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Abstract In model-driven development of safety-critical
systems (like automotive, avionics or railways), well-
formedness of models is repeatedly validated in order to
detect design flaws as early as possible. In many indus-
trial tools, validation rules are still often implemented by
a large amount of imperative model traversal code which
makes those rule implementations complicated and hard
to maintain. Additionally, as models are rapidly increas-
ing in size and complexity, efficient execution of valida-
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tion rules is challenging for the currently available tools.
Checking well-formedness constraints can be captured by
declarative queries over graph models, while model update
operations can be specified as model transformations. This
paper presents a benchmark for systematically assessing the
scalability of validating and revalidating well-formedness
constraints over large graph models. The benchmark defines
well-formedness validation scenarios in the railway domain:
a metamodel, an instance model generator and a set of well-
formedness constraints captured by queries, fault injection
and repair operations (imitating the work of systems engi-
neers by model transformations). The benchmark focuses
on the performance of query evaluation, i.e. its execution
time and memory consumption, with a particular empha-
sis on reevaluation. We demonstrate that the benchmark
can be adopted to various technologies and query engines,
including modeling tools; relational, graph and semantic
databases. The Train Benchmark is available as an open-
source project with continuous builds from https://github.
com/FTSRG/trainbenchmark.

Keywords Well-formedness validation · Query evaluation ·

Performance benchmark · Graph databases · Semantic
databases · Relational databases

1 Introduction

Model-driven engineering of critical systems, like automo-
tive, avionics or train control systems, necessitates the use
of different kinds of models on multiple levels of abstrac-
tion and in various phases of development. Advanced design
and verification tools aim to simultaneously improve quality

and decrease costs by early validation to highlight con-
ceptual design flaws well before traditional testing phases
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in accordance with the correct-by-construction principle.
Furthermore, they improve productivity of engineers by auto-
matically synthesizing different design artifacts (source code,
configuration tables, test cases, fault trees, etc.) required by
certification standards.

A challenging and critical subproblem in many design
tools is the validation of well-formedness constraints and
design rules of the domain. Industrial standard languages
(e.g. UML, SysML) and platforms (e.g. AUTOSAR [6],
ARINC653 [2]) frequently define a large number of such con-
straints as part of the standard. For instance, the AADL stan-
dard [71] contains 75 constraints captured in the declarative
Object Constraint Language (OCL) [54], while AUTOSAR
defines more than 500 design rules.

As it is much more expensive to fix design flaws in the
later stages of development, it is essential to detect viola-
tions of well-formedness constraints as soon as possible, i.e.
immediately after the violation is introduced by an engineer
or some automated model manipulation steps. Therefore,
industrial design tools perform model validation by repeat-
edly checking constraints after certain model changes. Due
to its analogy to continuous integration [17] used in source
code repositories, we call this approach continuous model

validation.
In practice, model validation is often addressed by using

model query [86] or transformation engines: error cases are
defined by model queries, the results of which can be auto-
matically repaired by transformation steps. In practice, this is
challenging due to two factors: (1) instance model sizes can
grow very large as the complexity of systems under design is
increasing [72], and (2) validation constraints get more and
more sophisticated. As a consequence, validation of indus-
trial models is challenging or may become infeasible.

To tackle increasingly large models, they are frequently
split into multiple model fragments (as in open-source tools
like ARTOP [5] or Papyrus [59]). This can be beneficial for
local constraints which can be checked in the close con-
text of a single model element. However, there are global

well-formedness constraints in practice, which necessitate
to traverse and investigate many model elements situated in
multiple model fragments; thus, fragment-wise validation of
models is insufficient.

As different underlying technologies are used in model-
ing tools for checking well-formedness constraints, assessing
these technologies systematically on well-defined challenges
and comparing their performance would be of high aca-
demic and industrial interest. In fact, similar scenarios occur
when query techniques serve as a basis for calculating val-
ues of derived features [33], populating graphical views [15]
or maintaining traceability links [33] frequently used in
existing tools. Furthermore, runtime verification [45] of
cyber-physical systems may also rely on incremental query
systems or rule engines [31].

While there are a number of existing benchmarks for
query performance over relational databases [16,84] and
triplestores [11,30,50,73], workloads of modeling tools for
validating well-formedness constraints are significantly dif-
ferent [40]. Specifically, modeling tools use more complex

queries than typical transactional systems [43] and the per-
ceived performance is more affected by response time (i.e.
execution time for a specific operation such as validation or
transformation) rather than throughput (i.e. the number of
parallel transactions). Moreover, it is the worst-case perfor-
mance of a query set which dominates practical usefulness
rather than the average performance. Cases of model trans-

formation tool contests [36,48,65,69,74,88,89] also qualify
as set of benchmarks. However, their case studies do not
consider the performance of incremental model revalidation
after model changes.

In the paper, we define the Train Benchmark, a cross-

technology macrobenchmark that aims to measure the per-
formance of continuous model validation with graph-based
models and constraints captured as queries.1 The Train
Benchmark defines a scenario that is specifically modeled
after model validation in modeling tools: at first, an automat-
ically generated model (of increasing sizes) is loaded and
validated; then, the model is changed by some transforma-
tions, which is immediately followed by the revalidation of
constraints. The primary goal of the benchmark is to measure
the execution time of each phase, while a secondary goal is a
cross-technology assessment of existing modeling and query
technologies that (could) drive the underlying implementa-
tion.

Railway applications often use MDE techniques [60] and
rule-based validation [46]. This benchmark uses a domain-
specific model of a railway system that originates from the
MOGENTES EU FP7 [81] project, where both the meta-
model and the well-formedness rules were defined by railway
domain experts. However, we introduced additional well-
formedness constraints which are structurally similar to
constraints from the AUTOSAR domain [8].

The Train Benchmark intends to answer the following
research questions:

RQ1 How do existing query technologies scale for a contin-
uous model validation scenario?

RQ2 What technologies or approaches are efficient for con-
tinuous model validation?

RQ3 What types of queries serve as performance bottleneck
for different tools?

This paper systematically documents and extends previ-
ous versions of the Train Benchmark [39] which were used in

1 Microbenchmarks measure the performance of primitive operations
supported by an underlying platform, often focusing on the performance
of a single method. Macrobenchmarks test complex use cases derived
from real applications [13,98].
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various papers [37,38,40,78,86]. A simplified version of the
Train Benchmark (featuring only a single modeling language
and scenario) was published in the 2015 Transformation Tool
Contest [80]. The current paper documents the benchmark in
depth and conceptually extends it by several workload sce-

narios assessed over a set of queries and transformations and
adaptations to various graph-based models. Furthermore, the
current paper provides a cross-technology assessment of 10

different open-source query tools from four substantially dif-

ferent modeling technologies.
We designed the Train Benchmark to comply with the four

criteria defined in [29] for domain-specific benchmarks.

1. Relevance It must measure the peak performance and
price/performance of systems when performing typical
operations within that problem domain.

2. Portability It should be easy to implement the benchmark
on many different systems and architectures.

3. Scalability The benchmark should apply to small and
large computer systems.

4. Simplicity The benchmark must be understandable, oth-
erwise it lacks credibility.

The paper is structured as follows. Section 2 presents
the metamodel and instance models used in the bench-
mark. Section 3 describes the workflow of the benchmark
and specifies the scenarios, queries, transformations and the
instance model generator. Section 4 shows the benchmark
setup and discusses the results. Section 5 lists the related
benchmarks from the semantic web, relational databases and
MDE domains. Section 6 concludes the paper and outlines
future research directions. Appendix 7 contains a detailed
specification of the queries and transformations used in the
benchmark.2

2 Modeling and query technologies

Our cross-technology benchmark spans across four sub-
stantially different technological spaces, each with different
metamodeling and model representation support. The tools
also provide different query and transformation languages.
This section introduces the domain model along the model-
ing and query technologies used in the benchmark.

2.1 The domain model

The goal of the Train Benchmark is to run performance
measurements on a workload similar to validating a railway
network model. Figure 1 shows a model of a simple railway

2 The implementation and the detailed results are available online at
http://docs.inf.mit.bme.hu/trainbenchmark.

(a)

(b)

Fig. 1 Domain concepts of the Train Benchmark. a Illustration for the
concepts in the Train Benchmark models. b The concepts as a typed
property graph

network. Figure 1a illustrates the domain with a (partial) net-
work, while Fig. 1b shows the same network as a graph.

