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Abstract

We flexibly estimate demand for residential broadband accounting for congestion
externalities that arise among consumers due to limited network capacity, as well
as dynamics arising from nonlinear pricing. Our high frequency data permits in-
sight into temporal patterns in usage across the day that are impacted by network
congestion, and how usage responds to efforts to mitigate congestion. To estimate
demand, we build a dynamic model of consumer choice and rely on variation in
the timing of network upgrades and nonlinear pricing to identify the model. Us-
ing the model estimates, we calculate the welfare changes associated with different
economic and technological solutions for reducing congestion, including peak-use
pricing, throttling connectivity speeds, and local-cache technologies.
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1 Introduction
The Internet is now an ever-present part of society, and the demand for online content,

especially over-the-top (OTT) video, is soaring. Internet Service Providers (ISPs) choose

to invest and meet this demand when there is incentive to do so. An industry estimate

places private broadband investment around $1.3 trillion between 1996 and 2013, or about

$75 billion per year.1 Historically broadband investment has been financed by private

firms, but its importance is now leading some local governments to pursue municipal

broadband and other public funding to support further investment and competition.

In this paper, we provide a key input to understanding how responsive consumers

are to network congestion by estimating demand using a novel data set and variation in

network congestion and prices. Congested areas of the network are prime candidates for

investment because a consistently poor network could lead to welfare losses for consumers,

ISPs, and third-parties. In particular, we focus on congestion abatement and its value

to consumers. We believe these results are of particular importance to any public policy

debate that evaluates the value created by broadband investment. For example, as a part

of the Charter/Time Warner Cable merger review, broadband investment to modernize

and expand the network is a likely condition for approval.2

The unique data at the center of this work are made available by a North American

ISP. These data include hourly observations of Internet usage and network conditions

for roughly 45,000 subscribers from February 2015 through December 2015. At the daily

level, we are able to uniquely map an account to a cable modem and active Internet

plan. For each Internet plan, we observe the price, advertised speeds3 (downstream and

upstream), usage allowance, and overage fees. All data tiers charge for data overages at

the same per GB rate. The average subscriber in our data uses 2.3 gigabytes (GB) per

day, pays $58.89 for a 22 megabit per second (Mbps) downstream connection, and a 267

GB monthly usage allowance.

Network congestion occurs when demand pushes or exceeds the network’s limitations

– similar to how video streaming performance degrades if too many people utilize the

same WiFi connection. Aside from downstream and upstream speeds, the Federal Com-

munications Commission (FCC) recognizes latency (how long it takes requests to move

1See USTelecom’s estimates at http://www.ustelecom.org/broadband-industry-stats/

investment/historical-broadband-provider-capex and page 15 of the FCC’s 2015
Broadband Progress Report found at https://www.fcc.gov/reports-research/reports/

broadband-progress-reports/2015-broadband-progress-report.
2See the State of New York Public Service Commission’s Case 15-M–0388 on “Joint Petition of Charter

Communications and Time Warner Cable for Approval”, released on January 8, 2016.
3Speed is measured in Megabits per second (Mbps). For reference, a 20 Mbps downstream connection

would download a 4 gigabyte file, or roughly one high-definition movie, in about 27 minutes.
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across the Internet) and packet loss (roughly, the percentage of requests that fail to make

it to their destination) as two important metrics of network performance.4 Buffering video

streams, websites failing to load, and being disconnected from an online video game are

common examples of how congestion might affect a consumer. Moreover, due to differ-

ences in implementation, such activities as sending email are more resilient to congestion

than others like video streaming.

ISPs can invest in the physical network in two primary ways.5 First, network invest-

ment can expand the current network, usually in rural and poorer communities, where

costs can be greater and broadband is rarer. The government actively promotes this

type of investment. Some communities such as Chattanooga, TN and Lafayette, LA

have voted for municipal broadband, arguing it promotes competition and investment.6

Additionally, many politicians have plans similar to President Obama’s ConnectHome7

that address how the government will support network investment in these areas.

Second, an ISP can invest in the existing network by increasing capacity and speeds.

Here, existing customers are receiving a better experience from the improved network

quality. Network performance is of importance to the FCC, which it tracks in its annual

Measuring Broadband America reports.8 In these reports, various network test results

of several popular US ISPs are released to promote transparency in the quality and

options of broadband available to subscribers. This type of network improvement is what

typically abates congestion and is most relavent to this research.

A New York Times article9 describes network investment as having two types of

costs: the cost of connecting people’s houses, and the cost of delivering bandwidth to

these networks. In general, updating the links between people is the more costly of the

two, since a node10 only provides a fixed amount of shared bandwidth to subscribers.

Estimating the cost and structure of bandwidth prices are more complicated since they

4See the FCC’s 2015 Measuring Broadband Report at https://www.fcc.gov/reports-research/

reports/measuring-broadband-america/measuring-broadband-america-2015.
5A third way an ISP could invest in the network is by improving “upstream” relations through various

peering and interconnection agreements. Typically, these agreements result in faster, less-congested
routes between certain destinations – for example, an ISP and Netflix or Hulu.

6See the White House release “Community-Based Broadband Solutions ” at https:

//www.whitehouse.gov/sites/default/files/docs/community-based_broadband_report_by_

executive_office_of_the_president.pdf.
7The program’s website can be found at http://connecthome.hud.gov and a White House release

summarizing the program is found at https://www.whitehouse.gov/the-press-office/2015/07/15/
fact-sheet-connecthome-coming-together-ensure-digital-opportunity-all.

8The latest Measuring Broadband America report can be found at https://www.fcc.gov/

reports-research/reports/measuring-broadband-america/measuring-broadband-america-2015.
9See “The Cost of Downloading All Those Videos” by Saul Hansell, released April 20, 2009, at http:

//bits.blogs.nytimes.com/2009/04/20/the-cost-of-downloading-all-those-videos/?_r=0.
10A node is a network device that connects a group of subscribers to the rest of the operator’s network.
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depend on an ISP’s ownership of infrastructure, peering, and interconnection agreements.

Node splits are a common way ISPs invest in the core network to improve capacity

and lower congestion for a group of subscribers. A node is a common place for bottle-

necks to occur and are what commonly demarcate local, “last mile” networks. When a

node is split, its subscribers are distributed evenly across two new nodes, where network

conditions should be improved. Many operators target nodes to be split once average

utilization exceeds certain thresholds. We observe 5 node splits in our data and use these

events to compare before-and-after congestion and subscriber usage. After a split, av-

erage daily usage increases by 7% and packet loss, our measure of congestion, drops by

27%. This suggests there is value to consumers from a less congested network.

The value to consumers of less congestion only captures part of the rent created by the

investment: some goes back to the ISP and the rest goes to third-parties. In fact, since the

ISP is unable to fully capture these rents, private investment is marginally discouraged.

Moreover, recent Title II and net neutrality regulation by the FCC has created uncertainty

on the future of the industry, which could depress future investment. Tom Wheeler, the

current FCC chairman, declares Title II will have no effect on investment, while other

commissioners are doubtful.11

Our model of subscriber Internet consumption builds on the framework of Nevo et al.

(2016) with the notable difference being the inclusion of network congestion and its

impact on plan choice and consumption. Similarly, our estimation relies on variation in

prices and speeds across plans and (shadow) price variation across the billing cycle that

is created by usage-based pricing. We also utilize variation in a subscriber’s observed

packet loss to estimate the effect of congestion.

The price variation arising from usage-based pricing is a result of its three-part tariff

structure: a subscriber pays a fixed fee each month, and if the associated usage allowance

is exceeded, she is charged at a per GB rate thereafter. While overage fees are only

assessed if a subscriber exceeds the usage allowance, a forward-looking subscriber under-

stands today’s consumption marginally increases the likelihood of exceeding the usage

allowance before the end of the billing cycle – this is a function of how many days remain

in the billing cycle and what fraction of the usage allowance has been used previously in

the cycle. We incorporate these dynamics in our model similar to Nevo et al. (2016) by

allowing consumers to make daily consumption decisions across a billing cycle.

We also use variation in network congestion to identify a subscriber’s sensitivity to

11See Chairman Wheeler’s article “This is How We Will Ensure Net Neutrality” at http:

//www.wired.com/2015/02/fcc-chairman-wheeler-net-neutrality/, for example, and Commis-
sionar Pai’s remarks on “Declining Broadband Investment” at https://www.fcc.gov/document/

comm-pai-remarks-declining-broadband-investment.
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poor network states. Our hourly data contain packet loss, or the percentage of total

packets requested that are either dropped or delayed, at the subscriber level, which we

use to proxy for network congestion. As mentioned previously, packet loss is one statistic

the FCC uses to benchmark network performance across ISPs.

