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All cancers harbor molecular alterations in their genomes. The transcriptional consequences of these somatic mutations

have not yet been comprehensively explored in lung cancer. Here we present the first large scale RNA sequencing study of

lung adenocarcinoma, demonstrating its power to identify somatic point mutations as well as transcriptional variants such

as gene fusions, alternative splicing events, and expression outliers. Our results reveal the genetic basis of 200 lung

adenocarcinomas in Koreans including deep characterization of 87 surgical specimens by transcriptome sequencing. We

identified driver somatic mutations in cancer genes including EGFR, KRAS,NRAS, BRAF, PIK3CA,MET, and CTNNB1. Candidates

for novel driver mutations were also identified in genes newly implicated in lung adenocarcinoma such as LMTK2, ARID1A,

NOTCH2, and SMARCA4. We found 45 fusion genes, eight of which were chimeric tyrosine kinases involving ALK, RET, ROS1,

FGFR2, AXL, and PDGFRA. Among 17 recurrent alternative splicing events, we identified exon 14 skipping in the proto-

oncogene MET as highly likely to be a cancer driver. The number of somatic mutations and expression outliers varied

markedly between individual cancers and was strongly correlated with smoking history of patients. We identified genomic

blocks within which gene expression levels were consistently increased or decreased that could be explained by copy

number alterations in samples. We also found an association between lymph node metastasis and somatic mutations in

TP53. These findings broaden our understanding of lung adenocarcinoma and may also lead to new diagnostic and

therapeutic approaches.

[Supplemental material is available for this article.]

Lung cancer is one of themost commoncancers in humans, aswell

as the leading cause of cancer-related deathworldwide ( Jemal et al.

2011). Although diagnosis at an early stage is increasing with the

introduction of low-dose computerized tomography screening,

lung cancer is still a devastating disease that has a very poor

prognosis (Aberle et al. 2011). Lung cancer can be classified based

on histopathologic findings, with adenocarcinoma being themost

common type (Travis et al. 2005). Recently, deeper understanding

of the major genetic alterations and signaling pathways involved

has suggested a reclassification of lung adenocarcinoma based

on underlying driver mutations. Cancer cells with these genetic

alterations have survival and growth advantages over cells without

such changes (Haber and Settleman 2007). Currently, approxi-

mately 10 driver genes have been discovered in lung adenocarci-

noma (Pao and Girard 2011). Clinical trials using new chemo-

therapeutic agents targeting such alterations have demonstrated

remarkable improvements in patient outcome, for example

gefitinib (Mok et al. 2009; Maemondo et al. 2010) and crizotinib

(Kwak et al. 2010) for lung adenocarcinoma harboring EGFR mu-

tations and EML4-ALK (Soda et al. 2007) fusion, respectively. More

recently, not only point mutations but also tyrosine kinase gene

fusions, such as KIF5B-RET, were identified as driver mutations ( Ju

et al. 2012). Nevertheless, we still do not know the molecular

drivers of ;40% of lung adenocarcinomas (Pao and Girard 2011).

Interestingly, the frequencies of some driver mutations have

been shown to be significantly different between ethnic groups

(Shigematsu and Gazdar 2006), and therefore comprehensive

cancer genome studies in a range of human populations will help

to find new molecular alterations that can be targeted in treat-

ments of lung cancer.
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In this study, we broadly surveyed genetic alterations in 200

fresh surgical specimens of lung adenocarcinoma in Koreans.

Eighty-seven of these were analyzed by transcriptome sequencing

combined with whole-exome (n = 76) and transcriptome se-

quencing (n = 77) for matched adjacent normal tissue samples.

Transcriptome sequencing is a powerful method for detecting

drivermutations in cancer, since not only somatic pointmutations

but also aberrant RNAvariants such as fusion genes and alternative

splicing can be examined. Though advances in genomic technolo-

gies have enabled genome-wide analyses of cancers, to our knowl-

edge this is the first large-scale study of lung adenocarcinoma using

RNA sequencing.

Results

Cancer samples analyzed in this study

We collected 200 fresh surgical specimens of primary lung ade-

nocarcinoma from patients who underwent major lung resection

(Supplemental Fig. 1). For each patient, we recorded diagnosis,

gender, cancer stage, and smoking status (Supplemental Table 1).

Among the 200 cancer patients, the proportions of females and

never-smokers were 54.5% (n = 109) and 58.0% (n = 116), re-

spectively. Of these, 87 cancer tissues whose driver mutations were

not detected by screening tests (Sanger sequencing for EGFR and

KRAS point mutations and fluorescence in situ hybridization

[FISH] for EML4-ALK fusion) (Supplemental Table 1; Supplemental

Fig. 1) were analyzed by transcriptome sequencing combined with

whole-exome (n = 76) and transcriptome (n = 77) sequencing

of matched normal lung tissue samples (Supplemental Table 2;

Supplemental Material). All these sequencing experiments were

done as described previously ( Ju et al. 2011). We generated

14,038,673,860 paired-end 101-bp-long reads from RNA sequenc-

ing of 164 samples (87 cancer and 77 corresponding normal tis-

sues). On average, the RNA sequencing throughputs were 9.77 and

7.38 Gbp for cancer and normal tissues, respectively. In the whole-

exome sequencing of normal tissues, we obtained 32.96-fold read

depth per tissue for regions targeted by the exome capture platform

used in this study.

