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Abstract
The concept of toroidal moments in condensed-matter physics and their long-range ordering in
a so-called ferrotoroidic state is reviewed. We show that ferrotoroidicity as a form of primary
ferroic order can be understood both from microscopic (multipole expansion) and macroscopic
(symmetry-based expansion of the free energy) points of view. The definition of the local
toroidal moment and its transformation properties under the space-inversion and time reversal
operations are highlighted and the extension to periodic bulk systems is discussed. Particular
attention is paid to the relationship between the toroidal moment and the antisymmetric
magnetoelectric effect and to limitations of the magnetoelectric response in ferrotoroidic
systems and ferroic materials in general. Experimental access to the ferrotoroidic state by
magnetoelectric susceptibility measurements, x-ray diffraction and optical techniques or direct
measurement of the bulk toroidization is discussed. We outline the pertinent questions that
should be clarified for continued advancement of the field and mention some potential
applications of ferrotoroidic materials.

1. Introduction

The search for novel states of matter and new types of order
is one of the most exciting and fundamental aspects of modern
condensed-matter physics. Anyon gases in fractional quantum
Hall systems, d-wave electron pairing in high-temperature
superconductors and electron nematic phases in transitional
metal oxides have recently enriched our understanding of
the complex ways in which strongly correlated matter can
organize itself [1, 2]. Some ordered states escape detection
and remain hidden for a long time, as their nature can only
be revealed by a purposely designed experimental probe. For
example, while ferromagnetism has been known to mankind
since time immemorial, antiferromagnetism was discovered
only relatively recently despite the fact that antiferromagnets
are far more common than ferromagnets in nature.

* All authors contributed equally to this work.

The purpose of this article is to summarize our current
understanding of such an elusive type of long-range order:
ferrotoroidicity. By analogy with the spontaneous alignment
of magnetic dipole moments in ferromagnets, ferrotoroidics
are defined to have a spontaneous alignment of toroidal
moments [3–5], of which a classical example is a solenoid
that is bent into a torus [6]. As shown in figure 1 the current
induces a circular magnetic field inside the solenoid, giving rise
to a toroidal moment perpendicular to the magnetic field. The
quantum-mechanical equivalent can be generated by certain
spin orderings, such as head-to-tail arrangements of spins, or
by persistent orbital currents. A ferrotoroidic state can then be
visualized as an array of spin vortices, each of the size of one
unit cell, which is a magnetic analogue of the electronic flux
states discussed in the context of quantum Hall systems and
high-temperature superconductors [6, 7].

In this paper we describe the existing state of knowledge
of toroidal moments and toroidal ordering in the solid state.

0953-8984/08/434203+15$30.00 © 2008 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/20/43/434203
mailto:nicola@mrl.ucsb.edu
mailto:fiebig@hiskp.uni-bonn.de
mailto:m.mostovoy@rug.nl
http://stacks.iop.org/JPhysCM/20/434203


J. Phys.: Condens. Matter 20 (2008) 434203 N A Spaldin et al

Figure 1. Toroidal moment, magnetoelectric effect and ferrotoroidic
order. (a) Ring-shaped solenoid with electric-current loops as
classical example for a toroidal moment. (b) A head-to-tail
arrangement of atomic magnetic moments is a quantum-mechanical
example of a toroidal moment. The two vortices displayed
correspond to opposite toroidal moments. (c) Sketch of a
ferrotoroidic domain structure with curls in boxes representing unit
cells with magnetic vortices as in (c).

The toroidal moment has long been discussed in the context
of particle physics (see appendix A) and interest within
the solid state community has recently increased drastically
because of its relationship to the magnetoelectric effect and the
consequent implications for the active field of multiferroics.
The toroidal moment constitutes a fundamental building block
both in an expansion of the free energy into contributions
of different symmetry as well as in the multipole expansion
of the electromagnetic vector potential. Nevertheless, its
description is not contained in standard textbooks which has
led to ambiguities and confusion in the field. We hope to rectify
that here.

The remainder of this paper is organized as follows. In
section 2 we introduce the concept of ferrotoroidic long-range
order using general macroscopic symmetry considerations
based on transformation properties of the order parameter
under space-inversion and time reversal operations. The
microscopic sources of such ferrotoroidic order are elucidated
by considering the magnetic multipole expansion as well
as the expansion of free energy in terms of gradients
of an external magnetic field. The toroidal moment
will emerge as a third type of vector order parameter
describing the distribution of spins and electric currents in a
system, in addition to the well-known magnetic and electric
dipole. In section 3 the magnetoelectric effect is introduced
phenomenologically as the coupling between the magnetic
field and the electric polarization, and the electric field and the
magnetization and the relation between ferrotoroidic order and
the magnetoelectric effect will be elucidated. We show that
the ferrotoroidic order parameter gives rise to antisymmetric
contributions to the magnetoelectric effect, but not necessarily

vice versa. In section 4 the upper bound limiting the magnitude
of the magnetoelectric coupling in toroidically ordered and
disordered systems is discussed, and the limit imposed by
thermodynamic stability is identified. We introduce simple
microscopic mechanisms for magnetoelectric behaviour in
which the magnitude of the magnetoelectric coefficient is
determined by the geometric aspects of the superexchange
interaction. In section 5 experimental techniques probing the
peculiar symmetry of a ferrotoroidic state are reviewed. The
magnetoelectric effect as well as gyrotropic and dichroic x-ray
and optical effects are discussed and we show that nonlinear
optical techniques are quite powerful in observing ferrotoroidic
order and domains. In section 6 various issues related to
the future practical merit of ferrotoroidics are highlighted.
Ways for measuring and switching a ferrotoroidic state and
the potential of ferrotoroidicity for magnetoelectric and data
storage devices are discussed. We also speculate on the
possible existence of antiferrotoroidic order. A concluding
section follows in which some pertinent questions to be
clarified for the continued advancement of the field are
discussed. Note that Gaussian units are used throughout this
article.

2. Macroscopic and microscopic derivations

2.1. Macroscopic motivation: symmetry expansion

2.1.1. Ferroic order. A hallmark of any ferroic state is
the formation of domains, which are energetically degenerate
regions of identical structure, that have different orientations of
the ferroic order parameter [8]. An appropriate vector or tensor
field can be used to induce an energy difference between states
with different orientations of the order parameter. Such a field
can therefore be used to switch domain states, which adopt the
orientation with the lowest energy in the presence of the field.
For example, in ferroelectric materials there is a contribution
to the free energy of form −Psp · E, which causes domains
with spontaneous polarization Psp parallel to an electric field
E to have lowest energy. An electric field of sufficient strength
then transforms a sample into a uniformly polarized domain
state with Psp ‖ E since this minimizes the free energy. More
generally, any ferroic state is characterized by a macroscopic
property Ô corresponding to the order parameter (here Psp)
that can be switched by an external field Â (here E) because of
a field-energy contribution

Fferro = −Ô Â (1)

to the free energy. Any ferroic state obeying (1) is called
primary ferroic because a single field Â is required to switch
the domains. A ferroic state described by Fferro = −Ô12 Â1 Â2

is called secondary ferroic because two fields, Â1 and Â2, are
required to set the direction of the order parameter Ô12. The
extension towards ferroics of even higher order is obvious. As
an example, a state parametrized by Fbiel = −εi j Ei E j , with
ε̂ as the switchable order parameter is called ferrobielectric.
A secondary ferroic state of high relevance for this paper is
the ferromagnetoelectric state described by Fme = −αi j Ei H j .
However, note that for secondary or higher-order ferroics the
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Figure 2. Forms of ferroic order and their transformation properties
under the parity operations of spatial inversion and time reversal.

denomination as ferroic and the prefix ‘ferro’ are usually not
applied.

