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Abstract. An (n, t, d, n−t)-arithmetic secret sharing scheme (with uni-
formity) for F

k
q over Fq is an Fq-linear secret sharing scheme where the

secret is selected from F
k
q and each of the n shares is an element of Fq.

Moreover, there is t-privacy (in addition, any t shares are uniformly ran-
dom in F

t
q) and, if one considers the d-fold “component-wise” product of

any d sharings, then the d-fold component-wise product of the d respec-
tive secrets is (n − t)-wise uniquely determined by it. Such schemes are
a fundamental primitive in information-theoretically secure multi-party
computation. Perhaps counter-intuitively, secure multi-party computa-
tion is a very powerful primitive for communication-efficient two-party
cryptography, as shown recently in a series of surprising results from
2007 on. Moreover, the existence of asymptotically good arithmetic secret
sharing schemes plays a crucial role in their communication-efficiency: for
each d ≥ 2, if A(q) > 2d, where A(q) is Ihara’s constant, then there ex-
ists an infinite family of such schemes over Fq such that n is unbounded,
k = Ω(n) and t = Ω(n), as follows from a result at CRYPTO’06. Our
main contribution is a novel paradigm for constructing asymptotically
good arithmetic secret sharing schemes from towers of algebraic func-
tion fields. It is based on a new limit that, for a tower with a given
Ihara limit and given positive integer �, gives information on the cardi-
nality of the �-torsion sub-groups of the associated degree-zero divisor
class groups and that we believe is of independent interest. As an appli-
cation of the bounds we obtain, we relax the condition A(q) > 2d from
the CRYPTO’06 result substantially in terms of our torsion-limit. As a
consequence, this result now holds over nearly all finite fields Fq. For
example, if d = 2, it is sufficient that q = 8, 9 or q ≥ 16.

1 Introduction

An (n, t, d, n− t)-arithmetic secret sharing scheme (with uniformity) for F
k
q over

Fq is an Fq-linear secret sharing scheme where k, n, t ≥ 1, d ≥ 2, the secret is
selected from F

k
q and each of the n shares is an element of Fq. Moreover, there

is t-privacy (in addition, any t shares are uniformly random in F
t
q) and, if one
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considers the d-fold “component-wise” product of any d sharings, then the d-
fold component-wise product of the d respective secrets is (n− t)-wise uniquely
determined by it.

Such schemes, first based on Shamir’s scheme and later abstracted and gener-
alized, are fundamental to (information-theoretically) secure multi-party compu-
tation [2,6,15,10]. Please refer to Section 5 for details about two main, well-known
applications. Note that both concern protocols for “secure multiplication” and
that the properties of arithmetic secret sharing are used somewhat differently
from what their definition perhaps seems to suggest on first encounter. Secure
multiplication is a fundamental primitive in its own right, as secure multi-party
computation is often based on combinations of secure addition and secure multi-
plication, the latter typically being demanding and involved while the former is
typically much more straightforward. Arithmetic secret sharing allows efficient
recovery of the secret in the presence of faulty shares, by a generalization of a
result from [12] (see Section 5) and also gives rise to verifiable secret sharing [10].

A series of surprising results, concerning zero-knowledge for circuit satisfia-
bility (“MPC in the Head”), two-party secure computation, OT-combiners, cor-
relation extractors, and OT from noisy channels [23,24,18,22,13,21], has caused
nothing less than a paradigm shift that perhaps appears even as counter-intuitive:
secure multi-party computation is a very powerful abstract primitive for
communication-efficient two-party cryptography. All these results use arithmetic
secret sharing schemes, typically with d = 2 (see also [11] for an application with
d > 2). Note that both [22,21] are information-theoretic in nature, require the
uniformity property, and also use the error correction procedure.

Also surprisingly, the existence of asymptotically good arithmetic secret shar-
ing schemes plays a crucial role in the communication-efficiency of these recent,
fundamental results on two-party cryptography: as follows from [7], for each
d ≥ 2, if A(q) > 2d (where A(q) is Ihara’s constant from algebraic geometry,
see Section 2) then there exists an infinite family of such schemes over Fq such
that n is unbounded, k = Ω(n) and t = Ω(n). Using these schemes (for d = 2),
“constant-rate communication” has been achieved in those results, due to the
removal of logarithmic terms caused by approaches using (appropriate modes
of) Shamir’s scheme [32]. Note that the original motivation of [7] was to give
a communication-efficient asymptotic version of the “fundamental theorem of
perfect information-theoretically secure multi-party computation” of [2,6], by
combining the asymptotically good scheme from [7] with the results from [10].
In particular, the field Fq of computation can be fixed, the number n of players
is unbounded, and a malicious t-adversary is tolerated with t = Ω(n).

In [9], an extension of [7] is given where F
k
q is replaced by Fqk . It follows by the

results of [4] that asymptotically good (n, t, d, n − t)-arithmetic secret sharing
schemes for F

k
q over Fq exist over any finite field, with the caveat that the unifor-

mity property does not hold after application of the dedicated descent technique
to the result from [7]. Therefore, A(q) > 2d is the weakest known condition un-
der which asymptotically good (n, t, d, n − t)-arithmetic secret sharing schemes
with uniformity (for F

k
q over Fq) are known to exist. All these asymptotic results
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rely crucially on good towers of algebraic function fields, and currently do not
seem to admit more elementary proofs avoiding this.1

The Drinfeld-Vlǎduţ bound states that A(q) ≤ √
q− 1. By Ihara [20], A(q) =√

q−1 if q is a square. By Serre’s Theorem [31], A(q) ≥ c · log q for some absolute
real constant c > 0 (for which the current best lower bound is about 1

96 ). If we
take d = 2, for example, then the condition A(q) > 4 is satisfied if q ≥ 49 is a
square (alternatively, q is a large enough cubic [3,1]) or if q is very large. Thus,
existence is unresolved for many values of q.

Our main contribution is a novel paradigm for constructing asymptotically
good arithmetic secret sharing schemes from towers of algebraic function fields.
It is based on a new limit that, for a tower with a given Ihara limit and given
positive integer �, gives information on the cardinality of the �-torsion sub-groups
of the associated degree-zero divisor class groups. Our “torsion limit,” which we
believe is of independent interest, can in general be upper bounded using Weil’s
classical theorem on torsion in Abelian varieties (and in many cases using the
Weil-pairing). However, the resulting bound is far too pessimistic, as we present
a tower for which our torsion limit is considerably smaller, yet it attains the
Drinfeld-Vlǎduţ bound.

By means of this paradigm, we weaken the condition A(q) > 2d to A(q) >
1+Jd(q, A(q)), where Jd(q, A(q)) upper-bounds a “d-torsion” rate (based on the
logarithm of the cardinality of the d-torsion, divided by the genus) taken over
all infinite families of curves defined over Fq such that the genus tends to infinity
and such that the Drinfeld–Vlǎduţ bound is attained.

More precisely, the bounds we obtain on this torsion limit allow us to show the
existence of the claimed arithmetic secret sharing schemes by solving an appro-
priate system of “Riemann-Roch type of equations” over an algebraic function
field (in fact, one such system for each algebraic function field in a given infinite
family). Each such equation is of the form �(λiX + Yi) = 0, where X is the
divisor to be solved for, λi ∈ {−1, d}, Yi is a given divisor, and �(·) denotes
Riemann-Roch dimension. The solution X of such a system defines a certain
AG-code with properties as claimed. The necessity of studying d-torsion arises
from the fact that λi = d does occur.

