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THE TRANSFER AND SYMPLECTIC COBORDISM

MALKHAZ BAKURADZE

Abstract. The main result of this paper is the nilpotency fomula φ4
i = 0,

∀i ≥ 1 for N. Ray classes φi in the torsion of the symplectic bordism ring
MSp∗

Introduction

This paper is organised as follows. Section 1 is devoted to calculation of the
transfer homomorphism in the symplectic cobordism theory [D], [BG]. In partic-
ular, using the results of [BM], [Fe], [Sn] we calculate the transfer homomorphism
for projective bundles associated with universal Spin(m) bundles, m = 3, 4, 5. This
section includes the following corollary in the case m = 3:

Let N be the normalizer of the torus U(1) in Sp(1); ζ → BSp(1) be the universal
Sp(1) bundle and Λ be the universal Spin(3) bundle over BSpin(3) = BSp(1).
Then the bundle p : BN → BSp(1) is the projective bundle associated with Λ. Let

x = pf1(ζ);

y = pf1(p
∗(ζ));

e = pf3(p
∗(Λ⊗R H))

be the Conner-Floyd symplectic Pontryagin classes and

τ∗p : MSp∗(BN) →MSp∗(BSp(1))

be the transfer homomorphism. Then τ∗p satisfies the relations

τ∗p (1) = 1;(1)

τ∗p (e) = 0.(2)

In Section 2 we establish a connection of the Euler class e with the classes φi defined
as follows:

Recall from [R] the classes θi arising from the expansion

pf1((η −R)⊗R (ζ −H)) = s
∑
i≥1

θipf
i
1(ζ) = s

∑
i≥1

θix
i

in MSp4(S1 ∧BSp(1)), where s is the generator of MSp1(S1), η → S1 is the non-
trivial real line bundle and ζ is as above. Also recall the relabelling θ2i = φi in
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4386 MALKHAZ BAKURADZE

MSp8i−3, and from [Ro] that θ2i−1 = 0 for i > 1. As proved in [R], each φi is an
indecomposable torsion element of order 2.

It is shown in [Na] that the homomorphism π∗ induced by π : BU(1) → BSp(1)
is not a monomorphism in the symplectic cobordism theory. In particular (see
Section 2)

π∗(θ1x+
∑
i≥1

φix
2i) = 0.

Using this observation and the results of [G], [GR], we state that in MSp∗(BN)

e =
∑
i≥1

φ4
i y

8i(1 +
∑
j≥1

αjy
j)(3)

for some coefficients αj ∈MSp∗.
Applying (1), (2), (3) we have

τ∗p (e) = 0

by (2),

= τ∗p (
∑
i≥1

φ4
i y

8i(1 +
∑
j≥1

αjy
j))

by (3),

=
∑
i≥1

φ4
i x

8i(1 +
∑
j≥1

αjx
j)τ∗p (1)

by the transfer property,

=
∑
i≥1

φ4
i x

8i(1 +
∑
j≥1

αjx
j)

by (1).
Thus we obtain ∑

i≥1

φ4
i x

8i = 0

in MSp∗(BSp(1)) = MSp∗[[x]].
This proves

Theorem. φ4
i = 0, ∀i ≥ 1.

We cannot use a reasoning similar to that of Section 2 for the self-conjugate
cobordism, since in this theory it is impossible to construct characteristic classes
with the required properties. Namely, as proved in [BaNa], for arbitrary natural
classes

Pi(ξ
n) ∈ SC2i(X)

in the self-conjugate cobordism theory

P (ξn) = 1 + P1(ξ
n) + ...+ Pn(ξn),

where ξn → X is the SC-vector bundle, the following conditions are contradictory:
1. Pn(ξn) is the Euler class (normalization);
2. P (ξn + ξm) = P (ξn)P (ξm) (the Whitney formula).
That is why in Section 3 we calculate the transfer homomorphism for the bundle

of flags of the bundle Λ. As a corollary we obtain a new proof of the nilpotency
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THE TRANSFER AND SYMPLECTIC COBORDISM 4387

formula for the N. Ray classes in the self-conjugate cobordism, which was proved
for the first time in [Na].

As is known from [Mo] and [V], various three-fold products of N. Ray’s family
are nontrivial. In Section 4 we shall prove

Proposition 4.1. All four-fold products of the N. Ray classes are zero, and the
images of double products of these classes in self-conjugate cobordism are zero.