Somatic point mutations

Using our transcriptome data, we identified 4607 somatic non-

synonymous single nucleotide substitutions and 373 coding short-

indel mutations (Supplemental Fig. 2; Supplemental Table 3).

Whole-exome sequencing of two randomly selected cancer sam-

ples provided an estimate of 89.2% for the accuracy of our somatic

mutation discovery (Supplemental Table 4). The median number

of somatic mutations in each cancer sample was 25. Among a total

of 87 samples, 45 carried driver mutations in well-known cancer

genes in lung adenocarcinoma, such as EGFR (n = 22; in-frame

deletions of exon 19, L858R and G719A) and KRAS (n = 18; G12C,

G12V, G12D, G12S, G13C, and G13D) (Fig. 1; Supplemental Table

3). In addition to EGFR and KRAS, other known mutations were

also detected in NRAS (Sequist et al. 2011) (n = 3; Q61H, Q61L,

Q61K), PIK3CA (Ding et al. 2008) (n = 2; H1047R and E555K), and

BRAF (Ding et al. 2008) (n = 1; V600E), which have all been

reported as driver mutations of lung cancer. In addition, two

samples carried known activating mutations in well-known on-

cogenes confirmed in other cancers (D32G ofCTNNB1 [Chan et al.

1999], M1124D of MET [Schmidt et al. 1999]), suggesting those

mutations are also able to induce lung adenocarcinoma. Overall,

47 specimens harbored known point driver mutations in seven

cancer genes (EGFR, KRAS, NRAS, PIK3CA, BRAF, CTNNB1, and

MET), which we here refer to as ‘‘canonical point driver muta-

tions.’’ These mutations were mutually exclusive with one excep-

tion of 1 EGFR and PIK3CA double-mutant. In addition to these

known driver mutations, we also identified a set of genes, which

were frequently mutated or highly overexpressed in a subset of

cancers. Of note, TP53 was the most frequently mutated gene.

CDKN2A, RET, NOTCH2, SMARCA4, LMTK2, ARID1A, and MTOR

were also frequently altered and are also worthy of note, since the

functions of these genes are likely to be related to tumorigenesis or

cancer maintenance (Fig. 1). The pairwise mutual exclusion and

concurrence analysis for these mutated genes is shown in Sup-

plemental Table 5.

Fusion gene analysis

One of the advantages of transcriptome sequencing over genome

sequencing is that detection of transcriptional variants, such as

fusion genes and alternative splicing, is feasible. Using the gene

fusion program (GFP) introduced previously (Ju et al. 2012) and

typical gene expression patterns, we identified 45 in-frame fusion

transcripts from the 87 cancer tissues (Fig. 2; Table 1; Supplemental

Fig. 3; Supplemental Table 6). We attempted to validate all of the

fusion genes using PCR amplification of cDNA and Sanger se-

quencing (Supplemental Fig. 4; Supplemental Table 7). Among 43

fusion genes where PCR primer was available, 39 were successfully

validated (Supplemental Table 7). Interestingly, the four invali-

dated fusion genes all included either a surfactant gene (i.e.,

SFTPB or SFTPA2) or H19, whose wild-type gene expression was

extremely high (greater than ;2000 RPKM) in the corresponding

specimen. This indicates that the fusion transcript may have been

artificially synthesized during sequencing library construction.

Of the fusion genes we identified, eight were chimeric tyro-

sine kinases which are highly likely to play an important role in

cancer development. Cancer specimens carrying one of the tyro-

sine kinase fusions (n = 10) did not harbor any of the canonical

point driver mutations (P-value = 2.12 3 10�4) (Supplemental Ta-

ble 8). Of these eight fusion genes, four have been reported pre-

viously (EML4-ALK [Soda et al. 2007], KIF5B-RET [ Ju et al. 2012;

Kohno et al. 2012; Lipson et al. 2012; Takeuchi et al. 2012], CD74-

ROS1 [Rikova et al. 2007; Takeuchi et al. 2012], and SLC34A2-ROS1

[Rikova et al. 2007; Takeuchi et al. 2012]), andwe refer to themhere

as ‘‘canonical transforming fusion genes.’’ The remaining four fu-

sion genes were novel (CCDC6–ROS1, FGFR2–CIT, AXL–MBIP, and

SCAF11–PDGFRA) (Fig. 3A). Of these four novel fusion genes,

CCDC6–ROS1, FGFR2–CIT, and AXL–MBIP carry protein tyrosine

kinase domains and dimerization units (Alberti et al. 2003;

Ju et al. 2012) (coiled-coil or leucine zipper domains), both of

which are essential to activate chimeric tyrosine kinases. The

SCAF11–PDGFRA fusion is an example of promoter swapping (Kas

et al. 1997). Because the cancer specimens harboring these four

novel fusion genes did not carry any known driver mutations

(neither canonical point driver mutations [n = 47] nor canonical

transforming fusion genes [n = 6]; P-value = 0.021) (Supplemental

Table 8), they may play important roles in cancer transformation.