2.1.2. Space–time symmetry. The primary ferroic states
can be classified in terms of the spatial inversion and time
reversal symmetry of their order parameter. As shown in
figure 2 three established forms of primary ferroic order are
known at present. Each of them transforms according to
one of the representations of the space–time-inversion group.
Ferroelectricity is characterized by a spontaneous polarization,
a quantity that changes sign under spatial inversion but
remaining invariant under time reversal. Ferromagnetism
corresponds to a spontaneous magnetization changing sign
under time reversal but remaining invariant under spatial
inversion. Ferroelasticity is accompanied by a spontaneous
strain for which both space-and time-inversion are symmetry
operations.

The existence of a fourth state with a spontaneous order
changing its sign upon application of space or time-inversion
suggests itself. As is evident from figures 1(a) and (b),
toroidal moments change sign not only upon time reversal,
which inverts electric currents and spins, but also upon spatial
inversion, so that the ferrotoroidic state with a periodic
arrangement of uniformly oriented toroidal moments (see
figure 1(c)) can fill the remaining box in figure 2. According
to (1) the free energy of the ferrotoroidic state is given by
Ffto = −T · G. Here, T is the toroidization defined as
toroidal moment per unit volume and named in analogy to the
magnetization, polarization and deformation characterizing the
other primary ferroic states. Since T is odd under space-and
time-inversion, the same holds for the field G coupled to the
toroidization, because the free energy must remain invariant
upon these transformations.

2.2. Microscopic definition

The ferrotoroidic state was introduced in the previous
section solely on the basis of the symmetry properties
of its corresponding order parameter. We now elucidate
its microscopic origin and discuss how to calculate the
toroidization of magnetically ordered crystals. First we provide
the formal definition of the toroidal moment, which appears

in the same order of the magnetic multipole expansion as the
magnetic quadrupole moment.

2.2.1. Multipole expansion. Following Landau and
Lifshitz [9], we consider a stationary distribution of classical
electric currents j(x) = ∑

α eαṙαδ(x − rα) and calculate the
time-averaged magnetic field 〈H(R)〉 at some distant point
R. (In quantum mechanics the time average, here expressed
by angle brackets, is replaced by the ground state expectation
value or the thermal ensemble average.) The time-averaged
electrodynamic vector potential 〈A〉 satisfying 〈H〉 = ∇×〈A〉
and ∇ · 〈A〉 = 0 is given by [9]

〈A(R)〉 = 1

c

∫

d3x
〈j(x)〉
|R − x| = 1

c

〈
∑

α

eα · ṙα

|R − rα|

〉

(2)

and its multipole expansion has the form

〈A(R)〉 = 1

c

∞∑

n=0

(−)n
n!

〈
∑

α

eα ṙα (rα ·∇)n 1

R

〉

. (3)

For the zeroth-order term we obtain

〈A〉(0) = c−1

〈∑

α

eα ṙα

〉

= 0 (4)

since the average of a time derivative is zero, while for the first-
order term we obtain

〈A〉(1) = −m × ∇
(

1

R

)

, (5)

where

m = 1

2c

〈
∑

α

eα rα× ṙα

〉

(6)

is the magnetic dipole moment of the system.
The second-order term of the multipole expansion is the

sum of the contributions from the magnetic quadrupole and
toroidal moments. The quadrupolar part is

〈A〉(2)quadrupole = −εi jkqkl∂ j∂l
1

R
, (7)

where

qi j = 1

6c

〈
∑

α

eα
(
[rα× ṙα]i rα j + [rα × ṙα] j rαi

)
〉

(8)

is the magnetic quadrupole moment. The toroidal part is

〈A〉(2)toroidal = ∇ (t ·∇) 1

R
+ 4πtδ (R) , (9)

where

t = 1

6c

〈
∑

α

eα [rα × [rα× ṙα]]

〉

(10)

= − 1

4c

〈
∑

α

eαr 2
α ṙα

〉

(11)

= − 1

4c

〈∫

d3r r 2j(r)

〉

(12)
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is the toroidal moment4. An alternative definition of the
toroidal moment

t = 1

10c

〈
∑

α

(
rα (rα · jα)− 2r 2

αjα
)
〉

, (13)

commonly found in the literature [3, 6], is equivalent to (10)
(see footnote 4).

The first term in (9) is the gradient of a scalar yielding
zero magnetic field. The second term is zero away from the
currents inducing the toroidal moment. Thus, the magnetic
field generated by the toroidal moment is zero which may
explain why it is usually not mentioned in textbooks on
electromagnetism. However, the ‘contact term’ represented
by the δ-function in (9) can play an important role (see
appendix A). Note that the double outer product appearing
in (10) for t shows why electric currents circulating in
the torus-shaped solenoid induce a toroidal moment (see
figure 1(a)).

For systems in which magnetic fields are induced by spins,
the current density, defined as the variational derivative of the
energy with respect to the vector potential, is given by

jS = −c
δ

δA

{

−gμB

∫

d3r s · [∇ × A]

}

(14)

= cgμB [∇ × s] , (15)

where g is the gyromagnetic ratio, μB is the Bohr magneton
and s(r) is the spin density.

Equation (13) with j = jS then gives

t = gμB

2

〈∫

d3r r × s(r)

〉

. (16)

In the limit where the spin density consists of localized
spins Sα each with magnetic moment mα = gμBSα , i.e.

s (r) =
∑

α

Sαδ (r − rα) , (17)

we obtain the expression for the toroidal moment for a
configuration of localized spins:

t = gμB

2

〈
∑

α

[rα× Sα]

〉

(18)

= 1
2

〈
∑

α

[rα× mα]

〉

. (19)

In this case the toroidal moment is ‘the moment of
magnetization’.

In the following sections we discuss two difficulties
associated with the direct application of (19) to the calculation
of the toroidal moment: the dependence on the choice of origin
and the application to bulk, periodic solids. Henceforth, the
averaging brackets are omitted for brevity.

4 For the double outer product we find r × [r × ṙ] = r(r · ṙ − r2 ṙ).
The first term in this expression can be rewritten as r(r · ṙ) = 1

2 r d
dt r2 =

1
2

d
dt (rr2) − 1

2 r2 ṙ. As mentioned above, the average of a time derivative is

zero so that 〈 d
dt (rr2)〉 = 0, so that 〈r × [r× ṙ]〉 = −〈 3

2 r2 ṙ〉, which explains
the equivalence of (10) and (11). The equivalence of (10) and (13) can be
proved in a similar way.

2.2.2. Coupling to magnetic field and origin dependence
of toroidal moment. For systems with a net magnetization,
M , the toroidal moment obtained from (13), (16) or (19)
clearly depends on the choice of origin used in determining
the position, r. This is a result of the fact that, for systems with
nonzero magnetization, the higher-order multipoles are not in
fact extensive quantities. We can see this by considering a spin
system in an inhomogeneous magnetic field H(r) that varies
slowly on the scale of the system size. Then the interaction
energy, Hint, of spins with the magnetic field

Hint = −gμB

∑

α

Sα · H (rα) (20)

can be expanded in powers of field gradients calculated at some
arbitrary reference point r = 0:

Hint = −gμB

∑

α

Sα ·H (0)− gμB

∑

α

rαi Sα j∂i H j (0)− · · · .
(21)

The first term is the interaction of the field with the magnetic
moment of the system

m = gμB

∑

α

Sα. (22)

In the second term, the tensor Mi j = gμB
∑

α rαi Sα j with
nine components can be decomposed into three parts: (i) the
pseudoscalar

a = 1

3
Mii = g

3
μB

∑

α

rα ·Sα, (23)

(ii) the toroidal moment vector

t = g

2
μB

∑

α

rα× Sα, (24)

dual to the antisymmetric part of the tensor, ti = 1
2εi jkM jk ,

(iii) the traceless symmetric tensor qi j describing the
quadrupole magnetic moment of the system,

qi j = 1
2

(Mi j + M j i − 2
3δi jMkk

)
(25)

= g

2
μB

∑

α

[

rαi Sα j + rα j Sαi − 2

3
δi jrα ·Sα

]

. (26)

The terms up to first order in the expansion of (21) can
then be written in the form

Hint = −m · H (0)− a (∇ · H)r=0

− t · [∇ × H]r=0 − qi j
(
∂i H j + ∂ j Hi

)
r=0

. (27)

The pseudoscalar a is coupled to the divergence of
magnetic field, which in the absence of magnetic monopoles
is zero, while the toroidal moment t couples to the curl of the
magnetic field, which is only nonzero in presence of electric
current flowing through the system.