There are four main advantages to using packet loss over other variables such as a

node’s utilization to measure congestion in our model. First, we observe packet loss at

a subscriber level, so it is not an aggregate network statistic. Second, we observe wide

cross-sectional variation in packet loss across subscribers. Third, packet loss is positively

correlated with other common congestion variables. Fourth, our ISP invested in its

existing network throughout the year, so we are able to exploit time series variation in

our panel as well. Our ISP’s network would rate as the third worst in average subscriber

packet loss in the latest Measuring Broadband America. Coupled with the aforementioned

core network investments by the operator over 2015, this sample offers a wide range of

variation in network conditions, ideal for this analysis.

We estimate this finite horizon, dynamic choice model by solving the dynamic problem

once for a large number of types. The solution to these dynamic problems is then used

to estimate the distribution of types over our sample by minimizing the error between

observed and optimal behavior across types. In general, the estimated marginal and joint

distributions illustrate the strength of the flexibility built into our estimation approach.

Compared to Nevo et al. (2016)’s concentrated type distribution, ours is much more

uniform.

These demand estimates are used to measure the value to subscribers when network

congestion is eliminated entirely. This is the case where a subscriber’s provisioned speed

is always realized. We find the improved network conditions encourage some subscribers

to downgrade to cheaper plans, but the loss in revenue from this is entirely offset by

an increase in consumer surplus. Subscribers’ realized speeds increased by roughly 19%

with each additional Mbps of speed being valued at roughly $2.87. These results suggest

that when public policy focuses on network investment, congestion abatement should be

considered because of this positive value enjoyed by subscribers.

This paper is most closely related to a literature that studies the demand of residential

broadband. Recent examples are Nevo et al. (2016), Malone et al. (2016), and Malone

et al. (2014) that use similar high-frequency data to study subscriber behavior. However,

this literature dates back to the early 2000s with Varian (2002) and Edell and Varaiya

(2002), who run experiments where consumers face different prices for varying allowances

and speeds. Goolsbee and Klenow (2006) estimate the benefit to residential broadband;

Hitte and Tambe (2007) show Internet usage increases by roughly 22 hours per month

5



Figure 1: Internet Plan Features
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Note: This figure represents the approximate relative relationship between monthly usage and price for

the ISP’s menu of plans. Since this ISP has implemented usage-based pricing, there is a set usage

allowance for each plan and usage in excess of the allowance is billed. The box label that intersects

each plan’s line represents the approximate relative differences in speeds.

when broadband is introduced. Other related papers are Lambrecht et al. (2007), Dutz

et al. (2009), Rosston et al. (2013), and Greenstein and McDevitt (2011).

2 Data
The data for our analysis are a representative sample of 46,667 North American broad-

band subscribers. The metropolitan area where the subscribers are drawn from have de-

mographic characteristics that are similar to the overall US population. Average income

in the MSA is within 10% of the national average and the demographic composition is

just slightly less diverse. Like many markets for residential broadband, our ISP competes

with another ISP offering substantially slower services, particularly in more rural parts of

the market. Therefore, we expect the insights from our analysis to have external validity

in other North American markets. The data include hourly subscriber usage and details

of network conditions for February–December 2015.

The data are constructed from three primary sources. The first source is Internet

Protocol Detail Records (IPDR), which report hourly counts of downstream and upstream

bytes, packets passed, and packets dropped/delayed by each cable modem.12 IPDR also

record a cable modem’s node, a device that connects a set of customers to the rest of the

ISP’s network. The second data source is average hourly utilization by node. The last

are billing records by customer, where service plan details (e.g., speed, usage allowance,

12This is the same source used by Nevo et al. (2016a).
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Table 1: Daily Usage Distributions by Internet Plan Tier

Tier 1 Tier 2 Tier 3 Tier 4 All

Mean 1.4 GB 3.4 GB 5.4 GB 8.2 GB 2.3 GB
Std. Dev. 2.9 5.0 7.3 10.4 4.5
25th %tile 0.0 0.3 0.6 1.3 0.1

Median 0.4 1.5 3.1 5.3 0.6
75th %tile 1.5 4.7 7.6 11.4 2.7
90th %tile 4.1 9.0 13.6 19.4 6.7
95th %tile 6.3 12.5 18.5 26.1 10.2
99th %tile 12.8 22.3 32.0 46.2 20.3

N 8,539,830 2,910,234 1,117,680 320,085 12,887,829

Note: This table reports daily usage statistics (of the subscriber -day usage distribution) for the four

Internet service plans and entire sample.

and prices) are included. These data sets are linked by a consumer’s account number.

Using the account number to link the data sources, rather than a MAC address, permits

tracking consumers across hardware changes within the sample.

In addition to the data we use for our analysis mentioned above, we also discuss

statistics from complementary data, from another ISP for the same period, February–

December 2015. This data is national in scope and includes information from a deep-

packet inspection (DPI) platform, which provides insight into the types of traffic (OTTV,

gaming, web browsing, etc) generated by each user. However, the operator has not

implemented UBP and has an overbuilt network, both substantially limiting our ability

to use it to infer demand. However, the high-level descriptive statistics of the composition

of traffic are helpful in explaining the findings from our model, and in providing external

validity as to the representativeness of our data.

2.1 Sample, Internet Plans, and Monthly Usage

Our panel of data starts on February 1, 2015 and ends on December 31, 2015 for

a total of over 330 million subscriber -day-hour observations. For each observation,

we observe downstream/upstream bytes and the total number of packets passed and

dropped/delayed. At a daily frequency, we observe each consumer’s plan and the map-

ping of consumers to nodes in the network.

The ISP sells Internet access via a menu of plans with more expensive plans including

both faster access speeds and larger usage allowances. Overages are charged for usage

in excess of the allowance. The approximate relationship between monthly usage (GB)

and monthly price ($) across plans is shown in Figure 1. The average subscriber pays
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Figure 2: Distribution of Proportion of Allowance Used
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Note: This figure presents two figures related to the distribution of the proportion of the allowance

used by consumer’s each month. In panel (a), we present the distribution of this proportion for all

customer billing cycles resulting in 11 observations for each customer. In panel (b), we present the

distribution of the maximum of this proportion for each consumer across billing cycles, resulting in 1

observation for each customer.

$58.89 per month for a 22 Mbps downstream connection with a 267 GB usage allowance.

The maximum offered speeds and allowances are consistent with those offered in North

America, but few consumers choose them (as we have observed in the data of other ISPs

with similar offerings).

Consumers on more expensive Internet plans use more data on average. In Table 1, we

observe the daily usage distributions of higher tiers stochastically dominate those of lower

tiers. Thus, differences in usage between tiers is at least partially driven by preferences

for larger usage allowances and also, possibly, faster speeds. While the differences in

subscriber usage may be stark – for example, on Tier 4 subscribers use 485% more data

on average than Tier 1 subscribers – these extreme subscribers represent a only a modest

percentage of the subscriber base. Tier 4 subscribers only account for 2.5% of the sample.

Over 90% of subscriber -day observations are from Tiers 1 and 2.

Exceeding the usage allowance is fairly infrequent in our sample, as only about 2% of

subscriber -month observations have usage in excess of the allowance. This rate of overages

is notably lower than the approximately 10% rate reported in Nevo et al. (2016), and is

largely due to the recent substantial increase in allowances. The distribution of the ratio

of usage to the usage allowance at the subscriber -month unit of observation is presented

in Figure 2(a). Most individuals, particularly those on less-expensive plans use only

a small amount of their allowance. However, there is considerable variability in usage
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Figure 3: Temporal Usage Patterns
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Note: This figure presents statistics on how usage is distributed throughout the day. In panel (a), daily

usage in the This figure presents two figures related to how daily usage is proportionally distributed

across the day. In panel (a), average hourly usage in gigabytes are reported for each hour aggregated

across all subscribers. In panel (b), we report the proportion of overall usage during each hour across

all users (series sums to 100%).

from month to month. Figure 2(b) provides a histogram of the maximum proportion

of the monthly usage allowance used by each customer over the eleven month sample.

Approximately 14% of customers exceed their usage allowance during the panel, and the

average of this maximum usage is over 70%. Observing most consumers making marginal

decisions during the panel is helpful for identification purposes.

2.2 Temporal Patterns in Usage

Temporal patterns in usage play a crucial role for understanding the potential for more

efficient use of broadband networks. Figure 3 presents statistics on how usage varies by

time of day. Panel (a) of Figure 3 displays average daily usage for each hour in both the

upstream (e.g. uploading a file to icloud) and downstream (e.g. streaming movie from

Netflix). The proportion of downstream traffic is approximately 90% at every hour of

the day. This directional disparity is almost exclusively due to OTTV and web browsing

being heavily asymmetric and constituting the majority of traffic at all hours. Usage

follows a cyclical pattern of maximum usage around 9PM (0.2 GBs) and minimum usage

around 4AM (0.03 GBs). This pattern is nearly identical to what is found in Malone

et al. (2014) with IPDR data from 2012. Throughout this analysis, we will refer to

12PM–12AM as peak hours, i.e. the 12 hours when the network is most highly utilized,

9



Figure 4: Day-of-Week Variation in Temporal Usage
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Note: This figure presents average daily usage in gigabytes for each day of the week.

and the rest of the day as off-peak hours. Approximately 70% of usage occurs during

peak hours. Panel (b) of Figure 3 presents the proportion of daily usage by each hour,

showing that the peak hour (9PM) alone represents just over 8% of daily usage.

