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Abstract 

In this paper we present a version of the (static) traffic equilibrium problem 

in which the cost incurred on a path is not simply the sum of the costs on 

the arcs that constitute that path. We motivate this nonadditive version of 

the problem by describing several situations in which the classical additiv- 

ity assumption fails. We also present an algorithm for solving nonadditive 

problems that is based on the recent NE/SQP algorithm, a fast and robust 

method for the nonlinear complementarity problem. Finally, we present 

a small example that illustrates both the importance of using nonadditive 

costs and the effectiveness of the NE/SQP method. 
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1 Introduction 

Paraphrasing Wardrop [:34;1, the (static) traffic equilibrium problem is to  

find a set of path flows that satisfy certain demand constraints and have the 

property that the cost on all used paths connecting an origin-destination 

pair is equal and less than or equal to the cost on all unused paths connect- 

ing that pair. In order to prove existence/uniqueness results and develop 

convergent algorithms, this problem has been formulated as a nonlinear 

program (NLP)  [SI, a nonlinear complementarity problem (NCP) [2, 331, a 

variational inequality problem (VI) [lo, 11, 12,301, and a fixed-point problem 

Though the traffic equilibrium problem generally is stated in terms of 

path flows, paths usually are considered to be a nuisance by the developers 

of algorithms. There are two reasons. First, path ”names” generally consist 

of the list of links or nodes that constitute the path, and these “names” can 

become quite long and hence difficult to store and manipulate. Second, since 

the path set cannot (efficiently) be completely enumerated, the number of 

paths is not known a priori, thereby complicating memory management and 

creating other software engineering difficulties. 

In order to avoid the nuisance of storing and manipulating paths, it  is 

quite common (in both the theoretical literature and in practice) to  assume 

that the cost on a path is the sum of the costs on the links that make up that 

path. This assumption makes it possible to use (what is generally referred 

to as) an arc formulation of the problem and not store path flows. 

The purpose of this paper is twofold: (1) to show that, although it is 

convenient, the additivity assumption is inappropriate in a variety of differ- 

ent situations and (2) to describe a method for solving a nonadditive version 

of the problem. The particular model and algorithm we present allows for 

asymmetric elastic demand functions and asynimetric and nonadditive cost 

functions. Though we do  not discuss it here, these results can also be applied 

to probabilistic versions of the problem (e.g., stochastic user equilibrium and 

entropy models), although we do not discuss such cases here. 

(FP) ~41. 
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2 Equilibrium with Nonadditive Path Costs 

The (static, deterministic) traffic equilibrium problem (TEP) is typically 

set on a network comprising a set of arcs, A, and a set of nodes, N ,  with 

cardinalities TZA and n ~ ,  respectively. Associated with this network is a set 

of origin-desti7iation pairs, I ,  with cardinality nl. People travel between a 

particular origin-destination ( 0 - D )  pair i E I on a path in the set P ; ,  the 

set of paths connecting 0 - D  pair i. The cost experienced by a person using 

path p is given by Cp : R Y  --f R+ where n p  denotes the cardinality of the 

set of paths P = UiEfPj .  

In the most general version of this problem, path costs can be a function 

of the entire vector of path flows and the number of people traveling between 

0 - D  pair i, and the demand function D; : RY -+ R+ is a function of the 

vector of (minimum) 0-D travel costs, (min,Ep, C,(F) : j E I ) .  In this 

case, an equilibrium is typically defined as follows (see [7] for a discussion 

of alternative definitions) : 

Definition 1 A path pow vector, F E RY, is said to be a n  elastic traffic 

equilibrium ifl 

Fp > O S- C,( F )  = min Cr( F )  (1) 
,€Pi 

for all i E I ,  p E Pi, and 

for all i E I .  

The inelastic equilibrium problem is a special case of the elastic problem in 

which D;(.) is constant. 

Additive Costs 

Perhaps the most natural way to formulate the TEP as an NLP, NCP, VI, 

or FP is to use path variables. However, these formulations have not been 

widely used because they are thought to be difficult to solve. In particular, 

when path variables are used, either the paths must be completely enumer- 

ated before the algorithm begins or the paths must be identified “on the 

fly“. The first solution is computationally burdensome, and the second is 

thought to be cumbersome because the incidence relationship between paths 
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and arcs must be maintained and manipulated and the number of paths is 

not known a priori. 

To overcome these difficulties, one often assumes that the cost on a 

path p is siiiiply the sum of the costs on each arc in p .  Specifically, letting 

A = [sa,] represent the arc-path incidence matrix, c : Ry + R n ~  the arc 

cost function, and f E R Y  represent the arc flow vector, the additive niodel 

ass u ~ n  es 

cy F )  = A%( f), (3) 

with f = A F ;  here C is the vector of path cost functions. 

The significance of this assumption is that it allows the path flow vari- 

ables to be removed from the objective function of the NLP formulation of 

TEP (in the case of symmetric arc cost functions) and from the inequality 

in the VT formulation of TEP (in the case of general arc cost functions). 

Although the path flow variables remain in the constraint set, it becomes 

possible to solve TEP without storing path flows. This has two important 

implications from a software development standpoint. First, it means that 

the number of decision variables that need to be stored is known in advance 

(Le., n A  + nr), thus greatly simplifying memory allocation. Second, the de- 

cision variables that are being stored can be easily identified (i.e., by their 

arc number in the case of arc flows and by their 0-D number or associated 

pair of node numbers in the case of 0-D demands/costs). 

Situations in Which Costs Are Not Additive 

Unfortunately, although they have been essentially ignored in the past by 

both researchers and practitioners, there are many situations in which the 

additivity assumption is inappropriate. These situations are particularly 

important today, in light of recent legislation such as the Intermodal Sur- 

face Transportation Efficiency Act (which promotes congestion pricing pro- 

grams) and the Clean Air Act Amendments (which mandate a reduction in 

automobile emissions in many cities). That is, a variety of transportation 

policies are being considered today that cannot adequately be evaluated by 

using additive path costs. 

Nonlinear Valuat ion of Travel Time 

The cost on a path typically includes, at  a minimum, the time costs and 

the money costs of using that path. Using an additive model, one typically 
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assumes that the arc cost functions have the following form: 

for all arcs a. where A, is the (distance-based) financial cost of using arc a, 

(e.g., tolls and distance-based operating costs such as maintenance), tn(f) is 
the time to traverse arc a given the current arcs flows f: q1 is the time-based 

operating costs (e.g., gasoline consumption), and 7.  is the dollar value of 

time. 

However, it has often been observed E191 that people value time nonlin- 

early. That is, small amounts of time have relatively low value whereas large 

amounts of time are very valuable. As a result, one must first calculate the 

total time on the path and apply the value of time function to this total. 

Assuming that  time-based operating costs are still a linear function of the 

total travel time, one is left with path cost functions of the following form: 

a E d  / 

where g p ( - )  is an increasing function that converts time to money for path 

p .  In actual applications, g p  is unlikely to vary across paths although one 

can imagine situations in which the value of time varies with the attributes 

of the path (e.g., how pleasant the path is). 

Nonaddit ive Tolls and  Fares 

When discussing the nonlinear valuation of travel time we assumed that the 

toll on a path was simply the sum of the tolls on the arcs that make up 

that path. Unfortunately this is often not the case. It is quite common for 
both highway tolls and transit fares (which are of interest because it is quite 

common to  consider multimodal equilibria) to  be nonadditive. For example, 

consider the following fares on the BART system: 
To 

Fremont Union City South Hayward Hayward Bay Fair 
Fremont 0.90 0.90 0.90 1.90 

From Union City 0.90 0.90 0.90 

S. Hayward 0.90 0.90 

It  is easy to see, for example, that the fare from Fremont to Bay Fair ($1.90) 

does not equal the fare from Fremont to Union City ($0.90) plus the fare from 

5 



Union City to  South Hayward ($0.90) plus the fare from South Hayward to 

Hayward (80.90) plus the fare from Hayward to Bay Fair ($0.90). 

In fact, almost no toll roads or transit systems in the United States 

have an additive toll/fare structure. Instead, one must work with the path- 

specific financial costs directly, which, even ignoring nonlinear value time 

functions, makes the path cost functions nonadditive. 