If the magnetic moment m of the system is nonzero, the
first term in the expansion (27) depends on the point at which
the magnetic field and its gradient are calculated. Since the
total magnetic interaction energy is independent of the choice
of origin, this gives rise to a corresponding dependence in the
moments a, t and qi j . For example, the toroidal moments, tR

4
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and t0, appearing in the expansion around, respectively, r = R

and r = 0, are related by

tR = t0 − 1
2 R × m. (28)

More generally, if the magnetic moment of a system is
nonzero, the higher multipole moments are not necessarily
extensive and shape-independent quantities. One obvious
example is the toroidal moment of a spin vortex with m(r) =
m0eϕ in a disc of radius R; this grows as R3, whereas the
volume of the disk increases only as R2. On the other hand,
for zero magnetization, the extensive parts of a, t and qi j are
intrinsic properties of the system and describe the symmetry
breaking in the magnetically ordered state.

One practical way to proceed in the discussion of
toroidal moments in systems with nonzero net magnetization
is to separate the general magnetization distribution into a
‘compensated’ part, which has no net magnetization, and a
uniform background ‘uncompensated’ part, which corresponds
to the average magnetization of the system. The latter
does not break space-inversion symmetry and therefore does
not contribute to the toroidization of the system. Such a
decomposition was achieved effectively in earlier work by
choosing the ‘centre of the unit cell’ as the origin, so that
magnetizations of equal magnitude were placed at equal
positive and negative distances from the origin [10, 11]. We
will also show in the following that change in toroidization
for example during a structural distortion is usually the
quantity of interest. Since a structural distortion leaves the
apparent toroidization resulting from the uniform background
magnetization unchanged, the change in toroidization is not
origin dependent provided that a consistent choice of origin
is made [5].

2.2.3. Calculation for a periodic system. The quantitative
evaluation of the toroidal moment of a given magnetization
density can in principle be achieved using (16) or (19)
if the magnetization consists of localized point magnetic
moments provided that the system is finite. Evaluation of
the macroscopic toroidization for a bulk periodic system can
not, however, be performed by direct application of either (16)
or (19). In fact, the problems encountered are similar to
those faced in the evaluation of electric polarization in bulk
periodic solids. Here we review the now-well-established
concepts of the polarization lattice and polarization quantum
in bulk periodic solids [12]. This provides a basis for the
formalism that was recently introduced in [5] for the definition
of toroidization in bulk periodic solids.

Polarization in bulk periodic solids. The difficulties associ-
ated with the calculation of polarization in bulk periodic solids
are illustrated in figure 3(a) for the simplest case of a one-
dimensional chain of localized ionic charges. Here the polar-
ization, defined as the dipole moment per unit volume (or per
unit length in this one-dimensional case), has an apparent un-
physical dependence on the choice of the unit cell selected to
evaluate it. For the left-hand unit cell, the dipole moment per

Figure 3. Calculation of the polarization in a bulk periodic solid. (a)
illustrates the dependence of the absolute value of the polarization on
the choice of unit cell; the two choices shown here differ by one
polarization quantum. (b) shows that changes in polarization are well
defined, independently of the choice of unit cell or basis.

unit length is

P = 1

2a

∑

i

qiri (29)

= 1

2a

(

+a

2
− 3a

2

)

e (30)

= −1

2
e, (31)

whereas for the right-hand unit cell,

P = 1

2a

(

−a

2
+ 3a

2

)

e (32)

= +1

2
e. (33)

Other choices of unit cell and/or basis yield polarizations
that differ from each other by integer multiples of the so-called
‘polarization quantum’ are possible, which correspond to the
change in polarization on moving one electronic charge e a
distance of one unit cell. The polarization of a bulk periodic
solid, therefore, is not given by a single number, but is rather
a lattice of values separated from each other by polarization
quanta.

Changes in polarization, however, are uniquely defined
quantities, as illustrated in figure 3(b), where the cations have
been shifted a distance x to the right relative to their positions
in (a). For both the left and right unit cells, the change in
polarization,

δP = 1

2a

∑

i

qiδri (34)

= 1

2a
(+x − 0) e (35)

= xe

2a
. (36)

Since experimentally only changes in polarization can be
determined there is in fact no inconsistency between the
theoretical and experimental formalisms.

2.2.4. Toroidization in bulk periodic solids. As pointed
out above, in a bulk periodic solid, translation of an

5
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Figure 4. Calculation of the change in toroidization from a
non-toroidal reference structure (left) to a structure with a net
toroidization (right). The difference in toroidization values between
the two structures should be interpreted as the spontaneous
toroidization.

electronic charge by a lattice vector R does not change the
overall arrangement, but does change the polarization by the
polarization quantum, eR/�, where � is the volume of the
primitive unit cell. Likewise, translation of a spin, S by a
lattice vector leaves the system unchanged, but changes the
toroidization by

	T = gμB

2�
R × S. (37)

Therefore the toroidization in a bulk periodic solid is not
single-valued. By analogy with the polarization case, we
call the resulting multiple values of the toroidization a
toroidization lattice, and for the quantity 	T we propose the
term toroidization increment [5].

This apparently unphysical situation is resolved again,
however, by the fact that changes in toroidization are uniquely
defined. Therefore, in principle, the change in toroidization
relative to a non-toroidal reference structure which preserves
space-inversion and time reversal symmetry can always be
calculated; this is the physically meaningful quantity.

In figure 4 we illustrate the calculation of the change
in toroidization from a non-toroidal reference structure (left
panel); for a more detailed discussion see [5]. The multiple
allowed values of the toroidization for the non-toroidal
reference structure are Tn = ( 1

2 + n) 1
2 ẑ, where n is any

integer. When the magnetic ions shift a distance d from their
centrosymmetric positions to form antiferromagnetic dimers
(right panel), the allowed values for the toroidization are

Tn(d) =
(

n − 1 − d

2

)
s

2
ẑ. (38)

The change in toroidization between the two configurations is
identical for any branch n. For example, for the shaded unit
cell, the toroidization of the non-toroidal structure is −ẑ/4
and that of the left panel is −(1 − d)sẑ/4, so the change in
toroidization is sdẑ/4. By analogy to the electrical polarization
this can be interpreted as the spontaneous toroidization of the
toroidal structure [5].

2.3. Relation between toroidal moment and P × M

As discussed above, the toroidal moment is a vector changing
sign under both time reversal and space-inversion symmetry.
However, not every vector changing sign under time reversal
and space-inversion symmetry is a toroidal moment. A
number of recent papers have labelled the cross product P ×
M—which has the same symmetry as T —as a ‘toroidal
moment’ [13–15]. While P × M indeed seems to be
a useful quantity for describing the behaviour of multiply
ferroic systems with coupled macroscopic polarization and
magnetization [18], we emphasize that it is not in fact a
toroidal moment as defined formally by (13). Here ‘multiply
ferroic’ refers to composites with a ferromagnetic and a
ferroelectric constituent displaying the magnetoelectric effect
as product effect [4], or multilayer heterostructures with strong
correlations across the interface [15–17]. The coupling [P ×
M ] · [E × H], which is allowed by symmetry in these
systems, leads to a magnetoelectric response similar to that of
ferrotoroidics, such as a tilt of electric polarization of a conical
spiral in response to an applied magnetic field [18]. However,
P × M is not necessarily coupled to ∇ × H as in (27), which
is required for a toroidal moment.

