parameter µi = vT

i γ is the location of yi. The location parameter vector µ = (µ1, . . . , µn)T is given by a linear model
µ = Vγ, where V = (v1, . . . , vn)T is a known model matrix. The LTLGW regression model (16) opens new possibilities
for fitting many different types of censored data. It is an extension of an accelerated failure time model using the TLGW
distribution for censored data.

Consider a sample (y1, v1), . . . , (yn, vn) of n independent observations, where each random response is defined by yi =

min{log(xi), log(ci)}. We assume non-informative censoring such that the observed lifetimes and censoring times are
independent. Let F and C be the sets of individuals for which yi is the log-lifetime or log-censoring, respectively. Con-
ventional likelihood estimation techniques can be applied here. The log-likelihood function for the vector of parameters
τ = (α, θ, σ,γT )T from model (16) has the form

l(τ) =
∑
i∈F

li(τ) +
∑
i∈C

l(c)
i (τ),

where li(τ) = log[ f (yi|vi)], l(c)
i (τ) = log[S (yi|vi)], f (yi|vi) is the density (13) and S (yi|vi) is the survival function (14) of

Yi. The total log-likelihood function for τ reduces to

l(τ) = r log
(

2α θ
σ

)
+

∑
i∈F

zi −
∑
i∈F

exp(zi) + (α θ − 1)
∑
i∈F

log{1 − exp[− exp(zi)]} +
∑
i∈F

log
[
1 − {

1 − exp[− exp(zi)]
}θ]

+(α − 1)
∑
i∈F

log
[
2 − {

1 − exp[− exp(zi)]
}θ]
+

∑
i∈C

log
{
1 −

{
1 − exp[− exp(zi)]

}α θ [
2 − {1 − exp[− exp(zi)]}θ

]α}
, (17)

where zi = (yi−vT
i γ)/σ and r is the number of uncensored observations (failures). The score functions for the parameters

a, b, β, σ and γ are given by Uα(τ), Uθ(τ), Uσ(τ) and Ua(γ j) for j = 1, . . . , p.

The MLE τ̂ of τ is obtained by solving the nonlinear equations Uα(τ) = 0, Uθ(τ) = 0, Uσ(τ) = 0 and Uγ j (τ) = 0 simul-
taneously. These equations cannot be solved analytically and statistical software can be used to solve them numerically.
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We can use iterative techniques such as a Newton-Raphson type algorithm to calculate the estimate τ̂.

We use the subroutine NLMixed in SAS to compute τ̂. Initial values for γ and σ are taken from the fit of the log-Weibull
regression model. The fit of the LTLGW model produces the estimated survival function for yi given by

S (yi; α̂, θ̂, σ̂, γ̂
T ) = 1 − {

1 − exp
[− exp (ẑi)

]}α̂ θ̂ [2 − {
1 − exp

[− exp (ẑi)
]}θ̂]α̂ , (18)

where ẑi = (yi − vT
i γ̂)/σ̂.

Under standard regularity conditions, the approximate multivariate normal distribution Np+4(0, J(τ)−1) for τ̂ can be used
in the classical way to construct confidence intervals for the parameters in τ, where J(τ) is the observed information
matrix. Further, we can use LR statistics for comparing some special sub-models with the LTLGW model. We consider
the partition τ = (τT

1 , τ
T
2 )T , where τ1 is a subset of parameters of interest and τ2 is a subset of the remaining parameters.

The LR statistic for testing the null hypothesis H0 : τ1 = τ
(0)
1 versus the alternative hypothesis H1 : τ1 , τ

(0)
1 is

w = 2{ℓ(̂τ)− ℓ(̃τ)}, where τ̃ and τ̂ are the estimates under the null and alternative hypotheses, respectively. The statistic w
is asymptotically (as n→ ∞) distributed as χ2

k , where k is the dimension of the subset of parameters τ1 of interest.

6. Applications

In this section, we compare the fit of the TLGW distribution to two real uncensored data sets. Further, we fit the new
regression model based on the LTLGW distribution to the censored data set studied by Efron (1988). All the computations
were performed using the procedure NLMixed in SAS and the R statistical software.

6.1 Application 1: Uncensored Data Sets

In this subsection we will provide some applications of TLGW distribution to model real data set. We will compare the
fit of the model with another generalization proposed and studied by Alzaatreh, Lee, & Famoye (2013) (we call it ALF
generator). The corresponding cdf of ALF generator is given by F(x) = 1 − e−α{− log[1−G(x)]}θ . Therefore the cdf of ALFW
distribution is FALFW (x) = 1 − e−α[(ηx)β]θ .

The measures of goodness-of-fit including the log-likelihood function evaluated at the MLEs (ℓ̂), Akaike information cri-
terion (AIC), Anderson-Darling (A∗), Cramer-von Mises (W∗) and Kolmogorov-Smirnov (K-S), are calculated to compare
the fitted models. In general, the smaller the values of these statistics, the better the fit to the data.

