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THE TOTAL GRAPH OF A COMMUTATIVE RING

WITH RESPECT TO PROPER IDEALS

Ahmad Abbasi and Shokoofe Habibi

Abstract. Let R be a commutative ring and I its proper ideal, let S(I)

be the set of all elements of R that are not prime to I. Here we introduce
and study the total graph of a commutative ring R with respect to proper
ideal I, denoted by T (ΓI(R)). It is the (undirected) graph with all ele-
ments of R as vertices, and for distinct x, y ∈ R, the vertices x and y are

adjacent if and only if x + y ∈ S(I). The total graph of a commutative
ring, that denoted by T (Γ(R)), is the graph where the vertices are all
elements of R and where there is an undirected edge between two distinct
vertices x and y if and only if x + y ∈ Z(R) which is due to Anderson

and Badawi [2]. In the case I = {0}, T (ΓI(R)) = T (Γ(R)); this is an
important result on the definition.

1. Introduction

The concept of total graph of a commutative ring R, one of the most inter-
esting concept of the algebraic structures in graph theory denoted by T (Γ(R)),
was first introduced by Anderson and Badawi in [2], such that the vertex set
is R and the distinct vertices x and y are adjacent if and only if x+ y ∈ Z(R)
where Z(R) is the zero divisors of R. Throughout this work all rings are as-
sumed to be commutative with non-zero identity. Let I be a proper ideal of
R. The total graph of a commutative ring R with respect to proper ideal I,
denoted by T (ΓI(R)), is the graph which vertices are all elements of R and
two distinct vertices x, y ∈ R are adjacent if and only if x + y ∈ S(I). We
use the notation S(I) to refer to the set of elements of R that are not prime
to I, we say that a ∈ R is prime to I, if ra ∈ I (where r ∈ R) implies that
r ∈ I (see [6, 7]). Clearly, S(I) is not empty since I is a proper ideal of R. It
is easy to check that, when I = {0}, T (ΓI(R)) = T (Γ(R)). The zero-divisor
graph of R, denoted Γ(R), is the graph whose vertices are Z(R)∗ (the non-
zero zero-divisors of R) with two distinct vertices joined by an edge when the
product of the vertices is zero (c.f. [3]). In [8], Redmond introduced the zero
divisor graph with respect to proper ideal I, denoted by ΓI(R), as the graph
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with vertices {x ∈ R − I : xy ∈ I for some y ∈ R − I} where distinct vertices
x and y are adjacent if and only if xy ∈ I. If I = {0}, then ΓI(R) = Γ(R).
Redmond explored the relationship between ΓI(R) and Γ(R). He gave an ex-
ample of rings R, S and ideals I ⊴ R, J ⊴ S, where Γ(R/I) ∼= Γ(S/J) but
ΓI(R) ≇ ΓJ(S). Similarly, in this paper we give an example (see Example 2.2)
such that T (ΓI(R)) ∼= T (ΓJ(S)) but T (Γ(R/I)) ≇ T (Γ(S/J)) and some basic
results on the relationship between T (ΓI(R)) and T (Γ(R/I)) in Section 2.

The set S(I) is not necessarily an ideal of R (not always closed under addi-
tion) and since S(I) is a union of prime ideals of R containing I (see [4, Exe.
3.9] and note that 2.1), whenever xy ∈ S(I) for x, y ∈ R, then x ∈ S(I) or
y ∈ S(I). So, if S(I) is an ideal of R, then it is actually a prime ideal of R; hence
the study of T (ΓI(R)) breaks naturally into two cases depending on whether
or not S(I) is an ideal of R and in Sections 3, 4, we state several results about
the relationship between diameter and girth of T (ΓI(R)) and T (Γ(R/I)). The
proper ideal I is said to be P -primal ideal of R when P = S(I) forms an ideal;
then P is said to be the adjoint ideal of I. It is easy to see that, S(I) = I
when I is a prime ideal R (see [6, 7]). Let S(ΓI(R)) be the (induced) subgraph
of T (ΓI(R)) with vertices S(I), and let S(ΓI(R)) be the (induced) subgraph
T (ΓI(R)) with vertices R− S(I).

Let G be a graph with vertex set V (G). Recall that G is connected if there
is a path between any two distinct vertices of G. At the other extreme, we say
that G is totally disconnected if no two vertices of G are adjacent. For vertices
x and y of G, d(x, y) be the length of a shortest path from x to y (d(x, x) = 0
and d(x, y) = ∞ if there is no such path). The diameter of a graph G, denoted
by diam(G), is the supremum of the distances between vertices. The girth of
G, denoted by gr(G), is the length of a shortest cycle in G (gr(G) = ∞ if G
contains no cycles). A graph G is said to be complete bipartite if V (G) can be
partitioned into two disjoint sets V1, V2 such that no two vertices within any
V1 or V2 are adjacent, but for every u ∈ V1, v ∈ V2, u, v are adjacent. Then
we use the symbol Km,n for the complete bipartite graph where the cardinal
numbers of V1 and V2 are m, n, respectively (we allow m and n to be infinite
cardinals). A graph in which each pair of distinct vertices is joined by an edge
is called a complete graph. Let Kn denote the complete graph with n vertices.

In Section 2, we obtain an identity between completeness of S(ΓI(R)) and
RegΓ(R/I). We study the Graphs T (ΓI(R)), S(ΓI(R)) and S(ΓI(R)) for the
case when S(I) is an ideal in Section 3 and for the case S(I) is not an ideal
in Section 4. Though our definition of total graph of a commutative ring is
a generalization of the definition given in [2], we would like to point out that
many of the proofs provided in this paper are essentially the same as the proofs
provided in [2].
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2. Example and basic structure

In this section, we explore the relationship between T (ΓI(R)) and T (Γ(R/I))
on basic structure.

Note 2.1. We can easily show that Z(R/I) = {a + I : a ∈ S(I)} and
Reg(R/I) = {a + I : a /∈ S(I)}. Thus Z(R/I) is an ideal R/I if and only
if S(I) is an ideal R.