Concretely, for d = 2 we prove that for all finite fields Fq with q ≥ 16 (as
well as for q = 8, 9), asymptotically good (n, t, d, n− t)-arithmetic secret sharing
schemes with uniformity (for F

k
q over Fq) exist. This settles existence in the

affirmative for nearly all finite fields. As an application, the results from [22,21]
can in principle be based on smaller finite fields.

Finally, using our paradigm we also improve the explicit lower bounds on the
asymptotic optimal normalized corruption tolerance τ̂ (q) from [4] for all q with
q ≤ 81 and q square, as well as for all q with q ≤ 9. For instance, τ̂ (64) ≥ 0.52,

1 The existence of asymptotically good (n, t, 2, n)-arithmetic secret sharing schemes
for Fq over Fq (so k = 1!) can be shown by elementary means [8], with asymptotically
good self-dual error correcting codes as a special case. But this is a much weaker
class that neither supports the mentioned applications in two-party cryptography,
nor the asymptotic version of the “fundamental MPC theorem” given in [7].
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whereas previously the best known lower bound was 0.42. As an application, the
asymptotic version of the Fundamental Theorem in principle tolerates a stronger
adversary (by a constant factor). Our results also have a bearing on the study of
the asymptotic complexity of multiplication in finite extension fields of Fq, but
we do not elaborate on this here.

This paper is organized as follows. Our main contributions are captured in Def-
inition 2 (the torsion-limit), Theorem 1 (bounds for this limit), Theorem 6 (suf-
ficient conditions for Riemann-Roch system solvability) and Main Theorems 1
and 2 (claimed arithmetic secret sharing schemes). After giving some preliminar-
ies in Section 2, we introduce our torsion limit in Section 3 and show our bounds.
In Section 4 we introduce Riemann-Roch systems of equations and show how
these may be solved using the bounds from Section 3. In Section 5 we introduce
an elementary framework in which our quantitative results can be conveniently
stated and apply our bounds to obtain the claimed arithmetic secret sharing
schemes. Efficiency issues are also discussed there.

2 Preliminaries

For a prime power q, let Fq be a finite field of q elements. An algebraic function
field over Fq in one variable is a field extension F ⊃ Fq such that F is a finite
algebraic extension of Fq(x) for some x ∈ F that is transcendental over Fq.
F/Fq denotes a function field with full constant field Fq; g(F ) and N(F ) are
the genus and the number of rational places of F respectively. P(F ) denotes the
set of places of F , which is an infinite set, and P

(k)(F ) is the (finite) subset
consisting of the places of degree k of F . Ni(F ) is the number of rational places
of the constant field extension FqiF , i.e., Ni(F ) = N(FqiF ) (note that N(F ) =
N1(F )); Div(F ) is the divisor group of F and Div0(F ) its subset consisting
of the divisors of degree 0; Prin(F ) is the principal divisor group of F ; Cl(F )
is the divisor class group Div(F )/Prin(F ) of F and Cl0(F ) = JF is the zero
divisor class group Div0(F )/Prin(F ) of F , which is a finite group of cardinality
h(F ) = |Cl0(F )| (the class number); Ar(F ) is the set of effective divisors of
degree r ≥ 0, which is a finite set, and Ar(F ) denotes its cardinality; Clr(F ) is
the set of {[D] : deg(D) = r}, where [D] stands for the divisor class containingD
and Cl+r (F ) is the subset of Clr(F ) of classes which contain an effective divisor,
i.e., {[D] : deg(D) = r,D ≥ 0}. In case there is no confusion, we omit F in some
of the above notations. For instance, Ar(F ) is denoted by Ar if it is clear in the
context. For a divisor G of F , L(G) := {f ∈ F ∗ : div(f) +G ≥ 0} ∪ {0} is its
Riemann-Roch space. It is a finite dimensional space over Fq. Its dimension �(G)
satisfies �(G) = deg(G) + 1− g(F ) + �(K −G) where K is a canonical divisor of
degree 2g(F )−2 (Riemann-Roch theorem). Therefore, �(G) ≥ deg(G)+1−g(F ),
with equality if deg(G) ≥ 2g(G) − 1. The zeta function of F is defined by the
following power series

ZF (T ) := Exp

( ∞
∑

i=1

Ni(F )
i

T i

)

=
∞
∑

i=0

Ai(F )T i.
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In fact (Weil), ZF (T ) = LF (T )
(1−T )(1−qT ) where LF (T ) is a polynomial of degree

2g(F ) in Z[T ], called L-polynomial of F . Furthermore, LF (0) = 1. If we factorize
LF (T ) into a linear product

∏2g(F )
i=1 (wiT − 1) in C[T ], then Weil showed that

|wi| =
√
q for all 1 ≤ i ≤ 2g(F ). The Functional Equation of the L-polynomial

states LF (T ) = qg(F )T 2g(F )LF (1/qT ). Finally we know LF (1) = h(F ). All these
facts about the L-polynomial can be found in [34]. Again, when F is clear from
the context we write Z(T ) and L(T ) for its zeta function and L-polynomial,
respectively. From the definition of zeta function, one obtains Nm(F ) = qm +1−
∑2g(F )

i=1 wm
i for all m ≥ 1. This gives the Hasse-Weil bound N(F ) = N1(F ) ≤ q+

1+2g(F )
√
q. Define Nq(g) = maxF N(F ), where F ranges over all function fields

of genus g over Fq, and define A(q) := lim supg→∞Nq(g)/g, Ihara’s constant.
Vlǎduţ and Drinfeld showed A(q) ≤ √

q−1. Ihara [20] showed that A(q) ≥ √
q−1

for any square power q. Hence, A(q) =
√
q − 1 for all square powers. Zink [42],

and Bezerra et al. [3] (see also Bassa et al. [1]) showed that A(q3) ≥ 2(q2−1)
q+2

Serre showed that there is a absolute constant c > 0 such that A(q) ≥ c · log(q)
for all prime powers q. In [41], Xing and Yeo showed that A(2) ≥ 0.258. Very
recently, Duursma and Mak have reported in [14] the stronger bound A(2) ≥
0.316. For a family F = {F/Fq} of function fields with g(F ) → ∞ such that
limg(F )→∞N(F )/g(F ) exists, one can define this limit to be the Ihara limit,
denoted by A(F). It is clear that there exists a family E = {E/Fq} of function
fields such that g(E) → ∞ and the Ihara limit A(E) is equal to A(q).

Remark 1. In general, we can define the Ihara limit for any family F = {F/Fq}
of function fields with g(F ) → ∞ by lim supg(F )→∞N(F )/g(F ). However, for
convenience of this paper, we define the Ihara limit only for those families
{E/Fq} whose limit limg(E)→∞N(E)/g(E) exists.

3 Torsion Point Limits

For the applications in this paper, we are interested in considering, in addition
to the Ihara limit of a family of function fields, a limit for the number of torsion
points of the zero divisor class groups of these function fields.

Let F/Fq be a function field. For a positive integer r > 1, we denote by JF [r]
the r-torsion point group in JF , i.e., JF [r] := {[D] ∈ JF : r[D] = 0}.
Definition 1. For each family F = {F/Fq} of function fields with g(F ) → ∞,
we define

Jr(F) := lim inf
F∈F

logq |JF [r]|
g(F )

.

We define an asymptotic notion involving both Jr(F) and the Ihara limit A(F).

Definition 2 (The torsion-limit). For a prime power q, r ∈ Z>1 and a ∈ R,
let F be the set of families {F} of function fields over Fq such that genus in each
family tends to ∞ and the Ihara limit A(F) ≥ a for every F ∈ F. Then the
asymptotic quantity Jr(q, a) is defined by Jr(q, a) = lim infF∈F Jr(F).



