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Abstract

Background: The G1-to-S transition of the cell cycle in the yeast Saccharomyces cerevisiae involves an extensive 

transcriptional program driven by transcription factors SBF (Swi4-Swi6) and MBF (Mbp1-Swi6). Activation of these 

factors ultimately depends on the G1 cyclin Cln3.

Results: To determine the transcriptional targets of Cln3 and their dependence on SBF or MBF, we first have used DNA 

microarrays to interrogate gene expression upon Cln3 overexpression in synchronized cultures of strains lacking 

components of SBF and/or MBF. Secondly, we have integrated this expression dataset together with other 

heterogeneous data sources into a single probabilistic model based on Bayesian statistics. Our analysis has produced 

more than 200 transcription factor-target assignments, validated by ChIP assays and by functional enrichment. Our 

predictions show higher internal coherence and predictive power than previous classifications. Our results support a 

model whereby SBF and MBF may be differentially activated by Cln3.

Conclusions: Integration of heterogeneous genome-wide datasets is key to building accurate transcriptional 

networks. By such integration, we provide here a reliable transcriptional network at the G1-to-S transition in the 

budding yeast cell cycle. Our results suggest that to improve the reliability of predictions we need to feed our models 

with more informative experimental data.

Background
In the model yeast Saccharomyces cerevisiae, the commit-

ment to a new round of cell division takes place towards

the end of the G1 phase of the cell cycle, a process called

START [1]. This entails the unfolding of a transcriptional

program involving over 200 genes, including some

important cell cycle regulators such as the G1 cyclins

Cln1 and Cln2, S phase cyclins, a number of cell cycle

transcription factors (TFs) as well as many other genes

with functions related to DNA metabolism (replication,

repair, and so on), budding, spindle pole body duplica-

tion, and cell wall synthesis [2,3]. Many of these genes are

known or putative targets of two heterodimeric TFs

called SBF and MBF. SBF contains the DNA-binding pro-

tein Swi4, while MBF contains the Swi4-related DNA-

binding protein Mbp1, and both factors contain the regu-

latory protein Swi6, which binds directly to Swi4 or

Mbp1, respectively (reviewed in [4]). There is consider-

able functional redundancy between these factors. For

example, it has been reported that SBF may recognize,

albeit with reduced affinity, MBF binding sites and vice

versa [5-7]. Moreover, while mbp1Δ and swi4Δ strains are

viable, the double mutant mbp1Δ swi4Δ is not [8].

Although MBF and SBF are poised at their target pro-

moters during much of G1 phase [9-11], they cannot acti-

vate transcription; rather, they repress it. Their activation

at START depends primarily on the cyclin/cyclin-depen-

dent kinase (CDK) complex Cln3-Cdc28. This is achieved

in part by phosphorylation, and consequent shuttling out

of the nucleus, of a repressor called Whi5 [12,13], releas-

ing SBF/MBF from its inhibition. Recently, a positive

feedback mechanism involving Cln1 and Cln2 has been

proposed to operate under physiological conditions in

SBF/MBF activation [14].

There has been considerable interest and effort at eluci-

dating TF-target interactions at a genome scale. Reliable
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TF-target assignments are essential to build accurate

transcriptional networks and to uncover TF modules

responsible for combinatorial transcriptional regulation.

One important piece of information concerning TF-tar-

get assignments is provided by genome-wide location

analyses of TFs [15-18]. However, TF binding does not

necessarily imply regulation, neither is it informative as

to whether the regulation is positive or negative. Further-

more, these studies are typically noisy, and given the

modest overlap among some of these analyses, and the

poor agreement with data from other sources, doubts

about their reliability have also been raised [19,20]. None-

theless, location analyses have been the starting point for

numerous computational studies aimed at defining tran-

scriptional networks by heterogeneous data integration

(see, for instance, Lee et al. [21] and references therein).

Following these lines, two recent works, one based on a

Bayesian approach [22] and another using support vector

machines [23], have provided predictions for TF-target

interactions in the yeast global transcriptional network.

Unfortunately, the agreement between these studies is at

most quite modest.

We are particularly interested in the transcriptional

program at START. In order to produce informative

experimental data concerning this cell cycle stage, we

have used DNA microarrays to generate new expression

profiles under relevant conditions (synchronized cul-

tures, deletion mutants) to study the transcriptional tar-

gets of the START regulator Cln3, and their dependence

on the TFs Mbp1 and Swi4. We have integrated our new

data with previously published datasets to provide reli-

able TF-target assignments. We propose a list of more

than 150 targets. Importantly, we have experimentally

validated our new predictions by performing chromatin

immunoprecipitation (ChIP) to demonstrate TF binding

to the promoters of some of our targets. Furthermore,

our classification performs better than recent analyses

[22,23] in a number of tests, and shows high internal con-

sistency.

Results
New genome-wide expression dataset

In order to identify the targets of the cell cycle regulator

Cln3, and their dependence on the TFs SBF and MBF, we

have used DNA microarrays to interrogate genome-wide

changes in gene expression upon induction of Cln3 in

strains that lacked components of SBF, MBF or both, that

is, swi6Δ, swi4Δ, mbp1Δ, and swi4Δ mbp1Δ mutants.

Cln3 becomes essential in the absence of Bck2 [24-26].

Recently, we have also shown that overexpressed Bck2 is

able to induce an extensive transcriptional program of

mostly cell cycle-regulated (CCR) genes, many of which

peak at the G1/S transition of the cell cycle [27]. Hence,

to avoid confounding effects derived from Bck2 function,

we placed the endogenous CLN3 gene under the control

of the regulatable GAL1 promoter in strains deleted for

BCK2. When grown under non-inducing conditions for

the GAL1 promoter, PGAL1·CLN3 bck2Δ strains were kept

alive by constitutive expression of CLN2

(pRS313{PMET3·CLN2} [26]). Also, to control for non-spe-

cific expression changes, we used a double deletion cln3Δ

bck2Δ strain, again kept alive by PMET3·CLN2. To improve

sensitivity and facilitate interpretation, before galactose

induction we synchronized our cultures by repressing the

expression of CLN2 with methionine. Cln2 depletion in a

raffinose (non-inducing) medium produced a G1 arrest

similar to that described for a cln3Δ bck2Δ double mutant

[24-26], that is, accumulation of unbudded cells with 1N

DNA content (Figure 1).

Overexpressed CLN3 induced cell cycle entry in an

mbp1Δ background and in an otherwise wild-type strain

(that is, in a bck2Δ context), as assessed by DNA content

and budding count. By contrast, Cln3 was unable to

increase the budding index in swi6Δ, swi4Δ or swi4Δ

mbp1Δ strains (Figure 1a). Interestingly, Cln3 was capa-

ble of promoting DNA replication in these backgrounds,

even though it was unable to induce any noticeable

changes in gene expression in the swi6Δ or swi4Δ mbp1Δ

mutants (Figures 1b and 2). Most likely, this is due to

overexpressed Cln3 being able to target the Clb/Cdc28

inhibitor Sic1 for degradation [28]. As expected, galac-

tose addition per se was unable to induce cell cycle entry

in the cln3Δ bck2Δ control strain (Figure 1).

Cultures were sampled every 20 minutes for the next 80

minutes after galactose addition, and changes in gene

expression were measured using microarrays. In order to

select genes specifically induced by Cln3 (or by cell cycle

entry) as opposed to those induced by stress or by galac-

tose, we used five slightly different selection criteria

based on gene clustering (see Materials and methods).