Let Reg(Γ(R/I)) be the (induced) subgraph of T (Γ(R/I)) with vertices
Reg(R/I), the set of regular elements of R/I, let Z(Γ(R/I)) be the (induced)
subgraph of T (Γ(R/I)) with vertices Z(R/I).

Example 2.2. Let R = Z8, S = Z4 × Z2 and I = {0̄, 2̄, 4̄, 6̄} ⊴ R, J = {0̄} ×
Z2⊴S. It is easy to check that S(I) = I and S(J) = {(0̄, 0̄), (0̄, 1̄), (2̄, 0̄), (2̄, 1̄)}.
T (ΓI(R)) and T (ΓJ(S)) are the union of 2 disjoint K4,s. Now, T (Γ(R/I)) is a
graph with two vertices but T (Γ(S/J)) is a graph with four vertices.

Theorem 2.3. Let R be a commutative ring with the proper ideal I, and let
x, y ∈ R. Then

(1) If x+ I and y + I are (distinct) adjacent vertices in T (Γ(R/I)), then x
is adjacent to y in T (ΓI(R)).

(2) If x and y are (distinct) adjacent vertices in T (ΓI(R)) and x+I ̸= y+I,
then x+ I is adjacent to y + I in T (Γ(R/I)).

(3) If x is adjacent to y in T (ΓI(R)) and x+ I = y + I, then 2x, 2y ∈ S(I)
and all distinct elements of x+ I are adjacent in T (ΓI(R)).

Proof. It is clear. □

According to the following corollary and remark, there is a strong relation-
ship between T (Γ(R/I)) and T (ΓI(R)).

Note that for a graph G, we say that {Gθ}θ∈Θ is a collection of disjoint
subgraphs of G if all vertices and edges of each Gθ are contained in G and no
two of these Gθ contain a common vertex.

Corollary 2.4. Let R be a commutative ring with the proper ideal I. Then
T (ΓI(R)) contains |I| disjoint subgraphs isomorphic to T (Γ(R/I)).

Proof. Let {aλ}λ∈Λ ⊆ R be a set of distinct representatives of the vertices of
T (Γ(R/I)). Define a graph Gi, for each i ∈ I, with vertices {aλ + i|λ ∈ Λ},
where aλ + i is adjacent to aβ + i in Gi whenever aλ + I is adjacent to aβ + I
in T (Γ(R/I)); i.e., whenever aλ + aβ ∈ S(I). By the above theorem, Gi is a
subgraph of T (ΓI(R)). Also, each Gi

∼= T (Γ(R/I)), and Gi and Gj contains
no common vertices if i ̸= j. □

Remark 2.5. It follows from the above corollary that S(ΓI(R)) contains |I|
disjoint subgraphs isomorphic to Z(Γ(R/I)) and S(ΓI(R)) contains |I| disjoint
subgraphs isomorphic to Reg(Γ(R/I)); since for each a ∈ S(I) and b ∈ R−S(I),
and i ∈ I; a + i ∈ S(I) (for some r ∈ R − I, ar ∈ I; hence (a + i)r ∈ I) and
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b + i ∈ R − S(I). So a graph Gi with vertices {aλ + i |λ ∈ Λ} such that
aλ ∈ S(I) is a subgraph S(ΓI(R)) and a graph Gi with vertices {aβ+ i |β ∈ Λ}
such that aβ /∈ S(I) is a subgraph S̄(ΓI(R)).

One can verify that the following method can be used to construct a graph
T (ΓI(R)).

Remark 2.6. Let {aλ}λ∈Λ ⊆ R be a set of representatives of the vertices of
T (Γ(R/I)). For each i ∈ I, define a graph Gi with vertices {aλ + i |λ ∈ Λ},
where edges are defined by the relationship aλ + i is adjacent to aβ + i in Gi

if and only if aλ + I is adjacent to aβ + I in T (Γ(R/I)) (i.e., aλ + aβ ∈ S(I)).
Define the graph G to have as its vertex set V =

∪
i∈I Gi. We define the edge

set of G to be:
(1) all edges contained in Gi for each i ∈ I,
(2) for distinct λ, β ∈ Λ and for any i, j ∈ I, aλ + i is adjacent to aβ + j if

and only if aλ + I is adjacent to aβ + I in T (Γ(R/I)) (i.e., aλ + aβ ∈ S(I)),
(3) for λ ∈ Λ and distinct i, j ∈ I, aλ + i is adjacent to aλ + j if and only if

2aλ ∈ S(I).
It follows that if T (Γ(R/I)) is a graph on N = |R/I| vertices, then T (ΓI(R))

is a graph on N.|I| vertices.

Proposition 2.7. Let R be a commutative ring with the proper ideal I. Then
(1) S(ΓI(R)) is complete (connected) if and only if Z(Γ(R/I)) is complete

(connected).
(2) If S̄(ΓI(R)) is complete, then Reg(Γ(R/I)) is complete.
(3) S̄(ΓI(R)) is connected if and only if Reg(Γ(R/I)) is connected.

Proof. (1) Let S(ΓI(R)) be a complete subgraph T (ΓI(R)) and x+ I ̸= y + I
are distinct elements of Z(Γ(R/I)). So x and y are adjacent in S(ΓI(R)); hence
x + I and y + I are adjacent in Z(Γ(R/I)). Conversely, suppose x and y are
distinct elements of S(ΓI(R)). If x + I = y + I, then x − y ∈ I. There exists
r ∈ R − I such that ry ∈ I; hence rx ∈ I. It follows that r(x + y) ∈ I, thus
x and y are adjacent in S(ΓI(R)). If x + I ̸= y + I, then x + I and y + I are
adjacent in Z(Γ(R/I)). So x+ y ∈ S(I), as required.

(2) The proof is omitted. The converse is not necessarily true, for example
consider R = Z18, and I = ⟨3̄⟩ (it is easy to check that S(I) = I).