690 I. Cascudo, R. Cramer, and C. Xing

Thus, for a given family, the limit Jr(F) measures the r-torsion against the
genus. The corresponding constant Jr(q, a) measures, for a given Ihara limit a
and for given r, the “least possible r-torsion.” Note that A(q), Ihara’s constant,
is the supremum of A(F) taken over all asymptotically good F over Fq. Now we
are ready to state the main results of this section.

Theorem 1. Let Fq be a finite field and let r > 1 be a prime.

(i) If r | (q − 1), then Jr(q, A(q)) ≤ 2
logr q .

(ii) If r � (q − 1), then Jr(q, A(q)) ≤ 1
logr q

(iii) If q is square and r | q, then Jr(q,
√
q − 1) ≤ 1

(
√

q+1) logr q .

The first part of Theorem 1, as well as the second part when, additionally, r|q, is
proved directly using a theorem of Weil [38,27] on torsion in Abelian varieties. 2

The second part, in the case r � q and r � (q − 1), can be proved by using Weil
pairing for abelian varieties and we will show it in Section 3.1 below. The most
interesting is perhaps the bound in the third part, which is substantially smaller
(we prove that bound in Section 3.2).

Theorem 2. Let Fq be a finite field of characteristic p.

(i) If r ≥ 2 is an integer, then Jr(q, A(q)) ≤ logq(dr), where d = gcd(r, q − 1).
(ii) Write r as p�m for some � ≥ 0 and a positive integer m co-prime to p. If q is a

square, then Jr(q,
√
q−1) ≤ �√

q+1 logq(p)+logq(cm), where c = gcd(m, q−1).

Proof. The result follows quite directly from the case of prime r considered
in Theorem 1 together with some observations about group torsion. We prove
this formally in Section 3.3 below. 

Finally, we show existence of certain function field families that is essential for
our applications in Section 5.

Theorem 3. For every q ≥ 8 except for q = 11 or 13, there exists a family F
of function fields over Fq such that the Ihara limit A(F) exists and it satisfies
A(F) > 1 + J2(F).

Proof. We prove it in two steps. The first one is to prove that the result is
true for all q ≥ 17 by using class field theory. The second step is to show that
the result holds for q = 8, 9, 16 by looking at each individual q. For q ≥ 17, we
prove the result only for odd q. For even q, we can similarly get it by considering
the Artin-Schreier extensions. Choose 7 nonzero square elements t1, . . . , t7 in
Fq (this is possible since (q − 1)/2 ≥ 7). For each i, consider the extension
Ki = Fq(x, yi), where y2

i = x + ti. Then the place x is completely splitting in

2 If K is algebraically closed, then, for any m �= 0, A[m] is isomorphic to (Z/mZ)2g

if m is co-prime to the characteristic p of K; and A[p] is isomorphic to (Z/pZ)a for
some 0 ≤ a ≤ g, where g is the dimension of A. See also [30]. This implies upper
bounds if K is not algebraically closed.
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Ki. Let K be the field Fq(x, y), where y2 =
∏7

i=1(x + ti). Then K is a subfield
of K1 · · ·K7/Fq(x) such that [K : Fq(x)] = 2 and K1 · · ·K7/K is an unramified
abelian extension. The three places, ∞ and those lying above x, are completely
splitting in K1 · · ·K7/K. Since the 2-rank of the Galois group of K1 · · ·K7/K
is 6 which is equal to 2 + 2

√
3 + 1, K has an infinite (2, S)-Hilbert class field

tower F , where S consists of the three places ∞ and those lying above x. This
yields A(F) ≥ 3/(g(K) − 1) = 3/2 (see [31] or [29, Corollary 2.7.8]). Now we
have A(F) ≥ 3/2 > 1+2/ log2(17) ≥ 1+2/ log2 q ≥ 1+J2(F). For q = 8, by the
lower bound for cubics from Section 2 we know that there exists a family F over
F8 such that A(F) ≥ 3/2. Thus, A(F) ≥ 3

2 > 1 + 1
3 ≥ 1 + J2(F). For q = 9, by

the result for squares from Section 2 we know that there exists a family F over
F9 such that A(F) = 2. Thus, A(F) = 2 > 1 + 2

log2 9 ≥ 1 + J2(F). For q = 16,
by the result for squares from Section 2 we know that there exists a family F
over F16 such that A(F) = 3. Thus, A(F) = 3 > 1 + 1

4 ≥ 1 + J2(F). 


3.1 Proof Theorem 1(ii)

For an abelian variety A defined over a field k and a positive integer m, the
m-torsion point group, denoted by A[m], is defined to be the set of the points
over the algebraic closure k̄ annihilated by m. We know that A[m] is isomorphic
to (Z/mZ)2g if m is co-prime to the characteristic p of k; and A[p] is isomorphic
to (Z/pZ)a for a non-negative integer a ≤ g, where g is the dimension of A (see
[38,27]). We also denote by A(k) the set of k-rational points. Thus, the set of
m-torsion k-rational points is A(k)[m] = A(k) ∩ A[m]. If m is co-prime with
the characteristic of k, then we can define the Weil pairing to be a map em

from A[m] × Â[m] to Gm, where Â denotes the dual abelian variety of A and
Gm � Z/mZ is the group of m-th roots of unity in k̄. The Weil paring em has
some properties such as bilinear, non-degenerate, commuting with the Galois
action of Gal(k̄/k) (see [26]), etc. More precisely:

(i) em(S1 +S2, T ) = em(S1, T )em(S2, T ); em(S, T1 +T2) = em(S, T1)em(S, T2);
(ii) If em(S, T ) = 1 for all S ∈ A[m], then T = 0;
(iii) em(Sσ, T σ) = em(S, T )σ.

If there is a polarization λ from A to Â, we get a pairing: eλ
m from A[m]×A[m]

to Gm defined by eλ
m(P,Q) = em(P, λ(Q)). From now on, we assume that A is

a Jacobian over k. Then there is a principal polarization λ from A to Â which
is an isomorphism. In this case, we denote eλ

m by wm, i.e., wm is a pairing from
A[m]×A[m] to Gm. It is clear that wm satisfies all three properties above as well.
From the bilinear property, we have wm(tP,Q) = wm(P,Q)t and wm(P, tQ) =
wm(P,Q)t for any t ≥ 0 and P,Q ∈ A[m]. To derive an upper bound on the size
of r-torsion points, we need the following result which can be derived easily by
using linear algebra.

Lemma 1. For a prime r, consider an Fr-vector space W of dimension n and a
non-degenerate bilinear map e : W×W −→ Fr, i.e., e(x+z,y) = e(x,y)+e(z,y),
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e(x,y+z) = e(x,y)+e(x, z), and if e(x,u) = 0 for all x ∈ W , then u = 0. If V
is an Fr-subspace of W with e(x,y) = 0 for all x,y ∈ V , then dimFr V ≤ n/2.

Applying Lemma 1 to the Weil paring wr, we obtain the following:

Corollary 1. If V is an Fr-subspace of A[r] such that wr(P,Q) = 1 for all
P,Q ∈ V , then dimFr (V ) ≤ g.

Proof. Let ζ be a rth primitive root of unity and consider the bilinear map
(P,Q) 
→ a ∈ Z/rZ, where a satisfies ζa = wr(P,Q). Now apply Lemma 1. 


Proposition 1. Let k = Fq and assume that a prime r does not divide q − 1.
If A is a Jacobian variety over k, then dim(A(k)[r]) ≤ g.