We find that these average temporal patterns do not differ substantially by the day

of the week. Figure 4 presents average usage by hour for each day of the week. There

is a small intuitive difference between average usage on weekdays and weekends during

off-peak hours. From 8am until roughly 3pm, usage is slightly higher during the weekends

when individuals are more likely to be home and using the Internet. In our modeling and

analysis, we ignore this small difference, because for our purposes the difference is small

and occurs during off-peak hours, thereby having a minimal impact on network costs.

Perhaps most interestingly, we find that the pattern in daily usage does not consis-

tently relate to the level of a consumer’s overall usage, despite substantial heterogeneity

in temporal patterns across consumers. To see this, we calculate the proportion of total

usage for each consumer during each hour of the day over the entire panel. Figure 5(a)

presents the mean proportions for different deciles of users where consumers are assigned

to deciles based on their total usage. The heaviest-usage consumers (10th decile) have

only a slightly flatter profile throughout the day, revealing a very weak correlation be-

tween the volume and timing of usage. Yet, the absence of a strong relationship between

the volume and timing of usage hides substantial heterogeneity in the timing of usage

across consumers within any given decile.

For each hour of the day, Figure 5(b) presents the distribution across consumers of

the proportion of usage during that hour. For example, during the 9PM hour 50% (95%)

of people have average usage that is less than 6.5% (13.7%) of their average daily usage
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Figure 5: Statistics of Usage as a Percentage of Daily Total
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Note: This figure presents two figures related to how temporal patterns in usage varies by consumer. In

panel (a), we report hourly percentages for deciles 3, 5, 7, and 10, where the deciles are calculated

using each consumer’s total usage across the entire panel. That is, the 10th decile includes consumers

in the top 10% of all consumers in terms of average monthly usage. Each series sums to 100%. In panel

(b), we report variation in the temporal profile across all users. Specifically, for each user we calculate

the proportion of their overall traffic used during each hour of the day. Panel (b) reports the

heterogeneity in these proportions across consumers during each hour.
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over our panel (line within the box represents median). The box and whiskers capture

the interquartile range (25th and 75th) and the 5th and 95th quantiles, respectively. The

dispersion at every hour is indicative of substantially different temporal usage patterns

across consumers, albeit not correlated with the overall level of the consumer’s usage. In

Section 3 we discuss how we account for this important source of heterogeneity in our

model.

Together, Figures 3, 4, and 5 show a strong and consistent pattern in usage across

the day. This pattern suggets ISPs must invest enough in their network to meet demand

or the network will become poor and unreliable. One unique feature of our data is we

observe numerous periods of excess demand placed on the network that result in con-

gestion. Additionally, we also observe the ISP make substantial investments to increase

the capacity and improve the quality of their core network. The behavioral response of

subscribers to variation in congestion is of primary interest to our analysis. We next

discuss measures of congestion, and behavioral responses to congestion–mitigation efforts

by the ISP.

2.3 Network Congestion and Packet Loss

Network congestion occurs when subscriber demand exceeds some capacity constraint

on the network. During congested periods, subscribers may find that websites fail to

load or online video buffers multiple times. There are two ways to measure congestion in

our data. One is through hourly average node utilization. The node being the primary

bottleneck in the “last mile” of an ISP’s network. The second being the hourly proportion

of packets dropped/delayed, which we, and others, refer to as packet loss.

One advantage of hourly packet loss over node utilization is that packet loss is an

individual measure instead of an aggregate one. Even when a node is highly utilized,

some subscribers may have a normal experience over the hour. Packet loss occurs when

data is undeliverable to a subscriber because current network delivery queues are full.

Depending on if the data are dropped or delayed, the subscriber’s computer may have

to request the data again, further increasing the time of delivery. Packet loss is more

likely to occur when nodes are highly utilized, which we observe in our data.13 We only

observe node utilization at the hourly level, too, which may not be granular enough to

accurately reflect a subscriber’s experience within an hour. However, the performance of

the network at the instant the subscriber sends and receives packets will be reflected in

subscriber-specific hourly packet loss measures.

As part of the FCC’s efforts to monitor the quality of broadband networks, it pro-

13The two measures, hourly utilization and packet loss, have a correlation coefficient equal to 0.164.
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Figure 6: Industry Statistics on Packet Loss from FCC’s 2015 Report
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Note: This Figure is a reproduction from the FCC’s 2015 Measuring Broadband America Fixed Report

(https://www.fcc.gov/reports-research/reports/measuring-broadband-america/measuring-broadband-

america-2015), which we have modified to include statistics from our ISP’s sample. From the FCC

report, it is not clear exactly how their statistics are calculated, but our personal experience with

SamKnows data suggests the statistics are the average of hourly packet loss percentages from a specific

test conducted by the modem. We calculate the average for “our ISP” according to this methodology. If

we aggregate to a daily level, the average is 0.9%.
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duces an annual report on the state of broadband networks titled “Measuring Broadband

America Fixed Broadband Report”. In the 2015 version, the FCC includes analysis of

data from special (SamKnows) modems, which are distributed across numerous ISP net-

works. In addition to serving their normal function, these modems conduct hourly tests

to measure the performance of the network. One of these tests seeks to measure packet

loss by performing an FTP transfer to designated servers located throughout the US.

Figure 8 of their report, which we have reproduced in Figure 6, presents statistics on

packet loss from each ISP’s network. While it is not clear how the values in their Fig-

ure 8 are calculated, our experience working with identical data suggests the reported

statistics are average hourly packet loss, where the average is taken across subscribers

and hours of the day. In our reproduction the FCC figure, we calculate the same statistic

for our ISP. This particular measure of network performance would rate our ISP as the

third worst across all types of networks in the FCC data (DSL, cable, fiber, and satellite).

If you calculate the overall percentage of daily packets lost, rather than the average of

hourly percentages, our ISP would be the worst at around 0.9% of all packets lost. By

either defintion, our sample represents a great opportunity to study the importance of

congestion in broadband networks.

We now provide a more detailed analysis of the measures of congestion we have in

our sample. Most packets are passed during peak hours when usage is highest. This

relationship follows from how requests are made online. Whenever a subscriber requests

a website, a file to download, or a video to stream on the Internet, packets are sent

between the subscriber’s computer and the item’s location. We also observe the highest

frequency of dropped/delayed packets during peak hours in panel (b). The reasoning is

twofold. First, there are more packets passed during these hours. Second, peak hours are

when node utilization is highest.

At the subscriber level of observation, the distribution of hourly packet loss is highly

skewed. For example, in panel (a) of Figure 7, average packet loss is around 1% at

9PM. However, from panel (b), we find over 85% experience less than 0.2% packet loss.

Therefore, the majority of people experience little packet loss over the day, but in some

cases, packet loss is very severe. The effects of packet loss on customer experience can

be variable, too. For example, when watching a streaming video, 0.5% of packet loss

may be acceptable for the video to finish. However, if someone is browsing a website,

dropping a single packet could be the difference in a website failing to load correctly. This

is important from a modeling standpoint, as we provide a flexible framework to estimate

a rich distribution of tastes, which accounts for heterogeneity in the types of content the

individual prefers to consume.
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Figure 7: Average Hourly Subscriber Packet Loss
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Note: These figures report statistics of average hourly packet loss. For each subscriber in the sample,

we average hourly packet loss across the panel to generate these figures. In panel (a), we report average

hourly packet loss for all subscribers. In panel (b), reports the percentage of average packet loss that is

over various thresholds. For each subscriber in the sample, we average hourly packet loss across the

panel. The percentage of hourly observations over 0.2%, 0.4%, 0.6%, 0.8%, and 1% are shown in the

figure.

Panel (b) of Figure 7 better captures the right-tail of the packet loss distribution. In

this Figure, we present the the percentage of subscribers that are over various packet

loss thresholds by hour. Notice in the early morning, when packet loss is lowest, about

3% of subscribers still experience about 1% packet loss on average, compared to the

day’s maximum of 10% during peak hours. Interestingly, after 8AM the percentage of

subscribers exceeding each threshold remain fairly constant over the remainder of the

day.

2.4 Evolution of Network Quality

Since our data span a ten-month window, we observe changes in the overall quality of

the network that, given the correlation between node utilization and packet loss, would

improve packet loss and the network state. In panel (a) of Figure 8, the weighted average

of peak node utilization is plotted for each week in our panel. Not only is there variation

across the year, but there are distinct drops in May, September, and December where

the ISP improved node capacity. These changes are also noticeable in how median peak

utilization varies in panel (b). The dashed whiskers in panel (b) represent the 5th and

95th percentiles of peak usage, where even during these network events the variation
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Figure 8: Weekly Node Utilization Statistics
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Note: Figure presents the weekly variation in peak utilization of network nodes. The green box is the

IQR in each week, the red line is the median, and the blue dashed lines extend to the 5th and 95th

percentiles.