I would especially like to thank Professor Mark Mahowald for his encouragement
and advice. My thanks are also due to the referee for many useful suggestions.

1. Calculation with Transfer

The result of this section is

Proposition 1. Let Gm = Spin(m) and ξm → BGm be the universal Spin(m)
bundle, m = 3, 4, 5. Let

pm : P (ξm) → BGm

be the associated projective bundle with fibre RPm−1, and λm → P (ξm) be the
canonical real line bundle. Then the transfer homomorphism

τ∗m : MSp∗(P (ξm)) →MSp∗(BGm)

satisfies the relations

τ∗m(cnm) = 0,(1.1)

for all n ≥ 1, where cm = pf1(λm ⊗R H) is the first Conner-Floyd symplectic
Pontryagin class;

τ∗m(1) = χ(RPm−1),(1.2)

where χ(RPm−1) is the Euler characteristic of RPm−1 and hence is equal to 1 if
m = 3, 5, and to 0 if m = 4;

τ∗m(em) = 0,(1.3)

where em = e(p∗m(ξm ⊗R H)) is the Euler class.

For the proof we need the following facts.

1.4. Spin(m) bundles. It is well known that the groups

Spin(2), Spin(3), Spin(4), Spin(5), Spin(6)

are isomorphic to

S1 = U(1), S3 = Sp(1) = SU(2), Sp(1)2, Sp(2), SU(4).

The inclusions Spin(i) → Spin(i + 1) up to an isomorphism are described as
follows:
Spin(2) → Spin(3) is the standard U(1) → Sp(1);
Spin(3) → Spin(4) is the diagonal homomorphism Sp(1) → Sp(1)2;
Spin(4) → Spin(5) is the embedding Sp(1)2 → Sp(2) of diagonal matrices.
Spin(5) → Spin(6) is the embedding of matrices A for which ATJA = J, where

J =

(
0 I2
−I2 0

)
.

Denote Spin(m) by Gm and consider Nm, the normalizer of Gm in Gm+1. Then

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4388 MALKHAZ BAKURADZE

N2 consists of U(1) and jU(1), where j is the quaternionic unit;

N3 consists of matrices

(
a 0
0 a

)
and

(
a 0
0 −a

)
, a is the quaternion, aā = 1;

N4 consists of matrices

(
a 0
0 b

)
and

(
o a
b 0

)
, where a and b are quaternions,

aā = bb̄ = 1.
The universal Spin(m) bundles ξm have the following description.
Case m = 5. G5 = Spin(5) = Sp(2) acts by conjugation on the 5-dimensional

vector space of 2×2 quaternionic Hermitian matrices of zero trace. These matrices

are of the form

(
a0 b
b̄ −a0

)
, where a0 is real, b is a quaternion and (b, a0) ∈ R5.

Let E → BG5 be the principal Spin(5) bundle. Then the above action of G5 on
R5 defines the sphere bundle of ξ5,

BG4 = E ×G5 S
4 → BG5;

and the projective bundle of ξ5,

BN4 = E ×G5 RP
4 → BG5.

Case m = 4. The universal Spin(4) bundle ξ4 is

ζ1 ⊗H ζ∗2 → BSp(1)2,

where ζ1, ζ2 are the canonical symplectic line bundles, ζ∗2 is the symplectic conjugate
of ζ2 and (q1, q2) ∈ Sp(1)2 = G4 acts on R4 ∼= H by v → q1vq

−1
2 .

This defines the sphere bundle and the projective bundle of ξ4:

BG3 = E ×G4 S
3 → BG4,

BN3 = E ×G4 RP
3 → BG4.

Case m = 3. The universal Spin(3) bundle ξ3 is

Λ → BSp(1),

where 1 + Λ = ζ ⊗H ζ∗. G3 = Sp(1) acts on R3 as conjugation on the pure
quaternion.

This defines the sphere bundle and the projective bundle of ξ3:

BG2 = E ×G3 S
2 → BG3,

BN2 = E ×G3 RP
2 → BG3.

Consider now the standard inclusion RP 3 → RP 4. This is G4 equivariant, where
G4 acts on RP 3 as above and on RP 4 as a subgroup of G5.

This defines the inclusion of the projective bundle P (ξ4) in P (ξ4 + 1) :

l : BN3 = P (ξ4) = E ×G4 RP
3 → E ×G4 RP

4 = P (ξ4 + 1).

The inclusion RP 2 → RP 3, induced by the embedding of the pure quaternions
into H ∼= R4 is G3-equivariant. Here G3 acts on RP 2 as above and on RP 3 as a
subgroup of G4.