In the context of the Train Benchmark, a train Route is
a logical path of the railway, which requires a set of Sen-

sors for safe operation. The occupancy of Track Elements

(Segments and Switches) is monitored by sensors. A
route follows certain Switch positions (straight or diverg-

ing) which describe the prescribed position of a switch
belonging to the route. Different routes can specify differ-
ent positions for the same switch. A route is active if all its
switches are in the position prescribed by the switch posi-
tions followed by the route. Each route has a Semaphore

on its entry and exit points.

2.2 Modeling technologies

Metamodeling is a technique for defining modeling lan-
guages where a metamodel specifies the abstract syntax
(structure) of a modeling language. The metamodel of the
Train Benchmark is shown in Fig. 2.

Table 1 defines the mapping from core object-oriented
concepts to the various metamodeling frameworks used in
the Train Benchmark. We discuss the following challenges
for each modeling technology.

Metamodeling How does the technology define the meta-
model, represent the classes and the supertype hierarchy?
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(a)

(b)

Fig. 2 The metamodel of the Train Benchmark. a Containment hier-
archy and references. b Supertype relations

Instance models How does the technology represent the
instance models? For each technology, we present a sim-
ple instance model with a Segment (id: 1, length: 120),
a Switch (id: 2, currentPosition: DIVERGING) and a
connectsTo edge from the segment to the switch. Using
this example, we also show how the unique identifiers are
implemented across various domains. These identifiers are
used for testing and ensuring deterministic results (cf. Sect.
3.8).

2.2.1 Eclipse Modeling Framework (EMF)

Metamodeling The Eclipse Modeling Framework provides
Ecore, one of the de facto standard industrial metamodeling

Fig. 3 An EMF instance model

environments, used for defining several domain-specific lan-
guages and editors. Ecore enables to define metamodels and
automates the generation of a wide range of tools. Ecore is
discussed in detail in [18,77].

Instance models An EMF instance model is shown in Fig. 3.
By default, EMF does not use numeric unique identifiers;
instead (1) it uses references for the in-memory represen-
tation, and (2) it relies on XPath expressions for serialized
models. However, developers may mark an attribute as an
identifier. In the EMF metamodel of the Train Benchmark,
we defined every class as a subtype of class RailwayEle-

ment which has an explicit id attribute, serving as a unique
numeric identifier.

2.2.2 Property graphs

The property graph data model [68] extends typed graphs
with properties (attributes) on the vertices and edges. This
data model is common in NoSQL systems such as Neo4j [52],
OrientDB [55] and Titan [83].

Metamodeling Graph databases provide no or weak meta-
modeling capabilities. Hence, models can either be stored in
a weakly typed manner or the metamodel must be included
in the graph (on the same metalevel as the instance model).

Instance models A property graph instance model is shown
in Fig. 4. The vertices are typed with labels, e.g. vertex 1 is
labeled as both Segment and TrackElement, while vertex
2 is labeled as both Switch and TrackElement.

Table 1 Mapping object-oriented concepts to various representation technologies

OO EMF Property graphs RDF SQL

Class definition EClass instance Node label or type property rdfs:Class Table definition

Reference definition EReference instance Edge label rdf:Property, owl:ObjectProperty Foreign key definition

Attribute definition EAttribute instance Property name rdf:Property, owl:DataTypeProperty Column definition

Type EDataType instance (Only primitives) rdfs:Datatype (Only primitives)

Class attributes eAttributes reference � rdfs:domain Table columns

Class references eReferences reference � rdfs:domain Foreign keys

Attribute type eAttributeType reference property type rdfs:range Column type

Reference type eReferenceType reference � rdfs:range �

Superclasses eSuperTypes reference � rdfs:subClassOf (Various mappings)

Aggregation containment flag � � �
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Fig. 4 A property graph instance model

The property graph data model requires nodes to have a
unique (numeric) identifier. The ids are also persisted to the
serialized model which makes them appropriate for testing
the correctness of the queries.

2.2.3 Resource Description Framework (RDF)

The Resource Description Framework [96] is a family of
W3C (World Wide Web Consortium) specifications origi-
nally designed as a metadata data model.

Metamodeling The RDF data model makes statements about
resources (objects) in the form of triples. A triple is composed
of a subject, a predicate and an object, e.g. “John is-type-of
Person”, “John has-an-age-of 34”. Both the ontology (meta-
model) and the facts (instance model) are represented as
triples and stored together in the knowledge base.

The knowledge base is typically persisted in specialized
databases tailored to store and process triples efficiently.
Some triplestores are capable of reasoning, i.e. inferring logi-
cal consequences from a set of facts or axioms. RDF supports
knowledge representation languages with different expres-
sive power, ranging from RDFS [95] to OWL 2 [57].

Instance models We provide two sets of RDF models:

– RDF models with metamodel The metamodel (described
in OWL2 [57] and designed in Protégé [61]) is added to
each instance model. Such an instance model is shown
in Fig. 5a.

– RDF models with inferred triples For a resource of a
given type, all supertypes are explicitly asserted in the
model. For example, a resource with the type Segment

also has the type TrackElement. Such an instance model
is shown in Fig. 5b. Note that the _1 and _2 resources
not only have the type Segment and Switch, but also
the type TrackElement.

RDF uses Universal Resource Identifiers (URIs) to iden-
tify the resources. To assign a numeric identifier to each
resource, the URIs follow the http://www.semanticweb.org/
ontologies/2015/trainbenchmark#_x pattern, where x repre-
sents a unique identifier.

2.2.4 Relational databases

Relational databases have been dominating the database
landscape for the last 40 years with many free and commer-

(a)

(b)

Fig. 5 RDF instance models. a An RDF instance model with meta-

model. The vertices for the (relevant part of the) metamodel are depicted
in gray. b An RDF instance model with inferred triples. Note that the
inferred edges to TrackElement node are explicitly asserted in the
model

cial systems on the market. Due to the widespread adoption
of the relational data model, these systems are mature and
provide sophisticated tools for the administration tasks.

Metamodeling Object-to-relational mapping (ORM) is a
well-known problem in software engineering [7]. The meta-
model of the Train Benchmark is mapped to SQL tables with
a standard ORM solution: each class is assigned to a sep-
arate table. A class and its superclass(es) are connected by
using foreign keys. Many-to-many references are mapped to
junction tables.

Instance models The instance models are stored as SQL
dumps. The model uses primary keys for storing unique iden-
tifiers, defined as int attributes.

2.3 Query technologies

We implemented the benchmark for a wide range of open-
source tools operating on graph models with the exception
of SQL (see Sect. 2.2 for the modeling technologies).

Table 2 shows the list of the implementations. We classify
a tool incremental if it employs caching techniques and pro-
vides a dedicated incremental query evaluation algorithm that
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Table 2 Tools used in the benchmark

Format Tool Query language Incremental In-memory engine Implementation language

EMF Drools DRL � � Java

Eclipse OCL OCL � � Java

EMF API − � � Java

Viatra Query VQL � � Java

graph Neo4j Cypher � � Java

TinkerGraph − � � Java

RDF Jena SPARQL � � Java

RDF4J SPARQL � � Java

SQL SQLite SQL � � C

MySQL SQL � � C++

processes changes in the model and propagates these changes
to query evaluation results in an incremental way (i.e. to avoid
complete recalculations). Both Viatra Query and Drools are
based on the Rete algorithm [41]. Eclipse OCL also has an
incremental extension called the OCL Impact Analyzer [85];
however, it is not actively developed; therefore, it is excluded
from the benchmark. In contrast, non-incremental tools use
search-based algorithms. These algorithms evaluate queries
with model traversal operations, which may be optimized
using heuristics and/or caching mechanisms. The table also
shows whether a tool uses an in-memory engine and lists the
implementation languages of the tools.

2.3.1 EMF tools

– As a baseline, we have written a local search-based

algorithm for each query in Java, using the EMF API.
The implementations traverse the model without spe-
cific search plan optimizations, but they cut unnecessary
search branches at the earliest possibility.

– The OCL [54] language is commonly used for query-
ing EMF model instances in validation frameworks.
It is a standardized navigation-based query language,
applicable over a range of modeling formalisms. Tak-
ing advantage of the expressive features and widespread
adoption of this query language, the project Eclipse
OCL [19] provides a powerful query interface that eval-
uates such expressions over EMF models.

