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THE TORTOISE AND THE HARE RESTART GMRESMARK EMBREE�Abstra
t. When solving large nonsymmetri
 systems of linear equations with the restartedGMRES algorithm, one is in
lined to sele
t a relatively large restart parameter in the hope ofmimi
king the full GMRES pro
ess. Surprisingly, 
ases exist where small values of the restartparameter yield 
onvergen
e in fewer iterations than larger values. Here, two simple examples arepresented where GMRES(1) 
onverges exa
tly in three iterations, while GMRES(2) stagnates. Oneof these examples reveals that GMRES(1) 
onvergen
e 
an be extremely sensitive to small 
hangesin the initial residual.Key words. Restarted GMRES, Krylov subspa
e methods.AMS subje
t 
lassi�
ations. 65F10, 37N301. Introdu
tion. GMRES is an iterative method for solving large nonsymmetri
systems of linear equations, Ax = b [8℄. Throughout s
ien
e and engineering, thisalgorithm and its variants routinely solve problems with millions of degrees of freedom.Its popularity is rooted in an optimality 
ondition: At the kth iteration, GMRES
omputes the solution estimate xk that minimizes the Eu
lidean norm of the residualrk = Axk � b over a subspa
e of dimension k,krkk = minp2Pkp(0)=1 kp(A)r0k;(1.1)where Pk denotes those polynomials with degree not ex
eeding k, and r0 = b�Ax0is the initial residual. As ea
h iteration enlarges the minimizing subspa
e, the residualnorm de
reases monotoni
ally.GMRES optimality 
omes at a 
ost, however, sin
e ea
h iteration demands bothmore arithmeti
 and memory than the one before it. A standard work-around isto restart the pro
ess after some �xed number of iterations, m. The resulting algo-rithm, GMRES(m), uses the approximate solution xm as the initial guess for a newrun of GMRES, 
ontinuing this pro
ess until 
onvergen
e. The global optimality ofthe original algorithm is lost, so although the residual norms remain monotoni
, therestarted pro
ess 
an stagnate with a non-zero residual, failing to ever 
onverge [8℄.Sin
e GMRES(m) enfor
es lo
al optimality on m-dimensional spa
es, one anti
ipatesthat in
reasing m will yield 
onvergen
e in fewer iterations. Many pra
ti
al examples
on�rm this intuition.We denote the kth residual of GMRES(m) by r(m)k . To be pre
ise, one 
y
lebetween restarts of GMRES(m) is 
ounted asm individual iterations. Conventionally,then, one expe
ts kr(m)k k � kr(`)k k for ` < m. Indeed, this must be true when k � m.Surprisingly, in
reasing the restart parameter sometimes leads to slower 
onver-gen
e: kr(m)k k > kr(`)k k for ` < m < k. The author en
ountered this phenomenonwhile solving a dis
retized 
onve
tion-di�usion equation des
ribed in [4℄. In unpub-lished experiments, de Sturler [1℄ and Walker and Watson [11℄ observed similar be-havior arising in pra
ti
al appli
ations. One wonders, how mu
h smaller than kr(m)k kmight kr(`)k k be? The smallest possible 
ases 
ompare GMRES(1) to GMRES(2) for3-by-3 matri
es. Eiermann, Ernst, and S
hneider present su
h an example for whi
h�Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD,United Kingdom (mark.embree�
omlab.ox.a
.uk). Supported by UK Engineering and Physi
al S
i-en
es Resear
h Coun
il Grant GR/M12414. 1