Table 2: Changes in Node Utilization and Packet Loss After Node Split

Before After Diff % Change

Hourly Utilization 49% 34% -15% -31%
Max Hourly Utilization 87% 62% -25% -29%

Hourly Packet Loss 0.11% 0.08% -0.03% -27%
Max Hourly Packet Loss 1.0% 0.61% -0.39% -39%

Note: This table reports how the averages of node utilization and packet loss compare before and after

the node split. 7 days of data is taken from before and after the node split date to calculate means.

These averages are at the node level of observation and are weighted by the number of people on the

node.

within a week is unaffected.

One way an ISP can alleviate congestion on a node is to perform a node split. This

is just one option available to an ISP – an ISP can use other hardware, software, and

licensing methods to change the capacity of and bandwidth made available to a node.

An example of a node split is for the operator to take a node and split its subscribers

across two new nodes. When such a change is made, the network state for the affected

subscribers should be improved since there are half as many subscribers using the same

node. If subscriber behavior is responsive to such changes in network quality, we would

expect an increase in usage. Note that the increase in usage could come from a change

in the subscriber himself, or bandwidth adaptive applications becoming more responsive.

There are 5 distinct node splits in the data, whereby a group of subscribers is clearly

split over two new nodes. Changes in network conditions are summarized in Table 2
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Table 3: Changes in Daily Usage After Node Split

Before After Diff % Change

Off-Peak Usage 0.75 GB 0.74 GB -0.01 GB -1.3%
Peak Usage 1.80 GB 1.99 GB 0.19 GB 10.5%

Total Daily Usage 2.55 GB 2.73 GB 0.18 GB 7.1%

Note: This table reports how subscriber behavior changed around a node split. 7 days of daily usage is

taken from before and after the node split date to calculate means. This table summarizes usage for

2,627 subscribers over 5 node splits.

Figure 9: Heatmap of Peak Packet Loss Transitions
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Note:

and subscriber usage in Table 3. We do see improvements in the average network state

with decreases in both utilization and packet loss. Maximum hourly node utilization

falls by 29% and maximum hourly packet loss falls by 39%. Over this same period, we

find a 7.1% increase in daily usage. Peak usage increases by 10.5%, while off-peak usage

decreases 1.3%. This suggests that there is some degree of unmet demand prior to the

node split that is now able to be realized, and weak evidence of intra-day substitution to

avoid congestion during peak hours.

In Table 4 and Figure 9, packet loss is split into seven bins that are used to study

how persistent packet loss is day-to-day; the values in the heat map are the same as in

the table. From these transition probabilities, there are a couple of notable takeaways.

First, if a subscriber’s peak packet loss is poor one day, there is a high probability it

will be better the next day. Second, if a subscriber does end up in the worst packet loss

state, they are most likely to be in a poor state the next day. Third, the vast majority

of subscribers experience low packet loss and will experience low packet loss tomorrow.

For the model, we use the transition matrix in Table 4 to estimate the frequencies
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Table 4: Transition Matrix of Peak Packet Loss

Next State
Initial State 0–0.2 0.2–0.4 0.4–0.6 0.6–0.8 0.8–1 1–10 10–100

0–0.2 0.984 0.002 0.001 0.001 0.001 0.006 0.004
0.2–0.4 0.662 0.086 0.044 0.027 0.021 0.124 0.037
0.4–0.6 0.570 0.074 0.055 0.037 0.027 0.186 0.051
0.6–0.8 0.526 0.041 0.031 0.062 0.039 0.235 0.066

0.8–1 0.511 0.032 0.026 0.042 0.059 0.244 0.087
1–10 0.316 0.023 0.020 0.029 0.029 0.364 0.218

10–100 0.122 0.004 0.003 0.005 0.005 0.119 0.741

Note: This table reports probabilities of peak hour -day packet loss transitions at the subscriber level of

observation. Each bin is of the form (x%, y%] and represent a range of packet loss. The first bin

includes 0% packet loss, too.

Table 5: DPI Application Groupings

Groups Description (Examples)
% of
All Usage

Administration System administrative tasks (STUN, ICMP) 1.19
Backup Online storage (Dropbox, SkyDrive) 0.58
Browsing General web browsing (HTTP, Facebook) 26.70
CDN Content delivery networks (Akamai, Level3) 2.95
Gaming Online gaming (Xbox Live, Clash of Clans) 3.06
Music Streaming music services (Spotify, Pandora) 3.40
Sharing File sharing protocols (BitTorrent, FTP) 0.20
Streaming Generic media streams (RTMP, Plex) 6.26
Tunneling Security and remote access (SSH, ESP) 0.07
Video Video streaming services (Netflix, YouTube) 55.47
Other Anything not included in above groups 0.13

of transition between packet loss, or network congestion, states. Below in the model

discussion, this will beGψ. This matrix will be used to solve the model. For the estimation

procedure, all we need are day-hour observations of daily consumption and the observed

peak packet loss state for each account in the sample.

2.5 Composition of Usage and External Validity

The data discussed above, and used for our analysis, does not provide insight into

the types of online activities for different types of users, only the volume and timing.

We now provide descriptive statistics on the composition of usage from a another ISP’s

network. The data is from over 500,000 customers and national in scope, and from the

same period, February – December 2015. We do not use this data in our analysis, only

to demonstrate the patterns in the data used for the analysis, particularly temporal ones,

are representative, and to provide further insight into usage patterns and rationalize some
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Figure 10: Data: Monthly Usage by Quantile and Traffic Type
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(a) Deciles of Daily Usage %s by Hour
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(b) Distribution of Daily Usage %s by Hour

Note: This figure presents two figures related to how daily usage is proportionally distributed across

the day. In panel (a), we report the average proportion by hour for certain deciles of users where the

deciles are based on total usage (e.g., the tenth decile is the top 10% of consumers). In pane (b), we

report the distribution across all consumers of these proportions at each hour.

of the predictions from our model estimates.

Table 5 presents the way we group traffic from the DPI platform, and reports the

overall percentage of usage for each of the categories. We find that video, music, and

streaming collectively account for over 65% of overall traffic, while browsing represents

nearly 27%. Perhaps surprisingly, since they previously represented important sources of

growth in Internet traffic, combined gaming and sharing represent less than 4% of traffic,

while all other sources represent a negligible share. Thus, for the remaining descriptive

statistics below we use only four categories: browsing, video, music/streaming, and other.

Figure 10(a) presents the composition of total usage for each quantile of user, where

the quantiles are defined based on average monthly usage over the sample. For example,

the user with the median average-monthly usage has traffic that is approximately 42%

video, 28% browsing, 10% music/streaming, and the remaining 10% of traffic from all

other sources. Interestingly, there is a nearly monotonically increasing pattern between

the proportion of video and a consumer’s overall usage. For high-usage consumers, the

greater proportion of video is associated with a lesser proportion of browsing, other

proportions remain largely unchanged. Figure 10(b) presents the overall level of usage

for each of the quantiles, again broken down by traffic type. The median usage is around

45 GBs, corresponding to about 19 GBs of video each month, or roughly 10 full-length

movies. For the 99th percentile user, monthly usage averages over 700 GBs, corresponding
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Figure 11: Data: Hourly Usage by Group
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(a) Deciles of Daily Usage %s by Hour
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(b) Distribution of Daily Usage %s by Hour

Note: This figure presents two figures related to how daily usage is proportionally distributed across

the day. In panel (a), we report the average proportion by hour for certain deciles of users where the

deciles are based on total usage (e.g., the tenth decile is the top 10% of consumers). In pane (b), we

report the distribution across all consumers of these proportions at each hour.

to nearly 400 GBs of video, or roughly 200 full-length movies.

Figure 11(a) and 11(b) present average usage by hour and traffic type, and the propor-

tion that each traffic type accounts for at each hour, respectively. The overall temporal

pattern in average usage is nearly identical to the pattern from the data above that is

used for our analysis. Video is the most peak-intensive activity, which is not surprising

given that most OTTV services require the user to download the movie at the same time

as viewing it.

These statistics provide a strong source of external validity for the data for our analy-

sis, in terms of its representativeness of US broadband usage patterns. Peak usage is only

slightly higher in the DPI data, which is consistent with unlimited usage allowances and

a less-congested network. Additionally, despite the astounding magnitude of the usage

by some consumers, the patterns in the DPI data present an opportunity of sorts for sim-

ple economic and technological solutions to congested networks. The vast proportion of

traffic for the highest-usage consumers is comprised of video, which is a passive activity.