3. Macroscopic definition and relationship to the
magnetoelectric effect

The most direct evidence for the presence of ferrotoroidic
order would be the observation of its macroscopic toroidization
in analogy to, e.g., ferromagnetism which is detected via
its macroscopic magnetization. However, because a probe
directly measuring a toroidization still needs to be developed
(see section 6.1) present attempts at observing ferrotoroidic
order are aimed at measuring responses which couple to the
ferrotoroidic order parameter. Using the coupling −T · ∇ ×
H is problematic because the curl of the magnetic field
corresponds to an electric current that has to flow through
a magnetic insulator, and furthermore, variations of external
magnetic fields on the scale of one unit cell are very small.

We will now show that indirect evidence for the presence
of a spontaneous toroidal moment in a system can be obtained
by measuring the linear magnetoelectric effect, which is
introduced via an expansion of the free energy [19], i.e.,

F̃ (E,H) = F0− εi j Ei E j

8π
−μi j Hi H j

8π
−αi j Ei H j +· · · (39)

where εi j , μi j and αi j are, respectively, the dielectric
permittivity, the magnetic permeability and the so-called
magnetoelectric tensor. Using ∂ F̃/∂E = −D/4π and
∂ F̃/∂H = −B/4π , we obtain

Pi = χ e
i j E j + αi j H j,

Mi = α j i E j + χm
i j H j,

(40)

where χ e
i j = (εi j − δi j)/4π and χm

i j = (μi j − δi j)/4π are,
respectively, the dielectric and magnetic susceptibility tensors.
When the magnetoelectric tensor is nonzero, an applied electric
field induces a magnetization and an applied magnetic field
induces an electric polarization.

6
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It follows from (39) that the magnetoelectric tensor αi j

changes sign upon r → −r or t → −t , so that a
linear magnetoelectric effect requires a simultaneous violation
of spatial inversion symmetry and time reversal symmetry.
Therefore, it can occur in magnetically ordered systems where
spin ordering breaks the spatial inversion symmetry. These
are precisely the conditions allowing the magnetic multipoles
a, t and qi j , discussed in section 2.2.2, to be nonzero. In
turn, these magnetic multipole orders can give rise to a linear
magnetoelectric effect.

The 3 × 3 matrix αi j can also be decomposed into a
pseudoscalar, a vector and a symmetric traceless tensor,

F̃me = −ã (E · H)− t̃ · [E × H] − q̃i j
(
Ei H j + E j Hi

)
,

(41)
in complete analogy with the multipole decomposition of the
tensor Mi j into the a, t and qi j in (27). By symmetry a nonzero
Mi j implies that the corresponding component of αi j is also
nonzero. Thus, in the state with the toroidal moment t �= 0,
an electric polarization is induced along the applied magnetic
field and vice versa, according to

P = −t̃ × H,

M = t̃ × E.
(42)

It is difficult (if not impossible) to give a general
relation between magnetic multipoles and the corresponding
components of the magnetoelectric tensor. Physically, the
magnetoelectric effect involves shifts of ions and polarization
of electronic orbitals induced by changes in orientations
of spins, while magnetic multipoles merely describe the
spin configuration of the system. Mathematically, the
magnetoelectric tensor is obtained by calculating the second-
order correction to the free energy in external electric and
magnetic fields, while magnetic multipoles are generated by
the expansion of the first-order correction to the free energy in
powers of the gradients of magnetic field (see (27)).

Furthermore, magnetic multipole ordering is not the only
source of the magnetoelectric effect, and while a toroidal
moment always gives rise to an off-diagonal magnetoelectric
response, such a response is not necessarily indicative of
a toroidal moment. For example, conical spiral ordering,
described by

Mn = M‖ ẑ + M⊥
(
x̂ cos Qzn + ŷ sin Qzn

)
(43)

with the spin rotation axis ẑ parallel to the propagation vector
Q of the spiral, gives rise to a linear magnetoelectric effect
with nonzero antisymmetric contributions αxy = −αyx : a
magnetic field applied along x̂ will cant the cone axis (but
not Q) in the same direction resulting in a cycloidal yz-spiral
component, which induces an electric polarization along the
y axis [20, 21]. Similarly, a magnetic field applied along the
y axis will induce a polarization in the x direction. Such a
magnetoelectric behaviour t̃ ‖ z in conical spiral state was
observed in the ZnCr2Se4 spinel [22, 23]. Nevertheless the
toroidal moment t of this state calculated using (24), is zero!

4. Upper bound on magnetoelectric susceptibility
and its microscopic origin

4.1. Thermodynamic inequalities

Thermodynamic stability requires the components of the
inverse dielectric permittivity tensor and the inverse magnetic
permeability tensor to be positive [19]:

(
ε−1

)
i j

= ∂Ei

∂D j
> 0,

(
μ−1

)
i j

= ∂Hi

∂B j
> 0. (44)

(Here, all partial derivatives are calculated at constant
temperature and chemical potential.)

These considerations can be extended to obtain an
upper bound on the components of the magnetoelectric
tensor [24]. Thermodynamic stability requires that the free
energy F(D,B) = F̃(E,H) + E · D/4π + H · B/4π has
an absolute minimum at D = B = 0, or equivalently, the
free energy F̃(E,H) must have an absolute maximum at zero
electric and magnetic fields. For this the 6 × 6 matrix

(
ε 4πα

4παT μ

)

, (45)

has to be positive definite (here αT
i j = α j i ), from which one

obtains the upper bound on the component of magnetoelectric
tensor,

|αi j | �
√
εiiμ j j

4π
. (46)

In [25] a general expression for the magnetoelectric
tensor is obtained within the second-order thermodynamic
perturbation theory. Neglecting diamagnetic susceptibility,
which for magnetic materials is small compared to their
paramagnetic susceptibility, they found the stronger condition

αi j �
√
χ e

iiχ
m
j j, (47)

which limits the components of the magnetoelectric tensor
by the geometric mean of the corresponding dielectric and
magnetic susceptibilities.

Equation (47) provides a rather stringent upper bound on
αi j : most commonly, the linear magnetoelectric effect is found
in collinear antiferromagnets with a magnetic susceptibility
χm � 1. The upper limit on the magnetoelectric
susceptibility can be higher in frustrated spin systems,
where the competition between nearly degenerate spin states
often gives rise to relatively large magnetic susceptibilities
and phase transitions induced by applied fields [26]. In
addition, studying the magnetoelectric properties of frustrated
systems is promising because frustration often results in
spin arrangements breaking inversion symmetry—a necessary
condition for the magnetoelectric effect. Frustrated systems are
therefore a potential source of giant magnetoelectric response
with magnetic-field-induced electric phase transitions or vice
versa.

Another way to increase the upper bound on the coupling
constant αi j is to look for magnetoelectric materials showing
ferroelectric and/or ferromagnetic transitions and, hence, a

7
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large electric permittivity and/or magnetic permeability. We
note that the conditions in (46) and (47) also hold for materials
with a spontaneous electric polarization Psp �= 0 and/or
spontaneous magnetization Msp �= 0, provided that they
are in a uniform stable or metastable state. Such systems,
however, can easily be driven away from equilibrium and their
magnetic/dielectric response is often dominated by the domain
wall motion, in which case the upper bounds (46) and (47) do
not apply. This non-equilibrium dynamics can lead to large
observable magnetoelectric effects.

Such a divergence of magnetoelectric susceptibility is
found in boracites, M3B7O13X, where M is a divalent metal
ion and X is a halogen. These materials become ferroelectric
at an elevated temperature (TFE = 466 K for the Co–Br
boracite), while at a temperature Tc = 10–40 K some of them
show a transition into a magnetoelectric state which is weakly
ferromagnetic [27]. Below Tc the components α23 and α32

have a very different temperature dependence. In particular,
α32 shows a sharp peak at Tc, while α23 does not.