Emissions Fees 

It has long been argued that emissions fees should be used to internalize 

the externalities associated with automobile emissions. This strategy may 

result in nonadditive costs for two reasons. First, there is some evidence that 

emissions of hydrocarbons and carbon monoxide are a nonlinear function of 

travel times. Second, there is little doubt that social costs are a nonlinear 

function of emissions [20]. Hence, in order to set tolls equal to  the the 

difference between the social marginal cost and the private average cost, they 

will need to be path-specific. Such a path-specific toll structure immediately 

leads to nonadditive path cost functions. 

The Nonlinear Complementarity Formulation 

Combining the three observations above, one sees that a general path cost 

function would have the following form: 

(4) C',(F)  = &J(F) + Vltdf) + s p  . S a p t a ( f >  9 

aEP L P  1 
where AP now denotes the path-specific fincancial costs (which are allowed 

to vary with flow levels to allow for different kinds of pricing schemes). Most 

existing "path flow', formulations of TEP continue to be appropriate when 

using such a nonadditive path cost function. For our purposes, the most 

important of these is the NCP formulation [2]. In this formulation, the 

problem is to find the (path flows, O-D costs) vector pair ( F , u )  such that 

where r is the path-Origin-Destination pair incidence matrix. 

We make the weak assumptions that the functions C' and D are differ- 

entiable and that for each path p ,  the function C, is positive. Additionally, 
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we assume that D ,  is a nonnegative function for all i E I .  A s  a result, an 

equivalent system has r T F  - D( u )  >_ 0 replaced by r T F  - D ( u )  = 0, which 

is the more usual fortxi of the conservation of demand constraint [2]. We note 

that if the i th 0 - D  pair has positive demand (Le., D;(a)  > 0) the u, variable 

measures the cost on the cheapest path value for 0 - D  pair i. However, when 

D z ( u )  = 0, it is possible that the ut variable can be less than or equal to the 

cheapest path value; see Lemma 1 in Section 3 .  

In what follows, we will need to assume that the traffic equilibrium prob- 

lems being solved are guaranteed to have a solution. We tnake use of the 
following result, which is Theorem 5.4 in [2]. 

Theorem 1 Suppose ( N ,  A )  is a strongly connected network and that C, : 

RY ---f R+ is a positive continuous function for all p E P.  Also suppose 

that for all i E I ,  D, : RT + R+ is a nonnegative continuous function that 

is bounded from above. Then TEP has a solution. 

3 An Algorithm for Solving the Nonadditive Prob- 

lem 

A s  discussed above, perhaps the biggest advantage of the additive model is 

that it can be solved without the necessity of storing path flows. Many of the 

most widely applied algorithms take advantage of this fact [14, 23, 26, 271. 

However, two types of schemes do generate and store path flows as needed: 

simplicial decomposition and column generation. 

In simplicial decomposition, the set of feasible flows is given as a bounded 

convex polyhedron so that each element can be described as a convex combi- 

nation of the extreme flows of this set. The algorithms of this type proceed 

by working on the convex huU of a working set of extreme points, checking 

for termination conditions to be met. The weights associated with the cur- 

rent set of extreme points are then taken to be the decision variables. As 

a result. a significantly smaller number of variables is needed. Some recent 

examples of the simplicial decomposition approach include the work of Pang 

and Yu 1'291, who coriibined a linearization of the VI form of the problem 

with simplicial decomposition, and Lawphongpanich and Hearn 1221, Smith 

[31, 321, and Marcotte and Gu&t [25], whose simplicial decomposition ap- 

proaches used a so-called gap function, a nonnegative measure that was zero 

only at an equilibrium point. For an extensive history on this approach, the 

interested reader should see the recent survey by Larsson and Patricksson 

[a]. 
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In the column generation approach, path flows are generated only when 

needed, thereby reducing the computational burden. The key is to have the 

algorithm identify those paths that will have flow on them in an equilibrium 

solution. Examples of column generation methods as applied to the TEP in- 

clude the early work of Leventhal, Nernhauser and Trotter [24], who studied 

the case of separable costs: Bertsekas and Gafni [8 ] ,  who combined a projec- 

tion method for the associated VI with a decomposition by 0-D pairs; and 

Asshtiani [l] whose Ph.D. dissertation concerned a similar approach. See 

the survey ['Ll] for further details. 

In this section, we present a new algorithm for solving the path-flow for- 

mulation of the TEP that is based on the recent NE/SQP method (for non- 

smooth equations/sequentid quadratic programming) for solving the NCP 

128, 171. The primary advantage of this algorithm is its robustness; unlike 

other approaches, each subproblem is guaranteed to  have a solution. 

Note that throughout this discussion, for vectors TI E R", we have indi- 

cated subvectors by either vy or v7. Here y is a vector of variables and so vy 

refers to all components of v relating to these variables. Alternatively, we 

have also used the index set y { 1 , 2 , .  . . , n} to describe a subvector vr of 

v; matrices follow the same convention. 

A Review of the NE/SQP Method 

NE/SQP is a recent method for solving generd nonlinear complementarity 

problems. It is has been shown to be globally convergent and fast (Q- 

quadratic rate) as well as robust, in the sense that the direction-finding 

subprobIems are always solvable [as, 171. 

For a function G : RT 4 R", NCP(G) is to find an 5 E R" such that 

z 3 0, G(z)  2 0, and G(z)*z = 0. 

The basis for the XE/SQP method is to solve NCP(G) by first transform- 

ing it into the problem of finding the zero of a certain set of nonsmooth 

equations. 

Specifically, let the function H : R'f ---> R" be defined by 

It is not hard to see that a zero of this function H corresponds exactly to 

a solution to NCP(G). Unfortunately, because of the presence of the min 

operator. this function is not differentiable (in the sense of Frbchet), so that 
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standard algorithms such as Newton's method cannot directly be applied. 

However, NEjSQP is actually a nonsznooth extension of the Gauss-Newton 

method as applied to this function H. 
Very much related to H is the norm function 6 : R$ 4 R$ defined by 

(7) 
1 

= p(~)l127 
where we take 1 1  - 11 to be the Euclidean norm throughout this paper. As 
a result. we see that NCP(G) can be cast as the nonsmooth, nonconvex 

optimization problem 

(8) 
minimize 6(z) 
such that x 2 0. 

The basic scheme with NE/SQP is as follows: having an estimate 2' of 

the solution, a new iterate x k t l  is generated according to the rule 

sk+l = k 
5 + r d k ,  

where dk is a suitable search direction and Tk is the associated step length 

needed for global convergence of the method. The calculation of the search 

direction entails the solution of a certain convex quadratic program (QP), 
which we will now explain. 

Let 4 : R$ x R" -+ R3 be defined as 

where 

Ic;(x)  = {i : G;(Z) < xi), 
a = IZ(.) u I&),  

I,(z) = {i : G i ( x )  > si}, 
/j = IG(z)7 

l e ( z )  = {i : G;(z) = x i } ,  

and I,, is the identity matrix of order CY. 

subproblem is of the form 

Having the iterate xk, the associated direction-finding convex quadratic 

minimize d 4(zk ,  d )  
subject to zk + d 2 0. 
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Note that the direction d = 0 is always feasible to this QP because 

each iterate xk is maintained nonnegative; see (8). As a result, the feasible 

region is a nonempty polyhedron. Hence, taken together with the fact that 

the objective function is a quadratic bounded below by zero, this QP will 

always have a solution (by the Frank-Wolfe theorem [15]). In addition, this 

is a relatively easy QP to solve because it has a convex objective function 

and simple bound constraints. 

Two conditions are sufficient to guarantee the convergence of the NE/SQP 
method. The first condition is s-regularity and generalizes the idea of non- 

singularity. 

Definition 2 A nonnegative vector x is said to be s-regular i f  the following 

linear inequality system has a solution in y: 

where 

I,'(.) = { i  : x; > G;(z),xi > 0 }  g(x) = {i  : 2; > G;(s),z; = 0) 

and similarly for l e ( x )  and I%(.). 

The second condition is b-regularity and ensures the boundedness of the 

sequence of search directions {d'}). 

Definition 3 A nonnegative vector x is said to be b-regular i f  for every 

index set 6 with the property that 

the principal submatrix V&6( X) is nonsingular. 