Specifically, other than live TV which represents a tiny share of OTTV service traffic,

video content need not be downloaded at the same time that it is consumed. Thus, tech-

nological and economic solutions to assist in moving video downloads to off-peak hours

may introduce efficiencies and improved welfare. Exploring these solutions will be the

focus of our counterfactual exercises.
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3 Model
Our model builds on the model of Nevo et al. (2016). Like Nevo et al. (2016), the

consumer makes a series of usage decisions on an optimally chosen plan over a finite

horizon. However, there are a few substantial and important differences between the

models. We explicitly incorporate network congestion into the model, which captures a

salient feature of our data. Additionally, we further disaggregate the daily usage decision

into daily peak and off-peak usage decisions. These additions to the model permit a

more flexible framework to measure the return to investing in broadband networks and

studying richer and more-interesting counterfactual scenarios.14

3.1 Subscriber Utility From Content

Subscribers derive utility from consumption of content. Each day of a billing cycle,

t = 1....T , a subscriber chooses the amount of content to consume during peak and

off-peak hours on their chosen service plan, k = 1, ..., K. Plans are characterized by

a provisioned speed content is delivered in the absence of congestion, sk, by a usage

allowance, Ck, by a fixed fee Fk that pays for all usage up to the allowance, and by an

overage price, pk, per GB of usage in excess of the allowance. The menu of plans, and

the characteristics of each, are fixed.15 The provisioned speed is impacted by the state of

the network, ψ, which changes daily due to variation in congestion and periodic network

upgrades. We assume this evolution follows a first-order Markov process, Gψ.

Utility from content is additively separable over all days in the billing cycle, and across

billing cycles.16 Let consumption of content during peak and off-peak hours be denoted

by cp and cop, respectively. The utility for a subscriber of type h on plan k is given by

uhk(cp, cop, ψ, υ) = υ1

(
(cop + cp)

1−αh

1− αh

)
− c2op

(
υ2κh
ln(sk)

)
− c2p

(
κh

ln(ψsk)

)
.

The first term captures the subscriber’s utility from consuming the content. Marginal

utility is declining, as we expect the first of any activity (email, web browsing, video, etc.)

to bring higher marginal utility than subsequent usage. The convexity of the utility func-

14Given that our focus is on the role of congestion, as mentioned above, we limit our sample to only
subscribers who never switched plans over the duration of the panel. This does not affect our analysis
because service plans were upgraded shortly before our sample such that 90% of subscribers made no
changes during our period of observation. Allowing for plan switching introduces a dependency across
billing cycles in the dynamic problem, and by not modeling it the computational burden of solving the
model is reduced substantially.

15Plans were changed months prior to our sample, but unchanged during our sample, and the ISP had
no plans to change them in the months after our sample ends.

16Nevo et al. (2016) show that there is only weak evidence to suggest content is transferred across
days and billing cycles.
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tion is also quite flexible, nesting everything between log (αh → 1) and linear (αh = 0).

This leads to a straightforward link between αh and the price elasticity of demand, such

that αh is the elasticity with respect to the entire cost associated with consuming content.

Uncertainty in utility from consumption of content is introduced by a time-varying shock,

υ1, which is realized at the beginning of each day before either consumption decision is

made. We assume that υ1 is independently and identically distributed according to an

exponential distribution with parameter, λ1h, for each consumer type, h.

The second and third terms of the utility function capture the consumer’s cost of

consuming content during off-peak and peak hours, respectively, for a consumer of type

h. During peak hours the marginal cost of usage is given by cp
κh

ln(ψsk)
such that increas-

ing Internet usage comes at the cost of alternative activities with greater value. The

consumer-type specific parameter κh > 0 interacts with the plan’s provisioned speed and

the state of the network to determine the marginal cost of consuming the content, cap-

turing the consumer’s preference for speed and the opportunity cost of the consuming the

content. Importantly, for any finite speed, this specification implies that each subscriber

type has a satiation point even in the absence of overage charges.17 The multiplicative

specification with the network state, ψ, and provisioned speed, sk, captures the propor-

tional rationing of bandwidth used by the ISP when the network is congested. During

off-peak hours, the marginal cost of consuming content is cop
υ2κh
ln(sk)

. Congestion is a lesser

concern so ψ is omitted and provisioned speeds are realized, but consumers may experi-

ence different costs due to their opportunity cost of consuming content during off-peak

hours relative to peak hours. To capture this, we scale κh by a shock υ2, which is realized

before making either daily usage decision. This shock is iid and distributed as a truncated

exponential distribution with parameter λ2h.
18

This specification of the benefit from consuming content assumes that the value de-

rived from content is similar across the day, i.e., enters the utility function additively, and

that differences in the utility derived from content arises on the cost side. For example,

the value from watching a movie on Netflix, cost considerations aside, is the same during

peak and off-peak hours. This assumption is reasonable for the vast majority of con-

tent, particularly OTTV, which currently constitutes two-thirds of usage and continues

to grow.

17Our specification of this cost departs slightly from that of Nevo et al. (2016), by not including an
additive fixed value, κ1 in their model, that does not interact with speed. However, this parameter is
only weakly identified, as the limiting case with unbounded speed that would fully reveal this cost does
not occur in our data.

18Only the relative changes in peak vs. off-peak costs, and its variability, is identified conditional on
the network state and a realization of υ1. This makes it unnecessary to have a stochastic element to
costs during peak and off-peak hours.
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3.2 Optimal Usage

Like Nevo et al. (2015), a consumer solves a finite-horizon dynamic programming

problem within each billing cycle.19 There are a total of T days in each cycle, and the

consumer must make two decisions each day (t), usage during off-peak and peak hours,

ctop and ctp , respectively. We assume the consumer observes realizations of υ1T and

υ2T , and knows the distribution of potential network states during peak hours, Gψt|ψt−1 ,

before choosing ctop on day t. Further, we assume ψt is known (or is costless to discover)

when ctp is chosen later in the day. For a consumer on plan k, we denote the amount

of his unused usage allowance on day t as Ckt ≡ Max{Ck − Ct−1, 0}, where Ct−1 is

cumulative usage up until that day. Similarly, denote day-t overages as Otk(ctop + ctp) ≡
Max{ctop + ctp − Ck(t−1), 0}.

A recursive solution to the dynamic program is straightforward, but requires solving

a series of intra-day optimization problems nested within a larger non-stationary (due to

the finite horizon) inter-day optimization problem. During peak hours on the last day of

the billing cycle (T ), the consumer solves a static optimization problem, conditional on

usage during off-peak hours (cTop), the state of the network (ψT ), and preference shocks

(υT ). Depending on the values of cTop , ψT , and υ1T , the consumer will either consume a

satiation level of utility such that
∂uhk(cTop ,cTp ,ψT ,υT)

∂cTp
= 0, the remaining portion of their

allowance such that CkT = 0, or incur overages such that
∂uhk(cTop ,cTp ,ψT ,υT)

∂cTp
= pk. Denote

this optimal level of consumption, or the policy function on day T during peak hours, as

c∗hkTp(cTop , CT−1, ψT , υT ).

Given the optimal policy during peak hours on day T , the optimal policy for off-peak

usage, c∗hkTop(CT−1, ψT−1, υT ), satisfies

c∗hkTop = argmax
chkTop

∫
ψ

[
υ1T

(
chkTop + c∗hkTp

)
1− αh

1−αh

− (chkTop)2
(
υ2Tκh
ln(sk)

)

− (c∗hkTp)2
(

κh
ln(ψsk)

)
− pkOtk(chkTop + c∗hkTp)

]
dGψ(ψ|ψT−1),

where the expectation is only over ψ (which impacts the current speed and the optimal

peak-usage policy) because υ1T and υ2T are known when c∗hkTop is chosen. The expected

value from following the optimal policies during off-peak and peak hours on day T con-

19The observability of the network state and our focus on the approximately 90% of consumers enrolled
on a single plan the entire sample period simplifies the characterization of optimal usage by eliminating
inter-billing cycle dependency.
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ditional on entering that day at state, (CT−1, ψT−1), equals

E(ψ,υ) [VhkT (CT−1, ψT−1)] =

∫
ψ

∫
υ

VhkT (CT−1, , ψT−1ψ, υ)dGh
υ(υ)

 dGψ(ψ|ψT−1),

where VhkT (CT−1, ψT−1, ψ, υ) is the value associated with following the optimal policies

for a particular realization of the network state (ψ) and preference shocks (υ).

Optimal policies are defined similarly for any day t < T . The optimal peak-usage

policy on day t, c∗hktp(chktop , Ct−1, ψt, υt), satisfies

c∗hktp = argmax
chktop

[
υ1t

(
chktop + chktp

)
1− αh

1−αh

− (chktp)2
(

κh
ln(ψtsk)

)

+ βE(ψ,υ)

[
Vhkt(Ct−1 + chktop + chktp , ψt−1)

] ]
.

Similarly, the optimal policy for off-peak hours on day t < T is

c∗hktop = argmax
chktop

∫
ψ

[
υ1t

(
chktop + c∗hktp

)
1− αh

1−αh

− (chktop)2
(
υ2tκh
ln(sk)

)
− (c∗hktp)2

(
κh

ln(ψsk)

)

+ β

∫
υ

Vhk(t+1)(Ct−1 + chktop + c∗hktp , ψ, υ)dGh
υ(υ)

]
dGψ(ψ|ψt−1).