Other fusion genes identified in this study, such as MAP4K3–

PRKCE, BCAS3–MAP3K3, ERBB2IP–MAST4, and APLP2–TNFSF11

may also have functional importance since the genes are serine-

threonine kinases or involved in signaling pathways. The co-oc-

currence of 45 fusion genes with canonical point driver mutations

is shown in Supplemental Table 6.
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Alternative splicing

Alternative splicing is known to be related to the pathogenesis

of colon cancer (Gardina et al. 2006). We assessed exon skipping

events preferentially occurring in the cancer tissue using the tran-

scriptome sequencing data. From a total of 87 tissues, we identified

17 recurrent exon skipping events, where a specific exon of a gene is

not in full transcription in cancer (Supplemental Table 9). In par-

ticular, three cases of skipping of exon 14 in METwere interesting

(Fig. 3B), since MET protein tyrosine kinase is a well-known on-

cogene and this event was reported in lung adenocarcinoma pre-

viously (Kong-Beltran et al. 2006). Although the number of spec-

imens harboring MET exon-skipping (n = 3) is not sufficient for

statistical testing, these three cancer ge-

nomes did not carry any of the canonical

point driver mutations (n = 47) or the ca-

nonical transforming fusion genes (n = 6)

(P-value = 0.057), suggesting that this

exon-skipping event may have an in-

dependent transforming effect in the

cancer. In addition, three cancer spec-

imens expressed a short form of FBLN2,

skipping exon 9. Skipping of exon 9 of

FBLN2 is also worthy of note (Supple-

mental Fig. 5), since this gene was re-

cently introduced as a tumor suppressor

candidate in nasopharyngeal carcinoma

(Law et al. 2012).

Lung adenocarcinoma in smokers

We compared the transcriptional land-

scape of lung cancers between ever-

smokers and never-smokers. There was a

significant difference in the number of

point mutations between the two groups

(Fig. 4A). On average, smokers had signif-

icantly more amino acid-altering single

nucleotide and short-indelmutations (65.0

and 20.6 mutations per cancer tissue of

smokers [n = 40] and never-smokers [n =

33], respectively; P-value = 0.0011). In-

terestingly, the amount of smoking (pack–

years) was positively correlated with the

number of somatic point mutations in

the cancer genome (P-value = 0.01; Sup-

plemental Fig. 6). We also identified dif-

ferences inmutational spectrums. Cancer

tissues from smokers showed similar mu-

tational signatures to those identified pre-

viously (Pleasance et al. 2010) (C > A

transversion, most frequent; T > G trans-

version, least frequent), whereas cancers

from never-smokers did not. C > A trans-

version was more frequent in smokers

(P-value = 3.1 3 10�6), while T > G trans-

version was more common in never-

smokers (P-value = 8.1 3 10�14) (Fig. 4B).

In addition, from the gene expression

profiles (Supplemental Material; Supple-

mental Table 10; Data Access), we detected

a total of 6719 cancer outlier genes (COGs),

which were extremely highly expressed

in a small number of cancer tissues (Supplemental Table 11). The

number of COGs per cancer tissue varied markedly (Fig. 4C),

ranging from 0 to 989. The lung adenocarcinomas of smokers car-

ried significantlymoreCOGs than those of never-smokers (P-value=

0.0078) (Fig. 4C,D; Supplemental Fig. 7). These findings demon-

strate that lung adenocarcinoma in smokers harbors more somatic

mutations and greater perturbation of gene expression levels.

Co-localization of over- and underexpressed genes

Next, we assessed the gene expression pattern of each specific

cancer specimen relative to the general transcriptional landscape

Figure 2. Graphical representation of 45 fusion genes identified from transcriptome sequencing of
87 lung adenocarcinomas. Protein kinase-containing fusion genes are indicated with red lines joining
the two genomic loci, while other fusions are indicated by blue lines. The protein kinase genes and their
fusion partners are labeled in red and green, respectively (outer layer).

Table 1. The list of 15 selected gene fusions identified from 87 lung adenocarcinomas

Donor gene
Acceptor
gene Chromosome

Number of
samples Distance (Mb) Function

Known
EML4 ALK chr2;chr2 1 12.252 PTK
KIF5B RET chr10;chr10 4 11.227 PTK
CD74 ROS1 chr5;chr6 1 Interchromosomal PTK
SLC34A2 ROS1 chr4;chr6 1 Interchromosomal PTK

Novel
CCDC6 ROS1 chr10;chr6 1 Interchromosomal PTK
SCAF11 PDGFRA chr12;chr4 1 Interchromosomal PTK
FGFR2 CIT chr10;chr12 1 Interchromosomal PTK
AXL MBIP chr19;chr14 1 Interchromosomal PTK
MAP4K3 PRKCE chr2;chr2 1 6.215 Ser/Thr kinase
BCAS3 MAP3K3 chr17;chr17 1 2.23 Ser/Thr kinase
ERBB2IP MAST4 chr5;chr5 1 0.515 Ser/Thr kinase
KRAS CDH13 chr12;chr16 1 Interchromosomal Signaling
APLP2 TNFSF11 chr11;chr13 1 Interchromosomal Signaling
ZFYVE9 CGA chr1;chr6 1 Interchromosomal Signaling
TPD52L1 TRMT11 chr6;chr6 1 0.723 Tumor protein

(PTK) Protein tyrosine kinase.

Seo et al.

2112 Genome Research
www.genome.org



of all 87 cancer tissues. After identifying genes which were rela-

tively overexpressed and underexpressed in each cancer, we in-

terestingly observed that these sets were spatially grouped together

in the genome (Fig. 5A; Supplemental Fig. 8). We defined those

regions containing such groups as jointly regulated blocks ( JRBs).