(3)The sufficiency implication is clear. Let Reg(Γ(R/I)) is connected. Sup-
pose x and y are distinct elements of S̄(ΓI(R)). If x+I = y+I, then x−(−y)−y
is a path between x and y (if x = −y, then x and y are adjacent). If x+I ̸= y+I,
the proof is clear and omitted. □

Lemma 2.8. Let R be a commutative ring with the proper ideal I. Then
gr(T (ΓI(R))) ≤ gr(T (Γ(R/I))). If T (Γ(R/I)) contains a cycle, then so does
T (ΓI(R)), and therefore gr(T (ΓI(R))) ≤ gr(T (Γ(R/I))) ≤ 4.

Proof. If gr(T (Γ(R/I))) = ∞ we are done. Now suppose gr(T (Γ(R/I))) = k <
∞. Let x1+I−x2+I−· · ·−xk+I−x1+I be a cycle in T (Γ(R/I)) through k
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distinct vertices. Thus x1−x2−· · ·−xk−x1 is a cycle in T (ΓI(R)) of length k.
Hence, gr(T (ΓI(R))) ≤ k. According to [2, Theorem 2.6(3), 3.15(2)], it follows
that gr(T (Γ(R/I))) ≤ 4. □

3. The case when S(I) is an ideal of R

In this section, we state a general structure for S(ΓI(R)) the (induced) sub-
graph T (ΓI(R)) (see Theorem 3.5) and we investigate the relationship between
T (ΓI(R)) and T (Γ(R/I)) with assumption that, S(I) be an ideal of R (i.e., I
is a primal ideal of R). We begin with the following theorem.

Proposition 3.1. Let R be a commutative ring with the proper ideal I such
that S(I) is an ideal of R. Then S(ΓI(R)) is a complete (induced) subgraph
T (ΓI(R)) and is disjoint from S(ΓI(R)).

Proof. This is clear according to definition. □

Theorem 3.2. Let R be a commutative ring with the proper ideal I such that
S(I) is an ideal of R.

(1) The (induced) subgraph S(ΓI(R)) with vertices
√
I is complete and each

vertex of this subgraph is adjacent to each vertex of S(ΓI(R)) and is disjoint
from S(ΓI(R)).

(2) If {0} ≠
√
I ⊂ S(I), then gr(S(ΓI(R))) = 3.

Proof. (1) Let x ∈
√
I. If x ∈ I, then x ∈ S(I); otherwise there is an integer

n ≥ 2 such that xn ∈ I and xn−1 /∈ I. We have x.xn−1 ∈ I; hence x ∈ S(I).

So Part (1) follows since
√
I ⊆ S(I) is an ideal and

√
I + S(I) ⊆ S(I).

(2) Let 0 ̸= x ∈
√
I and y ∈ S(I)\

√
I. Then 0 − x − y − 0 is a 3-cycle in

S(ΓI(R)), as required. □

Theorem 3.3. Let R be a commutative ring with the proper ideal I such that
S(I) is an ideal of R.

(1) Assume that Γ is an induced subgraph of S(ΓI(R)) and let x and y be
distinct vertices of Γ such that are connected by a path in Γ. Then there exists
a path in Γ of length 2 between x and y. In particular, if S(ΓI(R)) is connected,
then diam(S(ΓI(R))) ≤ 2.

(2) Suppose x and y are distinct elements of S(ΓI(R)) that are connected by
a path. If x+ y /∈ S(I) (that is, if x and y are not adjacent), then x− (−x)− y
and x− (−y)− y are paths of length 2 between x and y in S(ΓI(R)).

Proof. (1) Let x1, x2, x3, and x4 are distinct vertices of Γ. It suffices to show
that if there is a path x1−x2−x3−x4 from x1 to x4, then x1 and x4 are adjacent.
So x1+x2, x2+x3, x3+x4 ∈ S(I) gives x1+x4 = (x1+x2)−(x2+x3)+(x3+x4) ∈
S(I) since S(I) is an ideal of R. Thus x1 and x4 are adjacent. So if S(ΓI(R))
is connected, then diam(S(ΓI(R))) ≤ 2.

(2) Since x, y ∈ R − S(I) and x+ y /∈ S(I), there exists z ∈ R − S(I) such
that x− z− y is a path of length 2 by part (1) above. Thus x+ z, z+ y ∈ S(I),
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and hence x− y = (x+ z)− (z + y) ∈ S(I). Also, since x+ y /∈ S(I), we must
have x ̸= −x and y ̸= −x. Thus x − (−x) − y and x − (−y) − y are paths of
length 2 between x and y in S(ΓI(R)). □

Theorem 3.4. Let R be a commutative ring with the proper ideal I such that
S(I) is an ideal of R. Then the following statements are equivalent.

(1) S(ΓI(R)) is connected.
(2) Either x+ y ∈ S(I) or x− y ∈ S(I) for all x, y ∈ R− S(I).
(3) Either x+y ∈ S(I) or x+2y ∈ S(I) (but not both) for all x, y ∈ R−S(I).

In particular, either 2x ∈ S(I) or 3x ∈ S(I) for all x ∈ R− S(I).

Proof. (1)=⇒(2) Let x, y ∈ R−S(I) be such that x+ y /∈ S(I). If x = y, then
x−y ∈ S(I). Otherwise, x− (−y)−y is a path from x to y by Theorem 3.3(2),
and hence x− y ∈ S(I).

(2)=⇒(3) Let x, y ∈ R−S(I), and suppose that x+y /∈ S(I). By assumption,
since (x+ y)− y = x /∈ S(I), we have x+ 2y = (x+ y) + y ∈ S(I). Let x+ y
and x + 2y belong to S(I). Then y ∈ S(I) a contradiction. In particular, if
x ∈ R− S(I), then either 2x ∈ S(I) or 3x ∈ S(I).