The main convergence results for NE/SQP can now be summarized as 

follows : 
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Theorem 2 Let G : R3 -r R" be a once continuously dioerentiable func- 

tion, and xo 2 0 be arbitrary. Suppose that xx is a n  accumulation point of 

an infinite sequence of iterates {xk) generated by the NE/S&P method, and 

x* is both b-regular and s-,regular. Then, x* solves NCP(G). Moreover, the 

following statements hold: 

(a) there exists an integer Ii' > 0 such that for all k 2 K ,  the step size 

r k  = 1, hence, x k + I  = xk + dk; 
(b) the sequence {xk} converges to x* Q-superlinearly, i.e., 

( c )  i f  VG is Lipschitzian in a neighborhood of x*, then 

Using NE/SQP to Solve the Elastic, Nonadditive TEP 

In this section, we modify the basic NE/SQP method presented above for 

use with the NCP formulation of the traffic equilibrium problem as given in 

(5). The essential idea is to keep a working set of paths W whose elements 

can have nonzero flow. The associated path flows vector of size nw x 1 is 

denoted as Fw; here nw = IWi. The remaining inactive paths have their 

flow automatically set to zero and the associated indices are collected into 

the set r/lr where (w( = nw. It is understood that the number of active 

paths nw is generally much less than the number of total paths np. In 
combination with the nl 0-D minimum times collected into the vector u, 

we attempt to solve the associated NCP of size nw f n r  rather than the NCP 
with the rip + nl complete set of variables. The collection of indices for each 

of these reduced NCPs is given by S = W U I ,  where (SI = ns = nw + n1. 

Of course the selection of which paths will be in the initial working set is 

important as well as the method for updating the set W .  We discuss these 

issues in more detail in what follows. 

A crucial point in making the path generation NE/SQP method work is 

to identify conditions that will allow us to conclude that we have actually 

solved the overall NCP of size n = n p  + n1 without enumerating all paths. 

PVe will provide a lerziiiia that will outline these conditions. but first we 
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need to introduce some notation that associates the functions used in the 

NE/SQP method with the size of the reduced NCP under consideration. 

We can expand the function G(.) given in (5) to 

where A,,, A.,D denote respectively, rows and columns of the matrix A in- 

dexed by the sets a: and i-3. 
The reduced NCP automatically sets the inactive path flows equal to 

zero (i.e., Fw = 0) and ignores the components GpW so that we get the 

reduced NCP as 

We have made the rather weak assumption that for path p ,  the cost function 

C p ( F )  does not depend on paths with zero flow; that is, C p ( F )  = Cp(Fw). 
The related function A : R3 -+ RnS is given as 

as(ss)  = min(ss, Gs) (15) 

where the subscript 5' refers to those active indices in S = W U I with 

Fw = 0, for example, the vector 

Also, we define Bs : R: - R+ as 

( 16) 
1 

6S(XS) = 2 / I  I-fs(zs)l12 

4s(zs, ds)  = p T s ( x . s )  + ~~ss(zs)dsl12, 

and the subproblem objective function 4s : RT x R" - R+ as 

1 
(17) 

where ds is conformal with zs and Mss(zs) is a principal submatrix of 

x with 

x = ( :i ) , and xs = 0. 

12 



Note that,  without loss of generality, we have arranged the vector x so that  

the first 78s coniponents relate to z; for i E S. The related reduced QP 
subproblem is thus of the form 

minimize ds  (6s(x$, ds) 

subject to zi + ds 2 0. 

Lastly. let the forcing function ts : R3 x R" -+ R+ be defined as 

1 
zs(z, d) = plss(Xs)ds112. (20) 

Note that by setting all the inactive paths to zero, without loss of generality, 

we can express the functions above in terms of the vector xs rather than 

the entire vector xT = ( F Z  uT FG). We see that the functions H ,  8,  $, 
and I take the n vector z as their argument of which nw of the components 

are fixed at a value of zero. In that sense, one can think of them also as 

taking vectors of size n~ as their arguments. The important point is that  

from ( 13), including the values of Fm = 0 into the vector x or leaving them 

off makes no difference in the value of ( G F ~ ,  G,) and related functions. 

The first result states conditions indicating when a solution of the current 

reduced NCP coincides with a solution of the o v e r d  TEP. 

Lemma 1 Let S = W U I ,  xs E RY and Fw = 0.  
x E Rnp+n* given by (18) solves the TEP i f  and only i f  

(i) 19s(zs) = 0, and 

Then, the vector 

(ii) u; is less than or equal to the length of a shortest path for 0-D pair i, 

for all i E 1. 

Proof 

Note first that  the terms Bs(z.5) and O,(z) are equal and are used inter- 

changeably in what follows. The former term implicitly sets z; = 0 V i  E @ 
whereas the latter term does the same only explicitly. A similar convention 

is adopced for other functions involving x. We have the following 

We will first show that (i) and (ii) imply that z is a solution to TEP. Since 

Bs(z.q) = 0, we see that the first summand is zero. Also, since xj = 0 for all 



j E 6' and e,(.) = +xj for all j E n (I,(") U I e ( z ) ) ,  the second term is 
also equal to zero. And lastly, for any path j E t$' n Ic;(z), with associated 

0 - D  pair k, letting the matrices A = [S,,] and I' = [-ypi], we must have 

G,(z.y) = cj - c y j ; u i  < 0 = " j  

i E I  

or that path j has less cost than 'uk. So in light of the shortest path premise 

(ii),  the set VV n IG(z) must be empty. Noting that the empty sum is equal 

to zero, we see that (i) and (ii) imply that e(") = 0 or that z is a solution 

to NCP(G). 

As for the other direction, we note first that 8 is the sum of nonnegative 

terms O j .  Therefore, z is a solution to  TEP if and only if Oj(z) = 0 'dj .= 
1,2, .  . . , n. As a result, 

es(z)= e j ( z )  = 0. 
jcWuI 

It remains to show that ui is less than or equal to the length of a shortest 

path for 0 - D  pair .i for each i E I .  Assume not, then there must be a path 

j serving 0 - D  pair IC such that 

Gj(z )  = Cj - C y j i U i  < 0. 
i€  I 

Clearly, j cannot be in I, U I,, because if so, this would mean that Fj 5 
Gj(z)  < 0, a contradiction to the fact that path flows are maintained non- 

negative. I f j  E IC,  then 

a contradiction. Consequently, we see that condition (ii) is satisfied. 0 

The importance of this result is that we need only solve NCPs of reduced 

size and check shortest path conditions to actually solve the overall NCP. 
This result is the main justification for the path generation method. It is 

assumed that the shortest path calculations can be performed efficiently on 

the 781 origin-destination pairs and that the reduced NCPs of size nS = 
nw + n~ are still computationally manageable. 

The path generation NE/SQP approach can now be presented. The main 
idea is to apply NE/SQP to the reduced NCP of order nS = nw + nl. If a 

correct set of active paths W is selected, then, barring any lack of descent 
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in 0 (due to the condition os( t$ ,d$)  = Bs(-c$) or the lack of regularity at  

an accuiiiulation point), by Lemma 1, if all the variables u; represent times 

less than or equal to the shortest 0 - D  paths, solving the smaller problem is 

sufficient to  solving the overall NCP of size n p  + nI. 

During an intermediate step of this modified NE/SQP algorithm, the 

method may stall because the wrong set of active paths has been identified. 

Stalling here means that Os(z$) = 0, but there still exists an inactive path 

p serving 0 - D  pair k. with lower cost than the current value of Uk. In 
particular, then we must have G p ( z i )  < 0. As a result, a change of the 

index sets W and W is needed. Note that we have ignored the case that 

B s ( z i )  = $s(ss, d i ) ,  which could also have produced nondescent or stalling 

in 8.  Ignoring this case is reasonable because in the numerical experiments 

in [28, 171, this condition was not checked yet convergence of the method 

was not hampered. Also, even if this condition were encountered during the 

running of the algorithm, we could just restart at  a new point. 

Of course, it is important to consider which path or paths should be 

brought into the working set W .  We discuss first the case of allowing just 

one path to enter. Since we are ultimately checking for paths that violate the 

shortest path conditions for a ,  it is reasonable to  bring in such a violating 

path. That is, 

W + w u {PI 
w - w - { p } ,  

where p E r;i/ is such that Gp(z:) < 0 = P i .  We will call p a candidate 

entering path. .4t this point, there are two questions to answer. First, 

having selected a path p to potentially join the working set, to what level 

above zero do we raise its value? Second, if there is more than one path to 

choose from, that  is, I{p E @ : G p ( z i )  < O}l > 1, how do we select which 

violating paths to  enter? In what follows, we will answer both questions and 

provide a computationally attractive approach that avoids solving the QP 

subproblem when a new path is added to the working set. 