These state-dependent integrated policy functions, along with various transformations of

the policy functions, are stored along with the value functions when the model is solved

for each customer type, h, on every plan, k. This permits a comparison of usage and

utility for each type to identify that type’s optimal plan. Our econometric approach

discussed in Section 4 only requires solving the model once for each type.

3.3 Plan Choice

We assume consumers select plans to maximize expected utility, before observing any

utility shocks, and remain on that plan during our sample. More precisely, we assume

that the subscriber selects one of the offered plans, k ∈ {1, ..., K}, or no plan, k = 0,
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such that

k∗h = argmax
k∈{0,1,...,K}

{
E(ψ,υ) [Vhk1(C1 = 0, ψ1)]− Fk

}
.

The optimal plan, k∗h, maximizes expected utility for the subscriber given the current

state of the network and optimal usage decisions, E [Vhk1(C1 = 0, ψ1)], net of the plan’s

fixed access fee, Fk. The outside option is normalized to have a utility of zero. Note,

that we assume that there is no error, so consumers choose the plan that is optimal.

Similar to Nevo et al. (2015), (potentially weak) tests of optimal plan choice reveal

that it is extremely rare to observe a subscriber whose usage decisions are such that

switching to an alternative plan would yield a lower total costs at no slower speeds. The

weakness of this optimality test is due to the positive correlation between speed and usage

allowances of the offered plans (see Figure 1). Our assumptions on plan choice are easily

relaxed in theory, but introduce a substantial additional computational burden. Given

the infrequency of both clear ex-post mistakes in choosing a plan and switching of plans

in our sample, there is little evidence to infer the assumption is incorrect. This optimality

assumption results in a one-to-one correspondence between plans (k) and consumer types

(h).

The conditional integrated usage policy functions for a consumer type (h) on their

optimal plan (k∗h), c
∗
hk∗htop

and c∗hk∗htp , serve directly as the basis for our estimation proce-

dure. The goal of the procedure being to assign each consumer in our data a type from

the model by comparing observed behavior to that predicted for each type. This differs

from Nevo et al (2016)’s application of the fixed-grid random-effects (FGRE) method-

ology of Fox et al (2015), which aggregates policy functions across types (h) to match

unconditional population moments. This aggregation procedure requires linearity in the

type-specific weights to be computationally feasible (a linear objective function). Our

panel data adaption of the Fox et al (2015) methodology, which we discuss in Section 4,

circumvents this linearity restriction along with other advantages.

4 Estimation
Our estimation approach is a panel-data modification of Fox et al. (2015), which

Nevo et al (2016b) refer to as a fixed-grid fixed-effect (FGFE) estimator. The approach

exploits the richness of panel data to build upon the application by Nevo et al (2016a)

of the fixed-grid random-effects (FGRE) approach of Fox et al. (2015). In contrast

to the FGRE approach, our FGFE approach permits identification of each subscriber’s

type, rather than just the distribution of types, and also allows consideration of moments

from the model that are not non-linear in the type-specific population weights. This is
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advantageous for identification of the model and consideration of richer counterfactual

exercises where knowledge of an individual’s type is useful rather than just the distri-

bution of types. In applications where observable consumer characteristics are available,

recovering each consumer’s type permits the fixed parameter vector characterizing them

to be projected on these characteristics. We discuss these advantages in greater detail

below.

4.1 Econometric Objective Function

For each individual, i = 1....I, our data includes a series of data, m = 1.....M ,

which captures usage at a daily frequency on an optimally chosen plan.20 This includes

both off-peak usage,
(
ci1op , ci2op , ...., ciMop

)
, and peak usage,

(
ci1p , ci2p , ...., ciMp

)
, for each

consumer (i), as well as the accompanying observable portion of the state on each day

(m), (tm, Ctm−1, ψtm).

We solve the model for 4,096 types of consumers, corresponding to a fixed grid with

eight points of support for each of the four parameters, (αh, κh, λh1, λh2). The solution to

the model yields state-dependent integrated policy functions for peak and off-peak usage

on each type’s optimal plan, c∗hk∗htop and c∗hk∗htp , respectively. In addition, we calculate the

expectation of the square of optimal usage during off-peak and peak hours, c2∗hk∗htop and

c2∗hk∗htp , respectively.

The goal of the estimation algorithm is to identify which of the H = 4, 096 types’

behavior from the model best match the behavior of each individual, i = 1, ..., I, over the

panel of data. We use a least-squares criteria to compare fit, such that the type h that

best matches to consumer i is given by

ĥi = min
{h=1....H}

[
M∑
m=1

z̃′ihz̃ih

]
,

where

z̃ih =


cimop − c∗hk∗htm(op)

c2imop
− c∗2hk∗htm(op)

cimp − c∗hk∗htm(p)

c2imp
− c∗2hk∗htm(p)

 .

20We drop the small fraction of subscribers, less than 2%, for which we do not observe a complete time
series.
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This process is repeated for each i.21 Aggregating across the chosen types for each

consumer, i, the population weights for each type of consumer, h, is then

θ̂h =
1

I

I∑
i=1

1
[
ĥi = h

]
.

Standard errors on the distribution of types in the population are calculated through

a block-resampling procedure. Specifically, a block of dependent data in our application

is characterized by a complete billing cycle for each consumer. We repeatedly sample,

with replacement, blocks of data for each consumer to create, r = 1, ..., R, time series of

the same length and dependency structure for each of the I consumers. We then calculate

each individual’s type for each of the R time series, which yields standard errors for each

type’s population weight θ̂h.

There are a some advantages of the FGFE approach in panel-data applications like

ours. First, even compared to the constrained convex optimization problem in the FGRE

approach of Fox et al (2015), there can be computational advantages. In that FGRE

setting, practical numerical collinearity issues can arise for even moderately dense type

grids and parameters that are less strongly identified. The pooling of individuals data

to calculate moments creates a mixture problem that the optimization must undo. In

instances where the model predicts two types to behave similar at states observed in

the data, numerical instability due to collinearity can result. Second, and related to

the first advantage, the FGFE approach does not require that the moments used in

estimation be linear in the type-specific weights. In the FGRE approaches, this linearity

is necessary or the problem becomes a constrained nonlinear optimization problem that

is intractable with even a moderate number of types. This limits the moments available

to use in estimation, which can lead to difficulty in differentiating between types due to

constraints on the types of behaviors predicted by the model that one can exploit during

estimation.

Another advantage of the FGFE approach is that it fully characterizes the discrete

distribution of types, but in contrast to FGRE demand models like Fox et al. (2015),

Nevo et al. (2016a), and other random-coefficient models (e.g. Berry et al. (1995)),

the mapping between an individual and a type is preserved (ĥi). The panel data elim-

21This approach can easily be adapted to a likelihood criteria for type choice. The assignment of a type
to a consumer can also be probabilistic according to the relative likelihood contributions, rather than
the deterministic approach taken here. This essentially serves to refine the uniform prior over types that
the optimal plan-choice yields into a posterior as in a Bayesian framework. The details of this approach
is discussed in Nevo et al. (2016b).
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inates the need to aggregate across consumers to form moments, and this permits an

individual’s type to be inferred, rather than just the distribution of types in the pop-

ulation. In many applications in Industrial Organization, inferring an individual’s type

rather than only the distribution of types is useful. From the firms’ perspective, this

may permit different forms of discrimination (third-degree rather than second degree)

to be implemented through targeted offerings. Knowledge of each individual’s type can

also permit a decomposition of the parameters via the minimum-distance procedure of

Chamberlain (1982) when observable characteristics of the individual are available, as is

done in Nevo (2001). For example, one can regress the parameters describing an individ-

ual’s type, (αĥi , κĥi , λ1ĥi , λ2ĥi), on a vector of the individual’s observed characteristic to

decompose the parameter into observable and unobservable determinants of preferences.

The limitation is that the individual’s type is persistent or fixed. This is not particularly

limiting, because parameters can characterize distributions to explain temporal variation

in behaviors like λ1 and λ2 in our application.

4.2 Identification

Identification of our model closely follows the discussion in Nevo et al. (2016a). There

are a few important differences, each simplifying and improving identification. First, we

eliminate the κ1h parameter that led to a satiation point for usage even when speed

was unbounded. While we observe much higher speeds than Nevo et al. (2016a), this

dimension to the type space is not needed because the limiting case of infinite speed is

clearly not in our data, and given the additional computational complexity of our model,

eliminating it permits us to consider a denser grid over the other parameters. Second,

usage and plan choices are strong sources of identification. Plan choice can be thought

of as assigning each type to a plan and putting a uniform prior over the types on each

plan, while the usage moments can then distinguish between the types choosing a plan.

The flexibility of the FGFE approach is also important here, as we are able to consider

richer moments of usage, because we are not restricted to moments that preserve linearity

in the type weights. This is how we’re able to consider the first and second conditional

moments of usage, in contrast to Nevo et al. (2015), which only uses the unconditional

first moment.