Proof. If r is the characteristic of k, then it follows from the Weil bound.
Now assume that r is not the characteristic of k. It is easy to verify that A(k)[r]
is an Fr-subspace of A[r]. For any σ in the Galois group Gal(k̄/k), one has
wr(P,Q) = wr(P σ, Qσ) = wr(P,Q)σ. This implies that wr(P,Q) is an element
of k. However, the only r-th root of unity in k is 1. We get wr(P,Q) = 1 for all
P,Q ∈ A(k)[r]. Our desired result follows from Corollary 1. 


3.2 Proof of Theorem 1(iii)

Let Fq be a finite field. Write p for its characteristic. For a function field F over
Fq denote by γ(F ) the p-rank of F . It holds that γ(F ) ≥ logp(JF [p]). Assume
q is a square. Consider the tower F = (F (0) ⊂ F (1) ⊂ · · · ) over Fq introduced
in [16], recursively defined by F (0) = Fq(x0) and F (n+1) = F (n)(xn+1), where
x
√

q−1
n x

√
q

n+1 + xn+1 = x
√

q
n . The following facts can be found in [16].

1. The tower F attains Drinfeld-Vlǎduţ bounds, i.e., its limit A(F) is given by
A(F) := limn→∞

N(F (n))

g(F (n))
=

√
q − 1.

2. For any place P ∈ P(F (n−1)) and any place Q ∈ P(F (n)) such that Q|P we
have d(Q|P ) = (

√
q + 2)(e(Q|P )− 1), where d(Q|P ) and e(Q|P ) denote the

different exponent and ramification index.
3. g(F (n)) = q

n+1
2 + q

n
2 − q

n+2
4 − 2q

n
2 + 1 if n ≡ 0 (mod 2) and

g(F (n)) = q
n+1
2 + q

n
2 − 1

2q
n+3

4 − 3
2q

n+1
4 − q

n−1
4 + 1 if n ≡ 1 (mod 2).

We will now show

Theorem 4. It holds that γ(F (n)) = (
√
qn/2 − 1)2 if n ≡ 0 (mod 2) and

γ(F (n)) = (
√
q(n−1)/2 − 1)(

√
q(n+1)/2 − 1) if n ≡ 1 (mod 2).

In particular limn→∞
g(F (n))

γ(F (n))
=

√
q + 1.

Then Theorem 1(iii) is a direct corollary of the above theorem.
Without loss of generality we can assume that the constant fields of the func-

tion fields are Fq. We will use the following theorem.
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Theorem 5 (Deuring-Shafarevich (see e.g. [19])). Let E/F be a Galois
extension of function fields over Fq. Suppose its Galois group is a p-group.

Then γ(E) − 1 = [E : F ](γ(F ) − 1) +
∑

P∈P(F )

∑

Q∈P(E),Q|P (e(Q|P ) − 1).

Proof of Theorem 4: Consider the extension F (n)/F (n−1). As this is an Artin-
Schreier extension, it is Galois and its Galois-group is a p-group. By Riemann-
Hurwitz (see e.g. [34] and fact 2. above), and by Deuring-Shafarevich, respec-
tively,

2·g(F (n))−2 =
√
q ·(2g(F (n−1))−2)+(

√
q+2)·

∑

P∈P(F (n−1))

∑

Q∈P(F (n))
Q|P

(e(Q|P )−1),

γ(F (n)) − 1 =
√
q · (γ(F (n−1)) − 1) +

∑

P∈P(F (n−1))

∑

Q∈P(F (n))
Q|P

(e(Q|P ) − 1).

Combining these two equations we find

γ(F (n)) =
√
q ·γ(F (n−1))+2 · (g(F (n))−2

√
q ·g(F (n−1))−√

q
2 +

√
q)(

√
q+2)−1.

Using the fact that γ(F (0)) = 0 and applying induction, the result follows. 


3.3 Proof of Theorem 2

We first show how to lift the previous results from A(k)[r] to A(k)[rt].

Lemma 2. Let k = Fq and let r be a prime. If A is an Abelian variety over k
with |A(k)[r]| ≤ a, then |A(k)[rt]| ≤ at for every t ≥ 1.

Proof. We prove it by induction. The case t = 1 is the given condition.
Assume it holds for t−1. Consider the map [r]k : A(k)[rt] → A(k)[rt−1], P 
→ rP.
Clearly the kernel of [r]k is A(k)[r]. Thus, |A(k)[rt]| = |Ker([r]k)| × |Im([r]k)| ≤
a× at−1 = at. The desired result follows. 


Proposition 2. Let k = Fq and assume that a prime r does not divide q − 1.

1. If A is a Jacobian variety over k, then |A(k)[rt]| ≤ rgt for every t ≥ 1.
2. If m ≥ 2 is an integer, then |A(k)[m]| ≤ (dm)g, where d = gcd(m, q − 1).

Proof. Part 1 is the direct result of Proposition 1 and Lemma 2. To prove
Part 2, we factorize m into the product

∏

p p
sp ×∏

� �
s� of prime powers, where

d =
∏

p p
sp is a factor of q − 1 and

∏

� �
s� = m/d. By Part 1 and the follow-

ing isomorphism A(k)[m] � ∏

pA(k)[psp ] × ∏

�A(k)[�s� ], we have |A(k)[m]| =
|∏pA(k)[psp ]| × ∏

� |A(k)[�s� ]| ≤ d2g × (m/d)g = (dm)g. 

Theorem 1(iii), Lemma 2, and Proposition 2 now imply Theorem 2.
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4 Riemann Roch Systems of Equations

Let F/Fq be an algebraic function field.

Definition 3. Let L ∈ Z>0 and let Yi ∈ Cl(F ), di ∈ Z \ {0} for i = 1, . . . , L.
The Riemann-Roch system of equations in the indeterminate X is the system
{�(diX + Yi) = 0}L

i=1 determined by these data. A solution is some [G] ∈ Cl(F )
which satisfies all equations when substituted for X .

It is often more convenient to define systems over Div(F ) rather than Cl(F ).
The idea of using Riemann-Roch systems of equations was already present in
some papers, e.g. [36], [39], [40]. However, those systems are less general, namely
they have di = ±1 for all i.3 The following theorem shows that a solution of
degree s exists if a certain numerical condition is satisfied that involves the class
number, the number Ari of effective divisors of degree ri and the cardinality of
the di-torsion subgroups of the degree-zero divisor class group, where the di are
determined by the system and the ri are determined by s and the di.

Theorem 6. Consider the Riemann-Roch system {�(diX + Yi) = 0}L
i=1. Write

si = deg Yi for i = 1, . . . , L. Denote by Ar the number of effective divisors of
degree r in Div(F ) for r ≥ 0, and 0 for r < 0. Let s ∈ Z and define ri = dis+ si

for i = 1, . . . , L. If h >
∑L

i=1Ari · |JF [di]|, then the Riemann-Roch system has
a solution [G] ∈ Cls(F ).

Proof. Let S be the set {1 ≤ i ≤ L : ri ≥ 0}. For each i ∈ S, we argue
as follows. Define the maps φi : Cls(F ) → Cldis(F ), X 
→ diX and ψi :
Cldis(F ) → Clri(F ), X ′ 
→ X ′ + Yi. Then ψi is an injection and each image
under φi has exactly |JF [di]| pre-images. Write σi = ψi ◦ φi. Then, for any
element Z ∈ Cl+ri

(F ), |σ−1
i (Z)| ≤ |JF [di]|. Hence, |σ−1

i (Cl+ri
(F ))| ≤ Ari ·|JF [di]|.