Suppose that we have identified a path p as described above. One option 

is to simply restart NE/SQP with the new set of indices 

S’ = bv-‘ u I 
W’ = w- u { p }  

r;V’ = w - { p } .  

This version of the algorithm would necessarily include each candidate en- 

tering path, taken one at a time. The new NCP would be of size nw + 1 +TLI 
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and the current iterate of size IS’/ = ngr would be 

The mechanics of the algorithm would work as follows. Having the orig- 

inal working set of paths, the value of 8,- would be driven to zero. If the u 

variables were less than or equal to shortest path values, then by Lemma 1 

we would be done. Otherwise, a t  this iteration, which we will denote as k l ,  

we would let the first new path p E @ enter the working set W .  When this 

new path p entered, we see that 

~ S ~ ( Z $ )  = CjEa 6 j ( ~ $ )  

= xjEsQj(x$)  + eP(& 

> @s(4>, 

= 6s(~$j )  + : G , ( Z ~ ) ~  

so that the norm function 8 would necessarily increase. The algorithm would 

then attempt to drive Os! to zero. This pattern would be repeated a finite 

number of times, with k; representing the iteration number a t  which the 

ith new path is added to  the working set. Eventually, this method would 

converge to a solution of the overall problem, or we would use all the paths 

( VV = P) without converging. 

However, some computational savings can be gained if we made use of the 

information obtained from iteration k; in iteration IC; + 1. More specifically, 

since the purpose of the QP subproblem is to generate a descent direction 

for 0 a t  the current iterate, if we can find such a direction without actually 

solving a new subproblem, then we will have made some computational 

savings. This is the approach we have adopted in this paper. 

Lemma 2 is related to avoiding solving the QP subproblem exactly. 

Lemma 2 Let S = W U I with 8s(zs) = 0. Then, Mss(zs>cls = 0 where 

ds is a n  optimal subproblem solution. 

Proof 

Using the nonnegativity of g5 and the optiniality of ds, we conclude that 

so that 
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This statement is equivalent to 

by Proposition 2 (b) [28] and the definition of z s ( * ,  e ) .  0 

at iteration ki, since a new path p is to be added. we must have 

The relevance of this lemma with the algorithm being presented is that 

8,y(zs) = 0 + Mssds = 0. 

We will use this condition in later computations. 

At iteration ki ,  we are given the current set of indices Ski = Wki u I and 

the current iterate z$,~ as well as the new counterparts Ski+1 = PtTki+l U 

I and z:,??~. For notational simplicity, we will denote, respectively, the 

current set and iterate by S = W U 1 and ss and the new versions by 

S' = W' U I and zst, where W' = W U { p  E : Gp(s$)  < 0). The search 

direction d,  computed as a solution to the QP subproblem at iteration E ; ,  
will also follow the same notational convention. 

In what follows, we will present calculations that will be useful for avoid- 

ing a co~nplete resolving of the QP subproblem at iteration k;. Notationally, 

we will take the matrix M S S ( Z S )  and add columns and rows referring to the 

new paths being added. The result is a matrix of the following form (the 

argument zs has been dropped for notational convenience): 

where ,V is the set of indices for the new paths being added, nlv = I N / ,  
klSS f p s X n s ,  &us,v E RnSX=N , MIvs E R n N X n S  , and I M ~ J N  E R n N X n N .  It 

is not hard to see that when IN/  > 1, the new value of 8 (i.e., e,,) will also 

necessarily increase and the previous logic remains valid '. As it turns out, 

the quantities M S N ,  M N S ,  and M,VN are quite easy to compute and are key 

in the analysis that  will follow. 

Lemma 3 Le t  :V denote  the index set of candidate entering paths. Then 
we have the following: 

'Specifically, for S' = .4 u IV,  we have 
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(ii) 

: j E tV],Vp E N ,  
BC,(F) 

aF, iMPs = [-ypi : i E I 

(iii) 

Proof 

The result follows by considering the function 

0 

Using ( i ) ,  (E), and (iii), in the next result, we present sufficient condi- 

tions, easily verified in practice, that will establish when the vector d$ = 
(4 d c )  is a descent direction for at the point z:l = (3: O*); here 

S' = S U N .  The computations will entail solving a simple QP of size n N  

rather than one of size np. This is meaningful because generally n N  will be 

much smaller than n.5'. 

Theorem 3 Let S = W u I with Os(zS) = 0 and N E { p  E @ : Gp(zs)  < 
0 } ,  N # 8. Also, define S' = W' u I ,  where W' = kV u N and 

with 

(22) 
1 

2 
q(d,v) = FdT,Ad,v + bTdN + C .  

Tlim, with d s  an optimal search dir-ection, there exists l,v E R n N  such that 
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is a d e s c e n t  direction for Os! u t  x.91 if and only if q(d*,) < 0 where  d*, solzles 

niiitirriize d N  q(dp,-) : d,v >_ 0. ( 2 3 )  

Proof 

By Lemma 2 (b) [%I, a sufficient descent condition for 8 is that for some 

vector dsi 

We note that with the new index set S', and Z$ = (z$ 0), we have 

ds i (~y ,  d s f )  < 6si(Zsi, 0 ) .  ('24) 

H S I ( X S , )  = ( 
by considering (Is), because As(zs) 

Gp(zs1) = G p ( z ~ )  < 0 = Fp b'p E N .  
ing equivalent form: 

= 0 Bs(zs) = 0 and because 

Writing out (24) gives the follow- 

Using the fact that  Os(zst) = 6s(zs) = 0, then by Lemma 2 we have 

ibfssds = 0. After rearranging terms we get 

1 
Q ( ~ N )  = !d$Ad,v + bTdN + c < 0 

where A, b, and c are defined as in (21). It is not hard to see that q : RnN --;t 

R is a convex quadratic function and also that there exists a d,v 2 0 such 

that q(alv) < 0 if and only if q(dr;i) < 0 where d$ solves (23). U 

The above theorem specifies when a descent direction for Bsr can be 

obtained from a previous search direction d s  and a relatively small new 

vector d;v. 
We note that the quadratic program given in (23) always has a solution. 

To see this we first write out the associated K K T  optixnality conditions. 

These conditions are to find a d,v such that 

These conditions constitnte a linear complementarity problem (LCP) with 

data (A ,b ) .  We will make the weak assumption that % > 0 for all paths 

p .  Then, since A is the sum of two matrices with nonnegative entries one of 
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. 

which has positive diagonals (;.e., Ms,viVlNN)7 by Theorem 3.8.1.5 in [9], A 

is a Q-matrix for which the LCP above has a solution for all possible b .  
It should be clear that great computational savings may be achieved 

by computing a search direction in the manner described above, essentially 

avoiding solving the QP subproblem of size nS l .  

The complete algorithm for the modified NE/SQP method can now be 

summarized as follows: 

Step 0: Initialization 

Select parameters a , p  E (0, l), and set k = 0. Arbitrarily select nw, F$ E 

R:w and uo E R"I such that the network is strongly connected given W .  

Set 

x:=( 5). 
Compute W o  and So. 

Step 1: Generate Search Direction 

Having the sets W(= W k ) , w ( =  w k ) , S ( =  Sk), and the vector xs, solve 

the QP (19) with solution ds. 

Step 2: Update 

Case 1: (No Change in Working Set of Paths, Descent in 6') 

If an optimal direction d$ satisfies 

then do the following: 

(a) perform a standard Armijo-type backtracking to obtain a step 

(b) z:'* - Z: +- ~ k & ;  

(.) ~ k + f '  wk Wk++' m k ,  sk++' Sk; 

(d) k - k +  1; 

length r k ;  

(e) go to Step 3. 
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Case 2: (No Change in Working Set of Paths, No Descent in 0) 

If the optimal direction d$ satisfies 

ds(s;,d;) = &(xi) > 0, 

then STOP. If uf is less than or equal to the length of a shortest path 

for all i E I and 

is s-regular, then 5 solves the overall NCP. Otherwise, terminate the 

algorithm. 

Case 3: (Reduced NCP Solved and No Shortest Path Violations) 

If the optimal direction d$ satisfies 

dS(Z:,d$) = Os(& = 0, 

and uf is less than or equal to a shortest path for all i E I ,  then STOP 

The vector 

is a solution to the overall NCP. 