– Viatra Query [8] is an Eclipse Modeling project where
several authors of the current paper are involved. Via-

tra Query provides incremental query evaluation using
the Rete algorithm [23]. Queries are defined in a graph
pattern-based query language [10] and evaluated over
EMF models. Viatra Query is developed with a focus on
incremental query evaluation; however, it is also capable
of evaluating queries with a local search-based algo-
rithm [14].

– Incremental query evaluation is also supported by Drools
[41], a rule engine developed by Red Hat. Similarly to
Viatra Query, Drools is based on ReteOO, an object-
oriented version of the Rete algorithm [23]. In particular,
Drools 6 uses PHREAK, an improved version of ReteOO
with support for lazy evaluation. Queries can be formal-
ized using DRL, the Drools Rule Language. While Drools
is not a dedicated EMF tool, the Drools implementation
of the Train Benchmark works on EMF models. While
EMF has some memory overhead [87], its advanced fea-
tures, including deserialization and notifications, make it
well suited for using with Drools.

2.3.2 RDF tools

Triplestores are usually queried via SPARQL (recursive
acronym for SPARQL Protocol and RDF Query Lan-
guage) [97] which is capable of defining graph patterns.

– Jena [3] is a Java framework for building Semantic Web
and Linked Data applications. It provides an in-memory
store and supports relational database backends.

– RDF4J [62] (formerly called Sesame) gives an API
specification for many tools and also provides its own
implementation.

2.3.3 Property graph tools

We included two tools supporting the property graph data
model:

– As of 2016, the most popular graph database is Neo4j [52]
which provides multiple ways to query graphs: (1) a
low-level core API for elementary graph operations, (2)
the Cypher language, a declarative language focusing on
graph pattern matching.
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Fig. 6 Phases of the benchmark

While Cypher is very expressive and its optimization
engine is being actively developed, it may be benefi-
cial for some queries to implement the search algorithms
manually [67, Chapter 6: Graph Database Internals].

– TinkerGraph is an in-memory reference implementation
of the property graph interfaces provided by the Apache
TinkerPop framework [4].

2.3.4 Relational databases

We included two popular relational database management
systems (RDBMSs) to the benchmark.

– MySQL [51] is a well-known and widely used open-
source RDBMS, implemented in C and C++.

– SQLite [56] is a popular embedded RDBMS, imple-
mented in C.

3 Benchmark specification

This section presents the specification of the Train Bench-
mark including inputs and outputs (Sect. 3.1), phases (Sect.
3.2), use case scenarios (Sect. 3.3), queries (Sect. 3.4),
transformations (Sect. 3.5), a selected query with its trans-
formations (Sect. 3.6), and instance models (Sect. 3.7).

3.1 Inputs and outputs

Inputs A benchmark case configuration in the Train Bench-
mark takes a scenario, an instance model size and a set of

queries as input. The specific characteristics of the model
(e.g. error percentages) are determined by the scenario, while
the transformation is defined based on the scenario and a
query.

The instance models used in the Train Benchmark can
be automatically generated using the generator module of
the framework. The model generator uses a pseudorandom
number generator with a fixed random seed to ensure the
reproducibility of results (see Sect. 3.7 for details).

Outputs Upon the successful run of a benchmark case, the
execution times of each phase and the number of invalid ele-

ments are recorded. Moreover, the collection of the element

identifiers in the result set must be returned to allow the
framework to check the correctness of the solution (Sect.
3.8). Furthermore, this result set also serves as a basis for
executing transformations in the Repair scenario.

3.2 Phases

In [8], we analyzed the performance of incremental graph
query evaluation techniques. There, we defined four bench-
mark phases for model validation, depicted in Fig. 6.

1. During the read phase, the instance model is loaded from
the disk to the memory and the validation queries are
initialized (but not executed explicitly). The model has
to be defined in one or more textual files (e.g. XMI, CSV,
SQL dump), and binary formats are disallowed. The read

phase includes the parsing of the input as well as the
initialization of internal data structures of the tool.

2. In the check phase, the instance model is queried to iden-
tify invalid elements.

3. In the transformation phase, the model is changed to
simulate the effects of model manipulations. The trans-
formations are either performed on a subgraph specified
by a simple pattern (Inject scenario) or on a subset of the
model elements returned by the check phase (Repair

scenario); see Sect. 3.3 for details.
4. The revalidation of the model is carried out in the

recheck phase similarly to the check phase. The trans-
formations modify the model to induce a change in
the match set, which implies that the recheck phase
will return a different match set than the previous
check/recheck phases did.

3.3 Use case scenarios

To increase the representativeness of the benchmark, we
defined use case scenarios similar to typical workloads of
real modeling tools, such as one-time validation (Batch sce-
nario, used in [40,87]), minor model changes introduced by
an engineer (Inject scenario, used in [86]) or complex auto-
mated refactoring steps (Repair scenario, used in [78,80]).
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3.3.1 Batch validation scenario (Batch)

In this scenario, the instance model is loaded (read phase)
from storage and a model validation is carried out by exe-
cuting the queries in the check phase. This use case imitates
a designer opening a model in an editor for the first time
(e.g. after a checkout from a version control system) which
includes an immediate validation of the model. In this sce-
nario, the benchmark uses a model free of errors (i.e. no
well-formedness constraints are violated), which is a com-
mon assumption for a model committed into a repository.

3.3.2 Fault injection scenario (Inject)

After an initial validation, this scenario repeatedly performs
transformation and recheck phases. After the first valida-
tion (check), a small model manipulation step is performed
(transformation), which is immediately followed by reval-
idation (recheck) to receive instantaneous feedback. The
manipulation injects faults to the model; thus, the size of
the match set increases.

Such scenario occurs in practice when engineers change
the model in small increments using a domain-specific editor.
These editors should detect design errors quickly and early
in the development process to cut down verification costs
according to the correct-by-construction principle.

3.3.3 Automated model repair scenario (Repair)

In this scenario, an initial validation is also followed by
transformation and recheck phases. However, the model
is repaired in the transformation phase based on the vio-
lations identified during the previous validation step. This
is carried out by performing quick fix transformations [32].
Finally, the whole model is revalidated (recheck), and the
remaining errors are reported. As the model manipulations
fix errors in the model, the size of the match set decreases.

Efficient execution of this workload profile is necessary
in practice for refactoring, incremental code generation, and
model transformations within or between languages.

3.4 Specification of queries

In the context of this paper, well-formedness constraints
are captured and checked by queries. Each query identifies
violations of a specific constraint in the model [8]. These
constraints can be formulated in constraint languages (such
as OCL), graph patterns and as relational queries.

In the check and recheck phases of the benchmark, we
perform a query to retrieve the elements violating the well-
formedness constraint defined by the benchmark case. The
complexity of queries ranges from simple property checks
to complex path constraints consisting of several navigation

operations. The graph patterns are defined with the following
syntax and semantics.

– Positive conditions define the structure and type of the
vertices and edges that must be satisfied.

– Negative conditions (also known as negative application
conditions) define subpatterns which must not be satis-
fied. Negative conditions are displayed in a red rectangle
with the NEG caption.

– Filter conditions are defined to check the value of vertex
properties. Filter conditions are typeset in italic.

We define the following six constraints by graph patterns
(see Fig. 7). Each corresponding query checks a specific con-
straint and covers some typical query language features.

– PosLength (Fig. 7a) requires that a segment must have a
positive length. The corresponding query defines a simple
property check, a common use case in validation.

– SwitchMonitored (Fig. 7b) requires every switch to have
at least one sensor connected to it. The corresponding
query checks whether a vertex is connected to another
vertex. This pattern is common in more complex queries,
e.g. it is used in the RouteSensor and Semaphore-

Neighbor queries.
– RouteSensor (Fig. 7c) requires that all sensors asso-

ciated with a switch that belongs to a route must also
be associated directly with the same route. The corre-
sponding query checks for the absence of circles, so the
efficiency of performing navigation and evaluating neg-
ative conditions is tested.

– SwitchSet (Fig. 7d) requires that an entry semaphore of
an active route may show GO only if all switches along
the route are in the position prescribed by the route. The
corresponding query tests the efficiency of navigation and
filtering operations.