Thus,
⋃

i∈S σ
−1
i (Cl+ri

(F ))| ≤ ∑

i∈S Ari · |JF [di]|. Since by hypothesis we have
|Cls(F )| = h >

∑L
i=1Ari · |JF [di]| =

∑

i∈S Ari · |JF [di]|, there is an element
[G] ∈ Cls(F )\⋃

i∈S σ
−1
i (Cl+ri

(F )). Since σi([G]) ∈ Clri(F ) but σi([G]) /∈ Cl+ri
(F ),

it follows that �(σi([G])) = 0 for i ∈ S, i.e., [G] is a solution of the system
{�(diX+Yi +Ti) = 0}i∈S . Finally [G] is also a solution of {�(diX+Yi) = 0}i	∈S ,
because deg(di[G] + Yi) = ri < 0 for all i �∈ S. 


Remark 2. (“Solving by taking any divisor X of large enough degree”)

(i) If ri < 0 for all i = 1, . . . , L, then the inequality in Theorem 6 is automati-
cally satisfied and hence the Riemann-Roch system always has a solution.

(ii) For instance, in [7], it was simply assumed that ri < 0 to obtain (n, t, d, n−t)-
arithmetic secret sharing schemes. But this does not always give the best
results. In particular, in Section 5, we will show how we can employ Theorem
6 to get improvements, especially for small finite fields.

3 In [33], the case di = 2 was considered but their result must be corrected for torsion.
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5 Application to Arithmetic Secret Sharing

We first recall the results of [7], cast in a novel, technical framework.4 This
will make it possible to state our main quantitative results on arithmetic secret
sharing in transparent language, which also facilitates easy comparison with
earlier work. Let k, n be integers with k, n ≥ 1. Consider the Fq-vector space
F

k
q × F

n
q , where Fq is an arbitrary finite field.

Definition 4. The Fq-vector space morphism π0 : F
k
q × F

n
q → F

k
q is defined

by the projection (s1, . . . , sk, c1, . . . , cn) 
→ (s1, . . . , sk). For each i ∈ {1, . . . , n},
the Fq-vector space morphism πi : F

k
q × F

n
q → Fq is defined by the projection

(s1, . . . , sk, c1, . . . , cn) 
→ ci. For ∅ �= A ⊂ {1, . . . , n}, the Fq-vector space mor-
phism πA : F

k
q × F

n
q → F

|A|
q is defined by the projection (s1, . . . , sk, c1, . . . , cn) 
→

(ci)i∈A. For v ∈ F
k
q × F

n
q , it is sometimes convenient to denote π0(v) ∈ F

k
q by

v0 and πA(v) ∈ F
|A|
q by vA. We write I∗ = {1, . . . , n}. It is also sometimes

convenient to refer to v0 as the secret-component of v and to vI∗ as its shares-
component.

Definition 5. An n-code for F
k
q (over Fq) is an Fq-vector space C ⊂ F

k
q × F

n
q

such that π0(C) = F
k
q and (Ker πI∗) ∩ C ⊂ (Ker π0) ∩ C. For c ∈ C, c0 ∈ F

k
q

is the secret and cI∗ ∈ F
n
q the shares.

The first condition means that, in C, the secret can take any value in F
k
q . More

precisely, for a uniformly random vector c ∈ C, the secret c0 is uniformly random
in F

k
q . This follows from the fact that the projection (π0)|C is regular (since it

is a surjective Fq-vector space morphism). The second condition means that the
shares uniquely determine the secret. Indeed, the shares do not always determine
the secret uniquely if and only if there are c, c′ ∈ C such that their shares
coincide but not their secrets. Therefore, by linearity, the shares determine the
secret uniquely if and only if the shares being zero implies the secret being
zero. Moreover this condition implies that k ≤ n. Note that an n-code with
the stronger condition (Ker πI∗) ∩ C = (Ker π0) ∩ C is a k-dimensional error
correcting code of length n.

Definition 6 (r-reconstructing). An n-code C for F
k
q is r-reconstructing

(1 ≤ r ≤ n) if (Ker πA) ∩C ⊂ (Ker π0) ∩ C for each A ⊂ I∗ with |A| = r.

In other words, r-reconstructing means that any r shares uniquely determine
the secret. Note that r ≤ n by definition of an n-code.

Definition 7 (t-Disconnected). An n-code C for F
k
q is t-disconnected if

t = 0 or else if 1 ≤ t < n, the projection π0,A : C −→ F
k
q × πA(C), c 
→

(π0(c), πA(c)) is surjective for each A ⊂ I∗ with |A| = t. If, additionally,
πA(C) = F

t
q, we say C is t-uniform.

4 This is a special case of the notion of an (arithmetic) codex that we introduced in an
invited talk at EUROCRYPT’11 and, earlier, at the IPAM workshop on Information-
Theoretic Cryptography.
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If t > 0, then t-disconnectedness means the following. Let A ⊂ I∗ with
|A| = t. Then, for uniformly randomly c ∈ C, the secret c0 is independently
distributed from the t shares cA. Indeed, for the same reason that the secret
c0 is uniformly random in F

k
q , it holds that (c0, cA) is uniformly random in

F
k
q×πA(C). Since the uniform distribution on the Cartesian-product of two finite

sets corresponds to the uniform distribution on one set, and independently, the
uniform distribution on the other, the claim follows. Uniformity means that, in
addition, cA is uniformly random in F

t
q.

Definition 8 (Generator of an n-Code). A generator (k0, σ) of an n-code
C consists of a positive integer k0 and a surjective Fq-vector space morphism
σ : F

k
q × F

k0
q −→ C, such that π0(σ(s, z)) = s for all (s, z) ∈ F

k
q × F

k0
q .

In particular, a generator selects an element of C with a prescribed secret. We
can always assume k0 ≤ n. Note that a generator can be represented by a matrix
defined by the columns (or rows, depending on one’s view) σ(e1,0), . . . , σ(ek,0),
σ(0, e′1), . . . , σ(0, e′k0

), where the ei’s are the standard unit-vectors in F
k
q , and

the e′j ’s are the standard unit-vectors in F
k0
q . Given such a matrix-representation,

selecting a uniformly random c ∈ C such that its secret equals some prescribed
value, can be done efficiently. By elementary linear algebra, this also holds for
r-reconstruction of a secret. Similarly, a generator can be computed efficiently
from a basis of C.

Definition 9 (Powers of an n-Code). Let m ∈ Z>0. For x,x′ ∈ F
m
q , their

product x ∗ x′ ∈ F
m
q is defined as (x1x

′
1, . . . , xmx

′
m). Let d be a positive integer.

If C is an n-code for F
k
q , then C∗d ⊂ F

k
q ×F

n
q is the Fq-linear subspace generated

by all terms of the form c(1) ∗ . . . ∗ c(d) with c(1), . . . , c(d) ∈ C. For d = 2, we
use the abbreviation ̂C := C∗2.

Remark 3 (Powering Need Not Preserve n-Code). Suppose C ⊂ F
k
q ×F

n
q

is an n-code for F
k
q . It follows immediately that the secret-component in C∗d takes

any value in F
k
q . However, the shares-component in C∗d need not determine the

secret-component uniquely. Thus, C∗d need not be an n-code for F
k
q .