Data set 1: This data set consists of the waiting times(in seconds), between 65 successive eruptions of the Kiama Blow-
hole. These values were recorded with the aid of digital watch on July 12, 1998 by Jim Irish and has been referenced by
several authors including da Silva, Thiago, Maciel, Campos, & Cordeiro(2013) and Pinho, Cordeiro & Nobre(2015). The
actual data are:
83, 51, 87, 60, 28, 95, 8, 27, 15, 10, 18, 16, 29, 54, 91, 8, 17, 55, 10, 35, 47, 77, 36, 17, 21, 36, 18, 40, 10, 7, 34, 27, 28,
56, 8, 25, 68, 146, 89, 18, 73, 69, 9, 37, 10, 82, 29, 8, 60, 61, 61, 18, 169, 25, 8, 26, 11, 83, 11, 42, 17, 14, 9, 12.
In Table 3 we provide the MLEs and their corresponding standard errors (in parentheses) of the model parameters. The
values of ℓ̂, AIC, A∗ , W∗ and K-S statistic are provided in Table 4.

Table 3. Estimated parameters- Kiama Blowhole data
model α β θ η

TLGW 4.7964 0.5371 1.3044 0.0503
(2.9824) (0.2172) (0.8547) (0.0585)

ALFW 0.6500 0.9525 1.3378 0.0324
(1.7765) (3.7659) (5.2894) (0.0695)

Table 4. The ℓ̂, AIC, A∗, W∗ and K-S Statistics-Kiama Blowhole data
model −ℓ̂ AIC A∗ W∗ K-S p-value(K-S)
TLGW 294.3426 600.0873 0.8042 0.1102 0.0929 0.6373
ALFW 296.9001 601.8003 1.0079 0.1471 0.1113 0.4060
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Data set 2: This data set includes an active repair time (in hours) for an airborne communication transceiver reported by
Balakrishnan, Leiva, Sanhuzea, & Cabrera (2009), which was originally given by Chhikara & Folks (1989). The actual
observations are listed below.
0.2, 0.3, 0.5, 0.5, 0.5, 0.5, 0.6, 0.6, 0.7, 0.7, 0.7, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0, 1.1, 1.3, 1.5, 1.5, 1.5, 1.5, 2.0, 2.0, 2.2, 2.5,
2.7, 3.0, 3.0, 3.3, 3.3, 4.0, 4.0, 4.5, 4.7, 5.0, 5.4, 5.4, 7.0, 7.5, 8.8, 9.0, 10.3, 22.0, 24.5.

In Table 5 we provide the MLEs and the corresponding standard errors (in parentheses) of the model parameters. The
values of ℓ̂, AIC, W∗ A∗ and K-S statistic are provided in Table 6.

Table 5. Estimated parameters- repair time data
model α β θ η

TLGW 4.0709 0.3368 2.3032 2.1797
(3.0202) (0.1359) (1.9328) (4.5138)

ALFW 0.4004 0.2324 3.8658 0.8163
(2.591) (1.4755) (24.5386) (5.8762)

Table 6. The ℓ̂, AIC, A∗, W∗ and K-S Statistic-repair time data
model −ℓ̂ AIC A∗ W∗ K-S p-value(K-S)
TLGW 100.3413 208.6826 0.3699 0.0578 0.0919 0.8313
ALFW 104.4697 216.9394 0.9009 0.1298 0.1204 0.5174

From Tables 4 and 6 it is noted that the values for −ℓ̂, AIC, A∗, W∗ and K-S test statistic are lower for TLGW distribution
than for ALFW distribution indicating that the TLGW distribution fits both the Kiama Blowhole data and repair time data
better than ALFW distribution. Graphical comparisons of TLGW and ALFW models for the Kiama Blowhole data are
provided in Figure 5. Similarly, the graphical comparisons of repair time data are provided in Figure 6. It is evident that
the TLGW distribution fits both of these data better than ALFW distribution.
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Figure 5. Fitted pdf and QQ plots of TLGW and ALFW distributions for the Kiama Blowhole data

6.2 Application 2: Regression Model With Censored Data

For an application of the LTLGW regression model, we consider the data from a two-arm clinical trial discussed earlier
by Efron (1988). Efron (1988) and Mudholkar et al. (1996) observed that the empirical hazard functions for both samples
start near zero, suggesting an initial high-risk period in the beginning, a decline for a while and then stabilization after
about one year. Specifically, Efron’s data from a head and neck cancer clinical trial consist of survival times of 51 patients
in arm A (17.6% censored data) who were given radiation therapy and 45 patients in arm B (31.1% censored data) who
were given radiation plus chemotherapy. Mudholkar et al.(1996) analyzed these data separately using the exponentiated
Weibull distribution. Here, we use the LTLGW regression model.

Let xi be the survival time (in days) for the ith observation and vi1 be the two-Arm clinical trial (0=Arm A, 1=Arm B)
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Figure 6. Fitted pdf and QQ plots of TLGW and ALFW distributions for the repair time data

(for other details, see Mudholkar et al. (1996). We propose the model

yi = γ0 + γ1vi1 + σzi,

where the random variable yi = log(xi) follows the LTLGW distribution (13) for i = 1, 2, . . . , 96.