This defines the inclusion

m : BN2 = P (ξ3) = E ×G3 RP
2 → E ×G3 RP

3 = P (1 + ξ3).
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THE TRANSFER AND SYMPLECTIC COBORDISM 4389

Let

λ3 → P (ξ3), λ4 → P (ξ4),

λ̃4 → P (1 + ξ3), λ̃5 → P (ξ4 + 1)

be the canonical real line bundles. Then it is easy to see

Lemma 1.5. l!(λ̃4) = λ3, m
!(λ̃5) = λ4.

1.6. Double coset formula. Let G be a compact Lie group and H and K closed
subgroups.

Recall that the bundle ρ(H,G) : BH → BG has the fibre G/H and structure
group G. Consider the pullback of BH to BK,

Γ = ×K(G/K)

��

γ

// BH

��

ρ(G,H)

BK //

ρ(K,G)
BG

γ : Γ → BK has the fibre G/H and structure group K.
Let τ∗(H,G) be the transfer homomorphsm associated to ρ(H,G). Then there

is a formula for calculation of ρ∗(K,G)τ∗(H,G).

Theorem [Fe]. Let γ : Γ → BK be the fibre bundle with fibre F = G/H and
structure group K acting on the left on F . Let {M} be the set of orbit-type manifold
components of the orbit space K|F , and let q be any K-orbit in M . Let q̃ be the
subbundle of γ corresponding to q. Let k : q̃ → γ be the inclusion and χ∗(M) =
χ(M̄ −M). Then

τ∗γ =
∑

χ∗(M)τ∗q̃ k
∗,

where the sum is over all the orbit-type manifold componemts {M}.
1.7. Calculations with transfer for sphere bundles. For the proof of Propo-
sition 1 we need the following

Lemma 1.8. Let Gm = Spin(m) and ρ(Gm−1, Gm) : BGm−1 → BGm be the
sphere bundle of the universal Spin(m) bundle ξm. Then

τ∗(Gm−1, Gm)(1) = χ(Sm−1), m = 3, 4, 5,

in symplectic cobordism. Here χ(Sm−1) is the Euler characterstic and because of
this is equal to 2 if m = 3, 5, and 0 if m = 4.

Proof. Case m = 4. For the diagonal map ρ = ρ(Sp(1), Sp(1)2) we have ρ(x1) =
ρ(x2), where xi = cf1(ζi); ζ1, ζ2 are the canonical line symplectic bundles.

By the transfer property for τ∗ = τ∗(Sp(1), Sp(1)2) we have

τ∗(a)(x1 − x2) = τ∗(ρ∗(x1 − x2)a) = 0

∀a ∈MSp∗(BSp(1)). Since MSp∗(BSp(1)2) = MSp∗[[x1, x2]], this proves that τ∗

is the trivial homomorphism.
Case m = 3. Using the double coset formula for ρ∗τ∗, we see that the double

coset space Sp(1)|Sp(1)2|Sp(1) is the line segment, with isotropy group Sp(1) at
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4390 MALKHAZ BAKURADZE

the endpoints and conjugate group of U(1) in Sp(1) in the interior. Taking into
account the case m = 4, we have

0 = τ∗(G3, G4)(1) = 2τ∗(G3, G3)(1)− τ∗(U(1), G3)(1) = 2− τ∗(U(1), G3)(1).

Since ρ(U(1), G3) is the sphere bundle of ξ3, this proves the case m = 3.
Casem = 5. The sphere bundle of ξ5 agrees with ρ(Sp(1)2, Sp(2)) . On the other

hand this bundle is the quaternionic projective bundle associated to the universal
symplectic plane bundle, and the statement is known from [D, p.235]. One may
prove this case by the method we will use in the following section.

Proof of Propositions 1.1 and 1.2. Case m = 5. It is shown in [Sn, ch.1] that
the following diagram of the stable maps is commutative (see also Remark 1.11):

BG4 = BSp(1)2 −−−−→ BSp(2) = BG5

↘ ↙ τ

BZ2 o Sp(1) = BN4

where BSp(1)2 → BSp(2) is induced by ρ(Sp(1)2, Sp(2)) and BSp(1)2 → BZ2 o
Sp(1) by ρ(Sp(1)2, Z2 o Sp(1)).

Since, as it is well known, ρ∗(Sp(1)2, Sp(2)) is a monomorphism, this proves the
case m = 5.