The number of genes selected by each criterion ranges

from 225 to 327, totaling 445 genes, of which 144 (32%)

were selected by all five approaches used, whereas 118

genes were selected by only one method. The expression

patterns of all 445 candidate genes are shown in Figure 2

(see Additional file 1 for numerical values). We antici-

pated that because we used synchronized cultures, and

because Cln3 is a key cell cycle regulator, most of these

genes would be CCR. Indeed, more than 70% of the 445

genes selected are CCR. Importantly, this is true even

when we did not use CCR gene enrichment as a selection

criterion. Furthermore, most (68%) of these CCR genes

peak at G1 or S phases of the cell cycle, as expected for

Cln3 targets. Hence, it is likely that our microarray analy-

sis has produced a meaningful set of putative Cln3 tar-

gets.
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As we have reported before [27], virtually all genes are

irresponsive to Cln3 in the absence of Swi6. Here, we also

show that Cln3 requires either Mbp1 or Swi4 in order to

promote transcription of its targets, as deduced from the

lack of induction in the swi4Δ mbp1Δ strain. Hence, we

demonstrate that Cln3 functions as a transcriptional reg-

ulator exclusively through MBF and SBF. The only genes

that were somewhat induced in both the swi6Δ and swi4Δ

mbp1Δ backgrounds were histones (Figure 2). Rather

than indicating an MBF/SBF-independent Cln3-medi-

ated induction, this is very likely due to ongoing DNA

replication because histones are regulated at multiple lev-

els and show a robust expression peak in S phase

(reviewed in [29]). Another cluster of genes that also

showed some induction in the absence of Swi6 contains

helicases encoded by middle-repetitive Y' subtelomeric

regions. Because there is extensive sequence similarity

among these loci, it is unclear whether all reported fea-

tures or just one or few were actually induced in our

experiments. In any case, we also observed some induc-

tion of these genes in the control strain, albeit with differ-

ent timing than in the other strains (Figure 2).

Transcription factor-target assignments

To distinguish the targets of Cln3 from those genes that

were just responding to cell cycle progression, and

because we found that Cln3 functions exclusively through

MBF or SBF, we determined the subset of genes within

the 445 candidates that could be assigned to either MBF,

SBF or both. To do this, we used a Bayesian approach that

integrates different lines of evidence into a single proba-

bilistic model [22,30]. In our analysis, we have evaluated

nine different classifiers from three different lines of evi-

dence - TF binding information, TF motifs, and expres-

sion data. For each classifier considered, each TF-target

interaction was assigned a log-likelihood score based on

control sets of positive and negative interactors. Final

scores were computed by simply adding all the individual

scores for the nine classifiers employed. These scores are

provided in Additional file 2. To choose thresholds in our

ranked list of putative targets, we evaluated our predic-

tions with several statistical measures (Figure 3a). We

selected cutoffs that at the same time produced high val-

ues of the Matthews correlation coefficient (MCC) [31] -

regarded as a balanced measure of the quality (predictive

power) of binary classifications, even when classes are of

very different sizes - and also produced high values for

accuracy (›80%), precision (›80%), and specificity (›90%);

somewhat at the expense of sensitivity (approximately

60%). In other words, we preferred to leave out some true

positives to avoid the inclusion of too many false posi-

tives. In any case, these quality values are likely underesti-

mated (see Materials and methods).

By these criteria, we obtained 111 and 94 targets of

MBF and SBF, respectively. Thirty-six of these were

shared by both factors (Tables 1 and 2; Additional file 3).

We first examined our predictions for targets for which

strong evidence of regulation by MBF or SBF exists in the

literature (reviewed in [32]) [19,33,34]. For this purpose,

we avoided noisy datasets generated by genome-wide

approaches. We found a total of 14 genes. Of the seven

genes showing MBF regulation (CDC21, POL1, CLB5,

CLB6, RNR1, NRM1, DUN1), our list of targets includes

six. The only exception, NRM1, was ranked number 161.

Figure 1 Budding index and DNA content. Relevant genotypes of strains are shown. Strains were also deleted for BCK2, and contained plasmid 

pRS313{PMET3·CLN2}. Except for control strain cln3∆, all strains also had the endogenous CLN3 gene expressed under the GAL1 promoter. Asynchronous 

(Asyn) cultures of the indicated strains were grown in raffinose medium lacking methionine; they were thus kept alive by constitutive expression of 

CLN2. Cells were arrested in G1 (Arrest) by addition of methionine. After most cells were blocked in G1, galactose was added to induce CLN3. Samples 

were taken every 15 minutes for (a) budding and (b) DNA content evaluation (not all time points are shown). Only one experiment is shown. Some-

what less synchronous but otherwise similar profiles were obtained in a duplicate experiment (data not shown). WT, wild type.
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We classified NRM1 as an SBF target instead. Only one

gene, DUN1, was in the positive control set. Similarly, of

the seven reported targets of SBF (HO, CLN1, CLN2,

PCL1, SVS1, TOS4, YOX1), we were able to detect all

except PCL1 (position 165) as SBF-regulated genes. HO

and TOS4 were in the positive control set. Hence, we

conclude that our strategy correctly assigned most

known targets of MBF or SBF. Among our predictions,

58% and 67% of the MBF and SBF targets, respectively,

have also been reported in a number of previous analyses

[35-38] other than Beyer's and Holloway's studies. This

suggests that our approach has produced many true tar-

gets, as substantiated by independent classifications. On

the other hand, we have predicted 27 MBF- and 21 SBF-

regulated genes not found before [22,23,35-38]. Although

this constitutes added value to our work, it raises ques-

tions about the number of false positives in our analysis,

and it calls for further experimental validation of our

results (see below).

We (and others) find most targets of MBF or SBF to be

CCR, with peak expression at the G1 or S phases of the

cell cycle (more on this below). However, there are 172

CCR genes with maximal expression in this same cell

cycle window that we have not classified as MBF or SBF

targets. These are good candidates as false negatives in

our analysis. However, only 28 out of these 172 CCR

genes are predicted as MBF or SBF targets in at least two

previous classifications [22,23,35-38]. Hence, most

(approximately 80%) of these targets are likely true nega-

tives. Among those predicted by others, some were in our

list below the defined cutoff but close to it (for example,

in the MBF list, KCC4 was ranked 132, POL2 126, and

PLM2 113; in the SBF list, HHT1 was 106). Still, some

other genes may have escaped detection because their

expression may depend on BCK2, which was absent in

our experiments. Some candidates within this group are

HLR1, FKS1, and ELO1 [27].

We further compared our targets with those provided

by Beyer et al. [22] and by Holloway et al. [23] (Figure 3b).

About 70% of our predicted targets were also in the lists

of Beyer et al. or Holloway et al. This was not unexpected

since our control sets were based on these studies. By

contrast, we only detected 23% of the targets predicted by

Beyer et al. and approximately 34% of those by Holloway

et al. Because our study has focused only on those targets

that respond in a timely way to Cln3 overexpression in

the absence of Bck2, genes that require this protein for

their expression would not have been selected. Moreover,

some targets controlled by MBF or SBF may also respond

to stress, and they would have been likely removed during

our gene selection procedure. We examined our expres-

sion data for targets solely detected by Beyer et al. or Hol-

loway et al., and found some 70 genes responding to

stress, induced by Bck2 [27], or otherwise selected within

Figure 2 Expression profiles of the 445 genes selected in this 

study. Heat map depicting relative expression levels after galactose 

addition. Induction is yellow; repression is blue. Averaged log2 values 

from duplicate experiments are used (for individual values see Addi-

tional file 1). Scale is at the bottom. Only relevant genotypes of strains 

are indicated. For complete genotypes see Figure 1 or the text. Four 

time points (20 through 80) per strain are indicated by widening black 

bars at the top. Genes are hierarchically clustered (uncentered Pearson 

correlation, average linkage). On the left, H indicates the histone clus-

ter; Y' indicates the cluster of Y' subtelomeric elements. WT, wild type.
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our 445 candidates but unsupported as targets by our

integrative analysis. However, most targets predicted only

by Beyer et al. or by Holloway et al. would remain unac-

counted for under these considerations. It is clear that

our study is rather restrictive and that a few true targets

of MBF and SBF may be missing from our lists. Also,

under different growth conditions MBF and SBF may

show distinct binding specificity, which may have been

accounted for by these other studies. By contrast, we have

predicted 32 targets (29%) of MBF (Table 1) and 32 (34%)

of SBF (Table 2) that Beyer et al. and Holloway et al. failed

to detect. Because we have used expression data collected

in swi4Δ and mbp1Δ backgrounds, which surely are more

informative about SBF and MBF regulation than expres-

sion datasets used in previous studies, our work may pro-

vide higher sensitivity (for our experimental conditions)

in detecting targets that may have escaped other studies

broader in scope.