The number of JRBs was highly variable among cancer tissues. In

order to investigate the cause of these JRBs, we performed com-

parative genomic hybridization (CGH) array (Park et al. 2010) ex-

periments on a subset of cancer samples (n = 9). Interestingly,

combined analyses between array results and JRBs showed that

;70% of JRBs can be explained by the copy number status of the

cancer genome (Fig. 5A,B). Recent reports have also shown that

cancer genomes harbor large hypo-methylated (and hyper-meth-

ylated) blocks (Wen et al. 2009; Hansen et al. 2011), suggesting the

combined effect of somatic copy number alterations and DNA

methylation patterns are likely to induce the diversity of gene

expression profiles in cancer tissues.

We merged the JRBs identified from 87 lung adenocarci-

noma samples. This clearly showed that the blocks are not ran-

domly distributed in the genome (Fig. 5C). For example, gene

expression is frequently increased on the short arm of chromo-

some 7, while expression is frequently decreased on the short

arm of chromosome 3. These patterns correlate with frequent

copy number alterations of cancer ge-

nomes identified in previous studies (Weir

et al. 2007; Job et al. 2010).

Lymph node metastasis and TP53

mutation

We investigated the correlation of somatic

alterations with lymph node metastasis

(information for lymph node metastasis

is available in Supplemental Table 1).We

divided the cancer samples into two

groups: those with known or candidate

driver mutations (canonical point driver

mutations [n= 47], canonical transforming

fusion genes [n = 6], novel tyrosine kinase

fusion genes [n = 4; CCDC6–ROS1, FGFR2–

CIT, AXL–MBIP, SCAF11–PDGFRA], and

MET exon 14 skipping [n = 3]) and those

without. We performed multivariate lo-

gistic regression for the presence or ab-

sence of lymph node metastasis including

gender, age, cancer stage, and smoking

status as factors. Cancers with known or

candidate driver mutations did not show

a higher rate of lymph node metastasis

than those without (P-value = 0.15; mul-

tivariate logistic regression) (Supplemen-

tal Table 12). However, cancer patients

harboring both a known or candidate

driver mutation and TP53 mutations

showed significantly higher rates of lymph

node metastasis (P-value = 0.017; multi-

variate logistic regression) (Supplemental

Table 12). This implies that activated on-

cogenes and disrupted tumor suppressor

genes such as TP53 may together con-

tribute to cancer metastasis. In addition

to driver and TP53 mutations, cancer

stage showed significant association with lymph nodemetastasis

(P-value = 0.00018; multivariate logistic regression) (Supplemental

Table 12).

Summary of driver mutations in lung adenocarcinoma

We summarize the mutational profiles of the 200 lung adenocarci-

nomas in Figure 6, including the results from transcriptome se-

quencing and from screening tests (99 with EGFR mutations, six

with KRAS mutations, and seven with EML4–ALK fusions). The fre-

quencies of EGFR and KRAS mutations in Korean patients were

60.5% (n= 121) and12.0% (n= 24).Overall,;75.5% (n= 151/200) of

lung adenocarcinomas are considered to be driven by point muta-

tions in the 200 patients. In addition to point mutations, we found

17 tissueswith fusion protein tyrosine kinase genes (ALK, RET, ROS1,

FGFR2, AXL, and PDGFRA; 10 from transcriptome sequencing and

seven from FISH study), which comprises 8.5% of all samples. Three

samples (1.5%) carried activating exon skipping of MET tyrosine

kinase, suggesting that ;10% of lung adenocarcinoma drivers are

transcriptional variants that can be best investigated through tran-

scriptome sequencing. Although we could not identify canonical

driver mutations in 26 cancer tissues, we suggest some specific ab-

errations of note for each individual tissue (Supplemental Table 13).

Figure 3. Fusion genes and alternative splicing events revealed by RNA sequencing. (A) Sche-
matic figures of the domain structures of novel protein kinase fusion genes. (B) Exon 14 skipping
in MET proto-oncogene demonstrated by read depth across gene model. (TM) Trans-membrane
domain.

Mutations and gene expressions of lung cancer
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Discussion

The landscape of lung cancer genomes has been widely in-

vestigated using genotyping microarray, sequencing of targeted

cancer genes, CGH array, exome sequencing, and whole-genome

sequencing (Ding et al. 2008; Beroukhim et al. 2010; Lee et al.

2010). These studies provided the large repertoire of known ge-

nomic abnormalities in cancer genes (i.e.,

EGFR and KRAS), identified critical path-

ways (i.e., MAPK and PI3K pathway) for

cancer transformation, and suggested pu-

tative druggable targets to develop more

efficient treatments (Herbst et al. 2008).

The transcriptional landscape of lung

adenocarcinomas, however, has not yet

been widely explored, although fusion

genes, alternative splicing events, and

gene expression outliers may have critical

roles in cancer transformation. In addi-

tion, there are several unique character-

istics of lung cancer in East Asians (Bell

et al. 2008), including a large proportion

of female patients, the predominance of

adenocarcinoma over other types, and

a high frequency of EGFR point muta-

tions compared with Europeans. Investi-

gation of such features may provide in-

sights for the treatment or prevention of

lung cancer in East Asians. Yet large-scale

analysis of lung cancer genomes has not

been performed in this ethnic group.

In this study, we have extensively

analyzed the transcriptomes of 87 lung

adenocarcinomas in Korean patients. Ad-

ditional whole-exome and transcriptome

sequencing for the adjacent paired-nor-

mal tissues was also performed to in-

crease the specificity in identifying so-

matic mutations.