– ConnectedSegments (Fig. 7e) requires each sensor to
have at most 5 segments. The corresponding query checks
for “chains” similar to a transitive closure. This is a com-
mon use case in model validation.

– SemaphoreNeighbor (Fig. 7f) requires routes which
are connected through a pair of sensors and a pair of
track elements to belong to the same semaphore. The
corresponding query checks for the absence of circles,
so the efficiency of join and antijoin [76] operations is
tested. One-way navigable references are also present in
the constraint, so the efficiency of their evaluation is also
measured. Subsumption inference is required, as the two
track elements (te1, te2) can be switches or segments.

Structural similarity to AUTOSAR. Several of these queries
are adapted from constraints of the AUTOSAR standard [6]

123



The Train Benchmark: cross-technology performance evaluation of continuous model queries 1373
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Fig. 7 The patterns of benchmark queries. a The PosLength pat-
tern. b The SwitchMonitored pattern. c The RouteSensor pattern.
d The SwitchSet pattern. e The ConnectedSegments pattern. f The
SemaphoreNeighbor pattern

and represent common validation tasks such as attribute and
reference checks or cycle detection. In accordance with our
previous paper [8], the following graph patterns are strongly
inspired by AUTOSAR constraints, i.e. the matching sub-
graphs of corresponding graph queries are either isomorphic
or structurally similar:

– RouteSensor ↔ simple physical channel: both check
for the absence of a circle through edges with many-to-
one and many-to-many cardinalities.

– SemaphoreNeighbor ↔ signal group mapping: both
check for the absence of a circle of 7 elements.

– SwitchMonitored ↔ ISignal: both check a negative
application condition for a single element.

The query metrics adapted from [40,87] are listed in Table
3. The metrics indicate that all relevant features of query
languages are covered by our queries except for transitive
closure and recursion. We decided to omit these features from
the benchmark as they are supported by only a few query
technologies.

3.5 Specification of transformations

To capture complex operations in the scenarios, we use graph
transformation rules [70] which consist of (1) a precondition
pattern captured as a graph query and (2) an action with a
sequence of elementary graph manipulation operations. The
transformations are defined with a syntax similar to tools such
as GROOVE, FUJABA [53] and Viatra2 [94]. For defining
the patterns and transformations, we used a graphical syntax
similar to GROOVE [64]:

– Inserting new vertices and new edges between existing
vertices (marked with «new»).

– Deleting existing vertices and edges (marked with «del»).
The deletion of a vertex implies the deletion of all of its
edges to eliminate dangling edges.

– Updating the properties of a vertex (noted as property ←

new value).

Our transformations cover all elementary model manip-
ulation operations, including the insertion and deletion of
vertices and edges, as well as the update of attributes. A
detailed specification of the queries and transformation is
given in Appendix 7. In this section, we only discuss the
RouteSensor query and its transformations in detail.

3.6 Query and transformations for constraint

RouteSensor

We present the specification of query RouteSensor and its
related transformations used in the benchmark.
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Table 3 Description of the metrics in the benchmark

PosLength SwitchMonitored RouteSensor SwitchSet ConnectedSegments SemaphoreNeighbor

# parameters 2 1 4 6 7 7

# variables 2 2 4 6 7 7

# vertex types 1 2 4 4 2 4

# attributes 1 0 0 4 0 0

# attribute and equality checks 1 0 0 3 0 1

# edge constraints 0 0 3 3 11 6

# negative conditions 0 1 1 0 0 1

Description To check whether constraint RouteSensor (see
Sect. 3.4) is violated, the query (Fig. 7c) looks for routes
(route) that follow a switch position (swP) connected to a
sensor (sensor) via a switch (sw), but without a requires

edge from the route to the sensor.

Inject transformation Random requires edges are removed.

requires

«del»

route: Route

sensor: Sensor

Repair transformation The missing requires that edge is
inserted from the route to the sensor in the match, which
fixes the violation of the constraint.

requires
«new» target

follows

sw: Switch

swP: SwitchPositionroute: Route

sensor: Sensor

NEG
monitoredBy

3.7 Instance model generation and fault injection

To assess scalability, the benchmark uses instance models
of growing sizes where each model contains twice as many
model elements as the previous one. The sizes of instance
models follow powers of two (1, 2, 4, …, 2048): the smallest
model contains about 5000 triples, and the largest one (in this
paper) contains about 19 million triples.

The instance models are systematically generated based
on the metamodel: first, small instance model fragments are
generated; then, they are connected to each other. To avoid
highly symmetric models, the exact number of elements and
cardinalities is randomized to make it difficult for query tools
to efficiently cache models.

The instance model generator is implemented in an imper-
ative manner. The model is generated with nested loops,
where each loop generates a specific element in an order
driven by the containment hierarchy. In Fig. 2a, we annotated
the metamodel to include the order of generating elements:

Table 4 Error probabilities in the generated instance model

Constraint Batch (%) Inject (%) Repair (%)

PosLength 0 2 10

SwitchMonitored 0 2 18

RouteSensor 0 4 10

SwitchSet 0 8 15

ConnectedSegments 0 5 5

SemaphoreNeighbor 0 7 25

(1) semaphores, (2) routes, (3) regions, (4) switches, (5) sen-

sors, (6) segments and (7) switch positions.
The fault injection algorithm works as follows. For each

well-formedness constraint, we select a model element which
could introduce a violation of that constraint. For example,
compared to a well-formed model, the violations are injected
as follows.

– Constraint PosLength is violated by assigning an invalid
value to the length attribute.

– Constraint SwitchMonitored is violated by deleting all
monitoredBy edges of a Switch.

– Constraint RouteSensor is violated by deleting the
requires edge from a Route to a Sensor.

– Constraint SwitchSet is violated by setting an invalid
currentPosition attribute to a Switch (i.e. not the posi-
tion of the corresponding SwitchPosition followed by
the Route).

– Constraint SemaphoreNeighbor is violated by deleting
an entry edge between a Route and a Semaphore.

– Constraint ConnectedSegments is violated by adding
an additional (sixth) Segment to the same Sensor and
connecting it to the last Segment.

The generator injects these faults with a certain probability
(Table 4) using a random generator with a predefined random
seed. These errors are found and reported in the check phase
of the benchmark.
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3.8 Ensuring deterministic results

During transformation phase of the Repair scenario, some
invalid submodels (i.e. pattern matches) are selected and
repaired. In order to ensure deterministic, repeatable results:

– The elements for transformation are chosen using a pseu-
dorandom generator with a fixed random seed.

– The elements are always selected from a deterministically
sorted list.

The matches may be returned in any collection in any
order, given that the collection is unique. The matches are
interpreted as tuples, e.g. the RouteSensor query returns
〈route, sensor, swP, sw〉 tuples. The tuples are sorted using
a lexicographical ordering.

The ordered list is used to ensure that the transformations
are performed on the same model elements, regardless of the
return order of the match set. Neither ordering nor sorting is
included in the execution time measurements.

4 Evaluation

In this section, we discuss the benchmark methodology,
present the benchmark environment and analyze the results.
For implementation details, source code and raw results, see
the benchmark website.3

4.1 Benchmark parameters

A measurement is defined by a certain tool (with its param-

eters), scenario, model size, queries and transformations.
Table 5 shows the tools, parameters, scenarios, queries

and sizes used in the benchmark. If a tool has no parameters,
it is only executed once, otherwise it is executed with each
optional parameter.

4.2 Execution of benchmark runs and environment

4.2.1 Benchmark scenarios

We investigated the following benchmark scenarios:
Batch scenario We executed the Batch scenario with all
six queries (Sect. 3.4) to approximate memory consumption.
The results are shown in Fig. 11.
Inject scenario

1. The benchmark loads the model and evaluates the queries

as initial validation, and we measure execution times for

3 http://docs.inf.mit.bme.hu/trainbenchmark.