Cell cycle behavior

MBF and SBF are TFs that play a central role during the

cell cycle. Hence, we first wanted to visualize the distribu-

tion of the expression peaks of their targets throughout

the cell cycle (Figure 4). Most targets (92%) were CCR. In

comparison, some previous predictions [22,23,35,37]

produced a much greater proportion of non-CCR targets.

Because we worked with synchronized cultures, explicitly

enriched for CCR genes during selection, and used cell

cycle regulatory data in our model, this was hardly sur-

prising. MBF targets distributed narrowly, and centered

at a time point corresponding to 20% of the whole dura-

tion of the cell cycle. Almost identical distributions were

Figure 3 Target classifications. (a) Values of quality measures throughout our ranked list of candidates. Average values obtained with two bench-

marks are represented. See text for details. (b) Venn diagrams comparing our classifications with those of Beyer et al. [22] and Holloway et al. [23].
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Table 1: Summary of targets controlled by MBF

Ranking Systematic 

name

Standard 

name

Cell cycle

peaka

TF bindingb Motifs ACGCGc Previous classificationsd Functional classe

1 YMR179W SPT21 14 [15-18] 2 (1) [23,35-38] Others

2 YKL113C RAD27 20 [15-18] 1 (1) [23, 35-38] DNA RRR

3 YLR103C CDC45 18 [15-18] 2 [22, 23, 35-38] DNA RRR

4 YNL102W POL1 20 [15,18] 3 (1) [22,23,36] DNA RRR

5 YJL074C SMC3 19 [17,18] 2 [22,23,35-38] Cell cycle

6 YOR074C CDC21 22 [15-18] 2 [22,23,35-38] DNA RRR

7 YNL312W RFA2 22 [15,17,1

8]

2 [22,23,36,37] DNA RRR

8 YAR007C RFA1 19 [17,18] 2 (1) [22,23,36-38] DNA RRR

9 YAR008W SEN34 17 [17,18] 2 (2) [22,23,36-38] Others

10 YDL003W MCD1 20 [15-18] 2 (2) [23,35-38] Cell cycle

41 YNL082W PMS1 13 2 DNA RRR

56 YOR144C ELG1 16 1 DNA RRR

66 YKL092C BUD2 ND 1 BP

67 YDL157C 32 1 Unknown

68 YNL206C RTT106 19 1 DNA RRR

69 YKL108W SLD2 13 1 DNA RRR

70 YOR284W HUA2 17 1 BP

71 YDL164C CDC9 18 2 [36] DNA RRR

72 YLR032W RAD5 15 2 DNA RRR

77 YDL102W POL3 17 1 (1) DNA RRR

78 YNL263C YIF1 24 1 (1) Others

79 YPL208W RKM1 23 1 Others

83 YKL042W SPC42 21 1 SPB

84 YML133C 8 [15] (1) DNA RRR

85 YJL173C RFA3 31 2 (1) [36] DNA RRR

86 YJL181W 13 3 Unknown

88 YKL089W MIF2 ND [36] SPB

89 YML060W OGG1 22 1 DNA RRR

90 YBR275C RIF1 22 [18] DNA CM

91 YOR368W RAD17 ND 1 DNA RRR

95 YNL339C YRF1-6 10 [15] (1) DNA RRR

96 YOL090W MSH2 20 1 [36] DNA RRR

99 YOR114W 24 1 Unknown

101 YHL013C OTU2 ND [17] [35,37] Unknown

103 YOR195W SLK19 27 1 SPB

104 YGR140W CBF2 34 1 (1) Cell cycle

106 YNL309W STB1 15 1 (1) Cell cycle

107 YOL034W SMC5 ND 1 DNA RRR

108 YER016W BIM1 29 2 Cytoskeleton

109 YDR356W SPC110 33 1 Cytoskeleton
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observed in previous approaches (Figure 4; Additional file

4). By contrast, the distribution of SBF targets was more

variable across studies. In our case, we observed a

bimodal distribution (also apparent with Beyer et al.'s

data) with some SBF targets peaking slightly later than

MBF-regulated genes, but most peaking much later (40%

point), and few extending beyond 45% of the cycle dura-

tion. Significant numbers of SBF targets in other studies

[22,23,35,36,38] showed cell cycle peaks beyond this

point (Figure 4; Additional file 4). These might be targets

for which SBF acts as repressor rather than as activator or

which are not controlled by Cln3. Although many SBF

targets peak much later than genes regulated by MBF,

they are actually activated concurrently or just slightly

later [39] (Additional file 5). SBF targets are, however,

deactivated much later than MBF targets [39] (Additional

file 6). This differential timing of expression of MBF and

SBF targets throughout the cell cycle was also apparent in

our microarrays, with SBF targets being induced some-

what later and longer than MBF targets. Most likely, this

is the consequence of Nrm1-specific repression of MBF

targets [33], and Clb2-dependent repression of SBF tar-

gets [9,40].

Experimental validation by ChIP

To validate experimentally our predictions, we performed

ChIP assays. For each TF, we chose three targets for

which binding had not been detected previously. ELG1,

SLD2, and STB1 (ranked 56, 69 and 106, respectively)

were chosen as MBF targets, and VRG4, STU2, and ERP2

(ranked 76, 93 and 94, respectively) as SBF targets. Only

STU2 was predicted as a SBF target by just one previous

analysis [36]. As positive controls we chose CDC45 and

SVS1 for MBF and SBF binding, respectively. Both genes

bound these TFs in previous genome-wide location anal-

yses [15-18], and are predicted as targets by all previous

classifications [22,23,35-38]. CDC45 had two ACGCG

motifs (Mbp1 binding site) in the first 200 bp upstream of

the transcription start site (TSS), whereas the three MBF

targets tested contained just one each. SVS1 and STU2

had three CRCGAA motifs (Swi4 binding site) in the first

400 bp upstream of the TSS, VRG4 contained two, and

ERP2 only one. We designed PCR primers targeting these

regions. As control for non-specificity we chose a frag-

ment of the coding sequence of DYN1. This gene is one of

the largest in the S. cerevisiae genome, and thus this

region is more than 6 kb away from the closest promoter.

In addition, we carried out parallel ChIPs with an

untagged strain. As source material for the ChIPs, we

used both asynchronous cultures and G1-enriched cul-

tures by treatment with α factor. Somewhat unexpectedly,

however, G1 enrichment did not improve detection of

MBF or SBF binding. On the contrary, our results are

quite comparable irrespective of the growth conditions

(Figure 5). Importantly, these constitute two independent

ChIP experiments.