Transcriptome sequencing is a pow-

erful tool to understand cancer because it

captures a snapshot of diverse aspects of

transformed cells. For instance, through

whole-genome or whole-exome sequenc-

ing we can check for the presence of

somatic mutations in cancer. However,

transcriptome sequencing also provides

a picture of dynamic consequences rather

than just the mutations themselves. We

can profile gene expression levels, gene

fusions, and alternative splicing events

simultaneously, all of which contribute to

the proliferation of cancer cells. More-

over, RNA-seq is a very sensitive tool to

identify point mutations. For example,

six specimens which were negative for

EGFR point mutations in the conven-

tional screening test were discovered to

harbor EGFR point mutations by tran-

scriptome sequencing in this study. We

believe that RNA sequencing is likely to

outperform genome sequencing in de-

tection of cancer drivermutations, especially when tumor purity is

relatively low.Geneswith drivermutations in cancer cells are likely

to be more highly expressed than in normal cells, therefore en-

hancing the signal-to-noise ratio in RNA-seq. For both approaches,

it is important that systems are implemented which ensure the

efficient collection and preservation of cancer tissues from clinic to

bench.

Figure 4. Mutational and transcriptional variation in cancer between never-smokers and smokers. (A)
The number of somatic mutations (nonsynonymous single nucleotide and short-indel mutations) in the
cancer tissue of each patient. Patients are classified into never-smokers and smokers, and further sorted
bymutation count. (Inset) Box plot of somatic mutation counts for never-smokers and smokers. The two
groups are significantly different (P = 0.001079). (B) The proportion of the six possible nonsynonymous
substitutions found within smokers and never-smokers. The two groups were significantly different with
respect to transversions C > A and T > G (**, P < 0.001) and transversion T > A (*, P < 0.01). (C ) The
number of cancer-outlier genes (COGs; extremely high-expressed genes in a subset of cancer speci-
mens; see Methods for details) in each cancer tissue. Patients are sorted as above. (Inset) Box plot
showing that lung adenocarcinoma in smokers containsmore cancer-outlier genes. (D) Gene expression
within cancer tissues against average expression in normal tissue. Scatter plots for patients LC_S33 (a
never-smoker patient) and LC_S51 (a smoker patient) are shown, providing an example of the variation
in gene expression perturbation. Selected genes of interest are labeled. Genes were categorized as
‘‘Cancer-up’’ where generally overexpressed and ‘‘Cancer-down’’ where generally underexpressed in
lung cancer compared with paired-normal tissue by hierarchical clustering (see Supplemental Material).
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Tumor heterogeneity is an important issue in cancer genome

studies (Marusyk and Polyak 2010; Shah et al. 2012). Cancer tissue

specimens with a low proportion of cancer cells require deeper

read-depth when sequencing. We collected specimens from the

center of tumors to attempt to obtain pure samples. The differences

in numbers of somatic mutations per case as well as intrinsic var-

iability in read allele frequency in RNA-seq (i.e., allele-specific ex-

pression and expression differences between cells) do not allow

accurate estimation of tumor heterogeneity from cancer tran-

scriptome sequencing data. Ignoring these issues, the distribution

of read allele frequencies in cancer transcriptome sequencing for

somatic point mutations suggests that the purity of the 87 speci-

mens studied is ;80% on average (Supplemental Fig. 9). In addi-

tion, to increase the sensitivity in detection of somatic mutations,

we performed deep RNA-sequencing (;10 Gb was sequenced

for each cancer specimen) and applied relatively tolerant criteria

for variant detection (i.e., read allele ratio should be $10% for

SNV detection). However, somatic mutations from clones with

lower frequencies may be unidentified in this study. One point

worthy of note is that transcriptome sequencing can only detect

somatic mutations from genes active in transcription. Somatic

mutations in nontranscribed genes can-

not be detected. For example, a recent

study reported that only;36% of somatic

mutations were expressed in breast can-

cers (Shah et al. 2012). However, this may

be an advantage of transcriptome se-

quencing because somatic driver muta-

tions must be transcribed to have a func-

tional impact on the progression of cancer

cells. Transcriptome sequencing enables

us to focus on functionally active somatic

mutations, thus providing functional in-

sights into cancer genomes.

One of the aims of this projectwas to

discover transforming fusion genes in

lung adenocarcinomas. We estimated that

studying 200 cancer tissues would pro-

vide 95.1% power to detect transforming

fusion genes with a frequency of 1.5%

in lung adenocarcinoma (Supplemental

Material). By utilizing transcriptome se-

quencing technology, which is the most

powerful method currently available to

identify novel fusion genes (Maher et al.

2009), we found that EML4–ALK, KIF5B–

RET, and ROS1 fusions are the threemajor

transforming fusion genes of adenocar-

cinoma in Koreans. We also identified

novel gene fusions, including three pro-

tein tyrosine kinase fusions. These novel

fusion genes appear to be rare events in

lung adenocarcinomas, because we iden-

tified only a single case of each fusion

gene among 200 samples. However, they

may be good druggable targets, and more

functional assessments of them are re-

quired in further studies.

From this study, we obtained evi-

dence that expression levels of genes

within a specific genomic region can

be overexpressed (or underexpressed) to-

gether in JRBs, which are likely affected by differentially methyl-

ated regions (DMRs) or copy number alterations, which have been

reported to be important in carcinogenesis (Beroukhim et al. 2010;

Hansen et al. 2011). Our CGH array analysis confirmed that ge-

nomic structural variations have a large-scale impact on the con-

trol of gene expression levelswithin suchblocks. Future integrative

studies, combining genomic structural variations, epigenomic

changes, and gene expression levels of cancers are necessary to

understand the fine-scale mechanisms that control gene expres-

sion in cancer cells.