Table 5 Configuration parameters

Parameter Values Details in

(a) Benchmark-specific parameters

Scenario Batch Section 3.3.1

Inject Section 3.3.2

Repair Section 3.3.3

Queries ConnectedSegments Section 7.1

PosLength Section 7.2

RouteSensor Section 3.6

SemaphoreNeighbor Section 7.4

SwitchMonitored Section 7.5

SwitchSet Section 7.6

Size 1, 2, 4, . . . , 2048 Section 3.7

Tool Version Parameters

(b) Tool-specific parameters

Drools 6.5.0 –

Eclipse OCL 3.3.0 –

EMF API 2.10.0 –

Jena 3.0.0 No inferencing

inferencing

MySQL 5.7.16 –

Neo4j 3.0.4 Core API

Cypher

RDF4J 2.1 No inferencing

SQLite 3.8.11.2 –

TinkerGraph 3.2.3 –

Viatra Query 1.4.0 Local search

Incremental

read, check and their sum. The results are shown in the
left column of Fig. 8.

2. The benchmark iteratively performs the Inject transfor-
mations for each query 10 times (Fig. 6, n = 10) followed
by an immediate recheck step in each iteration. The
transformation modifies a fixed number of elements (10)
in each iteration. We measure the mean execution time for
continuous validation for each phase (transformation,
recheck and their sum). The results are shown in the
right column of Fig. 8.

Repair scenario.

1. The benchmark performs the initial validation similarly
to the Inject phase. The execution times for read, check

and their sum are listed in the left column of Fig. 9.
2. The benchmark iteratively performs the Repair transfor-

mation for each query 8 times (Fig. 6, n = 8) followed by
an immediate recheck step in each iteration. The trans-
formation modifies a proportional amount of the invalid
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Fig. 8 Execution times in the Inject scenario
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elements (5%). We measure the mean execution time for
continuous validation for each phase (transformation,
recheck and their sum). The results shown in the right
column of Fig. 9.

4.2.2 Benchmark environment

The benchmark was performed on a virtual machine with an
eight-core, 2.4 GHz Intel Xeon E5-2630L CPU with 16 GB
of RAM, and an SSD hard drive. The machine was running a
64-bit Ubuntu 14.04 server operating system and the Oracle
JDK 1.8.0_111 runtime. The independence of performance
measurements was guaranteed by running each sequentially
and in a separate JVM.

4.3 Measurement of execution times

If all runs are completed within a timeout of 15 minutes, the
measurement is considered successful and the measurement

results are saved. If the measurement does not finish within
the time limit, its process is terminated and its results are
discarded. The results were processed as follows.

1. The mean execution time was calculated for each phase.
For example, in the Repair scenario, the execution
times of the transformation and the recheck phases are
determined by their average execution time. This is deter-
mined independently for all runs.

2. For each phase, the median value of the 5 runs was taken.

Using the mean value to the describe the execution time of
repeated transformation and recheck phases is aligned with
the recommendations of [22]. Moreover, from a statistical
perspective, taking the median value of the sequential runs
can better compensate for transients potentially perceived
during a measurement.

For measuring the execution times, the heap memory limit
for the Java Virtual Machine (JVM) was set to 12 GB.

4.3.1 How to read the charts?

Detailed plots The plots in Figs. 8 and 9 present the execution
times of a certain workload with respect to the model size.
Each plot can be directly interpreted as an overall evaluation

of execution time against increasing model sizes dominated
by the worst-case behavior of a tool.

On each plot, the horizontal axis (with base 2 logarithmic
scale) shows the model size and the vertical axis (with base
10 logarithmic scale) shows the execution time of a certain
operation. Note that as the execution time of phases varies
greatly (e.g. the read phase takes longer than the check

phase as it contains disk operations), the vertical axes on
the plots do not use the same scale, i.e. the minimum and

maximum values are adjusted to make the plots easier to
read.

The logarithmic scales imply that a “linear” appearance of
all measurement series correspond to a (low-order) polyno-
mial O characteristic where the slope of a plot determines the
dominant order (exponent). Moreover, a constant difference
on a plot corresponds to a constant order-of-magnitude dif-
ference. However, different plots are not directly comparable
to each other visually due to the different scales.

Individual query plots The plots in Fig. 10 help us iden-
tify specific strength and weaknesses of different tools and
highlight which query turned out to be the performance bot-
tleneck. This can explain why certain tools had a timeout
even for medium-sized models in the detailed plots of Figs. 8
and 9.

4.4 Measurement of memory consumption

Determining the memory consumption of applications run-
ning in managed environments (such as the JVM) is a
challenging task due to (1) the non-deterministic nature of the
garbage collector and (2) sophisticated optimizations in col-
lection frameworks which often allocate memory in advance
and only free memory when it is necessary [12].

For a reliable estimation on memory consumption, we
used the following approach.

1. We set a hard limit L to the available heap memory for
the JVM and perform a trial of the run.

2. Based on the result of the trial, we either decrease or
increase the limit.

(a) If the trial successfully executed within the specified
timeout, we decrease the limit to L ′ = L/2.

(b) If the execution failed (due to memory exhaustion or
timeout), we increase the limit to L ′ = 2L .

This results in a binary search-like algorithm, which ensures
a resolution of L initial/2t−1, given an initial limit L initial

and t trials. For example, with an initial limit of 6.4 GB of
memory and 9 trials, this approach provides a resolution of
6400 MB/28 = 25 MB (as used in our measurements later).

The results are shown in Fig. 11.4 Note that the measure-
ments for execution time and memory consumptions were
performed separately. The measurements in Figs. 8, 9, and 10
used a larger, fixed amount of memory. For instance, the low
memory consumption of Neo4j in Fig. 11 corresponds to
significantly larger execution time than reported in Fig. 10.

4 We excluded MySQL from this measurement as limiting its available
memory only causes it to use the disk more extensively, so this method
cannot give a good approximation on its memory consumption. We also
excluded SQLite as it uses the native heap instead of the Java heap.
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Fig. 11 Estimated memory consumption for loading the model and evaluating all queries. (Memory consumption in this figure at a certain model
size does not correspond to the execution times of Figs. 8–10.)

The results show that incremental tools (in particular,
Viatra Query, in incremental mode) use more memory than
non-incremental ones. This is expected as incremental tools
utilize space–time tradeoff, i.e. they trade memory for exe-
cution speed by building caches of the interim query results
and use it for efficient recalculations.

Summary figures We provide heatmaps to summarize results
on execution times. We divided the model sizes to three cat-
egories: small (less than 100k triples), medium (100k–1M
triples) and large (more than 1M triples), while the exe-
cution times were partitioned to instantaneous (less than
0.2 s), fast (0.2…1 s), acceptable (1…5 s) or slow (more
than 5 s). The cells of the heatmaps represent the relative
frequency of a particular model size–execution time combi-
nation with a darker color indicating more tools belonging
to that combination. For example, a darker lower left cell
(small/instantaneous) indicates that most tools perform the
operation almost instantly for small models.

– Figure 12 compares disk-based and in-memory databases.
As expected, in-memory databases provide better response
times in general.

– Figure 13 shows the formats. It shows that tools using
EMF implementations perform very well on small mod-
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Fig. 12 Comparison of performance by storage

els and also scale for large models. SQL and property
graph implementations show moderate performance. RDF
implementations are slower for small models and do not
scale for large models.

4.5 Analysis of results

Following Table 6, we highlight some strengths and weak-
nesses identified during the benchmark.
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4.5.1 Technology-specific findings

EMF tools are suitable for model validation As expected,
EMF tools perform well in model validation and transfor-
mation. EMF was designed to serve as a common basis for
various MDE tools with in-memory model representation to
improve performance. In principle, their in-memory nature
may hinder scalability due to the memory limit of a sin-
gle workstation, but despite this, some EMF solutions were
among the most scalable ones.

No built-in indexing support in EMF EMF does not offer
built-in indexing support which would allow the system
to quickly load the model, but may hinder efficient query
evaluation. Indexing would significantly help local search
approaches with adaptive model-specific search plans [24,
92,93].