We found specific enrichment for all the genes tested

when compared to the non-specific control DYN1 (Figure

5). As expected, the relative enrichments for the untagged

strain were close to one for all the genes and conditions.

The positive controls, CDC45 and SVS1, showed approxi-

mately 4-fold and 7-fold enrichments, respectively,

whereas our test targets gave values in the range of 1.5 to

2. STU2 and ERP2 gave the greatest variability, but con-

sidering both experiments and all the PCRs performed,

we also conclude that there is some enrichment for these

genes. These are particularly noteworthy because they

are ranked last in our list of SBF targets. Although the

enrichments for test genes may seem modest, particularly

when compared to that for SVS1, this result was antici-

pated because higher values would have been unlikely to

escape detection in genome-wide location analyses.

Validation by functional enrichment

To further validate our predictions, we analyzed the bio-

logical functions of our targets (Figure 6a). Because no

functional annotation was used at any step in our TF-tar-

get assignment approach, gene functions provide an inde-

pendent quality assessment of our predictions. It has

been previously proposed that MBF and SBF control

genes with distinct and dedicated roles. Thus, many MBF

targets would be involved in DNA replication, repair and

DNA processing in general, whereas many SBF-con-

trolled targets seem to be involved in membrane and cell

wall biogenesis [15,41,42]. In agreement with this, we

have found statistically significant enrichment (P ‹ 10-15)

in genes involved in DNA replication, repair and recom-

bination among our MBF targets. We also found signifi-

110 YDL105W NSE4 16 DNA RRR

111 YNL088W TOP2 34 2 DNA CM

aPercent value of the whole duration of the cell cycle taken from [20,45]. bReferences for publications where Mbp1 binding was detected. 
cNumber of motifs in the first 200 bp upstream of the TSS (motifs beyond the first 200 bp upstream). dReferences for publications where the 

gene was predicted as target of MBF. eDNA RRR, DNA replication, recombination and repair; BP, budding/polarity; SPB, spindle pole body; 

DNA CM, DNA conformation modification. The top ten predicted targets and all those specific (not detected in [22] or [23]) to our classification 

are shown. The full list is available in Additional file 3. ND, not determined.

Table 1: Summary of targets controlled by MBF (Continued)
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Table 2: Summary of targets controlled by SBF

Ranking Systematic 

name

Standard 

name

Cell cycle

peaka

TF bindingb Motifs CRCGAAc Previous

classificationsd

Functional classe

1 YER001W MNN1 29 [16-18] 1 (1) [22,23,36-38] CW Gly

2 YNL300W TOS6 30 [15-18] 4 [22,23,35-38] Unknown

3 YKR013W PRY2 25 [16-18] 4 [22,23,35,36,38] Unknown

4 YOL007C CSI2 24 [15] 4 [22,36] CW Gly

5 YPL163C SVS1 28 [15-18] 3 (1) [22,23,35-38] Others

6 YPL256C CLN2 23 [15] 2 (2) [23,35,36] DNA RRR/BP

7 YDR297W SUR2 30 [15] 1 [23] Others

8 YMR307W GAS1 36 [15-18] 2 (1) [22,23,36-38] CW Gly

9 YDR507C GIN4 21 [15-18] 1 [23,37,38] BP

10 YLR183C TOS4 23 [15] 2 (1) [22,36] Others

16 YOL019W 22 [15,17] 1 [36-38] Unknown

17 YGR140W CBF2 34 [15] 1 (2) Cell cycle

18 YNL031C HHT2 37 [15] 2 [36] DNA CM

32 YJL173C RFA3 31 1 (1) DNA RRR

39 YMR144W 33 [16-18] 1 [35-38] Unknown

49 YMR179W SPT21 14 [15-18] 1 [35-38] Others

51 YPL267W ACM1 16 [17,18] 1 [35-38] Unknown

54 YLR121C YPS3 17 [15] 2 [36] Others

57 YNL278W CAF120 nd [15] 2 Others

61 YHR154W RTT107 24 1 [36] DNA RRR

63 YMR304C-A nd [16-18] 0 Unknown

65 YHR173C 36 1 Unknown

67 YBL009W ALK2 36 2 Others

69 YJL080C SCP160 33 2 Cell cycle

70 YKR090W PXL1 27 1 BP

71 YGL093W SPC105 34 1 Cytoskeleton

72 YKL113C RAD27 20 1 [36] DNA RRR

73 YBR088C POL30 20 1 [36] DNA RRR

76 YGL225W VRG4 38 2 (1) CW Gly

77 YDR113C PDS1 33 0 Cell cycle

79 YLR383W SMC6 24 1 DNA RRR

81 YGL012W ERG4 42 [15] 1 Others

84 YPL032C SVL3 40 1 BP

85 YHR050W SMF2 nd 1 (1) Others

86 YKL049C CSE4 40 1 Cell cycle

87 YBR252W DUT1 40 1 Others

88 YOR099W KTR1 34 1 (1) CW Gly

89 YLL021W SPA2 31 0 (1) BP

91 YNL102W POL1 20 0 (1) [36] DNA RRR

92 YJR144W MGM101 nd 3 (1) DNA RRR
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cant enrichment (P ‹ 2 × 10-4) for SBF-regulated targets

involved in cell wall biogenesis and integrity, as well as

protein glycosylation. We considered these two func-

tional classes together because many cell wall compo-

nents are highly glycosylated proteins, and cell wall

integrity thus strongly depends on protein glycosylation

(reviewed in [43]). We next examined the functional con-

sistency of our classification by comparing the distribu-

tion in different functional classes of unique versus

shared targets, taking as reference the lists provided by

Beyer et al. [22] and Holloway et al. [23]. We found no

statistically significant differences (two-tailed Fisher

exact test, P ‹ 0.05) between these two sets in any of the

functional categories considered. By comparison, a simi-

lar analysis performed with Beyer et al.'s and Holloway et

al.'s classifications showed significantly fewer genes dedi-

cated to DNA replication, recombination and repair

among their unique MBF targets than in those shared

with other classifications (P ‹ 2 × 10-5 and P ‹ 2 × 10-3,

respectively). Beyer et al.'s SBF targets were lacking in cell

cycle genes (P ‹ 0.01) and those involved in cell wall and

glycosylation (P ‹ 6 × 10-5). By contrast, Holloway et al.'s

specific MBF targets included more genes involved in cell

wall and glycosylation (P ‹ 0.02). In conclusion, our classi-

fication shows higher functional internal consistency

than the predictions from these previous studies. This

consistency reinforces the idea that we have been able to

find many real targets that have escaped previous analy-

ses.

Evaluation of predictive power: the case of divergently 

transcribed genes

Divergently transcribed genes offer another approach to

evaluate the quality of our predictions. These genes share

their promoter regions, and because in yeast intergenic

regions are usually short, ChIP-chip data alone cannot

distinguish whether both or only one gene (or none) may

be regulated by the bound TF. Several studies [37,44]

have integrated expression data together with ChIP-chip

data to establish which divergent genes are likely or

unlikely to be regulated by bound TFs. These works pro-

vide independent predictions that can be used as bench-

marks to compare the predictive power of other

classifications. Compared to the experimental data we

have used, Beyer et al.'s and Holloway et al.'s analyses

have arguably used datasets more akin to those used pre-

viously [37,44]. Despite this, our classification outper-

formed both Beyer et al.'s and Holloway et al.'s in

predicting true regulation in divergently transcribed

genes as measured by MCC (Figure 6b). These other clas-

sifications displayed much lower specificity and preci-

sion, similar accuracy, and higher sensitivity than ours

(data not shown). The greatly diminished specificity

(higher number of false positives) of these classifications

may be explained by the fact that both seem to rely

strongly on genome-wide binding data.