Proof of Propositions 1.1 and 1.2. Case m = 4. The following lemma imme-
diately follows from the definitions of 1.4.

Lemma 1.9. The double coset space G4|G5|N4 is a line segment. One endpoint
corresponds to an orbit consisting of one point (0,±1) ∈ RP 4, where

G5|N4 = RP 4 = {±(v, w)|v is a quaternion, w is a real, vv∗ + w2 = 1}.
The point (0,±1) is a fixed point. The other endpoint corresponds to RP 3, con-
sisting of points (±v, 0) ∈ RP 4. The isotropy groups for these points are conjugate
groups of N3 in G4. The open interval corresponds to orbits S3 consisting of points
±(v, w), 0 < vv∗ < 1. The isotropy groups for these points are conjugate groups of
G3 in G4.

Proof. For the point (0,±1) ∈ RP 4 the isotropy group is obviously Sp(1)2. For
the points (±v, 0) ∈ RP 4, the isotropy group Kv for the given (±v, 0) consists of
elements (vqv−1, q) and (−vqv−1, q) from the group Sp(1)2. Hence

Kv = gN3g
−1, g = (v, 1).

For the points (±v,±w) ∈ RP 4, 0 < vv∗ < 1, we have

(q1, q2)(±v,±w) = (±q1vq−1
2 ,±w);

v = q1vq
−1
2 ;

q1 = vq2v
−1.

So for the given (±v,±w) the isotropy group is the conjugate group of Sp(1) in
Sp(1)2.
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Combining Lemma 1.9 and the double coset formula for ρ∗(G4, G5)T (N4, G5),
we have

ρ∗(G4, G5)τ
∗(N4, G5)(1) = 1− τ∗(G3, G4)(1) + τ∗(N3, G4)(1).

Since τ∗(N4, G5)(1) = 1 and τ∗(G3, G4)(1) = 0, this proves τ∗(N3, G4)(1) = 0.
Consider now ρ∗(G4, G5)τ

∗(N4, G5)(c
n
5 ). Again using the double coset formula

above, this is decomposed into three summands. Of these, the two summands
corresponding to the subbundles identity BG4 → BG4 and BG3 → BG4 are zero
since there are no nontrivial real line bundles over BG3 and BG4. As for the third
summand, it coincides with τ∗(N3, G4)(c

n
4 ) by Lemma 1.5.

Hence we have

ρ∗(G4, G5)τ
∗(N4, G5)(c

n
5 ) = 0

by the case m = 5,

= 0− 0 + τ∗(N3, G4)(c
n
4 ).

This proves the case m = 4.

Proof of Propositions 1.1, 1.2. Case m = 3. Consider now the double coset
formula for ρ∗(G3, , G4)τ

∗(N3, G4).
Recall, from 1.4, that the homogeneous space G4/N3 is the projective space

RP 3 = {±h, hh∗ = 1, h ∈ H}.
It is easy to see the following.

Lemma 1.10. The double coset space G3|G4|N3 is a line segment. One endpoint
corresponds to an orbit consisting of one point (±1) ∈ RP 3. This point is fixed. The
other endpoint corresponds to RP 2, consisting of points {±h, h pure quaternion,
hh∗ = 1}. The isotropy group for the given (±h) is the conjugate group of N2

in Sp(1). The open interval corresponds to orbits S2, consisting of points (±h),
whose real parts differ from 0 and ±1. The isotropy groups for these points are the
conjugate groups of U(1) in Sp(1).

Using now the double coset formula, we obtain

0 = ρ ∗ (G3, G4)τ
∗(N3, G4)(1)

by the case m = 4,

= 1− τ∗(U(1), Sp(1))(1) + τ∗(N2, Sp(1))(1)

by Lemma 1.10,

= 1− 2 + τ∗(N2, Sp(1))(1)

by Lemma 1.8.
This proves that τ∗(N2, Sp(1))(1) = 1.
In the same spirit we obtain

0 = ρ ∗ (G3, G4)τ
∗(N3, G4)(c

n
4 )

by the case m = 4,

= 0− 0 + τ∗(N2, Sp(1))(cn3 )

by Lemma 1.10 and Lemma 1.5.
This proves the case m = 3.
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Proof of Proposition 1.3. For m = 3 formula (1.3) coincides with (2) from the
Introduction, which is the case we need to prove.