As was shown by Sannikov, these observations can
be explained if one assumes that below Tc the boracites
become ferrotoroidically ordered [28, 29]. First, free-energy
contributions of the type

�me = −λT1 (P3 M2 − P2 M3) (48)

where T , M and P are, respectively, spontaneous
toroidization, magnetization and polarization, gives rise to
an antisymmetric magnetoelectric effect coupling linearly to
the toroidal order parameter: α32 − α23 ∝ T1. Second,
if the toroidal ordering occurs in the ferroelectric state with
P3 �= 0, as it does in the boracites, it automatically induces
a magnetization M2 ∝ P3T1. Furthermore, since the
magnetization M2 is linearly coupled to the primary order
parameter T1, the vanishing rigidity with respect to fluctuations
of the toroidal moment at Tc results in the divergence of the
magnetic susceptibility χm

22 below the critical temperature:

χm
22 ∝ 1

Tc − T
. (49)

As the dielectric susceptibility χ e
33 stays finite at Tc, the

divergent part of the magnetoelectric tensor α32 cannot grow
faster than

α32 ∝ 1√
Tc − T

, (50)

but it is still divergent in agreement with the experimental
observation [28, 29].

4.2. Microscopic mechanisms for magnetoelectric coupling

Microscopic mechanisms for linear magnetoelectric coupling,
briefly discussed in [30], are similar to those coupling po-
larization and magnetism in the spiral multiferroic materi-
als [31–33]. One mechanism—the spin-lattice coupling—
results from the dependence of exchange interactions (such as
isotropic Heisenberg exchange or anisotropic Dzyaloshinskii–
Moriya interaction) on the relative positions of magnetic and
ligand ions. Consider an oxygen anion connecting two mag-
netic cations as shown in figure 5. The superexchange constant

S1

S1 S2

H

P

S2

O2–

O2–

θ

Figure 5. The spins of two transition metal ions (shaded circles)
interacting via superexchange through an oxygen ion (empty circle).
The upper figure shows the positions of the ions at zero magnetic
field. As shown in the lower figure, the decrease of the angle between
the spins in an applied magnetic field pushes the negatively charged
oxygen ion away from the positively charged transition metal ions
which induces an electric dipole moment.

sensitively depends on the metal–oxygen–metal bond angle θ ;
according to the Anderson–Kanamori–Goodenough rules [34]
the exchange is antiferromagnetic for θ = 180◦ and ferromag-
netic for θ = 90◦. In an applied magnetic field the angle be-
tween spins therefore decreases, resulting in a decrease of the
bond angle θ . The shift of the negative oxygen ion with re-
spect to the positively charged transition metal ions induces an
electric dipole moment.

Magnetoelectric effects can also originate in purely elec-
tronic mechanisms such as spin-dependent virtual electronic
excitation of states within the scope of the superexchange pro-
cess. For example, the state in which one electron is virtually
transferred from magnetic site 1 to magnetic site 2 in figure 6,
possesses an electric dipole moment oriented along the 1–2 di-
rection. It is, however, exactly compensated by the dipole mo-
ment of the state in which an electron from site 2 is virtually
transferred to site 1. On the other hand, the state with two
holes on the oxygen ion and an extra electron on the sites 1 and
2 gives a nonzero contribution to the spin-dependent electric
dipole in the direction orthogonal to the bond. Estimates show
that the magnetoelectric coupling from electronic polarization
is comparable to that from spin–lattice interaction [35].

5. Experimental observation of the ferrotoroidic state

In the preceding sections we introduced the concept of toroidal
moments and ferrotoroidic order on the basis of macroscopic
symmetry considerations as well as through a microscopic
multipole expansion, and we investigated the relation between
ferrotoroidicity and the magnetoelectric effect. In this section
we address the question of whether ferrotoroidic order is
actually observed in nature and how it can be observed and
quantified. According to the Neumann principle, visualization
of the ferrotoroidic state requires an experimental technique
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1 2

1 2

P

O2–

O2–

Figure 6. The upper figure shows an initial state of the
superexchange process with a filled oxygen orbital. The lower shows
the virtually excited state with two oxygen holes; this has a dipole
moment due to the redistribution of the electrons. This virtual
excitation is only possible if spins on neighbouring transition metal
sites are initially antiparallel.

that is based on an effective coupling to the violation of spatial
as well as temporal inversion symmetry as an inherent property
of the ferrotoroidic order parameter. Several approaches have
been realized thus far and will be discussed in the following.

5.1. Magnetoelectric effect

As discussed in section 3 antisymmetric contributions
αi j = −α j i to the magnetoelectric effect can couple
to the ferrotoroidic order parameter. In general, the
magnetoelectric effect is composed of symmetric as well
as antisymmetric contributions so that observation of a
component αi j �= α j i is already an indication for the
presence of ferrotoroidic order. This was first achieved
in Co3B7O13Br and related boracite compounds where α23

and α32 were measured [36] as discussed in section 4.1.
Subsequently, asymmetries of magnetoelectric contributions
were reported for Ga2−x FexO3 [37] and Cr2O3 [38]. In Cr2O3

the ferrotoroidic state is only present when above a critical
magnetic field Hc ‖ z the magnetic Cr3+ moments are flopped
from the z axis into the xy plane. Consequently, the splitting
between α13 and α31 is present above Hc only.

Although measurement of the magnetoelectric effect is a
very convenient way for detecting ferrotoroidicity it must not
be forgotten that this is an indirect approach. In particular
it was shown in section 3 that the observation of tensor
components αi j = −α j i does not uniquely indicate the
presence of ferrotoroidic order. In this respect, the most
convincing evidence for ferrotoroidicity thus far was found
in boracite compounds like Co3B7O13Br. In [29] and as
summarized in section 4.1 it was shown that in the boracite
compounds an expansion of the free energy in polarization,
magnetization and toroidization with the latter taken as order
parameter leads to a divergence of α32 near the temperature
of the transition to the m ′m2′ phase allowing ferrotoroidic
order. Observation of this divergence constituted a direct

confirmation of the concept of ferrotoroidicity because it
directly evidenced the existence of an order parameter as
a characteristic feature of the ferroic state. In addition,
it provides an explicit expression for the relation between
ferrotoroidicity and the antisymmetric magnetoelectric effect
for this specific case.

5.2. X-ray gyrotropy and dichroism

The first examples of x-ray diffraction coupling to space-
inversion and time reversal symmetry breaking were reported
for antiferromagnetic compounds in which the spin arrange-
ment of the time reversal symmetry breaking magnetic order
also breaks spatial inversion symmetry. These effects were in-
vestigated with circularly polarized x-rays on V2O3 and Cr2O3.
The terms nonreciprocal x-ray gyrotropy [39] and magnetochi-
ral x-ray dichroism [40, 41] are used, depending on whether a
reversal of the real or the imaginary part of a component of the
gyration tensor is observed upon reversal of the magnetic order
parameter. However, an investigation of ferrotoroidic materi-
als has not yet occurred. It was claimed that the magnetochiral
dichroism couples to the orbital anapole moment, i.e., the or-
bital contribution to the toroidal moment (see appendix A) but
this claim contradicts the non-ferrotoroidic symmetry of Cr2O3

in zero field and further verifications have not yet been made.
Subsequently, x-ray directional (i.e., magnetochiral)

dichroism was investigated on a polar ferromagnet, GaFeO3.
A change of absorption upon magnetization reversal was
demonstrated and interpreted as being equivalent to a sign
reversal of P × M . However, as discussed in section 2.3
this term does not necessarily couple to a toroidal moment.
Furthermore, the change of absorption upon polarization
reversal also needs to be demonstrated in order for an
interpretation in terms of P × M (instead of M ) to be
meaningful.