(3)=⇒(1) Let x, y ∈ R−S(I) be distinct elements ofR such that x+y /∈ S(I).
By assumption, since S(I) is an ideal of R and x+2y ∈ S(I), we get 2y /∈ S(I).
Thus 3y ∈ S(I) by hypothesis. Since x+ y /∈ S(I) and 3y ∈ S(I), we conclude
that x ̸= 2y, and hence x − 2y − y is a path from x to y in S(ΓI(R)). Thus
S(ΓI(R)) is connected. □

Theorem 3.5. Let R be a commutative ring with the proper ideal I such that
S(I) is an ideal of R, and let |S(I)| = α and |R/S(I)| = β (we allow α and β
to be infinite, then we have β − 1 = (β − 1)/2 = β).

(1) If 2 ∈ S(I), then S(ΓI(R)) is the union of β − 1 disjoint Kα,s.
(2) If 2 /∈ S(I), then S(ΓI(R)) is the union of (β − 1)/2 disjoint Kα,α,s.

Proof. (1) Suppose that 2 ∈ S(I), and let x ∈ R − S(I). Note that each
coset x+ S(I) is a complete subgraph of S(ΓI(R)) since (x+ x1) + (x+ x2) =
2x+x1+x2 ∈ S(I) for all x1, x2 ∈ S(I). We must have that distinct cosets form
disjoint subgraphs of S(ΓI(R)) since if x+x1 and y+x2 are adjacent for some
x, y ∈ R−S(I) and x1, x2 ∈ S(I), then x+y = (x+x1)+(y+x2)− (x1+x2) ∈
S(I), and hence x − y = (x + y) − 2y ∈ S(I) since S(I) is an ideal R and
2 ∈ S(I). But then x + S(I) = y + S(I). Thus S(ΓI(R)) is the union of
β − 1 disjoint (induced) subgraphs x + S(I), each of which is a Kα, where
α = |S(I)| = |x+ S(I)|.

(2) Let x ∈ R−S(I) and 2 /∈ S(I). Then no two distinct elements in x+S(I)
are adjacent; otherwise if (x + x1) + (x + x2) ∈ S(I) for x1, x2 ∈ S(I) implies
that 2x ∈ S(I), and hence 2 ∈ S(I), a contradiction.

On the other hand, the two cosets x + S(I) and −x + S(I) are disjoint,
and each element of x+ S(I) is adjacent to each element of −x+ S(I). Thus
(x+S(I))∪(−x+S(I)) is a complete bipartite (induced) subgraph of S(ΓI(R));
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furthermore, if y+x1 adjacent to x+x2 for some y ∈ R−S(I) and x1, x2 ∈ S(I),
then x + y ∈ S(I), and hence y + S(I) = −x + S(I). Thus S(ΓI(R)) is the
union of (β− 1)/2 disjoint (induced) subgraphs (x+S(I))∪ (−x+S(I)), each
of which is a Kα,α, where α = |S(I)| = |x+ S(I)|. □

Remark 3.6. If S(I) is an ideal of R, according to Note 2.1, Z(R/I) = S(I)/I.
Let |Z(R/I)| = α′ and |R/I/Z(R/I)| = β′. With the above notation, it is easy
to check that α = α′|I| and β = β′. 2 + I ∈ Z(R/I) if and only if 2 ∈ S(I).
Let 2 ∈ S(I). By part (1) of the above theorem and [2, Theorem 2.2(1)],
S(ΓI(R)) is the union of β − 1 disjoint Kα,s and Reg(Γ(R/I)) is the union of
β − 1 disjoint Kα/|I|,s. Let 2 /∈ S(I). By part (2) of the above theorem and
[2, Theorem 2.2(2)], S(ΓI(R)) is the union of (β − 1)/2 disjoint Kα,α,s and
Reg(Γ(R/I)) is the union of (β − 1)/2 disjoint Kα/|I|,α/|I|,s. It follows from
Remark 2.5, S(ΓI(R)) contains |I| disjoint subgraphs isomorphic to Z(Γ(R/I))
and S(ΓI(R)) contains |I| disjoint subgraphs isomorphic to Reg(Γ(R/I)).

Example 3.7. Let n ≥ 2 be an integer. Then Z(Zn) is an ideal Zn if and
only if n = pk for some prime p and integer k ≥ 1 (see, [2, Example 2.7]). Let
⟨n⟩ = nZ. Since Z(Z/⟨n⟩) = {a+ ⟨n⟩ : a ∈ S(⟨n⟩)}; hence S(⟨n⟩) is an ideal Z
if and only if n = pk for some prime p and integer k ≥ 1. Let n = pk for some
prime p and integer k ≥ 1. It is easy to check that S(⟨pk⟩) = ⟨p⟩, that is ⟨pk⟩ is
a pZ-primal ideal Z. If p = 2, then S(Γ⟨pk⟩(Z)) is the complete subgraph Kα,s

such that |⟨p⟩| = α. If p > 2, then S(Γ⟨pk⟩(Z)) is the union of p− 1/2 disjoint
Kα,α,s.

Note 3.8. Note that if S(I) = {0}, then R is an integral domain, and 2 ∈ S(I)
if and only if char R = 2.

Theorem 3.9. Let R be a commutative ring with the proper ideal I such that
S(I) is an ideal of R. Then

(1) S(ΓI(R)) is complete if and only if R/S(I) ∼= Z2 or R ∼= Z3.
(2) S(ΓI(R)) is connected if and only if R/S(I) ∼= Z2 or R/S(I) ∼= Z3.
(3) S(ΓI(R)) (and hence T (ΓI(R)) and S(ΓI(R))) is totally disconnected if

and only if I = {0} and R is an integral domain, with char R = 2.