Case 4: (Reduced NCP Solved but Shortest Path Violations Exist- 

New Paths Enter ) 
If the optimal direction d i  satisfies 

and 3 iV C w, such that Gp(s$)  < 0 for all p E N ,  then do the 

following for iV C { p  E : G p ( z i )  < 0) and N nonempty, 

(a) let W’ t w u iV, W’ + W - iV;S’ + S u N ;  

(b) 

( c )  w + W’, w - W’, s S’; 

(d)  go to Step 1. 

21 



Step 3: Termination Check 
If 0 does not satisfy a prescribed termination rule then go to Step 1. Other- 

wise, if! p E TV with G p ( x $ )  < 0, then go to Case 4 of Step 2. Else, STOP. 
The vector 

is a solution to the overall XCP. 

As can be seen from the algorithm statement, the method solves a se- 

quence of quadratic program subproblems to force descent in B,y, where S 

represents the current active indices. As long as strict descent is achieved, 

the algorithm functions essentially as the NE/SQP method. However, if 

stalling occurs, that is 

we need to deviate from the NE/SQP approach. Specifically, if stalling 

is present and the u variables represent shortest paths, we have found a 

solution as outlined by Leznnia 1. Otherwise, if stalling is present, we will 

have identified a t  least one violating path p and can let it enter the set 

W .  Of course, when this happens, we could avoid resolving the new QP 

(Step 1) for the set S' = S U { p }  by generating a descent direction as a 

solution to a QP of size << IS'l via the results in Theorem 3. Lastly, if 
case 2's condition is encountered, we know by Proposition 1 in [28] that if 

zT = ((z;)' OT) is s-regular with U'S representing shortest paths, this z is 

a soIution to the overall NCP. 
We now present the main convergence result concerning this method. 

Theorem 4 Let {zk} be a n  infinite sequence of iterates generated by the 

path generation NE/SQP method with F," = 0 V p  E W k  'dk. Then, if x* is 

an accumulation point of {z'}, with x- both 6- and s-regular, x* solves the 

NCP (1.3). 

Proof 

From the 3E/SQP algorithm and the description of the path generation 

approach above, we see that either we increase the cardinality of W k  at 

each iteration or we stop because the conditions ( i )  and (ii) of Lemma 1 

have been satisfied. In the latter case, we will have solved NCP(G) so we 

consider the other possibility. Since the number of paths is finite, we see 

that eventually, W k  = P and we will be solving the overall NCP for which 

convergence is guaranteed by the NE/SQP method. 0 
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4 Numerical Examples 

To provide concrete evidence of the importance of including nonadditivities 

and the potential viability of solving nonadditive problems, we now present 

some illustrative numerical examples. For these examples, unless otherwise 

specified. we have selected a starting point by solving n1 shortest path prob- 

lems. one for each 0 - D  pair. This method identifies W o  = {shortest paths 

] so that  IW-'l = nl- The initial path flows are all set equal to 125.0 ', the 

arc flows f are calculated via f = A F ,  and the starting value for each ui7 

i E 1 is the value of the shortest path for that 0-D pair. 

The Network 

The network used for these examples is shown in Figure 1. This network 

has 9 nodes, 28 arcs and a large number of paths connecting any two nodes. 

The travel time on each link is given by a so-called Bureau of Public Roads 

(BPR) function with the form 

where A ,  denotes the free-flow travel time in minutes on arc a, K ,  denotes 

the practical capacity of arc a in hundreds of vehicles? and B, is the con- 

gestion parameter for arc a. The value of the parameters for each arc are 

shown in Table 1. 

An Example with Separable Demand Functions 

There are 72 origin-destination pairs in this example, and a logit function 

was used to model the 0 - D  demand. This demand function can be thought 

of as representing the number of people that choose to drive rather than 

take transit given the cost of the two competing modes. Specifically, the 

demand functions had the form 

where Qg can be interpreted as the total demand across all modes for 0 - D  
i, K~ can be interpreted as the difference in the attractiveness of the two 

modes connecting i, and w; is a sensitivity parameter for i. The specific 

"For the nonlinear case with tolls we used a starting point of 0.0 instead. 
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Figure 1: The Network 

parameters used are shown in Table 2. In order to provide some intuition 

into the meaning of these parameters, they were determined in such a way 

as to represent transit travel times of approximately twice the auto free-flow 

times and transit fares between $5.00 and $15.00 (depending on the 0-D 
pair). 

The path cost function used was of the form 

where Yp represents the tolls on path p and the parameters were set to 

C = 1 and = 3 .  Again, to provide some intuition, a plot of the cost on 

a representative path versus the total travel time on that path is shown in 

Figure 2. 

The particular choice of our nonadditive path cost functions allowed us 

to  solve the shortest-path problems in the usual way; see the appendix for 

details. Other more general choices for nonadditive costs do not necessarily 

work out as well. 
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Figure 2: Path Costs 

We solved this problem two times, once with no tolls and once with 

83.00 tolls on links 2, 10, 12, and 20. The solution with no tolls is shown 

in Tables 3, 4, and 5 ,  which contain the equilibrium arc flows/costs, 0 - D  
demands/flows, and path flows/costs (on the used paths), respectively. Two 

factors need to be checked to  demonstrate that this is an equilibrium. First, 

the actual amount of flow betwen every 0-D pair must equal the demand 

for that  0 - D  pair given the path costs; this is easily seen to be true in Table 

4. Second, the cost on all used paths connecting a particular 0-D pair must 

be equal and not greater than the cost on any unused paths; the fact that all 
used paths have equal cost can easily be seen in Table 5. That these costs 

exceeded the cost on all unused paths is somewhat more difficult to verify, 

but is in fact the case. A total of 113 paths was generated, though only the 

85 paths with positive flow are shown. 

The results with tolls are shown in Tables 6, 7 ,  and 8. In this case the 

total number of paths generated increases to 116, and the total number of 

used paths falls to 83. Not surprisingly, the flow on the tolled arcs (2,10,12, 

25 



and 20) decreases as a result of the toll. as cloes the flow on the paths that 

use these arcs (e.g.. 1-4, 1 - 4 7 ,  2 - 1 4 ,  and 2 - 1 4 ?  for arc 2, which has a tail 

node of 1 and a head node of 4). Of the remaining 21 arcs. the flow decreases 

on 10 and increases on 14. . Is can be seen from looking at  Tables 4 and 7, 

these changes in arc flows are primarily a result of changes in path flows, 

since the total deniands remain relatively constant. The only exception is 

the  O-D pairs that are “directly” affected by the tolls (e .g . .  1-3, i-7. and 

1-7). 

The Impact of Nonadditive Cost Functions 

To illustrate the impact of using nonadditive cost functions, we took the 

above example one step further and solved for an equilibrium both with 

and without the toll assuming additive costs. Specifically, we identified a 

Linear value of time function (namely, $5.50 per half hour) that would yield 

results similar to the nonadditive model when there were no tolls. We then 

compared the predictions that would be made by the two models in the 

presence of tolls. 

The results for the nonadditive and additive cases when there are no 

tolls are given in Table 9. As can be seen the solutions are quite similar; the 

largest difference in arcs flows is only 6%. 

In the presence of tolls one would expect the two models to make very 

different predictions. In particular, for ‘‘shortern paths one would expect 

the additive/linear model to predict smaller changes due to  tolls, and for 

“longer” trips one wodd expect the additive/linear model to predict larger 

changes. The difference is because for the additive model, the toll is a 

smaller portion of the total path cost for short trips (as compared with the 

nonadditive/nonlinear model) and a larger portion of the total path cost for 

long trips (again as opposed to the nonadditive/nonlinear model). 

The results of the two models in the presence of tolls are given in Table 

10. As expected, the results of the two models are quite different. As shown 

in Table 1 1 ,  the “short” paths 1-4, 1-4-7, and 2-1-4 have fairly similar flows 

in both the additive and nonadditive case, while the “long“ path 2-1-4-7 

has very different flows in the two cases. (Of course, when making such 

comparisons it is important to recall that equilibrium path flows are not 

unique.) 

The implications can he quite important from a policy perspective. In 

particular, a toll designed to reduce congestion would have a much smaller 

impact than would be predicted by using an additive model with a linear 
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value of time function. 

An Asymmetric Example 

We now present an example to illustrate that this method can also be applied 

to problems with asymmetric demand functions (note that the path cost 

functions above are already asymmetric even though the arc cost functions 

are separable). 