Remark 4. Let C be an n-code for F
k
q and let (k0, σ) be a generator. For an

integer d ≥ 2, suppose C∗d is an n-code. If d = 2, then it is easy to see that
̂C is generated by the vectors x ∗ y ∈ F

k
q × F

n
q , where x,y range over all pairs

of vectors selected from σ(e1,0), . . . , σ(ek,0), σ(0, e′1), . . . , σ(0, e′k0
). Since, for

i = 1, . . . , k, the vector σ(ei,0) ∗ σ(ei,0) has the i-th unit vector as its secret-
component, a generator for ̂C can be efficiently constructed from (k0, σ). This
generalizes to d > 2 in a straightforward way.

Definition 10 (Arithmetic secret sharing scheme).

An (n, t, d, r)-arithmetic secret sharing scheme for F
k
q (over Fq) is an n-code C

for F
k
q such that t ≥ 1, d ≥ 2, C is t-disconnected, C∗d is in fact an n-code for

F
k
q , and C∗d is r-reconstructing. C has uniformity if, in addition, it is t-uniform.
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For example, the case k = 1, d = 2, n = 3t + 1, r = n − t, q > n obtained
from Shamir’s secret sharing scheme (taking into account that degrees sum up
when taking products of polynomials) corresponds to the secret sharing scheme
used in [2,6]. The properties are easily proved using Lagrange’s Interpolation
Theorem. The generalization to k > 1 of this Shamir-based approach is due
to [15]. The abstract notion is due to [10], where also constructions for d = 2
were given based on general linear secret sharing. See also [7,8,9]. On the other
hand the following limitations are easy to establish.

Proposition 3. Let C be an (n, t, d, r)-arithmetic secret sharing scheme for F
k
q

over Fq. As a linear secret sharing scheme for F
k
q over Fq, C has t-privacy and

(r − (d − 1)t)-reconstruction. Hence, dt + k ≤ r. Particularly, if k = 1, d = 2,
r = n− t, then 3t+ 1 ≤ n.

Stronger bounds are also known [5]. We note that arithmetic secret sharing
schemes enjoy efficient recovery of the secret in the presence of faulty shares.
The theorem below is a generalization of a result from [12].

Theorem 7. Let i, j be integers with 1 ≤ i < j. Suppose C and C∗j are n-codes
for F

k
q . If the n-code C∗i is t-disconnected and if C∗j has (n− t)-reconstruction,

then, given a generator for C, there is an efficient algorithm for the n-code
C∗(j−i) that, on input ã := cI∗ + e ∈ F

n
q (faulty shares) with c ∈ C∗(j−i) and

e ∈ F
n
q of Hamming-weight at most t, outputs c0 ∈ F

k
q (correct secret).

Proof. Note that if C and C∗j are an n-codes, then so is C∗j′ for any j′ with
1 ≤ j′ ≤ j. Let c ∈ C∗(j−i). Let (0, e) ∈ F

k
q×F

n
q such that e has Hamming-weight

at most t. Define c̃ = c+(0, e) and let ã = c̃I∗ = cI∗ +e. Write u = (1, . . . , 1) ∈
F

k
q . Consider the system of equations {ã∗xI∗ = yI∗ , x0 = u, x ∈ C∗i, y ∈ C∗j},

in the unknowns x,y. Note that this is in fact a linear system of equations (taking
into account that, of course, membership of a subspace can be captured by a
linear system of equations). We prove now that, first, this system has some
solution (x,y), and that, second, any solution (x,y) satisfies c0 = y0. Efficiency
then follows by linear algebra, in combination with the fact that a generator
for C is given and that generators for the higher powers can be constructed
efficiently from it. First, define A ⊂ {1, . . . , n} as the set of all i with ei �= 0.
Since C∗i is t−disconnected, there is z ∈ C∗i such that z0 = u and zA = 0.
Then x := z, y := c ∗ z is a solution. Second, let (x,y) be any solution. Then,
for at least n−|A| ≥ n− t indices within I∗ it holds that the vectors c∗x ∈ C∗j

and y ∈ C∗j coincide. Since C∗j has (n − t)-reconstruction and since x0 = u,
the claim follows. 

We briefly sketch two well-known applications. First, consider an (n, t, 2, n)-
arithmetic secret sharing scheme C for F

k
q over Fq. Such a scheme can be used to

reduce n-party secure multiplication to secure addition in the case of a honest-
but-curious adversary, at the cost of one round of interaction. From the defini-
tion, it follows there is an Fq-vector space morphism ψ : F

n
q −→ F

k
q such that,
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for all c, c′ ∈ C, ψ(c1c′1, . . . , cnc
′
n) = c0 ∗c′0. The reduction works as follows.5 Let

cI∗ , c′I∗ ∈ F
n
q be secret-sharings, with respective secrets c0, c′0 ∈ F

k
q (c, c′ ∈ C).

Using a generator for C, player Pi secret-shares (λi1cic
′
i, . . . , λikcic

′
i) ∈ F

k
q , where

the coefficient vector is the “i-th row of the matrix representing ψ in the standard
basis” (i = 1, . . . , n). Next, player Pj sums the n received shares (j = 1, . . . , n).
This gives a secret-sharing of c0∗c′0 according to C (see e.g. [9]). This generalizes
Shamir-based solutions from [2,6,15] (see also [10]).

Second, consider an (n, t, 2, n− t)-arithmetic secret sharing scheme C for F
k
q

over Fq. Such a scheme can be used for “zero-knowledge verification of secret
multiplications.” In a nutshell, the main idea is as follows. Suppose a prover puts
forward commitments to secrets x0,y0, z0 ∈ F

k
q , and claims that x0 ∗y0 = z0. To

prove his claim, he gives (“coordinate-wise”) commitments to random x,y ∈ C
where the respective secrets are the x0,y0 from the input, and a (“coordinate-
wise”) commitment to a random z ∈ C∗2 where the secret is the z0 ∈ F

k
q from

the input. If the commitment scheme is Fq-linear, then it is easy to enforce that
indeed x,y ∈ C and z ∈ C∗2, and that the respective secrets are indeed the
ones from the input. Now, if z = x ∗y (as an honest prover would choose), then
indeed x0 ∗ y0 = z0. In this case, inspection of any t “share-triples” (xi, yi, zi)
gives no information on the “secret-triple” (x0,y0,x0y0). Yet, zi = xiyi for each
of those t share-triples. On the other hand, suppose z0 �= x0 ∗y0. Then there are
at most n − t − 1 share-triples (xi, yi, zi) such that zi = xiyi, and hence there
are at least t+ 1 share-triples for which an inconsistency could show up. These
facts together give a handle to checking that z0 = x0y0 in several different appli-
cation scenarios, most notably perfect information-theoretically secure general
multi-party computation, in the case of a malicious adversary. See [11] for an
application with d > 2. The procedure above is essentially from [10] (which was
inspired by ideas from [2,6]).

We are now ready to state the asymptotical results from [7] in full generality.6

Let F/Fq be an algebraic function field (in one variable, with Fq as field of
constants). Let g denote the genus of F . Let k, t, n ∈ Z with n > 1, 1 ≤ t ≤ n,
1 ≤ k ≤ n. Suppose Q1, . . . , Qk, P1, . . . , Pn ∈ P

(1)(F ) are pairwise distinct Fq-
rational places. Write Q =

∑k
j=1Qj ∈ Div(F ) and D = Q+

∑n
i=1 Pi ∈ Div(F ).

Let G ∈ Div(F ) be such that supp D ∩ supp G = ∅, i.e, they have disjoint
support. Consider the AG-code

C(G;D) = {(f(Q1), . . . , f(Qk), f(P1), . . . , f(Pn)) |f ∈ L(G)} ⊂ F
k
q × F

n
q .