2 MARK EMBREEkr(1)4 k=kr(2)4 k = 0:2154 : : : [2, pp. 284{285℄. Otherwise, the phenomenon we des
ribehas apparently re
eived little attention in the literature.The purpose of this arti
le is twofold. First, we des
ribe a pair of extreme ex-amples where GMRES(1) 
onverges exa
tly at the third iteration, while GMRES(2)seems to never 
onverge. The se
ond example leads to our se
ond point: Small per-turbations to the initial residual 
an dramati
ally alter the 
onvergen
e behavior ofGMRES(1).2. First Example. Consider using restarted GMRES to solve Ax = b forA = 0� 1 1 10 1 30 0 1 1A; b = 0� 2�41 1A:(2.1)Taking x0 = 0 yields the initial residual r0 = b. Using the fa
t that A and r0 arereal, we 
an derive expli
it formulas for GMRES(1) and GMRES(2) dire
tly from theGMRES optimality 
ondition (1.1). The re
urren
e for GMRES(1),r(1)k+1 = r(1)k � r(1)Tk Ar(1)kr(1)Tk ATAr(1)k Ar(1)k ;(2.2)was studied as early as the 1950s [3, x71℄,[7℄. For the A and r0 = b de�ned in (2.1),this iteration 
onverges exa
tly at the third step:r(1)1 = 0� 3�30 1A; r(1)2 = 0� 300 1A; r(1)3 = 0� 000 1A:Expressions for one GMRES(2) 
y
le 
an likewise be derived using elementary 
al
u-lus. The updated residual takes the form r(2)k+2 = p(A)r(2)k , where p(z) = 1+�z+�z2is a quadrati
 whose 
oeÆ
ients � = �(A; r(2)k ) and � = �(A; r(2)k ) are given by� = (r(2)Tk AAr(2)k )(r(2)Tk ATAAr(2)k )� (r(2)Tk Ar(2)k )(r(2)Tk ATATAAr(2)k )(r(2)Tk ATAr(2)k )(r(2)Tk ATATAAr(2)k )� (r(2)Tk ATAAr(2)k )(r(2)Tk ATAAr(2)k ) ;� = (r(2)Tk Ar(2)k )(r(2)Tk ATAAr(2)k )� (r(2)Tk AAr(2)k )(r(2)Tk ATAr(2)k )(r(2)Tk ATAr(2)k )(r(2)Tk ATATAAr(2)k )� (r(2)Tk ATAAr(2)k )(r(2)Tk ATAAr(2)k ) :Exe
uting GMRES(2) on the matrix and right hand side (2.1) revealsr(2)1 = 0� 3�30 1A; r(2)2 = 12 0� 303 1A; r(2)3 = 128 0� 24�2733 1A; r(2)4 = 1122 0� 81�108162 1A:The inferiority of GMRES(2) 
ontinues well beyond the fourth iteration. For example:k kr(2)k k=kr0k5 0.376888290025532.. .10 0.376502488858910.. .15 0.376496927936533.. .20 0.376496055944867.. .25 0.376495995285626.. .30 0.376495984909087.. .



RESTARTED GMRES 3
kr(m)k kkr0k

iteration, kGMRES(1)
GMRES(2)

0 5 10 15 20 25 30

10010�510�1010�15Fig. 1. Convergen
e 
urves for GMRES(1) and GMRES(2) applied to (2.1) with x0 = 0.The entire 
onvergen
e 
urve for the �rst thirty iterations is shown in Figure 1, basedon performing GMRES(2) in exa
t arithmeti
 using Mathemati
a.The parti
ular value of b (and thus r0) studied above is ex
eptional, as it isunusual for GMRES(1) to 
onverge exa
tly in three iterations. Remarkably, though,GMRES(1) maintains superiority over GMRES(2) for a wide range of initial residuals.For this matrix A, GMRES(2) 
onverges exa
tly in one 
y
le for any initial residualwith zero in the third 
omponent, so we restri
t attention to residuals normalized tothe form r0 = (�; �; 1)T. Figure 2 indi
ates that GMRES(2) makes little progress formost su
h residuals, while GMRES(1) 
onverges to high a

