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Abstract: Metallic nanoparticles (MNPs) are new engineering materials with broad pro-
spects for biomedical applications; thus, their biosafety has drawn great concern. The liver is
the main detoxification organ of vertebrates. However, many issues concerning the interac-
tions between MNPs and biological systems (cells and tissues) are unclear, particularly the
toxic effects of MNPs on hepatocytes and other liver cells. Numerous researchers have
shown that some MNPs can induce decreased cell survival rate, production of reactive
oxygen species (ROS), mitochondrial damage, DNA strand breaks, and even autophagy,
pyroptosis, apoptosis, or other forms of cell death. Our review focuses on the recent
researches on the liver toxicity of MNPs and its mechanisms at cellular and subcellular
levels to provide a scientific basis for the subsequent hepatotoxicity studies of MNPs.
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Introduction

With the rapid development of nanotechnology, nanomaterials (NPs) are considered
to have enormous application potential due to their unique properties over the past
few decades.' Of all the NPs, metallic nanoparticles (MNPs) have generated con-
siderable commercial interest owing to unique properties of NPs such as small size
and the greater surface area to volume ratio as well as different electronic, magnetic,
optical, and mechanical properties and also particle shape. MNPs mainly include
metal nanoparticles and metal oxide nanoparticles, and MNPs have been widely
included in a great diversity of products and the various fields, such as electronic
devices, cosmetics, paints, additives in food, and biological and medical systems.z’3
With the widespread application of MNPs, it is inevitable that MNPs will be released
into the environment or contact with humans directly. Therefore, their potential risks
to human health and the environment have gained even more attention.* MNPs can
enter the body in various ways, for example, through the inhalation, gastrointestinal
tract, or skin, and circulate via the blood or lymphatic system, eventually accumulat-
ing in various organs.’ Previous studies for metal nanoparticles and metal oxides
nanoparticles, including nano-Cu, nano-Ag, nano-Ni, nano-TiO,, and nano- ZnO,
have shown that MNPs reached the lung and gastrointestinal tract through the
respiratory and digestive tract, and further translocated to the systemic circulation,
and then accumulate the potential target organs such as the liver and the mononuclear
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phagocytic system.® As a secondary exposure site, the liver
is extremely important, as it has been shown to accumulate
MNPs at much higher quantities compared with other
organs.” Meanwhile, MNPs accumulate the liver typically
results in interaction with hepatic cells and the possibility of
changing the structure and function of hepatic cells. The
liver is a complex network of inter-related cells, including
about 60-80% of the hepatocytes, and the additional cells
include Kupffer cells, liver sinusoidal endothelial cells,
hepatic stellate cells, and so on. The interactions of MNPs
with liver cells determine the fate of administered MNPs in
vivo and the results of hepatotoxicity. In vivo studies are
mostly focused on the accumulation of the MNPs at the
organ level, while most in vitro studies are focused on
hepatic cells and do not summarize changes in subcellular
levels and their relationship with hepatotoxicity. It is impor-
tant, therefore, to summarize hepatotoxicity studies of
MNPs on animals, the cell level and subcellular level and
its molecular mechanism and outcomes. Furthermore, the
physicochemical characteristics of MNPs, such as size, sur-
face properties, and chemical nature would change and
influence their potential toxicity. From these facts, the aim
of this review is to compile and discuss the hepatotoxicity
effects of MNPs both in vitro and in vivo, particularly those
involved in subcellular levels as well as to highlight its
molecular mechanism of action of these MNPs.

The Liver And Metallic

Nanoparticles Toxicity

The liver is the primary organ for detoxification in human
body. It possesses abilities of deoxidation, glycogen sto-
rage, and secreted protein synthesis. It acts as biological
barriers by isolating and eliminating various exogenous
compounds through phagocytosis. Previous in vivo studies
have shown that different types of MNPs: nano-metal
monomers and nano-metal oxides, tend to deposit in the
liver with extensive toxic effects.>'° As shown in Table 1,
MNPs entering the body cause changes in inflammatory
cytokines. NiO NP increased the concentrations of pro-
inflammatory cytokines (IL-1f and IL-6) but decreased the
levels of anti-inflammatory cytokines (IL-4 and IL-10).""
Liver dysfunction caused by MNPs leads to structural
changes of liver. MNPs caused inflammation, which may
lead to changes in liver coefficients.'*'* By analyzing
blood serum, significant decrease of total bilirubin and
increase of alkaline phosphatase (ALP) with aspartate
aminotransferase (AST) indicated liver injury.'"'>'® The

damage mainly manifested in liver structural changes
causing metabolic dysfunction. AgNP caused the increase
of relative spleen weight and affected diffuse and severe
hepatocyte necrosis and hemorrhage, as well as multifocal
peribiliary microhemorrhages, occasional portal vein
endothelial damage, which in turn affects the liver.!”
TiO, NP induced alterations in the liver structure including
hepatic inflammatory cell infiltration, increased density of
liver tissue collagen, initiation of fibrosis and Glisson
capsule thickness increase.'® AuNP was found to activate
hepatic macrophages and then significantly aggravated the
course of experimental immune hepatitis and liver
injury."”