Good storage performance for graph databases We bench-
mark Neo4j with both its core API and the Cypher query

language. Both show similar performance characteristics,
with the core API approach at least half an order of magnitude
faster. For importing large datasets, the CSV import pro-
vides good performance and scalability (unlike the GraphML
import), but it requires the user to manually map the graph to
a set of CSV files. However, query performance of the Cypher
engine has not yet reached the efficiency of other local
search-based query engines (e.g.Viatra). As a workaround,
complex queries can be optimized by manually implement-
ing the search algorithms (using the core API), which is

Table 6 Summary of findings: strengths ⊕ and weaknesses ⊖

Domain of
findings

Area Observations

Technology EMF ⊕ EMF tools are suitable for model
validation

⊖ No built-in indexing support in
EMF

Graph
databases

⊕ Good storage performance for
graph databases

RDF
databases

⊖ Underperforming RDF systems

⊖ Slow inferencing in RDF4J

Relational
databases

⊕ Fast model load and good
scalability from SQLite

⊖ MySQL slowdown for complex
queries

Approach Incremental ⊕ Incremental tools prevail for
continuous validation

⊖ The scalability of incremental
tools is limited by memory
constraints

Search-based ⊕ Search-based tools scale well for
large models and simple queries

⊖ Search-based tools face problems
for complex queries

Indexing ⊕ Substantial effect of indexing on
performance

Query
language
features

⊖ Long path expressions are hard to
evaluate

Performance ⊕ Huge differences in runtime
across technologies

Size of modi-
fications

⊕ Noticeable differences between
the Inject and Repair scenarios

aligned with the recommendation in [67, Chapter 6: Graph
Database Internals]. This enables Neo4j to handle complex
queries (unlike relational databases, for instance).

Underperforming RDF systems The in-memory SPARQL
query engines (Jena, RDF4J) are in the slowest third of the
tools, which is unexpected, considering their performance on
benchmarks for different workloads (see Sect. 5.2). In our
previous experiments, openly available disk-based SPARQL
engines were even slower; hence, they were excluded from
the benchmark.

Fast model load and good scalability from SQLite The
SQLite implementation serves as a baseline for a comparison
with more sophisticated tools. However, SQLite is surpris-
ingly fast in several configurations. This may indicate that
other technologies still have a lot of potential for performance
enhancements.
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MySQL slowdown for complex queries MySQL is not able to
evaluate the more complex queries efficiently which prevents
it from scaling for large models.

4.5.2 Approach-specific findings

Incremental tools prevail for continuous validation Incre-
mental tools are very well suited for performing continuous
model validation due to their low runtime and robustness wrt.
query complexity. The approach introduces an overhead dur-
ing the read phase but enables the systems to perform quick
transformation–recheck cycles.

The scalability of incremental tools is limited by memory con-

straints Due to the memory overhead of incremental tools,
they are unable to evaluate queries on the largest models used
in the benchmark.

Search-based tools scale well for large models and simple

queries Non-incremental tools are able to scale well by eval-
uating simple and moderately difficult queries even for the
largest models of the benchmark. However, revalidation takes
well over 1 s for large models of 1M+ elements.

Search-based tools face problems for complex queries For
complex queries (ConnectedSegments and Semaphore-

Neighbor), most non-incremental tools are unable to scale
for large models (Fig. 8).

Substantial effect of indexing on performance As observed
for some tools, such as Viatra Query (local search) and
Neo4j, indexing has a substantial positive effect on perfor-
mance. Using indexers allows Viatra Query to outperform
the native EMF API solution, which lacks built-in indexing.

Long path expressions are hard to evaluate The Connected-

Segments query defines a long path expression: it looks
for a sensor that has 6 segments (segment1, …, seg-

ment6), connected by connectsTo edges. The results show
that this query is quite difficult to evaluate Fig. 8. For RDF
tools, queries using either property paths or metamodel-level
property chains could lead to better performance. However,
even though they are part of the SPARQL 1.1 [97] and the
OWL 2 [57] standard, respectively, these features are not
supported by most of the tools.

Huge differences in runtime across technologies While the
overall characteristics of all tools are similar (low-order poly-
nomial with a constant component), there is a rather large
variation in execution times (with differences up to 4 orders
of magnitude in revalidation time). This confirms our expec-
tation that the persistence format, model load performance,
query evaluation strategy and transformation techniques can

have a significant impact on overall performance and defi-
ciencies in any of these areas likely have a negative effect.
Noticeable differences between the Inject and Repair sce-

narios. As noted in Sect. 3.5, the main difference between the
Inject and Repair scenarios is the number of model changes,
which is significantly larger for the Repair scenario. The
query result sets are also larger for the Repair scenario. By
comparing corresponding plots, we observe that the overall
evaluation time is affected linearly by this difference, mean-
ing that all tools are capable of handling this efficiently.

4.6 Threats to validity

4.6.1 Internal threats

Mitigating measurement risks To mitigate internal validity

threats, we reduced the number of uncontrolled variables dur-
ing the benchmark. Each measurement consisted of multiple
runs to warm up the Java Virtual Machine and to mitigate the
effect of transient faults such as noise caused by running our
measurements in a public cloud environment.

Ensuring functional equivalence and correctness Queries
are defined to be semantically equivalent across all query
languages, i.e. for a particular query on a particular graph
(defined by its scenario and size), the result set must be iden-
tical for all representations. To ensure the correctness of a
solution, we specified tests for each query and transforma-
tion which were implemented and evaluated for all tools.

Code reviews To ensure comparable results, the query imple-
mentations were reviewed by experts of each technology as
listed in “Acknowledgements” section.

Search plans The EMF API, the Neo4j Core API and the
TinkerGraph implementations required a custom search plan.
For each query, we used the same search plan in both imple-
mentations. As mentioned in Sect. 2.3.1, the search plans are
not fully optimized, i.e. they are similar to what a devel-
oper would implement without fine-tuning performance.
Our measurements exclude approaches with adaptive model-
specific search plans [24,92,93], which were reported to visit
fewer nodes (thus achieve lower execution time) compared
to local search approaches with fixed search plans.

In-memory versus disk-resident tools As shown in Table 2,
some of the tools use in-memory engines while others persist
data on the disk. Even with SSD drives, memory operations
are still more than an order of magnitude faster than disk
operations, which favors the execution time of in-memory
engines.
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Memory overhead introduced by the framework To ensure
deterministic results (see Sect. 3.8), the framework creates
a copy of the match sets returned by the query engine. This
introduces memory overhead by the framework itself. How-
ever, as the match sets are generally small compared to the
size of the model (see Table 4), this overhead is negligible.

Involvement in one of the tools Several authors of the current
paper are involved in the research and development of Via-

tra Query. However, since several queries originate from
AUTOSAR validation constraints (see Sect. 3.4), this guar-
antees independence from the tools.

4.6.2 External threats

Generalizability of results Considering external validity, the
most important factor is the relevance to real use cases. Based
on our past experience in developing tools for critical sys-
tems [33], we believe that the metamodel (Sect. 2.2), the
queries (Sect. 3.4) and the transformations (Sect. 3.5) are
representative to models and languages used for designing
critical embedded systems. Furthermore, as mentioned in
Sect. 1, we believe the findings could be useful for other
use cases with similar workload profiles that could benefit
from incremental query evaluation.

The iterative revalidation with consecutive runs also fol-
lows the commit-time source code analysis scenario of [87].

4.7 Summary

Finally, we revisit our research questions:

RQ1 How do existing query technologies scale for a contin-

uous model validation scenario?

Most scalable techniques have low memory consump-
tion in order to load large models. However, few query
technologies are able to evaluate the queries and trans-
formations required for model validation on graphs
with more than 5 million elements.

RQ2 What technologies or approaches are efficient for con-

tinuous model validation?

Incremental query engines (like Viatra Query) are
well suited to continuous validation workload by pro-
viding very low execution time, but their scalability is
limited by increased memory consumption.

RQ3 What types of queries serve as performance bottleneck

for different tools?

Queries with many navigations and negative con-
straints are a serious challenge for most existing tools.

5 Related work

Numerous benchmarks have been proposed to measure
and compare the performance of query and transformation
engines in a specific technological space and a given use case.
However, no openly available cross-technology benchmarks
have been proposed for a continuous model validation sce-
nario. Below we overview the main existing benchmarks for
model query and transformation (Sect. 5.1) as well as RDF
technologies (Sect. 5.2).

5.1 Model transformation and graph transformation

benchmarks

5.1.1 Graph transformation benchmarks

Up to our best knowledge, the first transformation benchmark
was proposed in [91], which gave an overview on typical
application scenarios of graph transformations together with
their characteristic features. The paper presents two cases: the
Petri net firing simulation case and the object-relational map-

ping by model synchronization case. While both are capable
of evaluating certain aspects of incremental query perfor-
mance, they provide a different workload profile (e.g. model
and query characteristics) than typical well-formedness val-
idation scenarios. [25] suggested some improvements to the
benchmarks of [91] and reported measurement results for
many graph transformation tools. Early benchmarks used
much smaller models and more simple queries.