ura
y for the vast major-ity of these r0 values. The 
olor in ea
h plot re
e
ts the magnitude of kr(m)100 k=kr0k:Blue indi
ates satisfa
tory 
onvergen
e, while red signals little progress in one hun-dred iterations. (To ensure this data's �delity, we performed these 
omputations inboth double and quadruple pre
ision arithmeti
; di�eren
es between the two werenegligible.)To gain an appre
iation for the dynami
s behind Figure 2, we �rst examine thea
tion of a single GMRES(1) step. From (2.2) it is 
lear that GMRES(1) will 
om-pletely stagnate only when rT0Ar0 = 0. For the matrix A spe
i�ed in (2.1) andr0 = (�; �; 1)T, this 
ondition redu
es to�2 + �� + �2 + � + 3� + 1 = 0;(2.3)the equation for an oblique ellipse in the (�; �) plane.Now writing r(1)k = (�; �; 1)T, 
onsider the map r(1)k 7! s(1)k+1 that proje
ts r(1)k+1into the (�; �) plane, s(1)k+1 = (r(1)k+1)�13 0� (r(1)k+1)1(r(1)k+1)21A;
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Fig. 2. Convergen
e of GMRES(1) (left) and GMRES(2) (right) for the matrix in (2.1) overa range of initial residuals of the form r0 = (�; �; 1)T. The 
olor indi
ates kr(m)100 k=kr0k on a loga-rithmi
 s
ale: blue regions 
orrespond to initial residuals that 
onverge satisfa
torily, while the redregions show residuals that stagnate or 
onverge very slowly.where (r(1)k+1)j denotes the jth entry of r(1)k+1, whi
h itself is derived from r(1)k via (2.2).For the present example, we haves(1)k+1 = 0BBB� ��3 � 4�2 + 3�� + 9� � 4� � 1�2 + �� + � + 5� + 10�3 + ��2 � 3�2 + 2�2 � 2�� � 3� + � � 3�2 + �� + � + 5� + 10 1CCCA:(2.4)We 
an 
lassify the �xed points (�; �) satisfying (2.3) by investigating the Ja
obianof (2.4). One of its eigenvalues is always one, while the other eigenvalue varies aboveand below one in magnitude. In the left plot of Figure 2, we show the stable portionof the ellipse (2.3) in bla
k and the unstable part in white.We 
an similarly analyze GMRES(2). This iteration will never progress when, inaddition to the stagnation 
ondition for GMRES(1), r0 also satis�es rT0AAr0 = 0.For the present example, this requirement implies�2 + 2�� + �2 + 5� + 6� + 1 = 0;the equation for an oblique parabola. This 
urve interse
ts the ellipse (2.3) at twopoints, drawn as dots in the right plot of Figure 2, the only stagnating residuals(�; �; 1)T for GMRES(2). We 
an analyze their stability as done above for GMRES(1).The proje
ted map for this iteration, r(2)k 7! s(2)k+2, takes the forms(2)k+2 = 0BB� 3�2 � 3� + 4� + 9�� � 4�2 � 3� + 4� + 9 1CCA:(2.5)Analyzing the Ja
obian for this GMRES(2) map at the pair of �xed points, we �nd oneto be unstable (shown in bla
k in the right plot of Figure 2) while the other is stable(shown in white). This stable �xed point is an attra
tor for stagnating residuals.
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kr(m)k kkr0k

iteration, kGMRES(1)
GMRES(2)

0 5 10 15 20 25 30

10010�510�1010�15Fig. 3. Convergen
e 
urves for GMRES(1) and GMRES(2) applied to (3.1) with x0 = 0.We return brie
y to the initial residual r0 = (2;�4; 1)T. After the �rst few itera-tions, the angle between r(2)k and the �xed ve
tor steadily 
onverges to zero at therate 0:6452 : : : suggested by the Ja
obian's dominant eigenvalue. We 
on
lude withhigh 
on�den
e that GMRES(2) never 
onverges for this initial residual. (If one 
y
leof GMRES(m) produ
es a residual parallel to r0, then either r(m)m = r0 or r(m)m = 0.Thus a residual 
an't remain �xed in the �nite (�; �) plane, but still 
onverge to 0.)3. Se
ond Example. The matrixA in (2.1) is nondiagonalizable, and one mightbe tempted to blame its surprising 
onvergen
e behavior on this fa
t. To demonstratethat nondiagonalizablity is not an essential requirement, we exhibit a diagonalizablematrix with eigenvalues f1; 2; 3g for whi
h restarted GMRES also produ
es extremebehavior. Take A = 0B� 1 2 �20 2 40 0 3 1CA; b = 0� 311 1A;(3.1)with x0 = 0. Again, we 
onstru
t the �rst few residuals. For GMRES(1),r(1)1 = 0� 2�10 1A; r(1)2 = 0� 200 1A; r(1)3 = 0� 000 1A;while GMRES(2) yieldsr(2)1 = 0� 2�10 1A; r(2)2 = 0� 10�1 1A; r(2)3 = 117 0� 812�8 1A; r(2)4 = 167 0��1212�28 1A:Figure 3 illustrates the 
onvergen
e 
urve for thirty iterations, again 
omputed usingexa
t arithmeti
.



6 MARK EMBREEAs with the �rst example, we investigate the performan
e of restarted GMRESfor a range of r0 = (�; �; 1)T, shown in Figure 4. GMRES(2) performs as before, mak-ing little progress for virtually all the residuals shown; there are two �xed points, onestable and the other not. The GMRES(1) phase plane, on the other hand, 
ontainsfas
inating stru
ture. Whether the iteration 
onverges or stagnates appears sensitivelydependent on the initial residual, highlighted in Figure 5. Red regions|indi
atingstagnation|are drawn towards the ar
 of stable �xed points (shown in bla
k in Fig-ure 4). The boundary between stagnating and 
onverging residuals exhibits hallmark
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Fig. 4. Comparison of GMRES(1) (left) and GMRES(2) (right) as in Figure 2, but for thematrix in (3.1). (Double and quadruple pre
ision 
omputations di�er notably only at the boundariesbetween 
onvergen
e and stagnation.)