Internal consistency: distribution of motifs in MBF targets

The MBF targets used as positive control in our analysis

were highly enriched for Mbp1 binding motifs (ACGCG)

located proximal (‹200 bp) to the TSS. Whereas 65% of

these targets had at least one binding site in the first 200

bp upstream of the TSS, only 4.5% of genes in our nega-

tive control did. Similarly, the SBF control genes were

enriched in Swi4 binding motifs (CRCGAA), but they

were neither so narrowly distributed upstream of the TSS

nor so highly enriched (78% versus 33%). Strikingly, even

when we recalculated the scores without the motif classi-

fier - hence, no information concerning sequence motifs

was used - the vast majority of the MBF targets still pre-

sented the ACGCG motif in their promoters with a

clearly biased distribution towards the proximity of the

TSS (Figure 7). This was true irrespective of whether the

predicted targets were common to other studies or

unique to our work. By contrast, a random set of non-

MBF targets did not show this pattern (Figure 7c). We

next examined the distribution of motifs in the promoters

of the MBF targets predicted by Beyer et al. and Holloway

et al. We considered four groups of targets: those

detected in all three studies and those unique to only one

study. Because the classifications by Beyer et al. and Hol-

loway et al. included motif information, we expected to

find enrichment of MBF binding motifs. Indeed this was

the case, but these motifs were much more scattered

along the full length of promoters in Beyer et al.'s or Hol-

loway et al.'s targets than in the common set or in our

specific targets (Figure 7a). Consequently, the proportion

of genes containing sites in the first 200 bp upstream of

93 YLR045C STU2 42 3 (1) [36] SPB

94 YAL007C ERP2 37 1 Others

aPercent value of the whole duration of the cell cycle taken from [20,45]. bReferences for publications where Swi4 binding was detected. 
cNumber of motifs in the first 400 bp upstream of the TSS (motifs beyond the first 400 bp upstream). dReferences for publications where the 

gene was predicted as target of SBF. eCW Gly, cell wall/glycosylation; DNA RRR, DNA replication, recombination and repair; BP, budding/

polarity; SPB, spindle pole body; DNA CM, DNA conformation modification. The top ten predicted targets and all those specific (not detected 

in [22] or [23]) to our classification are shown. The full list is available in Additional file 3. ND, not determined.

Table 2: Summary of targets controlled by SBF (Continued)
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the TSS in the common set and in our specific group was

greater than in the specific sets of the other two studies

considered (Figure 7b). Hence, this analysis strongly sug-

gests that our MBF targets constitute a more homoge-

neous group than those previously described [22,23].

Previous analyses may have detected condition-specific

targets of Mbp1 that we may have missed under our more

restrictive experimental investigation. Should this be the

case, however, the distinct distribution of motifs would

suggest that positional information at promoters may

play a role in the response to one or another cellular cue.

Evaluation of genome-wide location datasets

Finally, we used our classification as a benchmark to com-

pare the predictive value of the different genome-wide

location analyses involving Mbp1 and Swi4. To this pur-

pose, we produced classifications leaving the binding

information classifier out. Note that the datasets gener-

ated by Young and co-workers [16-18] were used by

Beyer et al. and Holloway et al. in their analyses, and

because our control sets were derived from those studies,

our predictions cannot be considered fully independent

from those datasets. We used MCC to assess the predic-

tive power of these datasets. For Mbp1, regardless of the

cutoff chosen in our classification, Harbison et al.'s [18]

data greatly outperformed the others (Figure 8), espe-

cially those by Simon et al. [16] and Iyer et al. [15]. This

may stem from the fact that Harbison et al. performed

their Mbp1 ChIPs under several growth conditions, pro-

viding a considerably larger number of targets. In fact,

whereas the accuracy and specificity of all four studies

analyzed were similar, Harbison et al.'s dataset was signif-

icantly more sensitive than the others (data not shown).

For Swi4, Iyer et al.'s dataset slightly outperformed the

other three studies, at least for a cutoff of 100 or lower,

which is a reasonable threshold for SBF-regulated genes

in our classification (Figure 8). This difference was under-

scored by the fact that, contrary to the others, Iyer et al.'s

study provided a dataset that was fully independent of

our classification.

Discussion
The transcriptional program at START is driven by the

related TFs MBF and SBF. Cln3 is the most upstream acti-

vator of START. It functions by activating the CDK

Cdc28, which then inhibits repressors of SBF and MBF,

leading to the activation of their target genes [12,13].

Cln3 is not, however, the only activator operating at

START. For instance, it shares an essential function with

Bck2 of promoting the G1 to S transition of the cell cycle

[24-26], and we have recently shown that Bck2, at least

when overexpressed, induces many genes at this point

[27]. Here we provide an extensive list of genes that are

activated by Cln3 in the absence of Bck2 in an MBF- or

SBF-dependent manner. In fact, it is likely that Cln3 func-

tions solely, at least as a transcriptional activator, through

MBF and SBF because all known functions of Cln3

depend on Swi6 [27,28], overexpression of Cln3 at cell

cycle stages other than G1 has little effect on gene activa-

tion [27], and here we have shown that Cln3 is unable to

induce any of its targets in a swi4Δ mbp1Δ background.

We produced our list of Cln3 targets in two steps. First,

we generated new genome-wide experimental data that

are arguably more informative for this purpose than other

datasets available in the literature. This is so because we

studied the effects on gene expression of overexpressing

Figure 4 Cell cycle distribution of targets. Predicted targets were 

binned according to their expression peak in the mitotic cell cycle 

[20,45]. Values on the x-axis are percentages of the whole duration of 

the cycle, as defined in [20]. Beyer et al.'s [22] and Holloway et al.'s [23] 

predicted targets are also shown for comparison. MBF_SBF denotes 

targets controlled by both TFs; No_MBF_SBF refers to genes from our 

445 candidates not classified as MBF or SBF targets.
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Figure 5 Experimental validation of predicted targets. ChIP assays with Mbp1TAP and Swi4TAP were carried out for a number of targets for which 

TF binding had not been detected before. (a) PCR products for predicted targets ELG1, STB1, VRG4 and STU2 are shown. Cells were grown either asyn-

chronously or enriched in G1 with α factor. Three dilutions (1:1,500, 1:4,500, 1:13,500 for tagged strains; 1:2,500, 1:7,500, 1:22,500 for untagged strains) 

of the whole cell extract (WCE) and two (1:5, 1:15) of the immunoprecipitates (IP) were used. PCR was carried out for 28 or 30 cycles for tagged and 

untagged strains, respectively. As an internal control for non-specificity the gene DYN1 was used. The PCR product amplified from this gene was sev-

eral kilobases away from the closest promoter. (b) Quantification of ChIP assays. Optical density of bands was measured with ImageJ. The relative en-

richments shown are calculated as ratios of specific to non-specific (DYN1) products in the IP compared to the input (WCE). Two independent PCRs 

were carried out per gene tested (just one PCR in the untagged strains). The average and standard deviations (error bars) of two or three different 

exposures are shown. Genes ELG1, SLD2, STB1 and CDC45 (positive control) were tested in the Mbp1TAP ChIP; genes STU2, ERP2, VRG4 and SVS1 (pos-

itive control) were tested in the Swi4TAP ChIP.