5.1.2 Tool contests

Many transformation challenges have been proposed as cases
for graph and model transformation contests. Most of them
do not focus on query performance; instead, they measure
the usability of the tools, the conciseness and readability
of the query languages and tests various advanced features,
including reflection and traceability. The 2007 contest was
organized as part of the AGTIVE conference [74], while
the 2008 and 2009 contests were held during the GRaBaTS
workshop [36,65]. The contests in 2010, 2011, 2013, 2014
and later were organized as a separate event, the Transfor-
mation Tool Contest (TTC) [48,69,88,89].

Table 7 presents an overview of tool contest cases from
2007 to 2015. We shortly summarize their goal, scope and
show whether solving them requires text-to-model (t2m),
model-to-model (m2m) or model-to-text (m2t) transforma-
tions. We also denote whether the solution needs to perform
updates on the model and whether the case explicitly mea-
sures the performance of the tools.

For the sake of conciseness, we only discuss cases that
are potentially useful for measuring the performance of
incremental model validation, meaning that they (1) are
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performance-oriented, e.g. they included large models, com-
plex patterns or both, (2) measure the incremental perfor-

mance, i.e. perform updates on the model and reevaluate the
patterns.

The AntWorld case study [99] requires the solution to per-
form a simulation of ants searching for food based on a few
simple rules. The environment, the ants and the food are
modeled as a graph, while the rules of the simulation are
implemented with model transformation rules. Although this
case study provides a complex queries and performs update
operations on a large model, its workload profile is similar to
a model simulation instead of a model validation scenario.

The Sierpinski Triangle Generation [26] is another well-
known transformation case, used in [44]. The Sierpinski
triangles are stored as a model and are generated using model
transformations. The triangles can be modeled with a very
simple metamodel, and the characteristics of the instance
models are very different from typical models used in MDE.
While the required transformations are complex, the seman-
tics of the transformation does not resemble any real-world
applications.

The GRaBaTS 2009 Program Comprehension paper was
used in [75] to benchmark the scalability of model persistence
and query evaluation of NoSQL data stores.

Other performance-oriented benchmarks include the Movie

Database [34], the Petri-Nets to Statecharts [90] and the Pro-

gram Comprehension [42] cases, but none of these perform
update and reevaluation sequences on the model.

5.1.3 Assessment of incremental model queries

In [8,9], we aimed to design and evaluate model transfor-
mation benchmark cases corresponding to various usage
patterns for the purpose of measuring the performance
of incremental approaches on increasing model sizes. We
assessed a hybrid model query approach (which combines
local search and incremental evaluation) in [35] on the
AntWorld case study.

Queries are common means to implement source code
analysis, but it is traditionally a batch (and not continuous)
validation scenario. Nevertheless, the performance of both
local search-based and incremental model queries is assessed
in [87] for detecting anti-patterns in source code transformed
to EMF models.

As model validation is an important use case of incre-
mental model queries, several model query and/or validation
tools have been assessed in incremental constraint validation
measurements [21,63].

5.2 RDF benchmarks

There are several well-defined performance benchmarks for
assessing the performance of RDF technologies (overviewed
in Table 8). T
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One of the first ontology benchmarks are the Lehigh Uni-

versity Benchmark (LUBM) [30], and its improved version,
the UOBM Ontology Benchmark [47]. These are tailored
to measure reasoning capabilities of ontology reasoners.
Another early benchmark used the Barton dataset [1] for
benchmarking RDF stores. The benchmark simulates a user
browsing through the RDF Barton online catalog. Originally,
the queries were formulated in SQL, but they can be adapted
to SPARQL as well. However, the model size is limited (50M
elements) and there are no updates in the model.

SP2Bench [73] is a SPARQL benchmark that measures the
execution time of various queries. The goal of this bench-
mark is to measure the query evaluation performance of
different tools for a single set of SPARQL queries that con-
tain most language elements. The artificially generated data
are based on the real-world DBLP bibliography; this way
instance models of different sizes reflect the structure and
complexity of the original real-world dataset. However, other
model element distributions or queries were not considered,
and the complexity of queries was not analyzed.

The Berlin SPARQL Benchmark (BSBM) [11] measures
SPARQL query evaluation throughput for an e-commerce
case study modeled in RDF. The benchmark uses a single
dataset, but recognizes several use cases with their own set
of queries. The dataset scales in model size (10 million–
150 billion), but does not vary in structure.

In the SPLODGE [27] benchmark, SPARQL queries are
generated systematically, based on metrics for a predefined
dataset. The method supports distributed SPARQL queries
(via the SERVICE keyword); however, the implementation
scales only up to three steps of navigation, due to the resource
consumption of the generator. The paper does not discuss the
complexity of the instance model, and only demonstrates the
adequacy of the approach demonstrated with the RDF3X
engine.

The DBpedia SPARQL benchmark [50] presents a gen-
eral SPARQL benchmark procedure, applied to the DBpedia
knowledge base. The benchmark is based on query-log min-
ing, clustering and SPARQL feature analysis. In contrast
to other benchmarks, it performs measurements on actually
posed queries against existing RDF data.

The Linked Data Benchmark Council (LDBC) recently
developed the Social Network Benchmark [20], a cross-
technology benchmark, which provides an interactive work-
load and focuses on navigational pattern matching (i.e.
dominantly local traversal operations, starting from a spe-
cific node).

5.3 The Train Benchmark

The Train Benchmark is a cross-technology macrobench-
mark that aims to measure the performance of continuous
model validation with graph-based models and constraints

captured as queries. Earlier versions of the benchmark have
been continuously used for performance measurements since
2012 (mostly related to the Viatra Query framework) in
various papers [37,38,40,78,86]. Compared to our previous
publications, this paper has the following novel contribu-
tions:

– The benchmark features three distinct scenarios: Batch,
Inject and Repair, each capturing a different aspect of
real-world model validation scenarios. Previous publica-
tions only considered one or two scenarios.

– In this paper, we investigate the performance of query
sets. Previously, we only executed the individual queries
separately.

– Previous publications only used tools from one or two
technologies. In the current paper, we assess 10 tools,
taken from four substantially different technological
spaces. This demonstrates that our benchmark is tech-
nology independent; thus, the results provide potentially
useful feedback for different communities.

Compared to other benchmarks, the Train Benchmark has
the following set of distinguishing features:

– The workload profile follows a real-world model valida-

tion scenario by updating the model with changes derived
by simulated user edits or transformations.

– The benchmark measures the performance of both initial
validation and (more importantly) incremental revalida-
tion.

– This cross-technology benchmark can be adapted to dif-
ferent model representation formats and query technolo-
gies. This is demonstrated by 10 reference implemen-
tations over four different technological spaces (EMF,
graph databases, RDF and SQL) presented as part of the
current paper.

The benchmark is also part of the benchmark suite
used by the MONDO EU FP7 project, along with other
query/transformation benchmarks, such as the ITM Factory
Benchmark,5 the ATL Zoo Benchmark6 and the OpenBIM
Benchmark.7

6 Conclusions and future work

6.1 Conclusions

In this paper, we presented the Train Benchmark, a frame-
work for the definition and execution of benchmark scenarios

5 https://github.com/atlanmod/mondo-itmfactory-benchmark.
6 https://github.com/atlanmod/mondo-atlzoo-benchmark.
7 https://github.com/atlanmod/mondo-openbim-benchmark.
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for modeling tools. The framework supports the construc-
tion of benchmark test sets that specify the metamodel,
instance model generation, queries and transformations,
result collection and processing, and metric evaluation logic
that are intended to provide an end-to-end solution. As a
main added value, this paper contains a comprehensive set
of measurement results comparing 10 different tools from
four technological domains (EMF, graph databases, RDF,
SQL). These results allow for both intra-domain and cross-
technology tool comparison and detailed execution time
characteristics analysis.

Criteria for domain-specific benchmarks We revisit how our
benchmark addresses the criteria of [29].

1. Relevance The Train Benchmark measures the runtime
for the continuous revalidation of well-formedness con-
straints used in many industrial and academic design
tools. It considers two separate practical scenarios: small
model changes for manual user edits, and larger changes
for automated refactorings.