In particular, we assume that while the total demand from each ori- 

gin is known, the proportion of that demand bound for each destination is 

unknown. We use an exponential gravity model of the form 

,-O.lu., 

where (with a slight abuse of notation) D;j is the demand for 0 - D  pair ij 

and u;j is the (minimum) 0 - D  travel cost. 

The solution for this problem is shown in Tables 12, 13, and 14. This 

solution is clearly an equilibrium. 

Not surprisingly, 0 - D  pairs that are relatively far apart (e.g., 1-9, 1-6) 

have significantly lower demand than those that are closer together (e-g., 

1-2 and 1-4). Also not surprisingly, those paths with high cost (e.g., 1-5-8-9, 

3-5-4-7) have relatively low flow whereas those with low cost (e.g., 1-2, 9-6) 

have relatively high flow. 

Perhaps the most interesting result from this example is that  while 108 

paths were generated, only 76 are used in the equilibrium solution. Indeed, 

we were consistently able to find solutions in which a single path was used 

for many 0 - D  pairs and at  most two or three were used for all 0 - D  pairs. 

We found this to be quite surprising because we expected to be able to find 

equilibria in which only five or more paths were used for most 0 - D  pairs. 

The result suggests that path enumeration may not be such a tedious task 

after all. 

5 Conclusions and Future Work 

We have demonstrated two points in this paper. First, using both qualitative 

arguments and numerical examples, we have shown that many of today's im- 

portant transportation policy questions cannot be answered using existing 

models that employ additive path cost functions. Second, we have shown 
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that algorithms for solving large-scale, elastic, nonadditive traffic equilib- 

riuin problems probably can be developed. Several important tasks remain 

to be completed before the ideas presented here can be applied, however. 

functions. Clearly, a considerable amount of research has already been done 

on such factors as value of time functions, fuel consumption functions. ve- 

hicle operating cost functions, and travel disutility functions. However. 

the task of incorporating all of this research into a flexible, unified path 

cost/utility function still remains. 

Second, work needs to be done to ensure that either the NE/SQP method 

or other methods can be used to solve large-scale problems. This will, at a 

minimum, involve developing methods for efficiently storing and manipulat- 

ing path variables, calculating shortest paths when the costs are nonadditive. 

It would also be informative to see a comparison of different algorithms, since 

their performance on nonadditive problems is Likely to  be quite different 

from that on additive problems. For example, we have already learned that 

diagonalization methods do not work very well on nonadditive problems, ap- 

parently because the diagonalized subproblems are very bad approximations 

of the true problem. 

In addition, it is important to consider how the ideas developed here can 

be applied to other path-based network equilibrium problems. For example, 

the simultaneous route and departure-time equilibrium problem E161 is most 

easily formulated using path variables. As another example, researchers have 

struggled with including entropy terms in TEP [6] because they include path 
variables. The ideas developed here should both facilitate the solution of 

those problems and allow them to be expanded to include nonadditive costs. 

First. it will be necessary to formulate and estimate realistic path cost/utility 

Appendix 

A A Special Case of Nonadditive Path Cost Func- 

t ions 

As mentioned in the introduction, while it is quite coIumon to assume that 

path costs are an additive function of link costs, there are many situations 

in which this assumption does not hold. In most such cases it is necessary 

to  use a path formulation of TEP. However, there is one class of nonaddi- 

tive path costs for which this is not necessary. In particular, suppose that 

C,( F )  = g [EaEA 6,,ca(AF)] for all p E P ,  where g : R+ -+ R+ is mono- 



tone increasing. Then, it turns out that one can find an equilibrium for the 

nonadditive problem by solving an appropriate additive problem. 

This result may be somewhat surprising because it is not true of com- 

plementarity problems in general. In other words, given G : RT 7 R" and 

2 E RT such that 

C:i(z) 2 0 ; = I ,  . . . .  n 

G;(z)z; = 0 i = 1,.  . . ,n,  

it is not, in general, the case that 

g[G;(z)]s; = 0 i = 1,. . . , n, 

(30) 

(31) 

even when g is monotone increasing. For example, suppose that zj > 0 for 

some j E (1,. . ., n}. Then it must be the case that Gj(z) = 0. However, 

this does not imply that g[Gj(z)] 

As it turns out, the TEP is not an ordinary complementarity problem. 

To see this, first consider the inelastic version of the TEP where u i ( F )  = 
minpEpi Cp( F ) .  For this problem we can demonstrate the following: 

g(0) = 0. 

Theorem 5 Suppose F E R:= satisfies the conditions that 

f 

for all i E I and p E Pi. Then, it follows that 

Fp > 0 * C,(F) = u; (F)  

for all i E I and p E Pi 

Proof 

We know that 

(3s) 
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And: since g is iiionotone increasing, it follows that 

Finally. since g [CaEA 6,,ca(AF)] z C J F )  and rninpEp, { g  [EaEA 6 , ,~ , ( iU’ ) ] }  G 

niinpEp,(Cp(F)} = u; (F) ,  the result follows. 0 

The implication of this result is that we can ignore the transformation g and 

solve an equlibrium problem with siinple additive costs, since the feasible 

regions for the two problems are identical. That is, if we let C p ( F )  = 
CaEA S,,c,(AF) for all p E P and find an equilibrium for it will also be 

an equilibrium for C. 
When demand is elastic (and the inverse demand function exists), a 

similar result holds. In particular we have the following theorem. 

Theorem 6 Suppose g is invertible and F E R Y  satisfies the conditions 

that 

Then 

0*T1(F)  = u i (F) .  (41) 

Proof 

We know from Theorem 5 that (40) holds whenever (38) holds. Hence, all 

that  remains is to show that (41) follows from (39). To do so, we observe 

that 
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Now. since g is monotone increasing, it follows that 

= uL;(F) ( 3 5 )  

and hence that D;’(F) = u i ( F )  a. 

Thus, when the demand is elastic, one can obtain a solution to a TEP with 

nonadditive path costs by solving a simple additive problem with trans- 

formed demand. In other words, if F is an equilibrium for (C ,g - ’ [D- ’ ] ) ,  it 

is also an equilibrium for (C‘,D-’). 
Unfortunately, these results do not hold in general. Most important, 

when C J F )  = g P [ C a E A S a p c a ( A F ) ]  for all p f P (Le., when the transfor- 

mation is path specific), it does not seem possible to obtain an equilibrium 

by solving an “appropriate” additive problem. Hence, for such cases it is 

necessary to  use a path formulation ’. 
Remark: 

It is interesting to note that we can generalize g and still get the same 

results as shown above. The key idea is that the functions g and min should 

commute. The  result below describes necessary and sufficient conditions on 
the function g to make this true. 

Proposition 1 Let  g : D c R + R, and  suppose that  xmZn := min,EDx 

and  g x  = m i n X E D g ( z )  are well defined. Then 

g(xmi7’) = g* e xmin E argmin  { g ( x )  : z E D ) .  

Proof 

For all 2 E D, we have g(z) 2 m i n , E ~ g ( z ) .  If g ( z m i n )  = g* 3 g ( x )  2 
g ( z 7 ) L i 7 L )  as desired. In the other direction, if g ( ~ ” ~ ~ ” )  5 g ( z )  for all z E D, 
this gives 

g ( 5 f n i n )  5 g* 5 g ( x )  vz E D.  

’The nonadditive formulation that  we have employed uses g p  = g for all paths p but 

adds tolls. Selectively including or excluding tolled links (if the number of toned links 

is small) allows all shortest-path calculations t o  be performed in a conventional manner 

despite the nonadditive costs. 
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With 

The importance of this result is that functions that are not nionotone 

increasing can also be used, for example, g(z) = sin(s) with D = [ O , x ]  

would be valid. 