0

1

2

3

4

5

6

7

8

9

R
e
la

ti
v
e
 e

n
ri
c
h
m

e
n
t

Asynchronous  α factor   

PCR1 PCR2 UNTAGGED

STB1ELG1

VRG4 STU2

Asynchronous α factor

Mbp1TAP

Swi4TAP

Mbp1TAP

Swi4TAP

Untagged

WCE IP

WCE IP

WCE IP

WCE IP WCE IP

WCE IP

WCE IP

WCE IP

DYN1

DYN1

DYN1

DYN1

Untagged

Untagged

Untagged

(a)

(b)



Ferrezuelo et al. Genome Biology 2010, 11:R67

http://genomebiology.com/2010/11/6/R67

Page 12 of 18

Cln3 in synchronized cultures, and most importantly

because we used a battery of deletion strains lacking

components of MBF and/or SBF. Second, because Cln3

needs MBF or SBF to promote gene expression, we inte-

grated our data together with other published datasets to

determine the targets of Mbp1 and Swi4. This has

allowed us to distinguish direct targets of Cln3 from

genes induced indirectly as a result of cell cycle progres-

sion in our experiments. It is possible, however, that some

of the genes regulated by Mbp1 or Swi4 are not direct tar-

gets of Cln3. Cln1 and Cln2 are involved in a positive

feedback mechanism promoting transcriptional activa-

tion at START [14]. Hence, it is unclear whether the

induction we see is solely due to overexpressed Cln3, or

most likely to Cln1, Cln2 and Cln3 acting in concert.

Interestingly, most MBF targets seem to be insensitive to

overexpressed Cln1 (our unpublished results).

Following previous approaches [22,30], we have devel-

oped a single probabilistic model based on Bayesian sta-

tistics that allows the integration of data from

heterogeneous sources. Integration is important because

with expression data alone it is difficult to distinguish

direct from indirect regulation as well as compensating

mechanisms of redundant factors, whereas TF binding or

motifs at promoters lack functional information. From

our experiments, we have made available to our model

expression data concerning the time and extent of induc-

tion, and how these are affected in deletion mutants.

From others, we have taken information on TF binding,

Cln3 induction (under non-progressive conditions), Clb2

repression, and cell cycle behavior [3,15-18,20,45]. We

have also integrated information about binding motifs at

promoters. Doubtless, the dominant feature in our classi-

fication is gene expression. This is, however, rather spe-

cific and more informative than expression datasets

typically used in genome-wide studies on transcriptional

networks. In general, it seems these studies give more

weight to ChIP-chip data (see, for example, Beyer et al.

[22] and Holloway et al. [23]).

We have validated our predictions in two ways. First,

and most important, we have demonstrated by ChIP

assays that Mbp1 and Swi4 bind the promoters of pre-

dicted targets for which binding had not been detected

before [15-18]. Second, our predictions show high

enrichment in biological functions previously attributed

to MBF or SBF [15,41,42]. Importantly, and contrary to

other analyses [22,23], this was true also for the set of tar-

gets that was specific to this study, indicating that our

classification maintains internal functional consistency.

On the other hand, our classification shows greater pre-

dictive power than previous ones [22,23] as tested by

their ability to discriminate regulatory targets between

divergently transcribed genes.

We have used our TF-target assignments as a bench-

mark to assess the quality of several genome-wide TF

binding datasets [15-18]. Our analysis suggests that

whereas for Mbp1 the study by Harbison et al. [18] is

superior to the others, for Swi4 Iyer et al. [15] is the best

performer. Interestingly, Harbison et al. provided a more

thorough study of Mbp1 (several conditions assayed)

than of Swi4, and conversely Iyer et al. performed many

more ChIP-chip experiments for Swi4 than for Mbp1. It

is likely, then, that more experimental ChIP-chip data

may considerably improve the quality of available data-

sets.

Our predicted MBF targets are highly enriched in

ACGCG sequences. Strikingly, the position of this motif

is strongly biased towards the first 200 bp from the TSS.

Figure 6 Quality assessment of our predictions. (a) Functional classification of predicted targets. Functional classes are based on the MIPS func-

tional catalog, but sometimes we merged several classes, and they were adapted to make them virtually non-overlapping. DNA RRR, DNA replication, 

recombination and repair; SPB, spindle pole body. Thirteen MBF and 14 SBF targets were of unknown function; they are not considered in the percent 

calculation. (b) Comparison of the predictive power of our classification with those of Beyer et al. [22] and Holloway et al. [23]. MCC was used to assess 

the ability of each classification to detect true regulatory TF-target associations in the case of divergently transcribed genes for which binding had 

been reported (Gao et al. [37]; Chen et al. [44]).
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Importantly, these features remain unchanged even when

the motif information classifier is not incorporated into

our model. Hence, this constitutes another independent

confirmation that our classification must have captured

biologically meaningful predictions. By contrast, this pro-

moter architecture is not maintained in most Mbp1 tar-

gets specific to other models [22,23]. It is possible that

association of Mbp1 with partners other than Swi6 may

change its binding specificity. SBF targets show enrich-

ment of CRCGAA sequences, but their more scattered

distribution suggests that SBF-controlled promoters are

more complex than MBF-regulated promoters. In agree-

ment with this, combinatorial regulation involving Swi4

and other factors seems commonplace [22,23,46].

The apparently simpler architecture of MBF target pro-

moters correlates with a narrow distribution in their

expression peak during the mitotic cell cycle. By contrast,

SBF targets show a more spread bimodal distribution.

This may likely be due to combinatorial regulation with

Ste12 and forkhead TFs [22,23,46]. The bulk of SBF tar-

gets peaks much later than genes regulated by MBF. This

is so mainly owing to their different inactivation timing,

and not so much because SBF targets are activated much

later. In fact, most SBF targets are activated just slightly

later. MBF-regulated genes are subject to specific repres-

sion by Nrm1 [33], a G1/S cell cycle-regulated gene, as

cells proceed from G1 to S phase, and before Clb/CDK

activity raises. By contrast, SBF is repressed only later,

when Clb2 is expressed and its activity is high [9,40].

Hence, the set of targets we have predicted here recapitu-

late known cell cycle regulatory mechanisms.

It has been controversial whether Whi5 represses only

SBF [13] or both SBF and MBF [12]. Recently, the role of

Stb1 as an activator and repressor of both SBF and MBF

has also been proposed [47-50]. Here, we have predicted

STB1 as a target of MBF, and we have demonstrated

Mbp1 binding to the STB1 promoter by ChIP assays. This

raises the possibility of Stb1 being involved in feedback

mechanisms as well as linking MBF and SBF regulation at

START. Nonetheless, the small but appreciable delay in

the activation of most SBF targets as compared to MBF-

regulated genes, whether related to Stb1 function or not,

supports the existence of different activating mechanisms

for these TFs.

Figure 7 Mbp1 binding motif distributions at gene promoters. (a) Proportion of ACGCG sites located within the first 200 bp, from 200 to 500 bp, 

and beyond 500 bp at the promoters of MBF targets that are specific to this work (F), to Beyer et al. [22] (B), to Holloway et al. [23] (H), or that are com-

mon to all three studies (FBH). (b) Proportion of MBF targets with ACGCG sites within the first 200 bp upstream of the TSS, beyond 200 bp, or without 

such sites; FBH, F, B, and H as before. (c) Promoter representations with the location of ACGCG sites (blue). Left panel, MBF targets in our work shared 

with the aforementioned studies. Right top panel: our specific MBF targets. Right bottom panel: random set of genes with ranking values from 200 to 

445 in our MBF classification. Every line represents a gene promoter from the TSS (right end) up to -1,000 bp upstream of the START codon. For all 

analyses in this figure, scores were recalculated without the motif classifier.
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Conclusions
Here we have provided the transcriptional network acti-

vated by the cell cycle regulator Cln3 through the TFs

SBF and MBF. We have validated our TF-target predic-

tions both experimentally by means of ChIP assays, and

computationally by studying the functional enrichment of

target genes. Although likely still incomplete, our net-

work appears to be more accurate (higher predictive

power and internal consistency) than others previously

proposed. Likely, this stems from the integration of new

experimental data with other available genome-wide

datasets, and from relying less on TF binding studies than

other previous integrative models. We believe our work

exemplifies the need to generate more informative exper-

imental data to build detailed and reliable networks. This

work and similar approaches may be keystones to the

development of accurate computational models of the

cell cycle.