5.3. Linear optical effects

In the visible range a dichroic linear optical effect changing
sign under space and time reversal was demonstrated on lu-
minescent tris(3-trifluoroacetyl-6-camphorato) europium(III)
complexes. The intensity of the luminescence light emitted
around 620 nm upon UV excitation was measured in depen-
dence of the direction of a magnetic field for the two enan-
tiomers of the compound [42]. Field reversal and a change of
enantiomers led to the same change of luminescence intensity
thus confirming the coupling to the space and time asymmetry
in separate experiments. Although this is a very convincing re-
sult the luminescence technique is applicable to certain organic
molecules but not to ferrotoroidic materials in general.

Sensitivity to the orientation of the space and time reversal
symmetry breaking antiferromagnetic order of Cr2O3 was
demonstrated in a linear reflection experiment. A reversal
of the order parameter reversed the angle of rotation of the
reflected light detected as a reflectivity change of the order of
10−5, an effect called nonreciprocal reflection [43].
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5.4. Nonlinear optical effects

If light fields described by the vector potentials A(ω1), A(ω2),
etc are incident on a crystal they induce source terms S(ωNL)

of electromagnetic waves at frequencies ωNL = ∑N
i=1 niωi

where N is the number of wave fields participating in the
excitation and ni ∈ Z [45, 46]. The simplest nonlinear
optical process is electric dipole (ED) type second harmonic
generation (SHG) which is described by

P (2ω) = c

4π
χ̂(2)E(ω)E(ω) (51)

where the intensity of the SHG wave emitted from the crystal,
ISHG ∝ |S|2, and S = (4π/c)∂2P /∂ t2. The susceptibility
χ̂ describes the nonlinear optical response of the medium
and is determined by its symmetry and microscopic structure.
Following the Neumann principle, the symmetry determines
the set of tensor components χi jk �= 0. Long-range ordering
affects the symmetry. This leads to contributions ∝ χ̂ (Ô)
to the SHG, which couple, in first order, linearly to the order
parameter Ô so that χ̂(−Ô) = −χ̂(Ô). Thus, SHG light from
opposite domains has a 180◦ phase shift which allows one to
identify the domain structure [47]. Since each form of (anti)
ferroic order affects symmetry in a different way the SHG
contributions from χ̂(Ô1), χ̂(Ô2), etc in a multiferroic are in
general differently polarized. This allows one to image even
coexisting domain structures by polarization analysis [48].

For the first time SHG coupling to space and time parity
violation was observed in Cr2O3 where a SHG contribution
coupling linearly to the antiferromagnetic order parameter
was detected and used for imaging the (non-ferrotoroidic)
domain structure [49, 50]. Similar experiments were
performed on ferroelectric antiferromagnetic YMnO3 [51]
and on weakly ferromagnetic CuB2O4 [52]. An important
step followed when finally ferrotoroidic domains were
imaged by SHG in LiCoPO4, and shown to coexist with
independent antiferromagnetic domains. The emergence of
the toroidization in LiCoPO4 is shown in figure 7(a) while
figure 7(b) displays the coexistence of ferrotoroidic and
antiferromagnetic domains in the compound.

SHG coupling to a state with nonzero toroidization
was also claimed for ferromagnetic ratchet superlattices with
broken inversion symmetry [53]. However, in this case the
actual coupling demonstrated was to the magnetization, and
the relation to the toroidization remains ambiguous.

6. Interesting perspectives of ferrotoroidicity

So far we have seen that the concept of ferrotoroidic
order is reasonable from the point of view of space–time
symmetry considerations as well as from the point of view
of the multipole expansion of the electrodynamic vector
potential. Long-range ordering of toroidal moments displaying
salient features of a ferroic state have been observed: the
existence of a ferrotoroidic order parameter was derived
from magnetoelectric measurements and the existence of
ferrotoroidic domains was proved by optical second harmonic
generation. In spite of these achievements important questions

Figure 7. Observation of ferrotoroidic domains by optical SHG. (a)
Distribution of Co2+ ions and their magnetic moments in the yz and
xz planes. Co2+ ions at x ∼ 3

4 (filled) and x ∼ 1
4 (open) and shifts δ

and ε from the high-symmetry position marked by thin black circles
are shown. For clarity, spin components in the xz plane are
magnified by 5 and the weak magnetization along the y axis is
omitted. The dotted circles graphically visualize the origin of the
toroidal moment. Because of T ∝ ∑

n rn × Sn only the projections of
Sz onto these circles contribute to Ty (see also [44]). Due to
r1,3 > r2,4 the clockwise and counterclockwise contributions do not
cancel. A change of sign of Sx or ϕ corresponds to a reversal of the
antiferromagnetic or ferrotoroidic order parameter, respectively.
(b) Coexisting antiferromagnetic and ferrotoroidic domains of a
LiCoPO4 (100) sample at 10 K imaged with SHG light at 2.197 eV.
Bright and dark areas are caused by the interference of
antiferromagnetic and ferrotoroidic contributions to SHG. Black and
white lines indicate the antiferromagnetic and the ferrotoroidic
domain walls, respectively.

related to the ferroic nature of the ferrotoroidic state remain
unanswered. Controlled switching of ferrotoroidic domains
by a toroidic field has not been accomplished yet. The
existence of antiferrotoroidic order has not yet been discussed.
The practical value of ferrotoroidicity with respect to device
applications is unclear and it is not known how to measure
the toroidization of a ferrotoroidic state. These issues will be
addressed in the following.

6.1. Switching and measuring the toroidization

As discussed in section 2.1.2 a space and time antisymmetric
so-called toroidal field G is required for introducing an energy
difference between ferrotoroidic domains that allows one to
switch them in a controlled way. According to (27) a field
with ∇ × H �= 0 is a toroidal field. Generating such a
vortex field is difficult. A ring coil or an arrangement of
current leads or permanent magnets may be used but this
becomes unfeasible if a large amplitude or a low-temperature
environment is required.

Alternatively, non-collinear homogeneous magnetic and
electric fields are toroidic because E × H breaks the time-
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and space-inversion symmetries. It may be argued that if two
fields are used for switching the ferrotoroidic order parameter
it represents a secondary rather than a primary ferroic state.
However, it is still the toroidal field only that sets the order
parameter; the fact that a combination of fields is used to
generate it is not important. (Similarly, in a ferromagnetic
material allowing the magnetobielectric effect Mi = βi jk E j Ek

a quadratic electric field can be used to orient the ferromagnetic
order parameter without rendering ferromagnetism a secondary
ferroic state!) Although the strength of the coupling between
E × H and the toroidal field is not clear (see section 3), it is
simpler to apply strong electric and magnetic fields rather than
vortex fields, and a demonstration of ferrotoroidic switching
may be accomplished in the near future.

Measurement of the toroidization faces similar problems.
Although all the effects discussed in section 5 can in principle
be used for quantifying the toroidization, the coupling constant
connecting the toroidization to the magnetoelectric effect or to
the gyration is not known. We anticipate that it will depend
on the material under investigation so that only the relative
values of the toroidization for one material at a time can be
given. Measurement of the absolute value of a toroidization
may be possible by using nanoscopic solenoids that pick up the
magnetic vortex field and convert it into a measurable voltage
in a capacitance.

6.2. Ferrotoroidicity and large magnetoelectric effects

A major advantage of ferrotoroidics is that they are intrinsically
magnetoelectric so that they may be useful for manipulating
magnetic properties by electric fields and vice versa. In that
they resemble multiferroics with a coexistence of magnetic
and ferroelectric order. However, whereas the unfavourable
coexistence of two order parameters is required for breaking
space and time reversal symmetries in a multiferroic, this is
accomplished by a single order parameter in ferrotoroidics.
Moreover, most of the magnetoelectric coefficients known
at present are diagonal coefficients (αii ). It is possible
that the antisymmetric off-diagonal contributions coupling
to the ferrotoroidic order parameter are intrinsically larger
within the limits discussed in section 4.1. This is not
refuted by the moderate values of the few known off-diagonal
magnetoelectric coupling coefficients; these values might
be due to compensation effects occurring in samples in a
ferrotoroidic multidomain state.