Proof. Let |S(I)| = α and |R/S(I)| = β.
(1) S(ΓI(R)) is complete if and only if S(ΓI(R)) is a single Kα or K1,1 by

Theorem 3.5.
Let S(ΓI(R)) be a complete subgraph of T (ΓI(R)). If 2 ∈ S(I), then β−1 =

1. Thus R/S(I) ∼= Z2. If 2 /∈ S(I), then α = 1 and (β − 1)/2 = 1. Thus
S(I) = {0} = I and β = 3; hence R ∼= Z3.

Conversely, if R/S(I) ∼= Z2, then we show that 2 ∈ S(I). R/S(I) =
{S(I), x+ S(I)} where x /∈ S(I). Thus x+ S(I) = −x+ S(I) gives 2x ∈ S(I);
hence 2 ∈ S(I). So, S(ΓI(R)) is a single Kα. Next, suppose that R ∼= Z3, then
I = {0} is only proper ideal of R, since T (Γ0(R)) = T (Γ(R)), as required.
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(2) By Theorem 3.5, S(ΓI(R)) is a connected subgraph T (ΓI(R)) if and only
if S(ΓI(R)) is a single Kα or Kα,α. Let S(ΓI(R)) be a connected subgraph of
T (ΓI(R)). If 2 ∈ S(I), then β − 1 = 1. Thus R/S(I) ∼= Z2. If 2 /∈ S(I), then
β − 1/2 = 1 gives β = 3; hence R/S(I) ∼= Z3.

Conversely, by part (1), it suffices to show that S(ΓI(R)) is connected when
R/S(I) ∼= Z3. We claim that 2 /∈ S(I). Suppose not. Then R/S(I) =
{S(I), x + S(I), y + S(I)} where x, y /∈ S(I). Since R/S(I) is a cyclic group
with order of 3, we have (x + S(I)) + (x + S(I)) = y + S(I); hence y ∈ S(I)
(2x ∈ S(I)), a contradiction. Thus 2 /∈ S(I) and by Theorem 3.5(2), S(ΓI(R))
is a single Kα,α and the proof is complete.

(3) S(ΓI(R)) is totally disconnected if and only if it is a disjoint union of
K1,s. Hence by Theorem 3.5, 2 ∈ S(I) and |S(I)| = 1. So R must be an
integral domain with char R = 2. □

Remark 3.10. Let S(I) be an ideal. Then R/I/Z(R/I) = R/I/S(I)/I ∼=
R/S(I); hence R/I/Z(R/I) ∼= Zn if and only if R/S(I) ∼= Zn such that n ≥ 2
is an integer. So the above theorem in conjunction with [2, Theorem 2.4] is the
other proof of Proposition 2.7.

At the end of this section, we give further explicit descriptions of the diam-
eter and girth of S(ΓI(R)).

Proposition 3.11. Let R be a commutative ring with proper ideal I such that
S(I) is an ideal of R. Then

(1) diam(S(ΓI(R))) = 0, 1, 2, or ∞. In particular, diam(S(ΓI(R))) ≤ 2 if
S(ΓI(R)) is connected.

(2) gr(S(ΓI(R))) = 3, 4 or ∞. In particular, gr(S(ΓI(R))) ≤ 4 if S(ΓI(R)))
contains a cycle.

Proof. (1) Suppose that S(ΓI(R)) is connected. Then S(ΓI(R)) is a single-
ton, a complete graph, or a complete bipartite graph by Theorem 3.5. Thus
diam(S(ΓI(R))) ≤ 2.

(2) Let S(ΓI(R)) contains a cycle. Since S(ΓI(R))) is a disjoint union of
either complete or complete bipartite graphs by Theorem 3.5, it must contain
either a 3-cycle or a 4-cycle. Thus gr(S(ΓI(R))) ≤ 4. □

Theorem 3.12. Let R be a commutative ring with the proper ideal I such that
S(I) is an ideal of R.

(1) diam(S(ΓI(R))) = 0 if and only if R ∼= Z2.
(2) diam(S(ΓI(R))) = 1 if and only if either R/S(I) ∼= Z2 and |S(I)| ≥ 2

or R ∼= Z3.
(3) diam(S(ΓI(R))) = 2 if and only if R/S(I) ∼= Z3 and |S(I)| ≥ 2.
(4) Otherwise, diam(S(ΓI(R))) = ∞.

Proof. These results all follow from Theorem 3.5, Theorem 3.9 and Proposition
3.11. □



TOTAL GRAPH WITH RESPECT TO AN IDEALS 93

Corollary 3.13. Let S(I) be an ideal of R and I ̸= 0. Then we have the
following results:

(1) If diam(Reg(Γ(R/I))) = 0, then diam(S(ΓI(R))) = 1 and I = S(I).
(2) Let diam(Reg(Γ(R/I))) = 1. Then diam(S(ΓI(R))) = 1 if I ⊊ S(I) and

diam(S(ΓI(R))) = 2 if I = S(I).
(3) If diam(Reg(Γ(R/I))) = 2, then diam(S(ΓI(R))) = 2.
(4) diam(S(ΓI(R))) = ∞ if and only if diam(Reg(Γ(R/I))) = ∞.

Proof. These results all follow directly from Remark 3.10, Theorem 3.12 and
[2, Theorem 2.6(1)]. Note that for (4), diam(S(ΓI(R))) = ∞ if and only if
2 ∈ S(I) and |R/S(I)| = β ≥ 3, or 2 /∈ S(I) and |R/S(I)| = β ≥ 5. So, by
Note 2.1 and [2, Theorem 2.2], the proof is complete. □

Corollary 3.14. Let S(I) be an ideal of R and I ⊊ S(I). If diam(S(ΓI(R))) =
k such that 0 ≤ k ≤ 2 is an integer, then diam(Reg(Γ(R/I))) = k.

Proof. The result follows by Remark 3.10, Theorem 3.12 and [2, Theorem
2.6(1)]. □

Theorem 3.15. Suppose that S(I) is an ideal of R. Then
(1) (a) gr(S(ΓI(R))) = 3 if and only if 2 ∈ S(I) and |S(I)| ≥ 3.

(b) gr(S(ΓI(R))) = 4 if and only if 2 /∈ S(I) and |S(I)| ≥ 2.
(c) Otherwise, gr(S(ΓI(R))) = ∞.

(2) (a) gr(T (ΓI(R))) = 3 if and only if |S(I)| ≥ 3.
(b) gr(T (ΓI(R))) = 4 if and only if 2 /∈ S(I) and |S(I)| = 2.
(c) Otherwise, gr(T (ΓI(R))) = ∞.