Perhaps most importantly, we also have an additional source of variation in the price

of usage that can help identify a type. Like Nevo et al. (2015), usage-based pricing is

particularly helpful, as we observe a large number of marginal decisions by each consumer,

weighing the benefit of consuming more content against the increase in the probability

of overages (i.e., the shadow price of usage). This variation is helpful for pinning down
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the primary determinant of an individual’s elasticity of demand, αĥi . While the fraction

of individuals incurring overages in any billing cycle is lower in our data, the proportion

of individuals overall incurring overages at any point in the panel is higher so we observe

a greater fraction of individuals truly making marginal decisions on usage. However, in

addition to this price variation introduced by the nonlinear pricing, we also have extensive

variation in the network state, which shifts the cost of consuming content. This is helpful

in pinning down an individual’s preference for speed, κĥi , which would otherwise largely

be identified by plan choice alone. It also assists in identifying αh, which is the elasticity

with respect to the complete cost of usage.

5 Results
We present our estimation results in three parts. First, we summarize our estimates of

the types distribution. Next, we discuss the implications of our estimates of preferences

for measuring the value of investing and important policy issues. Finally, we discuss

counterfactual exercises that explore the value of economic and technological solutions to

reducing congestion.

5.1 Visualization of Type Distribution Estimates

We estimate a weight greater than 0.01% for 129 types. That is, 129 different types

(h) were chosen from the 4,096 candidate types considered. This concentrated mass

among a few types is similar to the result from Nevo et al. (2016), which had a slightly

smaller proportion of the candidate types receive positive weight. On each plan, the mass

is quite concentrated with the most common representing over 30% of the plan’s total

mass, and the top two types over 40%. Most of the types with positive weight, 85, come

from the most-expensive plan, despite it only representing about 2.5% of the sample.

This is intuitive since that plan has the most heterogeneity, types selecting the plan for

its high speed and its usage allowance, or both.

In Figure 12, we present the marginal distributions for two of the parameters to

demonstrate the flexibility of the econometric approach. Figure 12 (a) and (b) give the

marginal distribution for λ2 and α, respectively. The mass for both distributions are

well within the chosen support for the parameters, which is necessary so the discrete

support of candidate types doesn’t constrain optimization over the type weights. The

λ2 parameter that determines the intra-day allocation of usage, along with the network

state, has an intuitive shape and distribution. Most consumers, and the average user,

have peak usage that averages approximately five times off-peak usage. The mean of λ2

is about five and the vast majority of types are tightly distributed around that mean,
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Figure 12: Marginal Distribution of λ2 and α
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(b) Marginal of α

Note: The figures are the estimated marginal distributions for λ and α, respectively. Within each

panel, the sum of all five bars in each figure total 129, the total number of types.

Table 6: Descriptive Statistics for Types

Mean Median Mode

αh 0.62 0.60 0.70
λ1h 8.23 7 7
λ2h 5.71 5 5
κh 4.32 4 4

Note: This table reports descriptive statistics of the type distribution: mean, median, and mode.

while the heterogeneity in temporal usage patterns is also captured with some types with

λ2 = 1 (flat profile on average) receiving positive weight. The marginal distribution of α

is perhaps the most interesting with a clearly bimodal shape. The two modes represent

consumer types with substantially different elasticities for content, which has important

implications for each of the policy issues and counterfactual scenarios we discuss below.

The marginal distribution for all of the parameters is summarized in 6.

As would be expected given the quite different marginal distributions, the joint distri-

butions are quite irregular. Figure 13 gives the joint distribution of λ and α. The multi-

peaked nature of the α distribution is still clearly visible, but there are non-negligible

correlations between the two parameters. This demonstrates the importance of the flexi-

bility of our estimation approach, which allows for free correlations between each pair of

parameters rather than the normality and lack of covariance often assumed in structural

econometric applications. This flexibility is reflected in the fit of the model. For all

plans, the correlation between the empirical moments and the fitted moments is above

90%. The model also fits patterns in the data not explicitly used in estimation, similar
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Figure 13: Joint distribution of λ and α

Note: Joint histogram of λ and α given by frequency counts.

to those reported in Nevo et al. (2016).

5.2 Policy Implications of Preference Estimates

Directly from our estimates, it is straightforward to calculate the distribution of will-

ingness to pay for the central features of broadband service: connectivity speed and usage

allowances. Understanding preferences for these attributes have important implications

for regulatory guidance in a number of areas.

For connectivity speed, it is straightforward from the model to calculate the value

associated with increasing the speed of each type’s optimal plan by 1 Mb/s. We simply

resolve the model for each type after increasing the speed of their optimal plan by a fixed

amount and compare it to the currently-offered plans. This approximates the change in

expected utility at the beginning of a billing cycle with respect to speed, sk, for each

type, ∂V1(C1=0)
∂shk∗

. We find that a 1 Mb/s increase in speed on each type’s optimal plan is

valued at and average of $0.79. This value drops off extremely fast, as a 10 Mb/s increase

is valued at less than $4.

The fairly low preference for increased connectivity speed is interesting for a number

of reasons. The definition of broadband service now requires a speed of at least 25 Mb/s,

which is above the average speed of customers in our data. Thus, the FCC is well ahead

of the average consumer’s preferences with respect to what is needed for most commonly

used applications. Additionally, regulatory authorities have begun to make approval

of mergers and acquisitions conditional on substantial investment in networks. A recent

example is Altice’s acquisition of Cablevision, which was approved by the New York State

Public Service Commission conditional on Altice making $243 million of investment to

increase broadband speeds up to 300 Mb/s by 2017, along with expanding its network at
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a cost of $40 million to subsidize access for underserved areas.22 Our results suggest the

subsidies to cover the costs of access might be quite valuable, as access at even modest

speeds is highly valuable, but the larger expenditure to dramatically increase overall

speeds would likely not do much to penetration and have quite low value. For example,

an HD movie from most OTTV services requires approximately 5 Mb/s, and recent

encoding and compression technologies continue to reduce requirements, which suggests

that a home with 100 Mb/s (speed currently offered by Cablevision) could already stream

20 movies simultaneously. Thus, a more efficient allocation of these resources might be

to ensure that consumers are consistently achieving provisioned speeds, reducing the

frequency of congestion, rather than pushing the top end capabilities of the networks.

Similarly to preferences for speed, our model yields an estimate of the value of one

more GB added to each type’s optimal plan. This value equals ∂V1(C1=0)

∂Chk∗
, which is the

change in expected utility at the beginning of the billing cycle. We find the median

consumer values an additional GB at only $0.04, while the average is $0.09 due to the

extreme right tail of users. The relatively low value, particularly as compared to Nevo

et al (2016), suggests that current usage allowances are well ahead of most consumer’s

preferences. Additionally, the highly skewed nature of this valuation suggests that usage-

based pricing (as implemented by this ISP) is impacting only the heaviest of broadband

users.23

Thus, if the median consumer were to watch an additional typical HD movie each

billing cycle, approximately 2 GBs, the value to the consumer in expectation would be

about $0.08. This is quite small, because even if you substantially decrease the usage al-

lowances, the marginal value doesn’t increase too rapidly since most users are far from the

allowance in a typical month. Thus, the inframarginal cost of most of the bytes generated

by OTTV services is a tiny fraction of the marginal cost. This estimate is particularly

useful for the recent policy discussion around zero-rating policies by ISPs, i.e., the policy

of not counting usage from the ISP’s streaming service against usage allowances while

other OTTV services are. Our estimates suggest that the price differential introduced by

these policies is quite small for almost all users. Or, at the current ratio of allowances to

usage, zero-rating policies by ISPs have very little impact on disadvantaging competing

OTTV services.

22This decision can be obtained by going to the Commission Documents section of the Commissions
web site at www.dps.ny.gov and entering Case Number 15-M-0647 in the input box labeled “Search for
Case/Matter Number”.

23The plan features of the usage-based pricing by this ISP are similar to those implemented by other
North American ISPs, and so these estimates are not much different for the industry as a whole.
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Table 7: Counterfactual: Throttling

Throttling
Usage and Surplus Baseline 7 Mb/s

Daily Usage (GB) 2.5 2.9
Peak Usage (GB) 1.8 2.0

Off-Peak Usage (GB) 0.7 0.9
Consumer Surplus ($) 70.22 78.67

Revenue ($) 57.42 57.09

Note: This table reports how subscriber

behavior changes under throttling of connection speeds.

5.3 Economic and Technological Solutions to Congestion

Much has been made of the existence of congestion and its impact on customers and

the providers of applications and content whose product is degraded during congestion.

Our model estimates are helpful for both quantifying the surplus lost from congestion,

not necessarily welfare because we have no cost estimates, and also evaluating returns

to different solutions to congestion. In our model, the transition process of the network

state, ψ, dictates the uncertainty over, and level of, congestion realized by consumers.

Thus, the most straightforward way to measure congestion’s impact is to simply change

the ψ process to always be in the best state where realized and provisioned speeds are

equal. We find that completely eliminating congestion results in an average increase of

$6 per month for subscribers. This is perhaps a relatively modest increase in surplus, but

entirely consistent with the recently fading preference for increased connectivity speeds.