6.3. Data storage applications

Ferrotoroidic materials may become useful for data storage
applications in two ways. On the one hand, the possible
existence of large magnetoelectric effects in ferrotoroidics
may be used for magnetoelectric phase control in which a
magnetic bit is written or read via electric fields. This
can be realized by employing multilayer heterostructures
with a ferrotoroidic magnetoelectric constituent next to a
ferromagnetic constituent. Alternatively, the coexistence
between ferrotoroidic and magnetic order in a single compound
may be exploited to set the magnetization by an electric

field via the ferrotoroidically-induced magnetoelectric effect.
On the other hand, the spontaneous toroidization itself may
become the basis of binary data storage in which ferrotoroidic
bits are written and read via the magnetoelectric effect.
Admittedly, both options are still far from technical realization
at present.

6.4. Ferrotoroidic versus antiferrotoroidic

One characteristic feature of a ferroic transition is uniform
long-range ordering with respect to at least one macroscopic
property. The macroscopic property (e.g. the magnetization
M of a ferromagnet) results from uniform alignment of a
corresponding microscopic property (e.g. the magnetic dipole
moment m) for all unit cells of the parent phase: M = ∑

i mi .
If the alignment occurs in a cooperative but nonuniform way
such that the associated macroscopic property is zero the
corresponding transition is called antiferroic. For instance,
antiparallel alignment of the magnetic moments in Cr2O3 leads
to an antiferromagnetic state with M = 0. At first glance,
controlling the orientation of antiferroic domains is impossible
because of the absence of a field-energy contribution as in (1).
However, any antiferroic state also represents a ferroic state of
higher order. For instance, the antiferromagnetic state in Cr2O3

is also ferromagnetoelectric in the terminology of section 2.1.1
so that domains can be oriented by simultaneous application of
a magnetic and an electric field (E ‖ H in Cr2O3 [54]). This
approach allows one to classify even antiferroic states uniquely
in terms of their field energy.

Symmetry-wise, an ordering is termed antiferroic if it
breaks the same symmetries as a corresponding ferroic order
but does not have the linear coupling (1) to external field.
According to this definition, an antiferrotoroidic state must
break both inversion and time reversal symmetry even though
the total toroidal moment of such state is zero. These symmetry
considerations can be used for classification of various types
of domains observed in multiferroic hexagonal manganites.
In YMnO3 a coexistence of domains determined (i) by the
ferroelectric order parameter P , (ii) by the antiferromagnetic
order parameter � and (iii) by the product P� is observed
and shown in figure 8(a). Independent domain structures
are found for the order parameter P and for the somewhat
artificial product P�, whereas the domains related to the order
parameter � are clearly not independent but determined by the
other two domain structures. The interpretation becomes much
more ‘physical’ by replacing P� → τ and � → Pτ with τ
as antiferrotoroidic order parameter since then the independent
domain structures in figure 8(b) are those corresponding to the
order parameters while the product state reasonably displays a
constrained domain structure. As figure 8 shows, YMnO3 can
indeed be understood as being composed of three ferrotoroidic
sublattices whose total toroidization cancels out.

The interpretation in terms of antiferrotoroidic domains
is corroborated by SHG measurements. The ferroelectric and
the antiferrotoroidic states yield SHG contributions while the
product state (∼Pτ ) does not. The antiferrotoroidic SHG
signal changes in the same way upon polarization reversal
(spatial inversion) and upon spin reversal (temporal inversion)
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Figure 8. Possible existence of antiferrotoroidic domains in
hexagonal YMnO3. (a) Coexistence of domain structures in a
YMnO3 sample at 6 K imaged with SHG light at 2.46 eV (see [48]).
Labels refer to the coupling to the coupling of the SHG signal to the
order parameters with former assignments given in brackets.
P —ferroelectric, τ—antiferrotoroidic, �—antiferromagnetic.
(b) Graphical interpretation of the arrangement of Mn3+ spins in
terms of compensated toroidal moments leading to
antiferrotoroidicity. Filled and open circles refer to Mn3+ spins at
z = 0 and z = c/2, respectively.

but it is left invariant by application of both. This corresponds
precisely to the symmetry properties of a toroidic state.

7. Summary and outlook

7.1. State of the art

In this article we have shown that the concept of
ferrotoroidicity as a long-range ordered arrangement of
magnetic vortices is a compelling consequence of both a
macroscopic as well as a microscopic classification of the
crystalline state. Macroscopically, an expansion of the free
energy leads to the existence of a primary ferroic state whose
order parameter violates the space-inversion as well as the time
reversal symmetry. A uniform alignment of toroidal moments
has this property. Microscopically, toroidal moment emerges in
the multipole expansion of the electrodynamic vector potential
A as a vector that changes sign upon both r → −r and
t → −t . We have shown how to apply the concept of
toroidal moments to bulk periodic solids so that a well-defined
value of the bulk toroidization is obtained: only differences in
the toroidization of a system can be determined uniquely in
analogy to the uniqueness of polarization differences only for
ferroelectrics.

One of the most interesting properties of the ferrotoroidic
state, directly following from its unusual symmetry, is its abil-
ity to show the linear magnetoelectric effect. We explained
that any bulk toroidization leads to an antisymmetric mag-
netoelectric tensor αi j = −α j i , whereas the inverse is not
mandatory. Thermodynamic stability imposes a stringent up-
per limit on the value of the magnetoelectric coupling coeffi-
cient. However, magnetoelectric effects can be drastically en-
hanced by proximity of ferroelectric and ferromagnetic transi-
tions, where susceptibilities to uniform electric and magnetic
field diverge and the magnetoelectric response is governed by
non-equilibrium domain wall dynamics. In particular, when a
spontaneous toroidization arises in a ferroelectric or ferromag-
netic state, the magnetoelectric constant diverges at the critical
temperature. Large magnetoelectric effects may also be found
in magnetically frustrated systems, where spin orderings show
strong sensitivity to external magnetic fields.

A review of experimental activities revealed a variety
of techniques—many of them developed quite recently—
that probe the simultaneous violation of spatial and temporal
inversion symmetry. However, only two of them, namely the
magnetoelectric effect and optical second harmonic generation
have been applied for the actual observation of ferrotoroidic
order. Future applications of ferrotoroidic materials and the
possible existence of antiferrotoroidic order were discussed
but much development is still required to advance these issues
beyond speculation.