Theorem 8. (from [7]). Let t ≥ 1, d ≥ 2. Let C = C(G;D) with deg G ≥
2g + t + k − 1. If n > 2dg + (d + 1)t + dk − d, then C is an (n, t, d, n − t)-
arithmetic sharing scheme for F

k
q over Fq with uniformity.

Theorem 9. (from [7]). Fix d ≥ 2 and a finite field Fq. Suppose A(q) > 2d,
where A(q) is Ihara’s constant. Then there is an infinite family of (n, t, d, n− t)-
arithmetic secret sharing schemes for F

k
q over Fq with uniformity such that n

5 This “local share-multiplication plus re-sharing” simplification in the case of
Shamir’s scheme has been attributed to Michael Rabin

6 In fact, we state a version that is proved by exactly the same arguments as in [7].
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is unbounded, k = Ω(n) and t = Ω(n). Moreover, for every scheme C in the
family, a generator for C is poly(n)-time computable and C∗i has poly(n)-time
reconstruction of a secret in the presence of t faulty shares (i = 1, . . . , d− 1).

Since A(q) =
√
q − 1 if q is a square, it holds that A(q) > 2d if q is a square

with q > (2d + 1)2. Also, by Serre’s Theorem, A(q) > c log q for some absolute
constant c > 0. Therefore, A(q) > 2d if q is (very) large.7 The asymptoti-
cal result from [7] plays an important communication-saving role in two-party
cryptography, see [23,24,18,22,13,21]. Often, the point is that terms in the com-
munication analysis which would otherwise be logarithmic can be made constant
using the [7] results. Note that [22,21] also use the efficient error correction. We
will now apply our results on the torsion-limit in combination with appropriate
Riemann-Roch systems in order to relax the condition A(q) > 2d considerably.
As a result, we attain the result of [7] but this time over nearly all finite fields.

Theorem 10. Let t ≥ 1, d ≥ 2. Define I∗ = {1, . . . , n}. For A ⊂ I∗ with A �= ∅,
define PA =

∑

j∈A Pj ∈ Div(F ). Let K ∈ Div(F ) be a canonical divisor. If the
system {�(dX−D+PA +Q) = 0, �(K−X+PA +Q) = 0}A⊂I∗,|A|=t is solvable,
then there is a solution G ∈ Div(F ) such that C(G;D) is an (n, t, d, n − t)-
arithmetic secret sharing scheme for F

k
q over Fq (with uniformity).

Proof. First note that if the system is solvable, then the Weak Approxima-
tion Theorem guarantees that we can take a solution G ∈ Div(F ) such that
supp G∩supp D = ∅. We claim that the condition that �(K−G+PA +Q) = 0
for A ⊂ I∗ with |A| = t implies t-disconnection and uniformity on the code.
Write A = {i1, . . . , it}. Consider the map φ : L(G) → F

k+t
q given by f 
→

(f(Q1), . . . , f(Qk), f(Pi1), . . . , f(Pit)). Its kernel is L(G−Q−PA). Consequently
dim(Im φ) = �(G)−�(G−Q−PA) = �(K−G)−�(K−G+Q+PA)+deg(Q+PA),
where the second equality follows by application of the Riemann-Roch theorem
to G and to G−Q−PA. Hence, �(K −G) ≤ �(K −G+Q+PA) = 0, where the
inequality follows from the fact that Q,PA ≥ 0 and where the equality holds by
assumption. Therefore, �(K−G) = 0 and dim(Im φ) = deg(Q+PA) = k+ t. We
conclude that φ is surjective and this proves the claim. Finally we prove (n− t)-
reconstruction in C∗d. Let B = {i1, . . . , in−t} for distinct indices i1, . . . , in−t ∈
I∗. Since f1, . . . , fd ∈ L(G) implies

∏d
i=1 fi ∈ L(dG), it is sufficient to prove

that, for all f ∈ L(dG), the following holds: if the condition f(Pi) = 0 holds for
all i ∈ B, then f(Qj) = 0 for all j ∈ {1, . . . , k}. Since PB = D−Q−PA for some
A ⊂ I∗ with |A| = t, it holds that L(dG − PB) = L(dG −D + PA +Q), which
by assumption has dimension 0. Hence, f ∈ L(dG− PB) = {0}, and f = 0. 

And now as a corollary of Theorems 6 and 10 we get the following:

Corollary 2. Let F/Fq be an algebraic function field. Let d, k, t, n ∈ Z with
d ≥ 2, n > 1 and 1 ≤ t < n. Suppose Q1, . . . , Qk, P1, . . . , Pn ∈ P

(1)(F ) are
pairwise distinct. If there is s ∈ Z such that h >

(

n
t

)

(Ar1 + Ar2 |JF [d]|) where
r1 := 2g − s+ t+ k− 2 and r2 := ds− n+ t, then there exists an (n, t, d, n− t)-
arithmetic secret sharing scheme for F

k
q over Fq with uniformity.

7 The best known estimate for c is currently about 1
96

.
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Main Theorem 1. Let Fq be a finite field and d ∈ Z≥2. If there exists 0 < A ≤
A(q) such that A > 1+Jd(q, A), then there is an infinite family of (n, t, d, n− t)-
arithmetic secret sharing schemes for F

k
q over Fq with t-uniformity where n is

unbounded, k = Ω(n) and t = Ω(n).

This will follow from the more precise statement in Theorem 11 below. Combin-
ing Main Theorem 1 with Theorem 3 we obtain, in the special case d = 2:

Main Theorem 2. For q = 8, 9 and for all prime powers q ≥ 16 there is an
infinite family of (n, t, 2, n− t)-arithmetic secret sharing schemes for F

k
q over Fq

with t-uniformity where n is unbounded, k = Ω(n) and t = Ω(n).

As to efficiency, when given a divisor that is a solution to these Riemann-Roch
systems, it is efficient to compute a generator for the scheme C defined by this
divisor. However, solving Riemann-Roch systems efficiently in full generality is
subject of further research. In particular, for our strongest results to follow it
is not known at present how to efficiently compute a generator. But of course,
there exists a poly(n)-size description of generators, so overall, there is efficiency
as before, but now in the weaker model where such description is given as advice.

More precisely, we have the following result (for d > 2 there is a similar
analysis).

Theorem 11. Let Fq be a finite field. Suppose κ ∈ [0, 1
3 ) and τ ∈ (0, 1] and

0 < A ≤ A(q) are real number such that A > 1+κ
1−3κ (1 + J2(q, A)) and

τ +
H2(τ)
log q

<
1
3

(

1 − 3κ− (1 + J2(q, A))(1 + κ)
A

)

Then there is an infinite family of (n, t, 2, n−t)-arithmetic secret sharing schemes
for F

k
q over Fq with uniformity where n is unbounded, k = �κn�+1 and t = �τn�.

The proof of this fact relies on showing that the conditions in Corollary 2 are
satisfied asymptotically for a family of function field with Ihara’s limit A, if the
requirements of Theorem 11 are met. It is easy to show why Theorem 11 implies
Main Theorem 2: if 0 < A ≤ A(q) is such that A > 1 + J2(q, A) we can always
select κ ∈ (0, 1

3 ) and τ ∈ (0, 1] satisfying the conditions in Theorem 11. Note
that in order to obtain the result in Main Theorem 2 we require κ > 0.