Finally, we observed that the expression landscapes of the

cancer tissues were extremely heterogeneous. As seen in the so-

matic point mutation and gene expression profile analyses, a sub-

set of cancers harbored an extreme number of somatic point mu-

tations and outlier genes. The pattern was unpredictable, but was

not random and was associated with cigarette smoking. A recent

study analyzing the impact of smoking on human normal lung

tissues also supports our finding (Bosse et al. 2012).

In summary, we have comprehensively identified the geno-

mic and transcriptional aberrations underlying lung adenocarci-

noma in Koreans. The successful discovery of many aberrations in

Figure 5. JRBs identified from gene expression signatures. (A) Large JRBs observed on chromosome 5
in one cancer sample (patient LC_S51) and its high correlationwith CGH array results. (Top row) Relative
expression levels of the genes on chromosome 5 (gray dots), their moving averages (red line), and
detected JRBs (red horizontal bars). (Middle row) CGH array results for patient LC_S51. Log2 ratio of
probes (blue dots) and identified copy number alterations (blue horizontal bars). (Bottom row) Karyo-
gram of chromosome 5. (B) Correlation between JRBs and CGH array data for three cancer specimens.
The x-axis represents the averaged Z-scores of JRB and the y-axis indicates the averaged CGH array log2

ratios for the genomic area. (C ) The genomic location of JRBs and number of cancer tissues involved.
Increased- and decreased-expression JRBs are shown in blue and red bars, respectively.
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cancer genes, such as somatic mutations, gene fusions, alternative

splicing events, and cancer outliers, is most likely due to the strong

power and comprehensive nature of whole-transcriptome se-

quencing. Our approach suggests a paradigm for large-scale deep

transcriptome sequencing initiatives for a number of different

cancer types. Our findings provide guidance for future trans-

lational studies correlating characteristics of cancer tissues and

clinical features, such as drug response, recurrence, and survival.

Methods

RNA and exome sequencing

All protocols of this study were approved by the Institutional

Review Board of Seoul National University Hospital (Approval #

C-1111-102-387) and Seoul St. Mary’s Hospital (Approval #

KC11TISI0678).

All the cancer and adjacent paired-normal tissue specimens

used in this study were acquired from surgical specimens. Cancer

and normal tissue specimens were grossly dissected and preserved

immediately in liquid nitrogen after surgery. For RNA-seq, we

extracted RNA from tissue using RNAiso Plus (Takara Bio Inc.),

followed by purification using RNeasy MinElute (Qiagen Inc.).

RNA was assessed for quality and was quantified using an RNA

6000 Nano LabChip on a 2100 Bioanalyzer (Agilent Inc.). The

RNA-seq libraries were prepared as previously described (Ju et al.

2011).

For exome sequencing of matched normal tissues (and cancer

specimens LC_C5 and LC_C21 for validation purposes), genomic

DNA was extracted from normal lung. Genomic DNA (3 mg) from

each sample was sheared and used for the construction of a paired-

end sequencing library as described in the protocol provided by

Illumina. Enrichment of exonic sequences was then performed

for each library using the SureSelect Human All Exon 50Mb Kit

(Agilent Inc.) following the manufacturer’s instructions.

Libraries for RNA and exome sequencing were sequenced

with Illumina TruSeq SBS Kit v3 on a HiSeq 2000 sequencer (Illu-

mina Inc.) to obtain 100-bp paired-end reads. The image analysis

and base calling were performed using the Illumina pipeline (v1.8)

with default settings.

Screening tests

Screening genetic tests were performed for identification of three

well-known driver mutations in a subset of the 200 lung adeno-

carcinoma tissues as previously described: (1) Exon 18–21 of EGFR

by PCR and Sanger sequencing (Lynch et al. 2004) (n = 164); (2)

Exon 2 of KRAS by PCR and Sanger sequencing (Eberhard et al.

2005) (n = 37); (3) EML4–ALK fusion genes by FISH (Kwak et al.

2010) (n = 163). The results of these studies are summarized in

Supplemental Material and Supplemental Table 1.

Smoking history

Of the 87 individuals whose cancer specimens were RNA se-

quenced, smoking history before diagnosis of lung cancer was

provided by 83 (47 smokers, 36 never-smokers, and four un-

knowns). Information about the amount of smoking (pack–years)

was available for 23 out of 47 smokers.

Sequence analyses

RNA and exome sequencing reads were aligned to the NCBI hu-

man reference genome assembly (build 37.1) using GSNAP (Wu

and Nacu 2010) with allowance for 5% mismatches. In the same

manner, the RNA sequencing reads were also aligned to a cDNA set

consisting of 161,250 mRNA sequences obtained from public da-

tabases (36,742 RefSeq, 73,671 UCSC, and 161,214 Ensembl) to

decrease the false positives and false negatives in variant detection

from RNA sequencing data ( Ju et al. 2011, 2012). The expression

levels for 36,742 RefSeq genes were measured by uniquely aligned

RNA sequencing reads. For each gene, the number of reads aligned

to it (raw read count) was normalized by RPKM (reads per kilobase

per million mapped reads) (Mortazavi et al. 2008).

Somatic single nucleotide and short-indel discovery

We first identified single nucleotide variations (SNVs) and short-

indel variants in cancer using the transcriptome sequencing data.