= z c ? f l Z T l  this forces the desired result.0 
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5.00 

5.00 

3.00 
5.00 

3.00 

5.00 

5.00 

3.00 

5.00 

3.00 

3.00 

3.00 

3.00 

5.00 

3.00 
5.00 

5.00 

3.00 

5.00 

3.00 

5.00 

5.00 

3.00 
5.00 
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10.00 

15.00 

10.00 

10.00 

15.00 

10.00 

15.00 

10.00 

10.00 

15.00 
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15.00 

15.00 

15.00 

15.00 

10.00 

15.00 

10.00 
10.00 

15.00 

10.00 

15.00 

10.00 

10.00 

15-00 

10.00 

10.00 

K ,  (100's) 

60 .OO 

60.00 

60.00 

60.00 

60.00 

60.00 

60.00 

60 .OO 

60.00 

60.00 

60.00 

60.00 

60.00 

60 .OO 

60.00 

60.00 

60.00 

60.00 
60.00 
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60.00 
60.00 

60.00 

60.00 
60.00 

60.00 

60.00 

60.00 

Table 1: BPR Function Parameters 
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Table 2: Logit Demand Function Parameters 



1 

2 

3 

3 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 
27 

28 

- 
:> 

- 

Tail Node 

1 

1 

1 

2 

2 

2 

3 

3 
3 

4 

4 

4 

5 
5 

5 

5 

6 

6 

6 

7 

7 

8 

8 

8 

9 

9 

9 

- 
t 

Head Node 

2 
3 

:> 

1 

3 

5 
2 

5 

6 

1 

5 

7 

2 

4 

6 

8 

3 

5 

9 

4 
.5 

8 

5 

7 

9 

5 

s 
8 

Travel Time (xnin.) 

13.78 
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4.93 

13.81 
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28.61 

4.93 

28.65 
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37.47 

37.51 

37.51 

28.60 

4.94 

28.70 

13.81 

11 -35 

13.79 

4.94 

28.60 

28.70 

11.36 

13.76 

13.76 
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58.09 

52.15 

74.38 

74.41 

35.92 

58.13 

51.83 

58.10 

74.38 

35.92 

74.41 

73.87 

73.87 

73.90 

73.90 

74.37 

36.00 

74.44 

58.13 

51.83 

58.10 

36.00 

74.37 

74.44 

51.85 

58.05 

58.05 

Table 3: Arc Flows with No Tolls 
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16.56 

13.64 

16.64 
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8.32 

14.35 

14.34 

15.69 

17.04 

15.67 

10.78 

15.67 

10.74 

16.64 

16.62 

13.72 

16.58 

16.63 

7.82 

13.71 

16.62 

14.35 

15.69 

10.78 

17.04 

15.67 

14.34 

15.67 

10.74 

7.72 

11.93 

7.71 

11.93 

Demand (100’s) 

16.63 

16.64 

16.63 

16.56 

13.64 

16.64 

13.64 

8.32 

14.35 

14.34 

15.69 

17.04 

15.67 

10.78 

15.67 

10.74 

16.64 

16.62 

13.72 

16.58 

16.63 

7.82 

13.71 

16.62 

14.35 

15.69 

10.78 

17.04 

15.67 

14.34 

15.67 

10.74 

7.72 

11.93 
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Flow (100’s) 

11.92 

7.71 

11.92 

7.67 

10.79 

15.68 

14.35 

15.68 

17.04 

10.77 

15.67 

14.33 

16.64 

13.72 

7.82 

16.62 

16.58 

13.71 

16.63 

16.62 

10.79 

15.68 

10.77 

15.68 

17.04 

15.67 

14.35 

14.33 

7.84 

13.72 

16.65 

13.72 

16.57 

16.63 

16.65 

16.63 

Table 4: 0 - D  Demands with No Tolls 
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Demand (100’s) 

11.92 

7.71 

11.92 

7.67 

10.79 

15.68 

14.35 

15.68 

17.04 

10.77 

15.67 

14.33 

16.64 

13.72 

7.82 

16.62 

16.58 

13.71 

16.63 

16.62 

10.79 

15.68 

10.77 

15.68 

17.04 

15.67 

14.35 

14.33 

7.84 

13.72 

16.65 

13.72 

16.57 

16.63 

16.65 

16.63 



Table 5: P a t h  Flows with No Tolls 

40 

Path Flow (100’s) Cost  ($1 I/ Path Flow (100:s) 1 Cost  ($1 

1-2-3 16.64 7.42 , 5-4-7 1.26 16.78 

1-4 16.63 1.09 5-5-7 6.45 16.78 

1-5 16.56 0.83 .S-8 11.92 5.94 

16.S2 1-56  1 13.64 9.66 j 5-6-9 7.67 

1-5-8 1 13.64 9.66 6-5-4-1 0.06 19.18 

1-5-6-9 I 0.33 22.76 6-5-2 1.55 7.41 

1-2 16.63 1.09 1 5-6 , 11.92 5.94 

’ 

1 - 4 7  j 16.64 7.42 6-3-31 10.73 19.18 

2-3-6-9 I 10.74 I 19.24 11 7-4 16.62 1 1.10 

3-2-1 I 16.64 1 7.41 /I 7-5 16.58 1 0.81 

4-1 14.35 3.68 8-7-4 14.08 7.41 

4-1-2 15.69 7.40 8-5 17.04 0.25 

41-2-3 9.14 19.19 8-5-6 0.06 7.42 

4-5-6-3 I 1.64 19.19 8-9-6 15.61 7.42 

4-5 17.04 0.25 8-7 14.35 3.68 

4-5-6 15.67 7.42 8-9 14.33 3.70 

4- 7 14.34 3.69 9-5-2-1 7.84 22.57 
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20.47 

5.31 

20.50 

38.95 

39.87 

37.73 
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4.69 

29.68 
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10.96 

13.62 

5.89 

27.08 

28.42 

10.90 

14.19 
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Arc Flow (100's) 

-57.i9 

47.30 

5 1.53 

73.14 

74.17 

39.75 

58.56 

51.10 

58.73 

66.92 

37.60 

66.95 

74.65 

75.13 

74.01 

74.67 

75.12 

34.77 

75.20 

47.32 

51.21 

57.81 

39.74 

73.14 

74.22 

51.11 

e58.74 

58.44 

Table 6: Arc Flows with Tolls 
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15.51 

13.05 

15.14 

11.77 
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11.86 

7.73 

11..52 

7 . 2 2  

10.93 

15.33 

14.15 

15.06 

17.05 

10.92 

15.32 

14.12 

14.50 

13.35 

7.48 

14.46 

16.61 

13.77 

16.64 

16.74 

11.43 

14.98 

10.25 

14.70 

16.99 

15.63 

14.65 

14.39 

8.06 

13.38 

16.28 

13.06 

16.62 

16.58 

16.98 

16.60 

Demand (100‘s) 

11.86 

7.73 

11.52 

7.22 

10.93 

15.33 

14.15 

15.06 

17.05 

10.92. 

15.32 

14.12 

14.50 

13.35 

7.48 

14.46 

16.61 

13.77 

16.64 

16.74 

11.43 

14.98 

10.25 

14.70 

16.99 

15.63 

14.65 

14.39 

8.06 

13.38 

16.28 

13.06 

16.62 

16.58 

16.98 

16.60 

Table 7: 0-D Flows with Tolls 
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1 Path 1 Flow (100's) 1 Cost (5)  11 Path 1 Flow (100 's )  1 Cost (5)  

Table 8: Path Flows with Tolls 



- 

Arc 

1 
*) - 
3 

3 

6 

7 

8 

9 

10 

11 

12 

13 

14 

1 5 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

- 

:> 

- 

Linear Value of Time 

t ,  (inin.) 

13-30 

13.30 

13.20 

3.5.31 

35.40 

4.75 

13.34 

12.87 

13.32 

35.31 

4.75 

35.40 

43.86 

43.86 

43.97 

43.97 

35.29 

4.77 

35.47 

13.34 

12.87 

13.32 

4.77 

35.29 

35.47 

12.89 

13.27 

13.27 

fa (100's) 

57.28 

.I I .28 

54.48 

79-17 

79.23 

35.06 

5 7.35 

54.04 

57.31 

79.17 

35.06 

79.23 

77.08 

7i.08 

77.14 

77.14 

79.15 

35.17 

79.27 

57.34 

54.04 

57.31 

35.18 

79.15 

79.27 

54.06 

5i.22 

57.22 

-- 

Nonlinear Value of Time 

t ,  (min.) 