The Hepatocytes And Metallic

Nanoparticles Toxicity

Hepatocytes constitute the basic functional unit of the
liver, the hepatic lobule, which contains 60% of the solid
cells (hepatocytes) and 30% to 35% of the non-solid cells
(hepatic stellate cells, Kupffer cells, and sinusoidal
endothelial cells). NPs deposited in liver tissue may affect
the normal physiological and biochemical functions of
liver by affecting liver parenchymal cells and other cells
along with important physiological functions in liver tis-
sue. When studying the hepatotoxicity of MNPs, the
effects on hepatocytes from different sources, including
primary cells and cell lines, should be considered at the
same time, so as to obtain more comprehensive informa-
tion. It has been widely carried out in vitro toxicity
research of MNPs, including the use of cell lines from
different species and origins, as well as studies at the
cellular, subcellular and molecular levels.. MNPs cause
liver cell toxicity mechanism includeing triggering inflam-
mation, oxidative stress, and possibly eventually leading to
different types of cell death outcomes. As shown in
Table 2, due to the role of MNPs, the decrease in survival
rate of hepatocytes is common, accompanied by a time-
and dose-dependent relationship. The sensitivity of hepa-
tocytes from different sources to MNPs was different.
Compared with normal cell lines, MNPs seem to have
more obvious toxic effects on cancer cells. In the study
of Mei-Lang et al,** the IC50 for SK-Hep-1 and HepG2
cells were 25 and 85 ug/mL, respectively. Ali et al* also
found that HepG2 cells were more sensitive to rGO-Ag
than human CHANG liver cells. The activity of lipid
peroxide, superoxide dismutase, and catalase increased
and glutathione decreased. Previous studies have shown
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that MNPs can destroy the function of mitochondria and
cell respiratory transmission.>**> MNPs induced decrease
of ATP levels, activated the signaling pathway of inflam-
mation, apoptosis, and autophagy.’®* The changes in
oxidative stress and inflammatory factors suggest the
mechanism of cell fate induced by MNPS.**%* In addi-
tion, MNPs can also damage DNA, which may explain the
cause and mechanism of liver damage caused by MNPs at

the organelle and molecular level.”'

Effects Of MNPs On Organelles

A small organ-like structure present inside the cell is
called a cell organelle, which is the basic structural, func-
tional, and biological unit of all known living organisms.
The integrity of organelle determines the fate of the cell.
Liver cell membrane is sensitive to free radical and lipid
peroxidation injury. Liver cell membrane injury was char-
acterized by decreased fluidity and increased permeability.
Wang et al*’ found that ZnO NPs were distributed in the
nucleus or concentrated on the surface of primary hepato-
cytes membrane microvilli and other organelles in catfish.
Under light micrographs, numerous MNPs caused changes
in cell membrane permeability, as well as distinct damages
under TEM. According to Vréek et al,** treatment of Ag
NPs and Ag ion on human hepatocytes both led to cell
membrane damage, which was manifested as LDH leakage
and decreased albumin synthesis with ALT activity inhib-
ited. Changes in liver membrane fluidity can damage the
enzyme activity, receptor and transportation function, and
inhibit the function of liver cells. The internal structure of
the membrane may be disturbed by MNPs, as they can
cause changes in membrane permeability by causing the
plasma membrane to partially dissolve and form pore
structures. The exposure of MoS, NPs made reduction of
the phospholipid bilayer domain of the liver cancer cells
and an increase in membrane fluidity.*

The nucleus controls the cellular genetic material and plays
an important role in cell growth, metabolism, proliferation,
and differentiation. MNPs reached the nucleus and affected
genetic materials, thus destroying nuclear morphology, dama-
ging DNA, and affecting gene expression concretely.>* The
mouse hepatocyte exposed to ZnO NPs exhibited karyopy-
knosis, nuclear membrane irregularity with indentation, and
chromatin fragmentation. Shrunken micronuclei of hepato-
cytes with reticular-pattern chromatin condensation and apop-
totic activity were further observed.>> TiO, NPs orally
administered into C57/BL6 mice caused liver metabolic
genes (Oatpl, Mrp3, Cyp2b10, Cyp2c37) to increase under

high dose treatment.*® TiO, NPs can also regulate the expres-
sion of mRNA p53 and the downstream genes regulating
DNA damage response (p21 mdm?2, gadd45) temporarily.
Also, exposure of HepG2 cells to TiO, NPs resulted in DNA
strand breakage and sustained growth of purine oxide.’’
Overall, MNPs could cause intracellular DNA damage,
which induced different cell outcomes, for example, activating

caspase-3 and caspase-7 mediated apoptosis,>>=%°

regulating
relevant genes (Bax, Puma, Noxa),” and promoting caspase-1
induced pyroptosis.*®