7.2. Unsolved problems

What are the important questions to be answered for further
establishing the concept of ferrotoroidic order? From the
point of view of theory, work on ferrotoroidic order to date
has had a largely phenomenological character: magnetic
classes allowing for the existence of spontaneous toroidal
moment have been identified and Landau theory has been
used to describe magnetoelectric anomalies and low-energy
excitations close to critical points. However, the microscopic
origins of ferrotoroidic ordering in solids remain largely
unexplored. It has been hypothesized that such ordering can be
induced by spontaneous currents circulating in certain types of
excitonic insulators [6]. However, so far such materials have
not been found and in all known ferrotoroidics the periodic
arrays of magnetic vortices seem to be induced by a spin
ordering. For spin-induced toroidal magnetism, it is not yet
clear which lattice geometries and spin-exchange interactions
are most favourable for ferrotoroidic ordering and how the
magnetoelectric coupling in such materials can be increased.
Can a macroscopically large toroidal moment be induced
by a lattice instability in magnetically ordered states or by
spontaneous charge currents generated in frustrated quantum
spin systems (see appendix B)? In answering these questions,
a fully first-principles method for calculating both spin and
orbital contributions to the toroidal moment—analogous to the
modern theories of polarization and orbital magnetization—
would be very useful. While we believe that this is in principle
possible, it will require extensive formal development and
algorithmic implementation.
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From the point of view of experiment a demonstration of
controlled switching of the ferrotoroidic domains towards a
single-domain state is most desirable. This will be attempted
by subjecting a LiCoPO4 sample to a toroidal field cycle. As
mentioned, generation of a magnetic vortex field in a cryogenic
environment is difficult. Therefore, as discussed in section 6.1,
the toroidal field will be generated by crossed magnetic and
electric fields applied below the ordering temperature of the
compound. Electric field cycles at fixed magnetic field and
magnetic field cycles at fixed electric field should have the
same effect. The toroidization hysteresis will be determined by
observing the field-dependent distribution of the ferrotoroidic
domains by SHG. The field amplitude required for this purpose
is not known because of the unknown value of the coupling
constant between the toroidal field and the crossed magnetic
and electric fields (see section 3). However, it was already
observed that the ferrotoroidic domains are easily moved by
small temperature cycles which points to a small coercive
toroidal field [44].

‘Ferrotoroidic switching’ can also be used to search for
novel mechanisms of ferrotoroidicity, as it makes it possible to
differentiate between toroidal and antiferromagnetic orderings.
Ideally, the toroidal field cycle will only affect the ferrotoroidic
domain structure but leave any non-toroidal domain structure
invariant. Indications that domains with different space–time
symmetry can be manipulated independently were already
reported in [44], but up to now on a passive basis, that is, in
the absence of fields only. In addition, materials exhibiting
a difference between antiferromagnetic and ferrotoroidic
ordering temperatures should be sought.

Further corroboration of the ferrotoroidic state by some
of the techniques discussed in section 5 is desirable. Here,
resonant x-ray diffraction and (as yet not exploited) neutron
diffraction seem to be most promising. More compounds
displaying ferrotoroidic order, ideally accompanied by
pronounced magnetoelectric effects, should be searched for.
Such a quest should be supported by the present understanding
of the microscopic origin of toroidal moments summarized in
this article. Methods for directly measuring the value of the
toroidization, based e.g. on the suggestions made in section 6.1,
still need to be developed.

On a broader scope, further research on the topic
of ferrotoroidic order will promote the development of a
generalized concept of ferroic order. Figure 2 shows that with
the addition of ferrotoroidicity to the set of primary ferroic
forms of order each representation of the space–time parity
group is now related to one primary ferroic state. However,
three of these states correspond to an order parameter of rank-
1 whereas the space and time symmetric ferroelastic state
is parametrized by a rank-2 order parameter. It may be
speculated that a yet undiscovered space and time symmetric
primary ferroic state described by a vector may also exist
and, moreover, other primary ferroic states related to an order
parameter of second or even higher rank. For example,
an electro-toroidal state with a vortex-like arrangement of
electric (as opposed to magnetic) dipoles as proposed in [3]
would constitute the ‘missing’ vector-like primary ferroic
state. Electric vortices have already been observed. However,

thus far the vortex formation was always due to geometrical
confinement and not related to long-range ordering.
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Appendix A. Anapole moment

A toroidal moment was first discussed by Zel’dovich in the
context of parity violation by weak interactions [55]. Since
this moment was not like any conventional magnetic multipole
known at that time it was named an anapole moment.

As discussed above, the toroidal moment t changes sign
under the symmetry operations r → −r and t → −t .
In particle-physics terminology, t is thus a P-odd and T -
odd vector. Since electromagnetic interactions, which are
invariant under these two symmetry operations, are sufficient
to describe physical properties of solids, the toroidal moment
in condensed-matter systems appears as a result of spontaneous
breaking of both spatial inversion and time reversal symmetry.

In particle physics the situation is somewhat different,
because elementary particles and nuclei rotate and their
eigenstates in the rest frame are eigenfunctions of the total spin.
Then, according to the Wigner–Eckart theorem, the average
toroidal moment of a particle has to be proportional to its
average spin: 〈t〉 ∝ 〈S〉. Since spin is P-even and T -odd,
while 〈t〉 is P-odd and T -odd, a nonzero toroidal moment
t of a particle requires explicit parity-breaking terms in the
Hamiltonian, originating from weak interactions. The toroidal
moment of a nucleus induces the P-even electromagnetic
vector potential A = 4πtδ(R) (see (9)), which acts on atomic
electrons.

Observation of the nuclear toroidal moment at r = 0 is
possible via its contact interaction with the orbital current of
the much more extended electron cloud described by Hint =
− 4π

c je(0)·t, where je(0) = − eh̄
2im (ψ

†(0)∇ψ(0)−h.c.). Since
ψ(0) is nonzero for s orbitals while the derivative of ψ at
r = 0 is nonzero for p orbitals, the transfer of the parity-
breaking nuclear toroidal moment to the electrons results in the
mixing of s and p electron states. For Cs atoms the admixture
of the p wavefunction to the 6s and 7s state was evidenced
by observation of an electric dipole transition between the two
states [56].

Appendix B. Persistent currents in Mott insulators
and quantum toroidal states

So far we discussed toroidal moments induced by classical
spin ordering. Here we show that the ground state degeneracy
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in frustrated quantum spin systems can result in states
with spontaneously broken space-inversion and time reversal
symmetry that carry a toroidal moment.

Consider an isolated equilateral triangle in the xy plane
formed by three S = 1/2 spins with antiferromagnetic
Heisenberg interactions. Its ground state is four-fold
degenerate and has the total spin S = 1/2. The degenerate
ground states can be labelled by z-projection of the total spin,
Sz = ±1/2 and by the ‘scalar chirality’ [57], χ = ±1:

|χ,↑〉 = + 1√
3

(
|↓ ↑↑〉 + eiχ 2π

3 |↑ ↓↑〉 + eiχ 4π
3 |↑ ↑↓〉

)
,

|χ,↓〉 = − 1√
3

(
|↑ ↓↓〉 + eiχ 2π

3 |↓ ↑↓〉 + eiχ 4π
3 |↓ ↓↑〉

)

(B.1)
The operator of scalar spin chirality,

χ̂ = 4√
3
S1 · (S2 × S3), (B.2)

describes the direction of an orbital current circulating in
the triangle. This persistent charge current results from
the fact that the amplitudes of clockwise and anti-clockwise
permutations of three electrons in the triangle are different in
chiral states. Such states carry an orbital magnetic moment
coupled to the magnetic field [59]. These four degenerate states
are also eigenfunctions of the ‘vector chirality’ operator, V̂z:
V̂z|χ, Sz〉 = 2Szχ |χ, Sz〉, where the vector chirality operator
is defined by [58]

V = 2√
3

[S1 × S2 + S2 × S3 + S3 × S1] . (B.3)

The average value of the pseudoscalar operator a and the
toroidal moment tz , defined by (23) and (24), over chiral states
is zero, which is clear already from the fact that the chiralities
χ and Vz are even under the xy mirror transformation, while
a and tz are odd. However, the linear superpositions of chiral
states with real coefficients,

|±〉a = 1√
2
(|+,↓〉 ∓ |−,↑〉) , (B.4)

are eigenstates of a with the eigenvalues ± 2l0gμB

3
√

3
, where l0 is

the length of the triangle side, while the superpositions with
complex coefficients

|±〉t = 1√
2
(|+,↓〉 ± i|−,↑〉) , (B.5)

are eigenstates of tz with the eigenvalues ± l0gμB√
3

. Thus,
frustrated triangular antiferromagnets can in principle show
magnetoelectric effect of quantum spin origin. It is not
clear, however, whether realistic interactions between spins of
different triangles can favour such ‘quantum magnetoelectric’
states.
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