2. Portability We presented the results for 10 implementa-
tions from four different technological domains in this
paper. There are multiple other implementations avail-
able in the repository of the project.

3. Scalability The size of underlying models ranges from
5000 to 19 million model elements (triples), while there
are 6 queries of various complexity (with negative and
positive constraints).

4. Simplicity A simplified, EMF version of the Train Bench-
mark was used as part of the 2015 Transformation Tool
Contest [80] where experts of four other tools managed to
come up with an implementation, which indirectly shows
the relative simplicity of our benchmark. An earlier ver-
sion of the Train Benchmark was also used in [93] to
assess the efficiency of various search plans.

Software engineering aspects From a software engineering
perspective, the Train Benchmark has been continuously
developed and maintained since 2012. The benchmark is
available as an open-source project at https://github.com/
FTSRG/trainbenchmark, implemented in Java 8. The project
has end-to-end automation [38] to (1) set up configurations
of benchmark runs, (2) generate large model instances, (3)
execute benchmark measurements, (4) analyze the results
and synthesize diagrams using R scripts [82]. The project
provides continuous integration using the Gradle build sys-
tem [28] and contains automated unit tests to check the
correctness of the implementations.

6.2 Future work

In the near future, we will add more implementations to the
benchmark from all domains, including Epsilon [58] (EMF),
OrientDB [55] (property graphs), PostgreSQL [49] (SQL)
and INSTANS [66] (RDF).

Based on our previous work [40,79], we plan to further
investigate the connection between metrics (query metrics,
model metrics and query on model metrics) and query per-
formance.
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7 Specification of queries and transformations

7.1 ConnectedSegments

Description The ConnectedSegments constraint requires
that each sensor must have at most five segments attached to
it. Therefore, the query (Fig. 7e) checks for sensors (sensor)
that have at least six segments (segment1, …, segment6)
attached to them.

Relational calculus formula

{

sensor, segment1, segment2, segment3,

segment4, segment5, segment6
∣

∣

Sensor(sensor)∧

Segment(segment1) ∧ Segment(segment2)∧

Segment(segment3) ∧ Segment(segment4)∧

Segment(segment5) ∧ Segment(segment6)∧

connectsTo(segment1, segment2)∧

connectsTo(segment2, segment3)∧

connectsTo(segment3, segment4)∧

connectsTo(segment4, segment5)∧
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connectsTo(segment5, segment6)∧

monitoredBy(segment1, sensor)∧

monitoredBy(segment2, sensor)∧

monitoredBy(segment3, sensor)∧

monitoredBy(segment4, sensor)∧

monitoredBy(segment5, sensor)∧

monitoredBy(segment6, sensor)
}

Inject transformation. A random segment segment1 is
selected. The connectsTo edge running from segment1 to
segment3 is deleted. A new segment segment2 is created
and connected from segment1 to segment3. segment2 is
also connected to the nodesensor, connected to segment1

via a sensor edge.

monitoredBy

monitoredBy

«new»

connectsTo

«del»
«new»

connectsTo

«new»

connectsTo

«new»

segment1: Segment

sensor: Sensor segment2: Segment

segment3: Segment

monitoredBy

Repair transformation. The segment2 node and its edges
are deleted from the matches. The segment1 and segment3

nodes are connected with a connectsTo edge.

monitoredBy

«del»
connectsTo

«new»

connectsTo

«del»

connectsTo

«del»

«del»

segment2: Segment

monitoredBy

connectsTo

connectsTo

connectsTo

monitoredBy

segment1: Segment

sensor: Sensor

segment3: Segment

segment4: Segment

segment5: Segment

segment6: Segment

monitoredBy

monitoredBy

monitoredBy

7.2 PosLength

Description The PosLength constraint requires that a seg-
ment must have a positive length. Therefore, the query
(Fig. 7a) checks for segments (segment) with a length less
than or equal to zero.

Relational calculus formula

{

segment, length
∣

∣Segment(segment, length) ∧ length ≤ 0
}

Inject transformation The length property of randomly
selected segments is updated to 0.

Repair transformation The length property of the segment

in the match is updated to −length + 1.

7.3 RouteSensor

The Inject and Repair transformations for the RouteSensor

query are discussed in Sect. 3.6.

Relational calculus formula

{

route, sensor, swP, sw
∣

∣

Route(route) ∧ Sensor(sensor)∧
(

∃currentPosition : SwitchPosition(swP, currentPosition)∧
(

∃position : Switch(sw, position)∧

follows(route, swP) ∧ target(swP, sw)∧

monitoredBy(sw, sensor) ∧ ¬requires(route, sensor)
))}

7.4 SemaphoreNeighbor

Description The SemaphoreNeighbor constraint requires
that the routes that are connected through sensors and track
elements have to belong to the same semaphore. Therefore,
the query (Fig. 7f) checks for routes (route1) which have
an exit semaphore (semaphore) and a sensor (sensor1)
connected to a track element (te1). This track element is con-
nected to another track element (te2) which is connected to
another sensor (sensor2) which (partially) defines another,
different route (route2), while the semaphore is not on the
entry of this route (route2).

Relational calculus formula

{

semaphore, route1, route2, sensor1, sensor2, te1, te2
∣

∣

Semaphore(semaphore)∧

Route(route1) ∧ Route(route2)∧

Sensor(sensor1) ∧ Sensor(sensor2)∧

TrackElement(te1) ∧ T rack Element (te2)∧

exit(route1, semaphore) ∧ requires(route1, sensor1)∧

monitoredBy(te1, sensor1) ∧ connectsT o(te1, te2)∧

monitoredBy(te2, sensor2) ∧ requires(route2, sensor2)∧

¬entry(route2, semaphore)
}
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Inject transformation Errors are introduced by disconnecting
the entry edge of the selected routes. (According to the
metamodel, a route may only have 0 or 1 entry edges.)

entry

«del»

semaphore: Semaphore

route: Route

Repair transformation The route2 node is connected to the
semaphore node with an entry edge.

connectsTo

requires

exit

monitoredBy monitoredBy

requires

route1 ≠ route2

te1: TrackElement

sensor1: Sensor

route1: Route

te2: TrackElement

sensor2: Sensor

entry
«new» NEG

route2: Route

semaphore: Semaphore

7.5 SwitchMonitored

Description The SwitchMonitored constraint requires that
every switch must have at least one sensor connected to it.
Therefore, the query (Fig. 7b) checks for switches (switch)
that have no sensors (sensor) associated with them.

Relational calculus formula

{

sw
∣

∣Switch(sw)∧

(¬∃sensor : Sensor(sensor) ∧ monitoredBy(switch, sensor))
}

Inject transformation Errors are injected by randomly select-
ing switches (switch) and deleting all their edges to sensors.
If the selected switch was invalid, it did not have such an
edge, so no edges are deleted and the switch stays invalid. If
the chosen switch was valid, it will become invalid.

monitoredBy

«del»

switch: Switch

sensor: Sensor

monitoredBy

«del»

sensor: Sensor

Repair transformation A sensor is created and connected
to the switch.

sensor: Sensor
monitoredBy

«new» «new»
monitoredBy

sw: Switch

sensor: Sensor

NEG

7.6 SwitchSet

Description The SwitchSet constraint requires that an entry
semaphore of a route may only show GO if all switches along
the route are in the position prescribed by the route. There-
fore, the query (Fig. 7d) checks for routes (route) which have
an entry semaphore (semaphore) that shows the GO sig-
nal. Additionally, the route follows a switch position (swP)
that is connected to a switch (sw), but the switch position
(swP.position) defines a different position from the current
position of the switch (sw.currentPosition).

Relational calculus formula

{

semaphore, route, swP, sw, currentPosition, position
∣

∣

Route(route) ∧ SwitchPosition(swP, position)∧

Switch(sw, currentPosition) ∧ currentPosition �= position∧

Semaphore(semaphore, “GO′′) ∧ entry(route, semaphore)∧

follows(route, swP) ∧ target(swP, sw)
}

Inject transformation Errors are injected by randomly select-
ing switches (switch) and setting their currentPosition

property to the next enum value, e.g. from LEFT to RIGHT.

Repair transformation The currentPosition property of
switch is set to the position of swP.
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