7:62 7:625 7:63 7:635 7:64�5:29�5:285�5:28�5:275�5:27

�10�15
10�10
10�5
100

�
�Fig. 5. Close-up of the left plot of Figure 4. The white 
urve denotes unstable �xed points ofthe map s(1)k+1.



RESTARTED GMRES 7fra
tal qualities, as one might establish by analyzing the proje
ted GMRES(1) maps(1)k+1 = 0BBB� 2�3 � ��2 � 6�� + 2�2 � 11� � � � 3�2 � �2 + �� � � + 2� � 104�3 � �2� � 4�2 � 8�2 � 8�� + 8� + 7� � 12�2�2 + 2�2 � 2�� + 2� � 4� + 20 1CCCA:4. Closing Remarks. Examples like (2.1) and (3.1) abound. We dis
overedthese by varying the three upper right entries of A and the �rst two 
omponents ofb among the integers from �5 to 5, while �xing all other entries. Even among su
h arestri
ted set, numerous other examples exhibit similar behavior.Our 
ontrived examples are extreme models of a phenomenon experien
ed inpra
ti
al 
omputations. For the 
onve
tion-di�usion dis
retization des
ribed in [4℄,GMRES(1) or GMRES(5) 
an outperform GMRES(20) on moderately re�ned grids.The optimal 
hoi
e of restart parameter depends on the problem. Sin
e, on average,one GMRES(`) iteration is 
heaper than one GMRES(m) iteration when ` < m [5, 6℄,the potential advantage of smaller restarts is a
ute.There is mu
h more to learn about this unusual restarting behavior. How 
om-mon is sensitive dependen
e on r0, espe
ially for larger restarts? What 
hara
terizessus
eptible matri
es? One hopes an improved GMRES 
onvergen
e theory will iden-tify better pra
ti
al guidelines for 
hoosing the restart parameter. One also wondersif related algorithms, in
luding GMRES restarted with an augmented subspa
e [2℄and BiCGSTAB(`) [9℄, exhibit similar unexpe
ted behavior. Su
h e�e
ts might alsoarise from automati
 shift-sele
tion strategies in the restarted Arnoldi algorithm for
al
ulating eigenvalues [10℄.A
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k Trefethen and Andy Wathen foradvi
e that both in
uen
ed the 
ourse of this resear
h and improved its presentation.I also thank Henk van der Vorst for his helpful 
omments.REFERENCES[1℄ E. de Sturler, All good things 
ome to an end, or the 
onvergen
e of GMRES(m), July 1997.Talk at SIAM's 45th Anniversary Meeting, Stanford University.[2℄ M. Eiermann, O. G. Ernst, and O. S
hneider, Analysis of a

eleration strategies forrestarted minimal residual methods, J. Comp. Appl. Math., 123 (2000), pp. 261{292.[3℄ D. K. Faddeev and V. N. Faddeeva, Computational Methods of Linear Algebra, Freeman,San Fran
is
o, 1963. Translated by Robert C. Williams.[4℄ B. Fis
her, A. Ramage, D. Silvester, and A. J. Wathen, On parameter 
hoi
e and itera-tive 
onvergen
e of stabilised adve
tion-di�usion problems, Comput. Methods Appl. Me
h.Engrg., 179 (1999), pp. 185{202.[5℄ Y. Huang and H. van der Vorst, Some observations on the 
onvergen
e behavior of GMRES,Te
h. Rep. 89{09, Fa
ulty of Te
hni
al Mathemati
s and Informati
s, Delft University ofTe
hnology, 1989.[6℄ W. A. Joubert, On the 
onvergen
e behavior of the restarted GMRES algorithm for solvingnonsymmetri
 linear systems, Numer. Lin. Alg. Appli
s., 1 (1994), pp. 427{447.[7℄ M. A. Krasnosel'ski�� and S. G. Kre��n, An iteration pro
ess with minimal residuals, Mat.Sbornik N.S., 31(73) (1952), pp. 315{334. (In Russian).[8℄ Y. Saad and M. H. S
hultz, GMRES: A generalized minimal residual algorithm for solvingnonsymmetri
 linear systems, SIAM J. S
i. Stat. Comput., 7 (1986), pp. 856{869.[9℄ G. L. G. Sleijpen and D. R. Fokkema, BiCGSTAB(`) for linear equations involving unsym-metri
 matri
es with 
omplex spe
trum, Ele
t. Trans. Numer. Anal., 1 (1993), pp. 11{32.[10℄ D. C. Sorensen, Impli
it appli
ation of polynomial �lters in a k-step Arnoldi method, SIAMJ. Matrix Anal. Appl., 13 (1992), pp. 357{385.[11℄ L. T. Watson, personal 
ommuni
ation, February 2001.