Mitochondrial dysfunction enticed by MNPs included
morphological changes, increased production of ROS,
changes in calcium content, descending mitochondrial
membrane potential, inhibition of various enzyme activ-
ities, inhibition of electron transport chains, inhibition of
cellular respiration, decline of ATP synthesis, etc., which
could further lead to insufficient energy supply and affect
cell viability such as apoptosis and necrosis.***' ZnO NPs
caused a series of morphological changes in mouse hepa-
tocyte mitochondria, such as enlargement, elongation,
angulations, swelling, cristolysis, lacked cristae, and rup-
tured membranes.*®> Apart from morphological changes,
three types of TiO, NPs (commercially available rutile,
anatase, P25) induced oxidative stress in primary rat hepa-
tocyte, downregulated mitochondrial dynamin OPA-1 and
mitochondrial fusion protein MFN-1 gene expression, sig-
nificant loss of mitochondrial membrane potential (MMP),
and decreased activity of mitochondrial Mn-SOD
enzyme.*”

Endoplasmic reticulum (ER) changes caused by MNPs
include endoplasmic reticulum swelling, endoplasmic reti-
culum stress, misfolding of proteins, and increasing or
decreasing protein synthesis.*>** In liver, ER plays an
important role in the synthesis of protein and steroid
hormones, as well as promoting lipid metabolism and
calcium storage. ER damage is related to the loss of
protein synthesis initiation and liver detoxification func-
tion. The ER of mouse hepatocytes treated with ZnO NPs
demonstrated ER pleomorphism in the form of dilatation,
loss of parallel arrays, stacks shortening, vesiculation,
upregulated transcription of genes encoding ER-resident
molecular chaperones such as Grp78, Grp94, pdi-3 and
xbp-1, and accelerated the process of protein kinase R-like
reticulum kinase (PERK) and eukaryotic initiation factor
2a (elF2a) phosphorylation. ER stress is considered to be
one of the early sensitive indicators of cytotoxicity caused
by MNPs.*>>* Chen et al showed that the level of xbp-1s
and Chop mRNA elevated with mice exposed to Ag NPs.
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In addition, the upregulation of ER stress marker proteins
(hsp70, bip, p-irel, p-perk, and chop) was dose-dependent
for Ag NPs exposure.”® Ultra-small superparamagnetic
iron oxide nanoparticles (USPIO-NP) act on L02 cells,
causing the expansion and vacuolation of ER, and increas-
ing the level of calcium ions in ER cavity. ER stress and
unfolded protein response to PERK/ATF4 signaling path-
way were finally activated.*

MNPs enter lysosomes mainly through passive diffusion
or endocytosis, causing changes in lysosomal structure.*®
The destruction of lysosomal cristae in Kupffer cells was
obviously observed in rats injected intraperitoneally with an
interval of 48 hrs.*” ZnO NPs entered the lysosome mainly
through endocytosis, leading to damage to lysosomal mor-
phology during the interaction with the acidic environment,
releasing a large amount of Zn" to the cytoplasm. And Zn**
captured partially by mitochondria triggered the generation
of ROS, causing mitochondrial dysfunction and apoptosis of
cells.* MNPs released ions under the lysosomal acidic envir-
onment, and then the lysosomal membranes were ruptured by
MNPs or ions and the contents entering the cell lead to
damage.***® Low-dose Ag-NPs (10 pg/mL) activated autop-
hagic lysosome pathway in HepG2 cells and found increased
level of lysosome activity, LC3-II protein expression, cas-
pase-1, and IL-1 beta levels. Using ATGS siRNA or chlor-
oquine to destroy the autophagic pathway, Ag NPs induced
increased caspase-1 activation and LDH release, suggesting
that Ag NPs induced-cytotoxicity is associated with lyso-
somes damage and inflammatory bodies.*®

Properties Of Metal Nanomaterials
Affect Cell Absorption And
Distribution Of MNPs

Toxicity of MNPs is largely dependent on cellular uptake
and subcellular distribution. The size and surface proper-
ties of MNPs and the types of liver cells play a critical role
in determining the outcome of interaction with the cells

and other biological entities.*’

Size

Size is a key factor determining the subcellular distribution.
Numerous researches have indicated that MNPs, which
mainly distributed in lysosome, cytoplasm, and nucleus,
enter cells through endocytosis.”*>? When comparing
three different sizes (8.9 nm, 27.6 nm, 56 nm) of gold NPs
exposed HepG2 cells, the size of MNPs between 3 and 10
nm entered the nucleus, while the particles of 25 to 60 nm

accumulated in the cytoplasm, which indicated the size is a
key factor to determine the subcellular distribution.>
Another study showed that the shape of Au NPs affected
the ratio of endocytosis. The highest cell uptake was trian-
gular, followed by rod-shaped and star-shaped.’ 3 It is worth
noting that the phenotype, internalization, and dissociation
kinetics of each type of cells in liver have impacts on the
quantity and absorption rate to hepatocytes,*®>*>> which
will ultimately determine the liver toxicity caused by
MNPs. Previous studies have shown that the liver preferen-
tially cleans larger nanomaterials.’®>’ Because of their
higher surface ligand density, they were more likely to be
absorbed by primary rat Kupffer cells as well as immorta-
lized mouse macrophages.””