An alternative approach for modeling these data can be provided by the log-Weibull (LW) distribution. There are various
extensions of this lifetime distribution; see, for example, the log-beta Weibull (LBW) (Ortega, et al. (2011)) distribution.
The LBW density function is given by

f (y; a, b, σ, µ) =
1

σB(a, b)
exp

{(y − µ
σ

)
− b exp

(y − µ
σ

)}{
1 − exp

[
− exp

(y − µ
σ

)]}a−1
, (19)

where −∞ < y < ∞, σ > 0 and −∞ < µ = γ0 + γ1v1 < ∞. The special case a = b = 1 corresponds to the LW distribution.

The MLEs of the model parameters are computed using the procedure NLMixed in SAS. As initial values for γ and σ in
the iterative algorithm for maximizing the log-likelihood function (17), we adopt the fitted values obtained by fitting the
LW regression model. The MLEs of the parameters and the AIC, CAIC and BIC statistics for some models are listed in
Table 6.2.

Table 7. MLEs of the parameters from the LTLGW regression model fitted to the Efron data, the corresponding SEs (given in
parentheses), p-values in [.] and the basic statistics.

Model α θ σ β0 β1 AIC CAIC BIC
LTLGW 25.2819 45.4687 11.9181 -14.9062 0.5202 295.3 296.0 308.2

(5.6059) (8.0643) (2.6627) (3.5488) (0.2646)
[0.5282] [0.0522]

a b σ β0 β1

LBW 244.20 162.98 19.4117 7.2415 0.5905 300.0 300.7 312.8
(0.7614) (0.4759) (2.2409) (0.2525) (0.4340)

[<0.0001] [0.1768]
LW 1 1 1.1800 6.0387 0.7486 312.6 312.8 320.3

(0.1081) (0.1828) (0.2772)
[<0.0001] [0.0082]

These results from Table 6.2 indicate that the LTLGW model has the lowest AIC, CAIC and BIC values among the fitted
models, so the LTLGW model provides an appropriate fit for these data.

Further, the fitted LTLGW regression model suggests that x1 is significant at 6% and that there is a significant difference
between the two-Arm clinical trial. We plot in Figure 6.2 the empirical survival function and the estimated survival
functions for the LTLGW, LBW and LW models. These plots suggest that the LTLGW model provides a suitable fit.

138



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 6, No. 1; 2017

(a) (b)

0 500 1000 1500 2000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Time(days)

S
u

rv
iv

a
l 
fu

n
c
ti
o

n

Kaplan−Meier
LTLGW Regression model (Arm A)
LTLGW Regression model (Arm B)
LBW Regression model (Arm A)
LBW Regression model (Arm B)

0 500 1000 1500 2000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Time(days)
S

u
rv

iv
a

l 
fu

n
c
ti
o

n

Kaplan−Meier
LTLGW Regression model (Arm A)
LTLGW Regression model (Arm B)
LW Regression model (Arm A)
LW Regression model (Arm B)

Figure 7. Estimated survival functions and the empirical survival for the Efron data. (a) LTLGW versus LBW regression
model. (b) LTLGW versus LW regression model.

7. Concluding Remarks

In this paper, we propose a new four parameter model, called the Topp-Leone Generated Weibull (TLGW) distribution,
which extends the Weibull distribution. In fact, the TLGW distribution is motivated by the extensive use of the Weibull
distribution in many applied areas and also for the fact that the generalization provides more flexibility to analyze real data.
The TLGW density function can be expressed as a mixture of epx-W densities. We derive explicit expressions for the
ordinary and incomplete moments, moment generating function, entropies, mean residual life and mean inactivity time.
We also provide some useful characterizations of the new model. We discuss the maximum likelihood estimation of the
model parameters. We introduce the so-called log-Topp-Leone Generated Weibull (LTLGW) distribution, based on this
new distribution, we propose a LTLGW regression model very suitable for modeling censored and uncensored lifetime
data. Applications to real data modeling has been discussed and it has been shown that the proposed model provides
consistently better fit than the other competitive models.
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Appendix A

Theorem 1. Let (Ω,F ,P) be a given probability space and let H = [d, e] be an interval for some d < e ( d=−∞, e = ∞
might as well be allowed ). Let X : Ω → H be a continuous random variable with the distribution function F and let q1
and q2 be two real functions defined on H such that

E
[
q2 (X) | X ≥ x

]
= E

[
q1 (X) | X ≥ x

]
ξ (x) , x ∈ H,

is defined with some real function ξ. Assume that q1, q2 ∈ C1 (H), ξ ∈ C2 (H) and F is twice continuously differentiable
and strictly monotone function on the set H. Finally, assume that the equation ξq1 = q2 has no real solution in the interior
of H. Then F is uniquely determined by the functions q1, q2 and ξ , particularly

F (x) =
∫ x

a
C

∣∣∣∣∣ ξ′ (u)
ξ (u) q1 (u) − q2 (u)

∣∣∣∣∣ exp (−s (u)) du ,

where the function s is a solution of the differential equation s′ = ξ′ q1
ξ q1−q2

and C is the normalization constant, such that∫
H dF = 1.
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