13.78 

13.78 

11.56 

28.61 

28.65 

4.93 

13.81 

11.35 

13.79 

28.61 

4.93 

28.65 

37.47 

37.47 

37.51 

37.51 

28.60 

4.94 

28.70 

13.81 

11.35 

13.79 

4.94 

28.60 

28.70 

11.36 

13.76 

13.76 

f a  (100's) 
.58.09 

:'8.09 
5 2 . 1 5 

74.38 

74.41 

35.92 

58.13 

51.83 

58.10 

74.38 

35.92 

74.41 

73.87 

73.87 

73.90 

73.90 

74.37 

36.00 

74.44 

58.13 
51.83 

58.10 

36.00 

74.37 

74.44 

51.85 

S8.05 

58.05 

Diff. in Flow (%) 

-0.01 

-0.01 

0.04 

0.06 

0.06 

-0.02 

-0.01 

0.04 

-0.01 

0.06 

-0.02 

0.06 

0.04 

0.04 

0.04 

0.04 

0.06 

-0.02 

0.06 

-0.01 

0.04 

-0.01 

-0.02 

0.06 

0.06 

0.04 

-0.01 

-0.01 

Table. 9: Comparison of Arc Flows for the Additive and Nonadditive Cases 

in the Absence of Tolls 
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- 

. k c  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 
13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

- 

Linear Value of Time 

t ,  (min.) 

14.5.5 

6.42 

12.39 

31.71 

33.80 

8.38 

14.30 

12.11 

13.97 

18.44 

4.06 

18.47 
49.20 

46.11 

44.52 

49.28 

38.47 

4.03 

38.74 

6.43 

12.08 

14.52 

8.35 

31.67 

33.99 

12.12 

13.98 
14.27 

fa (100's) 

59.3'2 

36.80 
53.37 

76.70 

78.16 

46.43 

58.93 

52.97 

58.39 

64.60 

30.96 

64.64 

79.49 

78.12 

77.39 

79.52 

81.15 

30.71 

81.32 

36.89 

52.92 

59.26 

46.38 

76.67 

78.29 

52.98 

58.41 

58.87 

Nonlinear Value of Time 

t ,  (min.) 

13.61 

8.36 

11.16 

27.08 

28.35 

5.89 

14.07 

10.89 

14.18 

20.47 

5-31 

20.50 
38.95 

39.87 

37.73 

38.99 

29.57 

4.69 

29.68 

8.57 

10.96 

13.62 

5.89 

27.08 

28.42 

10.90 

14.19 

14.00 

fn (100's) 
r 3  - 
.> i . i9  

47.30 

5 1.53 

73.14 

74.17 

39.75 

58.56 

51.10 

58.73 

66.92 

37.60 

66.95 
74.65 

75.13 

74.01 

74.67 

75.12 

34.77 

75.20 

47.32 

51.21 

57.81 

39.74 

73.14 

74.22 

51.11 

58.74 
58.44 

Diff. in Flow (%) 

0.03 

-0.29 

0.03 

0.05 
0.05 

0.14 

0.01 

0.04 

-0.01 

-0.04 

-0.21 

-0.04 

0.06 

0.04 

0.04 

0.06 

0.07 

-0.13 

0.08 

-0.28 

0.03 

0.02 

0.14 

0.05 

0.0rj 

0.04 

-0.01 
0.01 

Table 10: Comparison of Arc Flows for the Additive and Nonadditive Cases 

in the  Presence of Tolls 

4 s5 



I 

~ 1-4-7 

2- 1-4 i 2-1-4-7 

Linear Value of Time 

Path Flow (100’s) 

13.89 

13.84 

9.06 

0.00 

Path Cost ($1 
4.18 

10.56 

9.99 

16.38 

Nonlinear Value of Time 

Path Flow (loo’s) 

14.46 

14.50 

6.92 

1 1.42 

Path Cost ($1 
3.56 

9.55 

8.50 

18.50 

Table 11: Comparison of Some Path Flows for the Additive and Nonadditive 

Cases in the Presence of Tolls 
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Arc 

1 
2 

:3 

4 

6 

8 

9 

10 

11 

12 

13 
13 

I 5 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 
27 

28 

.___ 

- 
a 

-7 

I 

Tail r o d e  

1 

1 

1 

2 

2 

3 

3 

3 

4 

3 

4 

-? - 

- 
3 

.> 

.I 

.) 

- 
- 
- 
6 

6 

6 

7 

7 

8 

8 
8 

9 

9 

9 

- 
1 

Head Node 

2 

4 

1 

3 

5 
2 

5 

6 

1 

5 

7 

2 

4 

6 

8 
3 

5 

9 

4 

5 

8 

5 

7 

9 

5 

6 

8 

- 
J 

Travel Time (niin. ) 

14.06 

14.06 

10.69 

25.49 

23 -49 

6.04 

14.06 

10.69 

14.06 

23.49 

6.04 

23.49 

34.19 

34.19 

34.19 

34.19 

23.49 

6.04 

23.49 

14.06 

10.69 

14.06 

6.04 

23.49 

23.49 

10.69 

14.06 

14.06 

Arc Flow (loo's1 

.J8 . r > l  
35.54 

.JO.77 

69.96 

69-97 

40.24 

.58.54 

50.77 

58.54 

69.97 

40.24 

69.96 

72.05 

72.05 

72.05 

72.05 

69.96 

40.25 

69.96 

58.54 

50.78 

55.54 

40.25 

69.96 

69.96 

50.77 
55.54 

58.54 

Table 12: Arc Flows for the Gravity Model 
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- 
0 

1 

1 

1 

1 

1 

1 

1 

1 

2 

2 

2 

2 

2 

2 

2 

- 

2 3 

3 3 

3 

3 

3 

3 

3 

4 

4 

4 

4 

4 

4 

4 

4 

5 

5 5 

’3 - 

- 
D 

; 

1 

6 

8 

9 

1 
3 

4 

5 

6 

- 
7 - 

3 

- 
I 

- 
a 
9 

1 

2 

4 

5 

6 

8 

9 

1 

2 

3 

5 

6 

8 

9 

1 

2 

3 

4 

- 
1 

- 
I 

- 

Flow (100’s) 

23.95 

14.17 

22.95 

23.86 

11.30 

14.17 

11.30 

4.31 

20.9.5 

10.95 

15.01 

26.36 

15.01 

6.42 

13.89 

6.42 

14.17 

22.95 

11.30 

23.86 

22.95 

4.31 

11.30 

14.17 

10.95 

15.01 

6.42 

26.36 

13.89 

20.95 

15.01 

6.42 

9.70 

21.54 

9.70 

21 .54 

Demand (100’s) 

22.95 

14.17 

22.95 

23.86 

11.30 

14.17 

11.30 

4.31 

20.95 

20.95 

15.01 

26.36 

15.01 

6.42 

13.89 

6.42 

14.17 

22.95 

11.30 

23.86 

22.95 

4.31 

11.30 

14.17 

20.95 

15.01 

6.42 

26.36 

13.89 

20.95 

15.01 

6.42 

9.70 

21.54 

9.70 

21.54 

io 

1 3  

1: 
3 

6 

6 

6 

6 

6 

6 

6 

6 

7 - 
- 
I 

7 

7 

7 

7 

7 

8 

8 

8 
8 

8 

8 

8 

8 

9 

9 

9 

9 

9 

9 

9 

9 - 

- 
D 

6 
7 

8 

9 

1 

2 

3 

4 
5 

7 

8 

9 

1 

2 

3 

4 

5 

6 

8 
9 

1 
2 

3 
4 

5 

6 

7 

9 

1 
2 

3 
4 

5 

6 

7 

8 

- 

- 

Flow (100’s) 

21.55 

3.70 

21.55 

9.70 

6.42 

1.5.01 

20.95 

13.59 

26.36 

6.42 

15.01 

20.95 

14.17 

11.30 

4.31 

22.95 

23.86 

11.30 

22.94 

14.17 

6.42 

13.89 

6.42 

15.01 

26.36 

15.01 

20.95 

20.95 

4.31 

11.30 

14.17 

11.30 

23.86 

22.95 

14.17 

22.95 

Demand (100’s) 

21.55 

9.70 

21.51 

9 . i l  

6.42 

15.01 

20.95 

13.89 

26.36 

6.42 

15.01 

20.95 

14.17 

11.30 

4.31 

22.95 

23.86 

11.30 

22.95 

14.17 

6.42 

13.88 

6.42 

15.01 

26.36 

15.01 

20.95 

20.95 

4.31 

11.30 

14.17 

11.30 

23.86 

22.95 

14.17 

22.95 

Table 13: 0-D Flows for the Gravity Model 
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Path I Flow (100’s) I (‘ost ($) 1 1  Path 1 Flow (100’s) 1 Cost ($1 1 

Table 14: Path Flows for the Gravity Model 
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