The projectivisation p : BN → BSp(1) of the bundle Λ = ξ3 defines the canon-
ical splitting over BN

p∗(Λ) = µ+ λ,

where µ and λ are a plane and a linear real bundle respectively.
Then we have the splitting

p∗(Λ⊗R H) = µ⊗R H + λ⊗R H.

Apply now the Whitney formula to express the symplectic characteristic classes of
the bundle p∗(Λ⊗RH) in terms of the classes µ⊗RH and λ⊗RH . We obtain the
equations

pf1(p
∗(Λ ⊗R H)) = pf1(µ⊗R H) + pf1(λ⊗R H);

pf2(p
∗(Λ ⊗R H)) = pf2(µ⊗R H) + pf1(µ⊗R H)pf1(λ⊗R H);

e = pf3(p
∗(Λ⊗R H) = pf2(µ⊗R H)pf1(λ⊗R H).

Let c = pf1(λ⊗RH). Then the above equations give an exposition of e in terms of
c and pfi(p

∗(Λ⊗R H)), i = 1, 2:

e = pf2(p
∗(µ⊗R H))c

= [pf2(p
∗(Λ⊗R H))− pf1(µ⊗R H)c]c

= pf2(p
∗(Λ⊗R H))c− [pf1(p

∗(Λ ⊗R H))− c]c2

= pf2(p
∗(Λ ⊗R H))c− pf1(p

∗(Λ⊗R H))c2 + c3.

Now apply the transfer homomorphism τ∗p to this equation:

τ∗p (e) = τ∗p [p∗(pf2(Λ ⊗R H))c]− τ∗p [p∗(pf1(Λ⊗R H))c2] + τ∗p (c3).

Taking into account the transfer property τ∗p (p∗(t)) = tτ∗p (1), we obtain

τ∗p (e) = pf2(Λ ⊗R H)τ∗p (c)− pf1(Λ⊗R H)τ∗p (c2) + τ∗p (c3).

But by virtue of Proposition 1.2 we have τ∗p (c) = τ∗p (c2) = τ∗p (c3) = 0. Therefore
τ∗p (e) = 0.

The proofs of the cases m = 4, 5 are quite analogous. However the case m = 4
also follows from Proposition 1.1, namely, from the equality τ∗4 (1) = 0:

τ∗4 (e4) = τ∗4 (p∗4(pf4(ξ
4 ⊗R H))) = pf4(ξ

4 ⊗R H)τ∗4 (1) = pf4(ξ
4 ⊗R H) = 0.

Then, as proved in [GR], every Spin(5) bundle and, in particular, ξ4, is MSp-
orientable and has zero Euler class. Thus pf5(ξ

5⊗RH) = 0, so we have nothing to
prove in the case m = 5.
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1.11. Remark on Propositions 1.1 and 1.2. Case m = 5. The commutativity
of above diagram is stated by the method of equivariant vector fields on the ho-
mogeneus spaces [BM]. Namely there is [Sn, Example 1.13] an Sp(1)2 equivariant
vector field on Sp(2)/Z2 o Sp(1) with one singular point. Using this field we shall
see here that in the case of the projective bundle P (ξ4 + 1) the transfer map is
stably homotopic to the section of this bundle defined by the direct summand 1.

We need a simple particular case of [BM, Corollary 2.11]. Namely let π : E → B
be the fiber bundle with fiber F. Suppose that F admits a G equivariant vector
field with one singular point (fixed under the action G) and the Euler characteristic
χ(F ) = 1. This fixed point obviously defines a section i : B → E. Then i suspends
to the transfer map τ(π), that is, i+ = τ(π) in the track group {B+, E+}.

Taking into account Lemma 1.9, we see that the projective bundle P (ξ4 + 1),
that is, the pullback of BN4 → BG5 to BG4, has section defined by the fixed point
(0,±1) ∈ RP 4 under the action of G4. This section agrees with the section of
P (ξ4 + 1) defined by the direct summand 1.

Lemma 1.12. The above section of the projective bundle P (ξ4 +1) suspends to the
transfer map.

Proof. Following [BM] we construct a G4 = Sp(1)2 equivariant vector field on
RP 4 = G5/N4 with one zero point. It is easy to see that

G5/N4 = GL2(H)/Z2 oB(H)

where H is the quaternions, GL2(H) is the full linear group of 2 × 2 matrices,

B(H) are the all upper triangular matrices and the generator of Z2 is

(
0 1
1 0

)
.

This follows from the fact, that GL2(H) acts on G5/N4 = S4, that is, on the
manifold of flags F1 ⊂ F2 = H2, with the isotropy group B(H).