To minimize false positive calls generated by misalignment, we

used variant calls commonly identified from both the genome and

the mRNA alignment. SNVs were defined according to the fol-

lowing three conditions: (1) The number of uniquely mapped

reads at the position should be$3; (2) the average base quality for

the position should be $20; (3) the allele ratio at the position

should be $10% for SNVs. Indels were called by the same pro-

cedure. Gene annotations for the variants were done using RefSeq

genes. To identify somaticmutations, we removed SNVs and indels

that were also identified in the normal tissue counterparts (76

whole-exome and 77 transcriptome sequencing). To remove po-

tential germline variants that might not be filtered by this step,

common germline SNPs that exist in normal human populations

(variants identified fromphase I of The 1000Genomes Project [The

1000 Genomes Project Consortium 2010], variants with minor

allele frequency >1% from dbSNP 132 [Altshuler et al. 2010], and

variants identified in normal Korean individuals [ Ju et al. 2011])

were assumed to be unrelated to cancer transformation and were

removed. These filtration steps might fail to remove some rare

germline variants if the position was insufficiently covered

in normal exome and transcriptome sequencing. However, we

mostly focused on recurrent mutations in the later analysis, which

are highly unlikely to be rare germline variants. Of note, among

the 87 cancer specimenswhere RNA sequencingwas performed, 11

did not have whole-exome sequencing of normal counterparts.

Therefore, our lists of somatic mutations for the 11 cancer speci-

mens are likely to include more rare germline variants than those

Figure 6. A summary of the mutational profiles of 200 lung adeno-
carcinomas. Pie chart shows the distribution of driver mutations identified
in 200 lung adenocarcinoma patients in this study.
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of the other specimens. We did not consider the 11 specimens in

the statistical analysis of the number of somatic mutations and

smoking history of lung cancer patients.

Fusion gene detection

We detected in-frame fusion genes by utilizing the GFP software

described in our previous report (Ju et al. 2012). Briefly, themethod

makes use of discordant read pairs, where two ends of a pair are

mapped to different genes and exon-spanning reads across the

exonic fusion breakpoint of chimeric transcripts. Additional fil-

tration cascades (homology filter, fusion-spanning read filter, and

the fusion point filter) were applied to remove false positives ( Ju

et al. 2012). In addition toGFP analysis, we also assessed read depth

along each exon of tyrosine kinases (e.g., ALK, RET, and ROS1),

since abrupt overexpression after fusion gene breakpoints is

a hallmark of fusion for these genes (Supplemental Fig. 3; Ju et al.

2012; Lipson et al. 2012). We do not report intrachromosomal

fusions between adjacent genes (<200 kb) because these are as-

sumed to be due to read-through transcription and so do not

originate in genomic rearrangement, e.g., translocation, inversion,

or large deletion ( Ju et al. 2012). Finally, off-frame fusion genes

were removed.

Alternative splicing

First, exon-skipping reads were extracted from the collection of

sequencing reads for each cancer sample. The GSNAP alignment

tool conveniently allows reads to be split into two segments and

mapped to different exons when genomic positions of exons are

provided to the program. We collected those spliced sequencing

reads where nonadjacent exons of a gene were joined and defined

them as exon-skipping sequencing reads. For candidate skipped

exons supported by at least two exon-skipping reads, we obtained

the expression levels for the candidate exon and its neighboring

exons in terms of RPKM. Since the expression level for an exon is

correlated with the expression level for the gene from which it

derives, the expression of the exons was normalized by the ex-

pression level of the gene to which they belong. Next, the fold

changes between the 59 neighboring and the 39 neighboring exons

and the candidate exon were calculated and averaged. With an

assumption of normal distribution, a Z-value for the fold change

was obtained by considering all the fold changes calculated in the

same manner in all the normal samples (n = 77). If any of the

normal averaged fold changes was <0.9, the candidate skipped

exon was not further considered because dropped coverage was

not specific to cancer.

Differentially expressed gene (DEG) selection

We selected DEGs by clustering genes by expression levels. First,

genes with either RPKM <1.0 or coefficient of variation (CV) <0.7

were excluded to remove genes noninformative for clustering. This

resulted in a total of 3051 unique genes. Log2 transformation and

additional row-wise and column-wise normalization was applied:

Row-wise normalization was applied to each gene by subtracting

the gene’s median expression value from individual expression

values. Similarly, column-wise normalization was applied to each

sample by subtracting the sample’s median expression value from

individual expression values. This guarantees that row-wise and

column-wise median expression values were both set to zero.

Then, hierarchical clustering was done by Gene Cluster 3.0 with

default parameters (de Hoon et al. 2004), correlation (uncentered),

and complete linkage. A heatmap was drawn by R package function

heatmap.2 (http://cran.r-project.org/web/packages/gplots/index.

html). Finally, we referred to the hierarchical tree generated by the

clustering process and selected three types of DEGs (cancer-UP,

cancer-DOWN, and mixed).