Surface Modification

The interaction between nanomaterials and cells begins with
the recognition of surface ligands and biofilm receptors.
Current research is devoted to the surface modification of
innovative materials to improve the specificity of cell recogni-
tion. Sykes et al’® studied the binding of nanoparticles to
MDA-MB-435 cancer cells. It was found that within 60 nan-
ometers, transferrin-modified ANP could be absorbed by can-
cer cells more quickly, while PEG-coated materials could
penetrate into cancer cells more deeply, but the absorption
rate was slow. Surface modification reduces the toxicity of
some metal nanomaterials. Gao et al®*'*Ssynthesized a sphe-
rical silicon-coated gold nanomaterial (GNRS@SIO,), which
was conjugated with amino terminus by folic acid as receptor,
and finally produced GNRS@SiO,-FA. In the concentration
range of 040 ppm, the composite has almost no toxic effect.
Compared with unmodified GNRS@SiO,, the material can
enter HepG2 cells quickly and distribute in cytoplasm and
nucleus, while the internalization of unmodified nanomaterials
is not obvious. Surface modification with enhanced biocom-
patibility can be used as an ideal material for targeted cancer
therapy.”® Magnetic nanoparticle-aptamer probe demonstrates
efficient in vitro MR imaging of the cancer cells and enhanced
delivery of an anticancer drug into the cancer cell.*
Christopher et al°' modified NPs with bilayer nano-chitosan
mercaptan and phosphatidylcholine and found that HepG2
cells consumed more new materials than gold polyvinyl glycol
nanoparticles. Further studies showed that the structure of
phosphatidylcholine-modified nanoparticles was similar to
that of liposomes in hepatocytes, which enhanced the transport
of gold nanoparticles. In vivo, the biodegradation and removal
rate of PEG nanoparticles in liver and spleen is faster because
PEG nanoparticles are more specific to tumors.” Surface

International Journal of Nanomedicine 2019:14

submit your manuscript

8795

Dove


http://www.dovepress.com
http://www.dovepress.com

Yao et al

Dove

modification of metallic nanomaterials can enhance electroca-
talytic activity. TiO,* and Ce0,** nanocomposites modified
by platinum nanoparticles enhanced the electrocatalytic activ-
ity of the materials for redox reaction. This may be due to the
increase of oxygen capacity caused by strong electron coupling
between composite structures.

lon Release And Solubility

MNPs have the character of ion release. The toxicity of nano
metallic monomer and metallic oxide not only comes from the
NPs themselves but also from the release of metal ions or their
interaction. Biological effects of MNPs in cells are shown to be
mainly caused by the exposure to solubilized metallic ions.
Han et al®® found that some MNPs decreased the activity of
LDH. The similar deactivation mode of Cu*" indicates that the
decrease of LDH activity is mainly due to the dissolution of Cu
NPs. Kinetic analysis showed that the Cu content in blood of
Cu NPs exposed rats was 15-25% lower than that exposed by
Cu”". The Cu level in the organs (especially in the liver, kidney,
and spleen) of the treated rats significantly increased. In the
blood and organs of rats treated with Cu®" and Cu, respectively,
Cu reached the highest level later and lasted for a shorter
time.*® Zn?" and ZnO NPs can increase the Zn content of
liver metallothioneins (MTs) and vitellogenin-like protein in
plasma. It is noteworthy that MTs were upregulated by Zn**
and ZnO NPs exposure, and the combination of Zn and Cu
with MTs increased.®’

The different results of subcellular distributions revealed
that liver has different detoxification pathways for ZnO NPs
and Zn>". Metallothionein-like protein was the main effector of
Zn*", and ZnO NPs were mainly related to metal-rich granule.-
8 TvanaVinkovi Viek et al** compared the toxic effects of
silver NPs and silver ions on HepG2 cells and found that the
absorption of silver in the two forms was almost the same; the
half-maximal inhibitory concentration (IC50) value of Ag NPs
(50mg/L) was about 100 times higher than the corresponding
value of Ag" (0.5 mgeL™"). The possible reason was that Ag"
directly combined with SOD and GSH-Px and inhibited the

enzyme activity.

Mechanisms of hepatotoxicity
induced by metallic nanoparticles

Oxidative Stress

Reactive oxygen species (ROS) are active molecules pro-
duced during cell metabolism. In biology, ROS refers to
superoxide anion radicals, hydroxyl radicals, and hydrogen

peroxide.®” ROS are produced in the process of

mitochondrial and cytoplasmic oxidation and help main-
tain cell function in the process of cell physiology.
Excessive production of ROS can break the redox balance,
resulting in oxidative stress, which leads to cell damage
and cell death. Previous studies have shown that oxidative
stress leads to lipid peroxidation and hepatocyte apoptosis,
which is related to the occurrence and development of
hepatitis, liver failure, ischemia-reperfusion injury, alco-
holic liver disease, and other diseases.”’