Thus, substantial and costly upgrades to broadband networks well beyond current levels

may not be the least-cost way to improve consumer welfare.

An alternative to large-scale investment would be to explore the viability of less-costly

economic and technological solutions to maximize existing networks. We explore three

potential solutions: peak-use pricing, throttling of connectivity speeds, and local-cache

technologies. We compare improvement in consumer surplus under each of these scenarios

to the baseline results discussed immediately above where we’ve eliminated congestion

completely.

Throttling Speed

The most-straightforward congestion solution to implement using our model is to

compare usage with throttling of connectivity speeds to a baseline case with no conges-

tion. To simulate the effect of such a policy, we present consumers with an option to

have their speed slowed after exceeding their usage allowance rather than incur overage

fees. We assume the throttled speed is 7 Mb/s, the upper limit of what is required to

stream from most OTTV services in HD. The results are in Table ??. The effect is a bit

33



Table 8: Counterfactual: Peak-Use Pricing

Allowance Reduction
Usage and Surplus Baseline 30% Reduction 50% Reduction

Daily Usage (GB) 2.5 2.6 2.4
Peak Usage (GB) 1.8 1.7 1.5

Off-Peak Usage (GB) 0.7 0.9 0.9
Consumer Surplus ($) 70.22 72.33 69.01

Revenue ($) 57.42 57.21 58.54
∂V1(C1=0)

∂Chk∗
($) 0.09 0.12 0.45

Note: This

table reports how subscriber behavior changes under peak-use pricing.

counterintuitive, as total usage during peak and off-peak hours increases. However, the

majority of consumers opt in, and without the possibility of overages, usage is heavier at

all hours. There additional usage improves consumer welfare, while there is only a slight

decrease in ISP revenue due to the absence of overage charges from those that opted into

throttling.

Peak-Use Pricing

We consider a simple form of peak-use pricing where off-peak usage is not counted

against the allowance, while peak usage is counted fully, and the allowance is decreased by

a given amount. The results are in Table ??. The first column provides a baseline where

congestion is absent from the network, while the second and third columns consider

a 30% and 50% reduction in the baseline allowance when only peak usage is counted.

Interestingly, and consistent with the results from the analysis of node splits, we find

that while peak usage responds to a higher price whether it be in the form of overages

or congestion, off-peak usage is largely unchanged. That is, the intra-day elasticity of

usage is quite small. Thus, simply raising the price of peak usage is not a particularly

attractive alternative, and it simply results in a small transfer from consumers to the

ISP. However, the bottom row of Table ?? provides a particularly useful insight into the

usefulness of peak-use pricing. As the allowance is decreased, the perceived cost of peak

usage for the consumer substantially increases. Even though the low elasticity makes the

usage response modest, this provides strong incentive to content providers to make the

traffic associated with their applications transferrable to off-peak hours. One way to do

that is through introduction of local-caching technologies.

Local-Cache Technology

OTTV services accounts for a disproportionate share of peak-use traffic. Yet, it is

a passive activity for which arrival of the content and actual consumption or viewing

of the content need not coincide temporally, unlike web browsing. This presents an
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Table 9: Counterfactual: Local-Caching Technology

Local-Caching Technology
Usage and Surplus Baseline λ2 50% Reduction

Daily Usage (GB) 2.5 GB 3.1 GB
Peak Usage 1.8 GB 1.7 GB

Off-Peak Usage 0.7 GB 1.4 GB
Consumer Surplus ($) 70.22 85.44

Revenue ($) 57.42 58.22

Note: This table reports how

subscriber behavior changes with the introduction of local-caching technologies.

opportunity to potentially shift the timing of the downloads to off-peak hours when the

network is under-utilized, while the viewing still occurs during peak hours. One approach

to detach the two activities is local caching of content. The ASAP feature on Amazon’s

Fire streaming device predictively caches content using machine-learning algorithms that

exploit past-viewing behaviors. The ASAP feature only loads a small portion of each piece

of content to improve quality, faster startup and higher resolution, but the technology

can be easily adapted to give the user more control over how much of each piece of

content to cache. Envision an application for OTTV services that is analogous to Tivo’s

functionality for traditional pay TV. Therefore, such solutions can be implemented at

very low cost.

Such a technology would be expected to decrease the effort associated with download-

ing OTTV during off-peak hours (envision a phone app for Netflix that allows the user

choose what and when to cache), but not change the utility from consuming it since that

can still be done during peak hours. In our model, this is similar to decreasing the mean of

the shock to the cost of off-peak usage λ2. In Table ??, we provide estimates of the effect,

relative to the baseline with no congestion, if local-cache technologies were to reduce the

cost of off-peak usage by 50% for all consumer types. This of course may substantially

understate its effect, as the heaviest of users consume substantially more OTTV services

and would benefit substantially from such technologies. Despite this potential downward

bias, we find that consumers benefit substantially from such technology, but only increase

peak-use slightly, a cost the ISP could surely recapture through re-optimization of prices.

6 Conclusion
We estimate demand for residential broadband using a 10-month panel of hourly sub-

scriber usage and network conditions. The key feature of our model is the incorporation of
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network congestion and allowing it to affect a subscriber’s daily consumption decision.24

There are three sources of variation we exploit in our data. First, we use (shadow) price

variation that results from the structure of usage-based pricing’s three-part tariff. Sec-

ond, we use cross-sectional variation in packet loss, our measure of network congestion,

across subscribers. Third, our ISP invested in the core network several times throughout

2015, creating times series variation in the overall quality of the network.

Our demand estimates are used to measure the value to subscribers from eliminating

network congestion. We find the improved network conditions encourage some subscribers

to downgrade, but any loss in revenue is entirely offset by an increase in consumer surplus.

Subscribers’ realized speeds increased by roughly 18% with each additional Mbps of speed

being valued at roughly $2.87.

There are several extensions to the basic model in this paper that can be explored in

future versions. First, we could allow consumers to switch plans. In our sample, around

12% of subscribers make a plan change by either moving to a more expensive or cheaper

plan; these subscribers are omitted from our original estimation. Under a usage-based

pricing regime, we expect some consumers may upgrade to a plan with a larger usage

allowance to account for their growing demand, while others may downgrade to better

align their usage with a lower allowance or due to cost concerns.

References
Dutz, Mark, Jonathan Orszag and Robert Willig (2009). “The Substantial Consumber

Benefits of Broadband Connectivity for US Households.” Internet Intervention Alliance

Working Paper.

Edell, Richard and Pravin Varaiya (2002). Providing Internet Access: What We Learn

from INDEX, volume Broadband: Should We Regulate High-Speed Internet Access?

Brookings Institution.

Goolsbee, Austan and Peter Klenow (2006). “Valuing Products by the Time Spent Using

Them: An Application to the Internet.” American Economic Review P&P, 96(2): 108–

113.

Greenstein, Shane and Ryan McDevitt (2011). “The Broadband Bonus: Estimating

Broadband Internet’s Economic Value.” Telecommunications Policy, 35(7): 617–632.

Hitte, Loran and Prasanna Tambe (2007). “Broadband Adoption and Content Consump-

tion.” Information Economics and Policy, 74(6): 1637–1673.

24This differs from previous research such as Nevo et al. (2016).

36



Lambrecht, Anja, Katja Seim and Bernd Skiera (2007). “Does Uncertainty Matter? Con-

sumer Behavior Under Three-Part Tariffs.” Marketing Science, 26(5): 698–710.

Malone, Jacob, Aviv Nevo and Jonathan Williams (2016). “A Snapshot of the Current

State of Residential Broadband Networks.” NET Institute Working Paper No. 15-06.

Malone, Jacob, John Turner and Jonathan Williams (2014). “Do Three-Part Tariffs Im-

prove Efficiency in Residential Broadband Networks?” Telecommunications Policy,

38(11): 1035–1045.

Nevo, Aviv, John Turner and Jonathan Williams (2016). “Usage-Based Pricing and De-

mand for Residential Broadband.” Econometrica, 84(2): 411–443.

Rosston, Gregory, Scott Savage and Bradley Wimmer (2013). “Effect of Network Un-

bundling on Retail Price: Evidence from the Telecommunications Act of 1996.” Journal

of Law and Economics, 56(2): 487–519.

Varian, Hal (2002). The Demand for Bandwidth: Evidence from the INDEX Experiment,

volume Broadband: Should We Regulate High-Speed Internet Access? Brookings In-

stitution.

37


	Introduction
	Data
	Sample, Internet Plans, and Monthly Usage
	Temporal Patterns in Usage
	Network Congestion and Packet Loss
	Evolution of Network Quality
	Composition of Usage and External Validity

	Model
	Subscriber Utility From Content
	Optimal Usage
	Plan Choice

	Estimation
	Econometric Objective Function
	Identification

	Results
	Visualization of Type Distribution Estimates
	Policy Implications of Preference Estimates
	Economic and Technological Solutions to Congestion

	Conclusion