Materials and methods
Strains used in the expression profiling experiments were

MATa haploid W303 derivatives. Their relevant geno-

types are shown in Figure 1. General procedures for the

construction of strains, growth conditions, budding

count, DNA content analysis, RNA isolation as well as

microarray hybridizations and data analysis have been

described previously [27]. Microarray data have been

deposited in ArrayExpress under accession number

[ArrayExpress:E-TABM-764].

Gene selection

To select for genes specifically induced by Cln3 or by cell

cycle progression, we used five slightly different criteria

based on gene clustering [51]. Two selection methods

used visual inspection only. One has been described pre-

viously [27]. The other was similar except that only the

strains used in this work, but not the PGAL1·BCK2 strains

used in our previous study, were used. Another method

used first a visual selection and then a second selection

based on cell cycle enrichment. Two other methods were

based solely on cell cycle enrichment, but for one we first

filtered out inconsistent expression between duplicate

experiments evaluated in the PGAL1·CLN3 bck2Δ strain.

Throughout this study we consider CCR genes as those

belonging to a consensus list of 648 cell cycle genes

(Additional file 7) that appear among the top 800 ranked

in at least three of five cell cycle studies [3,20,45,52,53].

Probabilistic model

We have followed others' ideas [22,30] to develop a

Bayesian probabilistic model. We have used a unified

scoring scheme that received input from nine different

classifiers (see below). Most classifiers were binned into

four mutually exclusive groups. To delimit each group, we

chose three random sets of 40 elements from our list of

445 genes (see Results). The 40 elements in each set were

sorted by their values within each classifier, and the 10th,

20th, and 30th ranked values in each random set were

averaged, respectively. These average values were used as

thresholds to delimit the bins. Each bin was then assigned

a weight calculated as a log likelihood score (LLS):

LLS = ln(P(bini/positive)/P(bini/negative))

where P(bini/positive) and P(bini/negative) are the fre-

quencies of positives and negatives from control sets (see

below), respectively, that belong in bin i. The total LLS for

each gene in our list was the result of adding all individual

Figure 8 Quality assessment of location analyses. The predictive 

power (MCC) of different location analyses was evaluated with our 

classifications as benchmarks. MCC values are represented throughout 

our ranked list of candidates. Work by Iyer et al. [15], Simon et al. [16], 

Lee et al. [17], and Harbison et al. [18] were considered. For these anal-

yses, we did not include explicit binding information in our classifica-

tions.
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LLSs from the corresponding bins for the nine classifiers

considered. All scores can be found in Additional file 2.

Control sets

To train our model, we created positive and negative con-

trol sets for both factors, Mbp1 and Swi4. Positive and

negative interactors were chosen from our list of 445 can-

didates. Positives were genes defined as targets of Mbp1

or Swi4 in both Beyer et al. [22] and Holloway et al. [23].

We avoided picking up genes regulated by both Mbp1

and Swi4, as well as other cell cycle TFs (Ste12, Fkh2,

Ndd1 or Mcm1). Because this gave rise to too few posi-

tives, especially for Swi4, we added some targets that

were top ranked in either classification (although not in

both). For these, we also avoided those regulated by both

factors. We ended up with 40 positives for Mbp1 (90%

shared by Beyer et al. and Holloway et al.), and 32 posi-

tives for Swi4 (50% shared by Beyer et al. and Holloway et

al.). The negative set for Mbp1 (or Swi4) consisted of ran-

domly selected genes from our list of 445 candidates that

were not reported to be regulated by Mbp1 (or Swi4) in

Beyer et al.'s or Holloway et al.'s studies. We selected five

groups of 40 genes for Mbp1, and five groups of 32 genes

for Swi4. The five groups were merged into a single nega-

tive set.

Classifiers

We used nine classifiers integrating different lines of evi-

dence: one from TF binding data, one from TF motifs,

four from the expression data we generated in this study,

one from expression profiling during the cell cycle, and

two from the expression profiling upon Cln3 or Clb2

overexpression, as reported in a previous study [3].
Transcription factor binding information

We used TF binding data from four genome-wide studies

that used ChIP-chip technology [15-18]. We considered

the assignments proposed by Iyer et al. [15], and those

TF-target interactions with a P-value ‹0.001 from the

other three studies. For MBF, we evaluated three condi-

tions: none of the studies, only one study, and more than

one study detected an interaction. For SBF, we did the

same, but SBF interactions detected by Iyer et al. were

considered more reliable and consequently given more

weight. The rationale behind this is that Iyer et al. per-

formed multiple ChIP-chip experiments with Swi4, and

they arguably produced better quality data for this factor.

Also, preliminary comparisons of our expression dataset

with that of Iyer et al. and from the other three ChIP-chip

studies suggested better agreement with the former

study.
Transcription factor motifs

For MBF, we evaluated whether the promoters of genes

had at least one MCB consensus site (ACGCGT) within

the first 200 bp upstream of the TSS or not. For SBF, we

examined the presence of at least one SCB consensus site

(CRCGAA) located within 400 bp of the TSS. The TSS

information was obtained from two recent genome-wide

studies [54,55].
Expression data

We evaluated six classifiers from the expression profiles

generated in this study, and three more from data gener-

ated by others. (1) The time of peak expression in the

wild-type strain. This parameter was divided into four

groups according to the sampling performed, that is, 20,

40, 60 and 80 min. (2) The value at 20 minutes in the

wild-type strain. (3) The ratio between the maximum

value in the wild-type strain series and the maximum in

the mbp1Δ mutant as well as (4) the correlation between

the profiles in the wild-type and in the mbp1Δ back-

grounds. These two classifiers were used only for Mbp1.

For Swi4, we evaluated (5) the average value at 40 and 60

minutes in the wild type as well as (6) the ratio between

the maximum value at 20 or 40 minutes in the wild type

and the maximum value in the swi4Δ background. From

the work of Spellman and co-workers [3], we analyzed (7)

the value of induction upon Cln3 or (8) upon Clb2 over-

expression. Finally, we also considered (9) the time of

peak expression during the mitotic cell cycle [20,45].

Evaluation of predictions and thresholding

We first created several benchmarks of positives and neg-

atives. Positive benchmarks for both Mbp1 and Swi4 were

created with 40 genes each. All benchmarks contained

ten genes that had been reported as regulated by both

factors in previous classifications [22,23]. The remaining

30 genes for each particular benchmark were randomly

selected among those targets regulated by Mbp1 (or

Swi4) in any of those studies. None of the genes in the

benchmark sets had been used before in the training sets.

We generated two positive benchmarks for each factor.

Negatives for Mbp1 or Swi4 were randomly selected

among those genes that were not regulated by Mbp1 or

Swi4, respectively, in Beyer et al.'s and Holloway et al.'s

studies. For each factor, we randomly selected 40 genes

twice, and merged the two groups. Hence, the negative

benchmarks contained somewhat fewer than 80 genes

each.