MNPs accumulated in the liver cause oxidative stress
by altering the content and activity of antioxidant
enzymes. The process of oxidative stress is accompanied
by increased activity of antioxidant enzymes such as SOD,
CAT, and glutathione peroxidase (GSH-px), as well as
activity of non-enzymatic antioxidants such as ascorbic
acid (ASA) and GSH.”' Due to the combined action of
Ag NPs and Ti NPs, oral exposure in rats caused a strong
level of oxidative stress in the liver. The endogenous
antioxidant system showed decreased GSH/GSSG ratio
and increased formation of reactive substances.”” After
administration of polyvinylpyrrolidone-coated AgNPs
(PVP-AgNPs) in male Sprague Dawley rats, the activities
of SOD, CAT and TBARS increased and showed a dose-
dependent effect.”> In addition, Fe;0, NPs treatment
caused significant increase in enzyme activities of GSH-
Px, GR, and glutathione s-transferase (GST) with decrease
in GSH content in Wistar rat organs.”*

Oxidative stress injury is closely related to mitochon-
drial changes. TiO, NPs can produce excessive ROS and
reduce the antioxidant capacity of cells by destroying
mitochondria. Further observations showed that TiO,
NPs could significantly reduce the mRNA levels of var-
ious detoxifying enzymes in the liver of mice, including
SOD, CAT, GSH-px, and MT. Cytochrome P450, family 1,
subfamily A, polypeptide 1 (CYP1Al), and heat shock
protein 70 (HSP70) also came down by NPs and were
involved, respectively, in toxic metabolism and DNA
repair of hepatocyte damage.”

In vitro studies, Fe;O04 NPs exposure to primary rat
hepatocytes showed that the excessive production of ROS
was mainly due to the damage of mitochondria by
MNPs.”°The possible reason for excessive ROS produc-
tion through mitochondria by MNPs was the accumulation
of calcium ions, which interferes with the electron trans-
port chain of mitochondria and makes mitochondria pro-
duce more oxygen-free radicals.”” Another study also
confirmed that the effect of TiO, NPs on HepG2 cells
could activate NF-E2-related factor 2 (Nrf2) signals.”® In
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addition, the damage of ROS induced by MNPs to the
production of endoplasmic reticulum cannot be ignored.
ZnO NPs consumed antioxidants in the liver and induced
ROS to affect the structure and function of the endoplas-
mic reticulum of mouse hepatocytes, which is believed to
be related to apoptosis and autophagy.**

The results of ROS and antioxidant enzymes induced by
MNPs are closely related to cell differentiation. Mei-Lang
et al*> compared the effects of CuO NPs on different cells of
cancer cell lines, showing that excessive CuO NPs can
induce alter membrane permeability, damage the mitochon-
drial respiratory chain, and break DNA strands. Cells even-
tually died. SK-Hep-1 cells could not effectively remove
the accumulated hydrogen peroxide due to low differentia-
tion level and inadequate activity of CAT and GRx. SK-
Hep-1 cells are more sensitive to oxidative stress induced
by CuO NPs than HepG?2 cells, and the cell damage is more

serious.

Inflammation

Inflammation promotes the necrosis of parenchymal cells
in organs and increases the accumulation of extracellular
matrix in tissues. Mild damage leads to fibrosis while
severe damage can lead to changes in the structure of
organs and tissues. MNPs entering the body or liver cells
induce inflammation. Liu et al showed that the liver of
male Wistar rats was infiltrated by inflammatory cells
because of exposure to ZnO NPs, TiO, NPs, and Ag
NPs. Steatosis of hepatocytes and necrosis of the central
part of hepatic lobules were also observed. Serum IL-18
level increased significantly in MNP-exposed group,
serum IFN-y and TNF-a level decreased in ZnONP and
TiO, NP groups as well as the concentrations of TNF-a
increased significantly in Ag NP groups.”® Kupffer cells, a
kind of phenotype, are the resident macrophages in liver.
MNPs accumulated in the liver are mainly ingested by
Kupffer cells, with little uptake for hepatocytes, inflamma-
tion of the liver, Kupffer cells proliferation, and increased
IL-1P release.’®> Similar to the effect of Ag NPs on the
expression of inflammation in vivo, the exposure of human
hepatocyte line C3a to Ag NPs increased the expression of
IL-8, macrophage inflammatory protein 2, IL-1RI, and
tumor necrosis factor o (TNF-a).*® Ag NPs or AgNO;
contributed to the transition from hepatic steatosis to stea-
tohepatitis. Ag NPs or AgNO3 acted on HFD mice caused
the increase of serum total cholesterol, HDL, and LDL
levels. More importantly, elevated levels of IL-6 and TNF
in mouse liver suggested inflammation."® The production

of inflammation corpuscle NLRP3 is the core of inflam-
mation induced by MNPs. The generation and activation
of NLRP3 involve MAPK, NF-kB, and ROS signals.
Manna et al®' showed that exposure to Cu NPs reduced
liver index in a dose-dependent manner, resulting in oxi-
dative stress and liver dysfunction. Cu NPs also increased
the transcriptional activity of NF-kB. Ag NPs activated
MAPK and PKB signaling pathways and induced ROS-
mediated DNA damage in HepG2 cells.** These signals
are not only related to inflammation but also induce ROS
to promote apoptosis. Cu NPs affect CYP450 activity and
suppress some nuclear receptors through the NF-xB sig-
naling pathway. In fact, the regulation of P450 is also
related to ROS.'?