Proof. According to Theorem 3.1, Theorem 3.5, these results follow. □

Corollary 3.16. Let S(I) be an ideal of R. Then

(1) (a) If gr(Reg(Γ(R/I))) = k such that 3 ≤ k ≤ 4 is an integer, then
gr(S(ΓI(R))) = k.
(b) If {0} ̸= I ⊊ S(I) and gr(Reg(Γ(R/I))) = ∞, then gr(S(ΓI(R))) =
3.

(2) (a) If gr(S(ΓI(R))) = 3, then if |Z(R/I)| ≤ 2, gr(S(ΓI(R))) = ∞. If
|Z(R/I)| > 2, then gr(S(ΓI(R))) = 3.
(b) If gr(S(ΓI(R))) = 4, then gr(Reg(Γ(R/I))) = 4, if I ⊊ S(I);
otherwise gr(Reg(Γ(R/I))) = ∞.
(c) If gr(S(ΓI(R))) = ∞, then gr(Reg(Γ(R/I))) = ∞.

Proof. These results all follow directly from Note 2.1, Remark 3.10, and The-
orem 3.15 and [2, Theorem 2.6(2)]. □

4. The case when S(I) is not an ideal R

Given a proper ideal I of R, in this section we study the remaining case when
S(I) is not an ideal of R (i.e., I is not primal ideal of R). Since S(I) is always
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closed under product by elements of R; hence there are distinct x, y ∈ S(I)∗

such that x+ y ∈ R−S(I), so |S(I)| ≥ 3; in this case, S(ΓI(R)) and S(ΓI(R))
are never disjoint subgraphs. Also, we determine when T (ΓI(R)) is connected
and compute diam(T (ΓI(R))).

Theorem 4.1. Suppose that S(I) is not an ideal of R.
(1) S(ΓI(R)) is connected with diam(S(ΓI(R))) = 2.
(2) Some vertex of S(ΓI(R)) is adjacent to a vertex of S(ΓI(S)).
In particular, the subgraphs S(ΓI(R)) and S(ΓI(S)) are not disjoint.
(3) If S(ΓI(S)) is connected, then T (ΓI(S)) is connected.

Proof. (1) Let x ∈ S(I)∗. Then x is adjacent to 0. Thus x − 0 − y is a path
in S(ΓI(R)) of length two between any two distinct x, y ∈ S(I)∗. Moreover,
there exist nonadjacent x, y ∈ S(I)∗ since S(I) is not an ideal of R; thus
diam(S(ΓI(R))) = 2.

(2) By assumption, there exist distinct x, y ∈ S(I)∗ such that x+y /∈ S(I)∗;
so x+y ∈ R−S(I). Then −x ∈ S(I) and x+y ∈ R−S(I) are adjacent vertices
in T (ΓI(R)) since −x + (x + y) = y ∈ S(I). The “in particular” statement is
clear.

(3) By part (1) above, it suffices to show that there is a path from x to y
in T (ΓI(R)) for any x ∈ S(I) and y ∈ R − S(I). By part (2) above, there
exist adjacent vertices u and v in S(ΓI(R)) and S(ΓI(R)), respectively. Since
S(ΓI(R)) is connected, there is a path from x to u in S(ΓI(R)); and since
S(ΓI(R)) is connected, there is a path from v to y in S(ΓI(R)). Then there
is a path from x to y in T (ΓI(R)) since u and v are adjacent in T (ΓI(R)). It
follows that, T (ΓI(R)) is connected. □

The Jacobson radical Jac(R) of R is defined to be the intersection of all the
maximal ideal of R, [4, Proposition 1.9]. Consider the following lemma.

Lemma 4.2. Suppose that S(I) is not an ideal of R. Then T (ΓI(R)) is con-
nected if and only if R = ⟨a1, . . . , ak⟩ for some a1, . . . , ak ∈ S(I). In particular,
if R/I is a finite ring and I ⊆ Jac(R), then T (ΓI(R)) is connected.

Proof. Suppose T (ΓI(R)) is connected. Hence there is a path 0−x1−· · ·−xn−1
from 0 to 1 in T (ΓI(R)). Now x1, x1 + x2, . . . , xn + 1 ∈ S(I). Hence 1 ∈
⟨x1, x1 + x2, . . . , xn−1 + xn, xn + 1⟩ ⊆ ⟨S(I)⟩; thus R = ⟨S(I)⟩. Conversely,
suppose that R = ⟨S(I)⟩. We show that for each 0 ̸= x ∈ R, there exists a path
in T (ΓI(R)) from 0 to x. By assumption, there are elements z1, . . . , zn ∈ S(I)
such that x = z1 + · · · + zn. Set w0 = 0 and wk = (−1)n+k(z1 + · · · + zk) for
each integer k with 1 ≤ k ≤ n. Then wk + wk+1 = (−1)n+k+1zk+1 ∈ S(I) for
each integer k with 0 ≤ k ≤ n− 1; and thus 0−w1−w2− · · ·−wn−1−wn = x
is a path from 0 to x in T (ΓI(R)) of length at most n. Now let 0 ̸= u, v ∈ R.
Then by the preceding argument, there are paths from u to 0 and 0 to v in
T (ΓI(R)); hence there is a path from u to v in T (ΓI(R)). Thus, T (ΓI(R)) is
connected. □
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In the light of Lemma 4.2, we have the following results.

Theorem 4.3. Suppose that S(I) is not an ideal of R and R = ⟨S(I)⟩. Let
n ≥ 2 be the least integer such that R = ⟨x1, . . . , xn⟩ for some x1, . . . , xn ∈ S(I)
(that is, T (ΓI(R)) is connected). Then diam(T (ΓI(R))) = n. In particular, if
R/I is a finite ring and I ⊆ Jac(R), then diam(T (ΓI(R))) = 2.