Throughout this study we have used several statistical

measures commonly employed to assess the quality of

binary classifications. They are defined as follows:

MCC

Accuracy

=
× − ×

+ + + +

=

( ) ( )

( )( )( )( )

TP TN FP FN

TP FP TP FN TN FP TN FN
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+ + +
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where TP is true positives, TN true negatives, FP false

positives, and FN false negatives.

To select thresholds, we calculated these measures at

any given position in our classifications. We averaged

(geometric mean) the values obtained with each positive

benchmark. We chose as cutoff a ranking value that pro-

duced high specificity and precision (›80%) as well as a

high value for the MCC. Likely, these quality measures

produced underestimated values because at least some of

the targets in the positive benchmarks may not be true

positives (many were reported as targets by Beyer et al. or

Holloway et al., but not by both studies) and some of the

genes in the negative benchmarks may actually be posi-

tive. In fact, we have predicted some targets that escaped

previous detection.

ChIP assays

Strains used in ChIP assays were derived from BY4741

(MATa his3Δ1, leu2Δ0, met15Δ0, ura3Δ0). We tagged

Mbp1 or Swi4 with tandem affinity purification (TAP) tag

[56]. Correct tagging was checked by PCR and western

blotting. Tagged strains and untagged control were grown

in YPD at 30°C to an OD600 of ‹0.25, split in two, α factor

(5 mg/l) was added to one culture, and all cultures were

incubated at 30°C for an extra 90 minutes. At this point,

in the cultures with α factor most cells were arrested at

G1 as determined by microscope inspection. We used 40

ml of culture per ChIP. These were carried out as previ-

ously described [49] with modifications. Briefly, after

formaldehyde cross-linking, cells were broken in a Bio-

Spec (Bartlesville, OK, USA) mini-beadbeater-16 (6

pulses of 1 minute with 1 minute on ice between pulses),

chromatin was sheared in an MSE (London, UK) soni-

prep-150 sonicator (power 10, 6 pulses of 15 s, ice 1 min-

ute between pulses), and clarified extracts were incubated

with 50 μl magnetic beads (Dynabeads Pan mouse IgG,

Invitrogen Dynal, Oslo, Norway) for 90 minutes at 4°C.

Washes were carried out at room temperature, and after

elution and reversal of the cross-link, we treated with

proteinase K (0.25 mg/ml, 2 h, 37°C). DNA was purified

with a Qiagen (Valencia, CA, USA) column (PCR

QIAquick PCR purification kit) and eluted with 100 μl

elution buffer (10 mM Tris-Cl pH 8.5). Finally, RNase A

was added to 0.5 mg/ml and incubated for 2 h at 37°C.

PCR was carried out for 28 (tagged strains) or 30 cycles

(untagged controls). PCR products were separated in

2.4% agarose gels, stained with SYBR gold (Invitrogen,

Carlsbad, CA, USA), and imaged with an AlphaDigiDoc

RT2 gel documentation system (Alpha Innotech, Santa

Clara, CA, USA). Quantification of bands was performed

using ImageJ.

Miscellaneous

For our functional analysis, we focused on several func-

tional classes that were more over-represented among

our predicted targets according to the Munich Informa-

tion Center for Protein Sequences (MIPS) functional

catalog [57]. Sometimes we removed genes to make

them non-overlapping. The final classes considered

were as follows: cell wall and glycosylation; budding

and polarity; spindle pole body (SPB); cytoskeleton

(excluding SPB, budding and polarity members); DNA

conformation modification; DNA replication, recom-

bination and repair (excluding members involved in

DNA conformation modification); and cell cycle

(excluding genes involved in DNA processing, SPB,

budding or polarity). The heat map in Figure 2 was

generated with the Java TreeView software [58]. Venn

diagrams in Figure 3 were created with an Applet from

[59]. To match and visualize motifs at promoters we

used the tools implemented in the Regulatory

Sequence Analysis Tools web site [60].

Additional material

Additional file 1 Log2 expression values for the 445 candidate genes 

selected from our microarray analysis. This file contains log2 expression 

values (relative to time 0) for the 445 candidate genes selected from our 

microarray analysis. There are two sheets labeled 'Average_values' and 

'Duplicate_experiments'. The 'Duplicate_experiments' sheet contains the 

values of two independent experiments (denoted _1 and _2 following the 

name of strain and time). The 'Average_values' sheet contains the data rep-

resented in Figure 2, corresponding to the average values of the two inde-

pendent experiments mentioned above. Arrays are labeled with the 

relevant genotype of the strain and the time of sampling. Same color is 

used for all the arrays obtained with the same strain. The background con-

text for all strains was bck2∆ PMET3·CLN2. Except for strain cln3∆, cells also 

had PGAL1·CLN3 at the endogeneous CLN3 locus (wt stands for wild type).

Additional file 2 Log likelihood scores for the 445 candidates ana-

lyzed in our study. Matrix containing the individual values assigned to 

each gene in all nine classifiers used in our model and the final score 

obtained (column SUM). Each sheet corresponds to one TF. 'PEAK TIME' 

evaluates the time of peak expression in the wild-type strain in our experi-

ments. 'Value 20' wt' evaluates the value at 20 minutes in the wild-type 

strain whereas 'Av. value 40-60 wt' (only Swi4) corresponds to the average 

value at 40 and 60 minutes in the wild type. In 'Corr. wt/mbp1∆' we assess 

the value for the correlation coefficient between the expression patterns in 

the wild type versus the mbp1∆ strain. 'max wt/max mbp1∆' (only Mbp1) 

refers to the ratio between the maximum value in the wild-type series (20 

to 80 minutes) and the maximum in the mbp1∆ mutant. Similarly, 'max 

wt_20-40/max swi4∆' makes reference to the ratio between the maximum 

value at 20 or 40 minutes in the wild type and the maximum value in the 

swi4∆ background. For 'Mbp1 motifs' we evaluated whether the promoters 

of genes had at least one MCB consensus site (ACGCGT) within the first 200 

bp upstream of the TSS or not. For SBF ('Swi4 motifs'), we examined the 

presence of at least one SCB consensus site (CRCGAA) located within 400 

bp of the TSS. In 'Mbp1 binding' we evaluate TF binding data from four 

genome-wide studies that used ChIP-chip technology [15-18]. We consid-

ered the assignments proposed by Iyer et al. [15], and those TF-target inter-

actions with a P-value ‹0.001 from the other three studies. Three conditions 

were assessed: none of the studies, only one study, and more than one 

study detected an interaction. The same applies to 'Swi4 binding' but inter-

actions detected by Iyer et al. were considered more reliable and conse-

quently given more weight (see Materials and methods for details). In 'cln3' 

and 'clb2', we analyzed the value of induction upon Cln3 or upon Clb2 over-

expression in [3]. Finally, 'CC peak' assesses the time of peak expression dur-

ing the mitotic cell cycle.

http://www.biomedcentral.com/content/supplementary/gb-2010-11-6-r67-S1.XLSX
http://www.biomedcentral.com/content/supplementary/gb-2010-11-6-r67-S2.XLSX
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sion of Figure 4 of the paper. It shows the cell cycle distributions of 

predicted targets according to the timing of peak expression for a number 
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Additional file 5 Cell cycle distributions of predicted targets accord-

ing to the timing of activation of expression from [39]. Letter and color 

keys as in Additional file 4.

Additional file 6 Cell cycle distributions of predicted targets accord-

ing to the timing of deactivation of expression from [39]. Letter and 

color keys as in Additional file 4.

Additional file 7 The 648 genes considered as cell cycle regulated in 

this study. These genes appear among the top 800 ranked in at least three 

of five cell cycle studies [3,20,45,52,53]. The time of their peak expression is 

also shown [20,45].
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