The Outcomes Of Liver Cell Caused
By MNPs

MNPs which reach the liver enter the cells and cause
damage to the liver cells. As the basic unit of liver, different
forms of cell death cause a series of damage, leading to liver
dysfunction and pathological changes. Recent studies have
highlighted the role of different death pathways in the
pathogenesis of liver injury induced by MNPs as described
in Figure 1.

Apoptosis
Apoptosis is a programmed process of cell death that is used
to clear unwanted cells from the body and a safe and con-
trollable process that does not affect surrounding cells.®®
Apoptosis of hepatocytes leads to dysfunction, proliferation
inhibition, cycle arrest, and decreased viability, thus causing
liver fibrosis,** nonalcoholic fatty liver diseases related to
cirrhosis and hepatocellular carcinoma (HCC).*> Apoptosis
is also regarded as the basis for chronic inflammation.
Apoptosis is a prominent feature of hepatic damage of
MNPs. Hepatocyte apoptosis is characterized by nuclear
chromatin condensation, nuclear rupture, cell contraction,
plasma membrane vacuolation, DNA damage, lack of
nutrition and cytokine release, which reflect the activation
of cell surface death receptors and apoptotic factors..®” °
Apoptosis is classified into endogenous apoptosis and
exogenous apoptosis. Endogenous apoptosis, also known
as mitochondrial pathway apoptosis, is a core event in
which mitochondrial membrane permeability increases
and mainly induced by activated BH3-only protein,
which increases Bcl-2. Two proapoptotic molecules of
the lymphoma 2 family, BAX (Bcl-2 related X protein)
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Figure | Different death mechanisms of liver cells are involved in the pathogenesis of liver injury induced by MNPs. Liver damage caused by MNPs is associated with
oxidative damage, inflammatory response, and liver fibrosis in the liver. Apoptosis, autophagy, pyroptosis, and necrosis are all pathways of hepatocyte death. ROS induced by
MNPs is responsible for the lipid peroxidation injury of the hepatic subcellular organelles. Apoptosis is considered as type | programmed cell death and mainly mediated by
endogenous mitochondrial pathway and exogenous death receptor pathway. Mitochondrial ROS inhibited Bcl-2, and Fas-related death domain proteins (FADD) were
activated, all of which eventually activated caspase 3 or caspase 7. Autophagy cell death is a programmed cell death different from apoptosis with initiation, nucleation of
autophagosomes, phagosome expansion and completion, and autolysosome docking. Mitochondria and endoplasmic reticulum oxidative stress cause changes in the
upstream molecules of autophagy and regulate autophagy-related (Atg) molecules. Pyroptosis is a form of inflammatory cell death that characterized by caspase-I-
dependent formation of plasma membrane pores, and mainly manifested by lysosome rupture, ROS production and the activation of inflammation, leading to the release
of pro-inflammatory cytokines and cell lysis. Necrosis is due to the production of ROS or instability of lysosome, release of calpain, and decrease of ATP level. The
characteristics of necrosis include plasma membrane rupture, mitochondrial swelling, lysosome rupture, and intracellular contents release. Cell necrosis leads to
inflammation that is not related to caspase cascade.

194

and BAK (Bcl-2 antagonist or killer), form oligomers in  gene and the decrease of anti-apoptotic Bcl-2 gene level.

the outer membrane of mitochondria, which constitute a
supramolecular channel-mediated cytochrome cl[Iwhich
causes other proteins to be released from the mitochondria
into the cytoplasm, thereby activating Caspase 9 and the
Caspase cascade, triggering endogenous apoptosis.”' >
For 40 adult male albino rats, histopathological exam-
ination of liver in the exposed group of TiO, NPs showed
that oral administration of TiO, NPs caused obvious apop-

totic damage, which is manifested in the increase of Bax

Ag NPs entering human liver cells induced ROS produc-
tion, inhibited the production of reduced glutathione,
caused DNA fragmentation, lipid membrane peroxidation,
and protein carbonylation. In addition, the mechanism of
cell damage caused by Ag NPs is mitochondrial-dependent
endogenous apoptotic pathway. By regulating the expres-
sion of Bax and Bcl-2, Ag NPs destroyed mitochondrial
membrane potential, induced cytochrome c release in cyto-

plasm, and activated caspase-9 and caspase-3.>” Exposure
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of the liver cells (HL7702 cells, CHANG cells, HepG2
cells) to MNPs (Cs-Ag NPs, rGO-Ag NPs, TiO, NPs,
Fe;0,4-TiO, NPs) has been proved to have the same
damage effects.>*?%¢

Xue et al’’ found that Ag NPs acting on HepG2 cells not
only caused mitochondrial-dependent apoptosis induced by
ROS but also activated the Fas death receptor pathway by
downregulation of NF-kB and activation of caspase-8 and
caspase-3. This process illustrates the death receptor-
mediated exogenous apoptosis pathway.