Proof. First, we investigate any path from 0 to 1 in T (ΓI(R)) has length ≥ n.
Suppose that 0 − x1 − x2 − · · · − xm−1 − 1 is a path from 0 to 1 in T (ΓI(R))
of length m. Thus x1, x1 + x2, . . . , xm−2 + xm−1, xm−1 + 1 ∈ S(I), and hence
1 ∈ (x1, x1 + x2, . . . , xm−2 + xm−1, xm−1 + 1) ⊆ (S(I)). Thus m ≥ n.

Now, let x and y be distinct elements in R. We show that there is a path
from x to y in T (ΓI(R)) with length ≤ n. Let 1 = b1 + · · · + bn for some
b1, . . . , bn ∈ S(I), and let z = y + (−1)n+1x. Define w0 = x and wk =
(−1)n+kz(b1 + · · · + bk) + (−1)kx for each integer k with 1 ≤ k ≤ n. Then
wk + wk+1 = (−1)n+k+1zbk+1 ∈ S(I) for each integer k with 0 ≤ k ≤ n − 1
and wn = z + (−1)nx = y. Thus x− w1 − · · · − wn−1 − y is a path from x to
y in T (ΓI(R)) with length at most n. Specially, we conclude that a shortest
path between 0 and 1 in T (ΓI(R)) has length n; hence diam(T (ΓI(R))) = n.
For the “in particular” statement, note that Z(R/I) is not an ideal of R. So,
x + y + I ∈ Reg(R/I) for some x, y ∈ S(I). Since every regular element of a
finite commutative ring is a unit and I ⊆ Jac(R); hence x+ y is a unit. Now,
we have R = ⟨x, y⟩, and thus diam(T (ΓI(R))) = 2. □

Clearly, if R = ⟨a1, . . . , ak⟩ for some a1, . . . , ak ∈ S(I), then R/I = ⟨a1 +
I, . . . , ak + I⟩; hence diam(T (Γ(R/I))) ≤ diam(T (ΓI(R))) (see [2, Theorem
3.4]). Note that since, k ≥ 2 be the least integer such that R = ⟨a1, . . . , ak⟩;
hence diam(T (Γ(R/I))) ≥ diam(T (ΓI(R)))− 1.

Example 4.4. Let n ≥ 2 be an integer, and let n ̸= pk for every prime p and
integer k ≥ 1. Then S(⟨n⟩) is not an ideal of Z (see, Example 3.7). It is easy
to check that there are distinct primes p and q, and integers r, s /∈ ⟨n⟩ such
that pr ∈ ⟨n⟩ and qs ∈ ⟨n⟩. So Z = ⟨p, q⟩; that p, q ∈ S(⟨n⟩). By Theorem 4.3,
diam(T (Γ⟨n⟩(Z))) = 2.

Theorem 4.5. Suppose that S(I) is not an ideal of R. If T (ΓI(R)) is con-
nected, then

(1) diam(T (ΓI(R))) = d(0, 1).
(2) If diam(T (ΓI(R))) = n, then diam(S(ΓI(R))) ≥ n− 2.

Proof. (1) This follows from the proof of Theorem 4.3.
(2) By part (1) above, diam(T (ΓI(R))) = d(0, 1) = n. Let 0 − x1 − · · · −

xn−1 − 1 be a shortest path from 0 to 1 in T (ΓI(R)). Clearly, x1 ∈ S(I). If
xi ∈ S(I) for some integer i with 2 ≤ i ≤ n − 1, then we can construct the
path 0 − xi − · · · − xn−1 − 1 from 0 to 1 in T (ΓI(R)) which has length less
than n, which is a contradiction. Thus xi ∈ R − S(I) for each integer i with
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2 ≤ i ≤ n− 1. Therefore, x2 − x3 − · · · − xn−1 − 1 is a shortest path from x2

to 1 in S(ΓI(R)), and it has length n− 2. Thus diam(S(ΓI(R))) ≥ n− 2. □

Corollary 4.6. Let {Rα}α∈Λ be a family of commutative rings with |Λ| ≥ 2,
and let R =

∏
α∈Λ Rα. Suppose I =

∏
α∈Λ Iα; such that for every α ∈ Λ, Iα is

a proper ideal of Rα. Then T (ΓI(R)) is connected with diam(T (ΓI(R))) = 2.

Proof. It is easy to check that e = (1, 0, 0, . . .) and 1R − e ∈ S(I). It follows
that R = ⟨e, 1R − e⟩; so by Theorem 4.3, the claim is true. □

Remark 4.7. Let R and U be commutative rings, I and J be proper ideals of R
and U , respectively. It is clear to check that R×U−S(I×J) = (R−S(I))×(U−
S(J)). So for distinct (x, y), (z, w) ∈ R×U−S(I×J), (x, y)−(−x,−w)−(z, w)
is a path of length at most two in S(ΓI×J (R × U)). Thus S(ΓI×J (R × U)) is
connected with diam(S(ΓI×J(R×U))) ≤ 2. By Theorem 4.1(2), it follows that
T (ΓI×J(R× U)) is connected (see Corollary 4.6).

Theorem 4.8. Let S(I) does not an ideal of R. Then T (ΓS−1I(S
−1R)); where

S = R− S(I), is connected with diam(T (ΓS−1I(S
−1R))) = 2. In particular, if

R/I is a finite ring and I ⊆ Jac(R), then diam(T (ΓS−1I(S
−1R))) = 2.

Proof. Since S(I) is not an ideal of R, there are x1, x2 ∈ S(I) such that s =
x1 + x2 ∈ R − S(I). Thus x1/s + x2/s = 1 in S−1R. It is easy to check that
S(S−1I) is not an ideal of S−1R and x1/s, x2/s ∈ S(S−1I). Thus S−1R =
⟨x1/s, x2/s⟩. The “in particular” statement is clear since every s ∈ S is unite
(s+ I ∈ Reg(R/I); hence s+ I is unite). It follows that S−1R = R. □

Theorem 4.9. Let I ⊴ R, and P1 and P2 be prime ideals of R, contain-
ing I. Suppose xy ∈ I for some x ∈ P1 \ P2 and y ∈ P2 \ P1. Then
diam(T (ΓS−1I(RS))) = 2 where S = R \ P1 ∪ P2.