We prove Theorem 11 formally below, but give here an an indication of how
one would bound asymptotically each parameter in the inequality of Corollary 2.
Of course |JF [2]| is dealt with asymptotically with the torsion limit J2(q, A)
which we have introduced in this paper. Stirling’s Formula gives an asymptotical
bound for the binomial coefficients

(

n
t

)

when t is some fixed fraction of n. Finally
the quotients Ar/h can be bounded by means of algebraic geometric techniques
which have been used before in the code theoretic literature, for instance [25],
[28], [39], [40]. We state now an upper bound of this type.

Proposition 4. Let F/Fq be a function field with g ≥ 1. Then, for any r ∈ Z

with 0 ≤ r ≤ g − 1, Ar/h ≤ g
qg−r−1(

√
q−1)2 .
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Proof. For i ≥ 2g − 1, Ai = h
q−1 (qi+1−g − 1) (see Lemma 5.1.4 and Corol-

lary 5.1.11 in [34]). This has been exploited in Lemma 3 (ii) from [28], to show
that

g−2
∑

i=0

AiT
i +

g−1
∑

i=0

qg−1−iAiT
2g−2−i =

L(T ) − hT g

(1 − T )(1 − qT )

where L(T ) is the L-polynomial associated to the zeta function of F .
The claim from Proposition 4 can be derived from a relation that is obtained

by taking the limit as T tends to 1/q on both sides of the equation above, where
l’Hôpital’s Rule is applied on the right hand side, then finding an expression
for L′(1/q) (using the Functional Equation for L-polynomials and the fact that
L(1) = h) and substituting that back in. This is similar to the proof of Propo-
sition 2.5 (in the case s = 0) in [40].



Proof of Theorem 11. Fix any A, κ, τ satisfying the conditions of the

statement. Let F = {Fm}m>0 be an infinite family of algebraic function fields
over Fq with g(Fm) → ∞ such that A(F) ≥ A and J := J2(F) = J2(q, A). Define
gm = g(Fm), hm = h(Fm), jm = logq(|J (Fm)[2]|). Let nm = � 1

1+κ(N(Fm)− 1)�
and km = �κnm�+ 1. Note nm + km ≤ N(Fm) so we can pick nm + km distinct
rational points in Fm. We set tm = �τnm�. We choose dm = �δgm� where
δ = 1+ A−1−J

3 . Define (r1)m = 2gm−dm+tm+km−2 and (r2)m = 2dm−nm+tm.
For m large enough we want to verify that we can apply Corollary 2 to Fm. We
already noted we can take nm + km distinct points in P

(1)(Fm) so we now need
to verify the condition

hm >

(

nm

tm

)

(A(r1)m
+A(r2)m

|JFm [2]|).

We will use Proposition 4. It is easy to see that 0 ≤ (r1)m, (r2)m ≤ gm for large
enough m for our selection of the parameters. Thus,

A(ri)m
≤ gmhm

qgm−(ri)m−1(
√
q − 1)2

for large enough m and i = 1, 2. Consequently it is sufficient to show that
(

nm

tm

)

gmq
tm

qgm−1(
√
q − 1)2

(

q(r1)m−tm + q(r2)m−tm |JFm [2]|
)

< 1

which is equivalent, taking logarithms, to

logq

(

nm

tm

)

+ logq

(

gmqtm

qgm−1(
√

q − 1)2

)

+ logq

(

q(r1)m−tm + q(r2)m−tm |JFm [2]|
)

< 0.

(1)

Take ε ∈ R>0 such that τ + H2(τ)
log q < 1

3

(

1 − 3κ− (1+J)(1+κ)
3A − 3ε

)

, which exists
by hypothesis. For large enough m, by definition of J , jm < (J+ ε)gm. Moreover
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by definition of A we have (A − ε)gm < nm + km ≤ Agm for large enough m.
Note that this implies 1

1+κ (A− ε)gm ≤ nm ≤ 1
1+κAgm and km ≤ κ

1+κAgm + 1.
We have the following observations: First, since tm ≤ τnm, from Stirling’s
Formula

(

nm

tm

) ≤ 2H2(τ)nm , and hence logq

(

nm

tm

) ≤ H2(τ)
log q nm ≤ H2(τ)

(1+κ) log qAgm.
Second, we have

logq

(

q(r1)m−tm + |J (Fm)[2]|q(r2)m−tm

)

≤

logq 2 +max{2gm − dm + km − 2, 2dm − nm + jm}.
Now for large enough m, the following two inequalities hold:

2gm−dm +km−2 ≤
(

2 − δ +
κ

1 + κ
A

)

gm =
(

1 +
1
3
(1 + J) +

2κ− 1
3(1 + κ)

A

)

gm,

2dm − nm + jm ≤
(

2δ − 1
1 + κ

(A− ε) + (J + ε)
)

gm

≤
(

1 +
1
3
(1 + J) +

2κ− 1
3(1 + κ)

A+ 2ε
)

gm.

Finally, for large enough m, using elementary calculus and noticing tm ≤ τnm

we get

logq

(

gmq
tm

qgm−1(
√
q − 1)2

)

≤
(

τ

1 + κ
A− 1 + ε

)

gm.

Putting all these observations together we obtain that the left part of Equation 1
is at most

H2(τ)
(1 + κ) log q

Agm +
(

τ

1 + κ
A− 1 + ε

)

gm+

logq 2 +
(

1 +
1
3
(1 + J) +

2κ− 1
3(1 + κ)

A+ 2ε
)

gm.

Now using τ + H2(τ)
log q < 1

3

(

1 − 3κ− (1+J)(1+κ)
3A − 3ε

)

one can see that this ex-
pression is at most logq 2 − κ

3(1+κ)Agm and this is clearly smaller than 0 for
large enough m. Therefore, we can apply Corollary 2 to Fm, for each m > M0

(for some constant M0), and we have an (nm, tm ,2 ,nm − tm)-arithmetic se-
cret sharing scheme for F

km
q over Fq with uniformity, with km = �κnm�+ 1 and

tm = �τnm�. Since N(Fm) tends to ∞ as m tends to ∞ (because A(F) ≥ A > 0)
then the set M = {nm}m≥M0 is infinite. This concludes the proof. 

Finally, using our paradigm we also improve the explicit lower bounds for the
parameter τ̂ (q) from [7] and [4] for all q with q ≤ 81 and q square, as well as for
all q with q ≤ 9. Recall τ̂ (q) is defined as the maximum value of 3t/(n−1) which
can be obtained asymptotically (when n tends to infinity) when t, n are subject
to the condition that an (n, t, 2, n− t)-arithmetic secret sharing for Fq over Fq

exists (no uniformity required here). The new bounds are shown in the upper row
of Table 1. All the new bounds marked with a star (*) are obtained by applying
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Theorem 11 in the case κ = 0 and using the upper bounds given in Theorem 1
for the torsion limits. To obtain the rest of the new upper bounds, for each q,
we apply the field descent technique in [4] to Fq2(in the special case of F9, even
though Theorem 11 can be applied directly, as remarked in Main Theorem 2, it
is better to apply Theorem 11 to F81 and then use the descent technique). These
are compared with the previous bounds: the ones obtained in [7] (marked also
with the symbol (*)), and the rest, which were obtained in [4] by means of the
aforementioned field descent technique.

Table 1. Lower bounds for τ̂(q)

q 2 3 4 5 7 8 9

New bounds 0.034 0.057 0.104 0.107 0.149 0.173(*) 0.173
Previous bounds 0.028 0.056 0.086 0.093 0.111 0.143 0.167

q 16 25 49 64 81

New bounds 0.298(*) 0.323(*) 0.448(*) 0.520(*) 0.520(*)
Previous bounds 0.244 0.278 0.333(*) 0.429(*) 0.500(*)
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