Another crucial mechanism involved in apoptosis is
mediated by JNK-activated ER stress. Yang et al** showed
that ZnO NPs significantly reduced the expression of anti-
apoptotic gene Bcl-2 in liver tissue of mice. The phosphor-
ylation of JNK protein in mouse hepatocytes was activated,
and the activities of caspase-3, caspase-9, and caspase-12
were observed.

Autophagic Cell Death

Autophagy, an important process of self-regulation and
homeostasis of cells, is involved in cell cycle, cell death,
self-renewal of stem cells, establishment of pluripotent-
induced stem cells, and resistance to foreign pathogenic
microorganisms.”® More and more studies have shown
that autophagy, as a double-edged sword effect, plays a
two-way regulating role in affecting cell survival and
death.” In liver metabolic diseases, autophagy is closely
related to the occurrence of NAFLD, viral hepatitis, and
even cancer.'

Numerous studies have shown that MNPs activate autop-
hagy after entering the liver cells by endocytosis. MNPs
(CTAB-GNR NPs, Ag NPs) entered the L02 cells and
HepG2 cells, activated low levels of autophagy, increased
protein expression of LC3-II, and observed double-layer
membrane-coated autophagosomes under TEM.At this con-
centration, no significant cytotoxicity and lysosomal damage
were observed, and MNPs induced ROS-mediated protective
autophagy.”®'°! Rare earth doped up conversion nanoparti-
cles (UCNs) activated autophagy in Kupffer celllJwhich
causesd a decrease of cell survival and an increase in liver
damage. However, inhibiting the formation of autophago-
somes with 3-MA increased the survival rate of Kupffer
cells and further eliminated the hepatotoxicity induced by
UCNS, % suggesting autophagy played a role in damaging
cells.

Cells recognize MNPs as external stimuli, activate ROS,
and then cause mitochondrial damage. In order to maintain
cell stability, autophagy is used to remove dysfunctional

organelles. Autophagic damage occurs when autophagy
fails to cope with environmental changes. Fusion of autop-
hages and lysosomes to form autophagic lysosomes is an
important process of cell autophagy. Iron(IlI)-tannin com-
plex (Fe—TA NPs) induced the endocytosis of HepG2 cells
and initiated the formation of autophagosomes. The intra-
cellular nuclear vesicles and multivesicular (MVBs) pro-
duced by Fe-TA NPs were fused with autophagosomes,
which could be
functions.'® This could be considered as one of the

degraded by regulating lysosomal
mechanisms by which MNPs induce autophagic cell death
from excessive self-digestion.

In addition, there is a close relationship between autop-
hagy and apoptosis induced by MNPs in hepatocytes —
apoptosis may be an autophagy-related death pathway. In
adult male SD rats exposed to PVP-Ag NPs, the ratio of
LC3-II/LC3-I increased together with increased caspase-3,
p53, and p21.”> Kermanizadeh et al'® cultured HepG2
cells and A549 cells with Ag and ZnO NPs for 6 hrs,
resulting in the expression of autophagy-related genes
LC3B, Atg4b, p62 upregulated, Atgl2 and Atg5 declined.
However, in the latter stages autophagy was impaired by
caspase-dependent apoptotic cell death..

Pyroptosis
Pyroptosis, also referred to as cellular inflammatory necro-
sis, is one way of caspase-1-mediated programmed cell
death.'” Gasdermin D (GSDMD) is one of the down-
stream Gasdermin protein families. The basic mechanism
of the cell pyroptosis is that the inflammatory complex of
the upstream protein activates caspase-1, which cleaves
the GSDMD, and then the GSDMD protein releases the
N-terminal fragment to recognize the phospholipid mole-
cules on the cell membrane. Further, a hole is formed on
the cell membrane, resulting in changes in ion concentra-
tion and osmotic pressure inside and outside the cell.
Finally, the cell membrane is broken and cell contents
are released, accompanied by pyroptosis.'®® 10

MNPs activated hepatocyte pyroptosis after entering
cells by endocytosis. Its main features are cell membrane
rupture and proinflammatory cell content release, which
will cause the pathogen released from the dead cells,
phagocytized and degraded by other cells, thus reducing
the burden of infection, activating a strong inflammatory
response and releasing plenty of inflammatory factors.'®”
In addition, MNPs could also cause liver nuclear conden-
sation, DNA shearing, and fragmentation.''® Mirshafiee
et al*® found that Gd,O5 could cause Kupfter cell swelling,
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giant blebbing, cell membrane pore, caspase-1 activation,
and IL-1p creation. The formation of cell membrane pore
depends on GSDMD, which activates caspase-1. It dis-
turbs the ion flow inside and outside the cell membrane,
causes cell swelling, forms membrane vesicles, and leads
to the leakage and intracellular substances release.
Therefore, the death pattern of macrophages and hepatic
parenchymal cells caused by MNPs can be reversed by
knocking out the Gastermin D protein.