Proof. For all s ∈ S, we have sx and sy /∈ I; since s, x /∈ P2 and s, y /∈ P1. Thus
x/s and y/s are nonzero elements of S(S−1I) ((x/s)(y/1) ∈ S−1I and y/1 /∈
S−1I). Let s = x+ y ∈ S, hence S−1R = ⟨x/s, y/s⟩. Thus T (ΓS−1I(S

−1R)) is
connected with diam(T (ΓS−1I(S

−1R))) = 2 by Theorem 4.3. □

The following theorem give gr(S(ΓI(R))), gr(S(ΓI(R))), and gr(T (ΓI(R)))
when S(I) is not an ideal of R.

Theorem 4.10. Let R be a commutative ring with the proper ideal I such that
S(I) is not an ideal of R. Then

(1) If I ̸= {0}, gr(S(ΓI(R))) = 3. Otherwise gr(S(ΓI(R))) = 3 or ∞.
Moreover, if gr(S(ΓI(R))) = ∞, then R ∼= Z2 ×Z2; so, S(ΓI(R) is a K1,2 star
graph with center 0.

(2) gr(T (ΓI(R))) = 3 if and only if gr(S(ΓI(R))) = 3.

(3) The (induced) subgraph of S(ΓI(R)) with vertices
√
I is complete; hence

gr(S(ΓI(R))) = 3 when |
√
I| ≥ 3.

(4) If gr(T (ΓI(R))) = 4, then gr(S(ΓI(R))) = ∞.
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(5) If 2 ∈ I, then gr(S(ΓI(R))) = 3 or ∞.
(6) If 2 /∈ I, then gr(S(ΓI(R))) = 3, 4 or ∞.

Proof. (1) Let 0 ̸= x ∈ I and y ∈ S(I) \ I. Since I +S(I) ⊆ S(I), 0−x− y− 0
is a 3-cycle in S(ΓI(R)). If I = {0}, it follows from [2, Theorem 3.4(1)]. Note
that if R ∼= Z2 × Z2, then I = {0} is the only proper ideal of R, that S(I) is
not an ideal of R.

(2) It suffices to show that gr(S(ΓI(R))) = 3 when gr(T (ΓI(R))) = 3. If
2x ̸= 0 for some x ∈ S(I)∗, then 0 − x − (−x) − 0 is a 3-cycle in S(I). Thus
we may assume that 2x = 0 for all x ∈ S(I). Since S(I) is not an ideal;
so there are x ∈ S(I) such that x /∈ I. 2x = 0 ∈ I; hence 2 ∈ S(I). Let
a − b − c − a be a 3-cycle in S(ΓI(R)). So a + b, b + c, c + a ∈ S(I). If
2a = 0, then 0 − a + b − a + c − 0 is a 3-cycle in S(ΓI(R)). So without loss
of generality we can assume that 2a, 2b and 2c are non-zero. If 2a ̸= 2b, then
0 − 2a − 2b − 0 is a 3-cycle in S(ΓI(R)). Without loss of generality we can
assume that 2a = 2b = 2c. So, 2(a − b) = 2(b − c) = 0 ∈ I. If 2 /∈ I, then
a− b and b− c ∈ S(I); hence 0− (a− b)− (b− c)− 0 is a 3-cycle in S(ΓI(R))
(if a − b = b − c, then a + c = 2b = 2a, a contradiction). Let 2 ∈ I. Since
b + c ∈ S(I); hence (b + c)r ∈ I such that r /∈ I; thus (2a + b + c)r ∈ I. Now
0 − a + b − a + c − 0 is a 3-cycle in S(ΓI(R)) (if a + b = 0, then we have a
3-cycle 0− a+ c− b+ c− 0). Thus in all cases we get a 3-cycle in S(ΓI(R)).

(3) It follows from
√
I ⊆ S(I) is an ideal.

(4) It is clear by parts 1, 2.
(5) Let 2 ∈ I and S(ΓI(R)) contains a cycle C. Hence there is a path

x− y − z in S(ΓI(R)). Without loss of generality we may assume that x ̸= 1,

y ̸= 1. Clearly, x + y, y + z ∈ S(I). Suppose that R contains a a ∈
√
I \ I. If

a = ax = ay, then x + 1, y + 1 ∈ S(I), and thus 1 − x − y − 1 is a 3-cycle in
S(ΓI(R)). If either ax ̸= a or ay ̸= a, then either 1 − (a + 1) − (ax + 1) − 1
or 1− (a+ 1)− (ay + 1)− 1 is a 3-cycle in S(ΓI(R)) (a+ I ∈ Jac(R/I)). Let√
I = I. If I = {0} (hence 2 = 0), then x2 ̸= y2; since x2 + y2 = (x+ y)2 ̸= 0.

Hence x2−xy−y2−x2 is a 3-cycle in S(ΓI(R)) = Reg(R). Finally, let I ̸= {0}.
Suppose 0 ̸= b ∈ I. If x+ z ∈ S(I), then x− y− z−x is a 3-cycle in S(ΓI(R)).
Let x+ z /∈ S(I). It follows that y − x or z − y /∈ I (2x ∈ I). Without loss of
generality we can assume that y−x /∈ I; hence b+x−x− y− b+x is a 3-cycle
in S(ΓI(R)). So, as required.

(6) Suppose that S(ΓI(R)) contains a cycle. So there is a path x− y − z in
S(ΓI(R)). We may assume that x+ z /∈ S(I). It is clear that either x+ y ̸= 0
or y + z ̸= 0 (otherwise x = z, a contradiction). Without loss of generality
we can assume that x + y ̸= 0. Then x − y − (−y) − (−x) − x is a 4-cycle (if
x = −x gives 2x = 0 ∈ I, then x ∈ S(I), a contradiction). So, the proof is
complete. □
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