Cancer outlier gene analysis

COG analysis was performed for 22,427 RefSeq genes across a total

of 164 RNA-seq results with modified criteria suggested previously

(Tomlins et al. 2005; MacDonald and Ghosh 2006). The analysis

pipeline is as follows. (1) All the expression values are subtracted by

their median, which sets the gene’s median to zero (location nor-

malization). (2) All the expression values are then divided by their

median absolute deviation (MAD) (scale normalization). (3) Given

a set of normalized expression values, q75 + 3 3 IQR is defined as

an outlier cutoff where q75 is the 75th percentile expression value

and IQR (inter quartile range) is the absolute difference between

the 25th and the 75th percentile expression values. An expression

value is accepted as an outlier when its original RPKM is $1.0 and

its normalized expression value exceeds the estimated outlier

cutoff. (4) Genes showing an outlier pattern in anynormal samples

are excluded. (5) Finally, genes that exhibit an outlier pattern in at

least one cancer sample are chosen as candidate COGs.

Jointly regulated block (JRB) identification

To generate the gene expression signatures of each cancer sample,

we calculated the ratio of gene expression levels in a cancer tissue

to the average expression levels in 77 adjacent normal tissues. The

gene set for analysis was formed from 36,742 transcripts in the

RefSeq database, which yielded 22,427 genes after filtering out

redundant entries.

To quantify relative expression among cancer samples, we

compared the gene expression ratio of a gene (gene A) in the ith

cancer sample with the ratio in all 87 cancer tissues and calculated

a normalized Z-score as follows:

Zi;A =

expression ratioi;A � average expression ratioA

SDA

� �

;

where SD is the standard deviation of expression ratios.

During this process, genes with low expression levels (maxi-

mum expression <3 RPKM) or genes with small variance in ex-

pressions (relative standard variation <0.1) were removed, since

signal-to-noise ratio for these genes is not sufficient. This left

16,419 genes for further investigation.

Given a set of Z-scores, we calculated the moving average of

10 Z-scores by walking through the chromosomes. An increased

expression JRB is defined as starting at a gene with a Z-score >1.5

and extending in both directions until a Z-score <0.5 is reached.

Once its boundary is determined, the JRB must satisfy at least one

of the three following criteria: (1) more than 40 genes within

a block, (2) more than 20 genes in a block and an average Z-score

>1.2, (3) an average Z-score >2.0. On the other hand, we applied

slightly different conditions in discovering decreased expression

JRBs to increase the sensitivity. A decreased expression JRB is de-

fined as starting at a gene with a Z-score less than �1.0 and

extending in both directions until a Z-score greater than �0.5 is

reached. Then the JRB must satisfy at least one of the three fol-

lowing criteria: (1) more than 40 genes within a block, (2) more

than 20 genes in a block with an average Z-score less than�0.8, (3)

an average Z-score less than �1.0.

The comparison of JRBs and copy number alterations pro-

vided by CGH array was done by calculating the correlation (r2)

between the averaged Z-scores of JRBs and the averaged log2 ratio
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values of probes within the same JRBs. CGH array analyses were

performed using nine cancer samples (LC_C7, LC_C21, LC_C25,

LC_C35, LC_S19, LC_S23, LC_S39, LC_S42, and LC_S51) and their

normal counterparts using a customized Agilent 180K CGH array

platform (Park et al. 2010). CGH array experiments were con-

ducted according to the manufacturer’s instructions (Agilent Inc.).

Briefly, genomicDNA from cancer and adjacent-normal specimens

were labeled by Cy-5 and Cy-3 dye, respectively, and hybridized.

Log2 ratio was calculated by image analysis of CGH array using the

CGH-105_Jan09 protocol (Agilent Inc.) for background sub-

traction and normalization.

Validation of fusion genes

Fusion genes were validated using PCR amplification of fusion

gene breakpoints of chimeric cDNA and Sanger sequencing. The

PCR reactions were 10 min at 95°C, 30 cycles of 30 sec at 95°C, 30

sec at 62°C and 30 sec at 72°C, and finally 10 min at 72°C. All the

Sanger sequencing experiments were performed at Macrogen Inc.

(http://www.macrogen.com). PCR and Sanger sequencing primers

are shown in Supplemental Table 7.

Statistical analyses

The differences in number of somatic mutations and COGs be-

tween smokers and never-smokers (Fig. 4A,C) were tested using

Student’s t-test. x2 tests were applied on the difference inmutation

spectrums (Fig. 4B). Logistic regression analysis was performed to

assess the relationship between somatic mutations (known or

candidate driver mutations and TP53mutations) and lymph node

metastasis using gender, age, cancer stage, and smoking status as

covariates (Supplemental Table 12). Two-sided P-values were cal-

culated for all these statistical tests.

Mutual exclusion and concurrence analysis

We carried out pairwise mutual exclusion and concurrence anal-

ysis for genes that showed more than three mutations (including

somatic point mutations, fusion genes, and skipped exons). For

a given pair of mutated genes A and B, we recorded the number of

samples in possible four categories (A mutated only, B mutated

only, both A and B mutated, and neither). Then Fisher’s exact test

was performed to infer the mutual dependency between the two

genes. Once two genes were determined to bemutually dependent

on each other by the test, their mutual exclusion/concurrence

was determined by calculating Pearson’s correlation coefficient,

r (mutual exclusion: r < 0 and concurrence: r > 0).

Data access

Gene expression values for 87 lung adenocarcinomas and 77

adjacent normal tissues can be viewed at http://gene.gmi.ac.kr

and at the NCBI Gene Expression Omnibus (GEO) (http://

www.ncbi.nlm.nih.gov/geo/) under accession number GSE40419.

Transcriptome and exome sequencing data are uploaded to the EBI

European Nucleotide Archive (http://www.ebi.ac.uk/ena/home) un-

der accession number ERP001058 (transcriptome sequencing) and

ERP001575 (exome sequencing).
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