The apoptosis induced by MNPs has been confirmed to
be associated with autophagy. Ag NPs induce caspase-1
activation and autophagic flux in HepG2 cells. When the
autophagy-lysosome system was blocked, NLRP3 inflam-
matory bodies activated caspase-1 to a higher degree.*

The release of IL-1P and the increase of N-GSDMD
expression induced by cell char death promote the occur-
rence and development of some liver diseases.'"
N-GSDMA activates NLRP3 inflammatory bodies and
induces cell death through typical pathways.''? The patho-
genesis of hepatitis C has been confirmed to be closely
related to caspase-1 and caspase-3 signal-mediated cell

burnout.'?

Necrosis

Cell necrosis refers to the irreversible loss of metabolic
function and structural integrity of the cell serosa, the loss
of integrity of the serosa, and the activation of non-inflam-
matory bodies. It is characterized by mitochondrial impair-
ment and ATP depletion. ROS generation induced by MNPs
leads to cell death and damage via hepatocyte necrosis.
Adult female rats were continually exposed to PbO NPs
24 hrs a day with an average concentration of 10° particles
per cubic centimeter. Six weeks later, the liver changed,
showing hepatocyte swelling and hydropic degeneration,
lobular hypertrophy with nuclear size changes, hepatocyte
necrosis, inflammation around the portal vein and accumu-
lation of lipid droplets.''* Wang et al*® co-cultured primary
hepatocytes with Cu NPs and CuSO, for 24 hrs and
observed that the apoptosis and necrosis rate of primary
hepatocytes were apparently higher than that of control
group. Significantly increased intracellular ROS and
MDA, multiplied cytochrome c release, downregulated
anti-oxidation related genes [SOD, CAT, GSH-Px4] expres-
sion, upregulated apoptosis-related genes (p53, p38 and
TNF-a), and increased activities of caspase-3, caspase-8,
and caspase-9 all indicated that ROS might be involved in
the process of cell necrosis, and there could be a certain
correlation between necrosis and apoptosis.

Necrosis is one of the prominent features in acute liver
injury.''?
of hepatic ischemia/reperfusion injury.®® In chronic hepa-

Death of necrotic cells is also a distinct feature

titis B virus infection, from local inflammation led hepa-
tocyte apoptosis and necrosis to liver regeneration, a
vicious circle is formed, which may be the potential

mechanism of hepatocellular carcinogenesis.''®

Outlook

With the advances in the fields of nanotechnology, the poten-
tial exposure of MNPs is likely to increase, so there is an
urgent need to further study the possibility of any detrimental
health effects, target organ damage, and its mechanism. The
toxicity of MNPs to the liver is an important basis for the
safety assessment of MNPs. At present, studies on the hepa-
totoxicity of MNPs are still in their infancy. The toxicity of
MNPs is mainly due to the special physical and chemical
properties, such as size, surface chemical modification and
metal ion release. The liver is particularly susceptible to
MNPs because the liver has a much higher accumulation of
NM than other organs.. For the evaluation of hepatotoxicity
of MNPs, on the one hand, a full understanding of the
distribution and metabolism of MNPs in the liver, and detect-
ing the changes in liver function, degree of injury, and
recovery of liver function in vivol] which are prerequisites
for evaluating their liver toxicity. On the other hand, it is
important to better understand the mechanisms by focusing
on the complex biological process between MNPs and cells.
MNPs entering cells change the structure and functions of
organelles, affect the normal biological functions of cells,
and ultimately impact the amount of toxicity and threshold
dose caused by MNPs. It is worth noting that once the MNPs
accumulate in the liver, it may cause changes in liver func-
tion. When the MNPs enter the cell, it will damage it and
produce a large amount of free oxidative free radicals,
thereby destroying the oxidation/deoxidation balance.
MNPs can also enter the nucleus and can directly or indir-
ectly destroy DNA, leading to changes in gene expression
and even apoptosis. If there is a long-term liver injury, the
HSC will turn into an active state. Along with changes in the
activity of several intracellular signaling pathways, extracel-
lular components are involved in the extracellular matrix,
which ultimately leads to fibrosis and may eventually pro-
gress to cirrhosis. However, the detailed mechanism of
MNPs leading to liver fibrosis remains unclear.

To study the molecular mechanisms of liver injury caused
by MNPs, it is necessary to perform experiments from in vivo
to in vitro involving in molecular biology especially biomarker
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screening, which is crucial for understanding the detailed
mechanism of liver injury. Although immune inflammation,
apoptosis, and oxidative stress related to liver injury have been
investigated, the aspects of energy metabolism, protein meta-
bolism, and lipid metabolism should be studied in detail.
Current research into the toxicity of MNPs has been limited
to animal experiments in vivo and in vitro; the relationship
between subcellular damage and related mechanisms is still
unknown. Therefore, the toxicology of MNPs must be studied
in-depth to improve the quality and safety of those nanoparti-
cles. Research in this area has a long way to go.
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