Now let v be a vector from the Lie algebra of GL2(H), for which

ω = exp(v) =

(
x 0
0 y

)
where x, y are real numbers and x 6= y.

Consider now the field ϕv on GL2(H) defined by the right translations:

ϕv(g) = dRg(v), g ∈ GL2(H).

This field induces the field %v on GL2(H)/Z2 o B(H). The field %v is Sp(1)2 equi-
variant, since Sp(1) is a subgroup of the centralizer of ω . For the zero points of
%v note that coset of g is the zero point if and only if g−1ωg ∈ Z2 o B(H), that is,
g ∈ Z2 o B(H). Thus %v has one zero point. This proves Lemma 1.12.

The above lemma proves the analog of Proposition 1 for the projective bundle
P (ξ4 + 1) → BSp(1)2. But since this bundle is the pullback of P (ξ5) → BG5 to
BG4 and the homomorphism induced by BSp(1)2 = BG4 → BG5 = BSp(2) is a
monomorphism, this proves the case m = 5.

2. Proof of (3) from the introduction

We need the following fact.
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Propostion [Na]. In MSp∗(BU(1))

θ1z +
∑
k≥1

φkz
2k = 0,

where z = pf1(ξ + ξ̄) ; ξ is the canonical complex line bundle; θ1, φi are the Ray
classes.

This follows immediately from the bundle relation

η ⊗R (ξ + ξ̄) = ξ + ξ̄

in KSp0(S1 ×BU(1)) and from the definition of Ray classes.
Then, as it is known, any Spin(4) bundle is MSp∗ orientable. This follows from

the isomorphism KO4 = KSp0: For the given KO orientation class of Spin(4)
bundle this isomorphism determines the symplectic bundle over the corresponding
Thom space, and the first Conner-Floyd symplectic Pontryagin class of this sym-
plectic bundle will be taken as the symplectic orientation class. So the Spin(4)
bundle ζ ⊗H ζ∗ = 1 + Λ, and because of this Λ is MSp∗ orientable [RS].

By using these results and the fact that the bundle BU(1) → BSp(1) is the
sphere bundle of Λ it is proved in [G] that the Thom class of the bundle Λ can be
chosen in such a way that its restiction to the zero section ẽ(Λ) has the form

ẽ(Λ) = θ1x+
∑
i≥1

φix
2i,

where x = pf1(ζ). For another proof, see [GR].
Since 2θ1 = 2φi = 0 [R] and θ31 = 0 [G], we obtain∑

i≥1

φ4
i x

8i = (ẽ(Λ))4 = ẽ(Λ⊗R H)

But ẽ(Λ⊗RH) agrees with the ordinary Euler class e(Λ⊗RH) up to multiplication
by a unit of MSp∗(BSp(1)+), and we obtain∑

i≥1

φ4
i x

8i = e(Λ⊗R H)(1 +
∑
j≥1

αjx
j)−1

for some coefficients αj ∈MSp∗. This proves (3).

3. Nilpotency formula in self-conjugate cobordism

Let Q = {±1,±i,±j,±k} be the quaternion group, N the normalizer of S1 in
S3 as above and Z4 a cyclic group generated by j.

Recall that ρ(N,S3) is the projective bundle of the universal Spin(3) bundle
Λ → BS3, and we have the canonical splitting

ρ∗(N,S3)(Λ) = µ+ λ.

Here µ is a plane and λ is a line real bundle.
It is easy to see that the bundle ρ(Q,N) is the projective bundle of µ and the

bundle ρ(Q,S3) is the bundle of flags of the bundle Λ.
This defines the splittings

ρ∗(Q,S3)(Λ) = χ1 + χ2 + χ3;

ρ∗(Q,N)(µ) = χ2 + χ3;
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ρ∗(Q,N)(λ) = χ1.

Here χ3 = χ1 ⊗R χ2.

Proposition. The transfer homomorphism τ∗(Q,S3) satisfies the following rela-
tions:

e(Λ⊗R C) = −τ∗(Q,S3)(e2(χi ⊗R C)e(χj ⊗R C)) = 0(3.1)

in the self-conjugate cobordism theory and

e(Λ⊗R H) = −τ∗(Q,S3)(e2(χi ⊗R H)e(χj ⊗R H)) = 0(3.2)

in the symplectic cobordism theory, where i, j = 1, 2, 3; i 6= j.

Proof of (3.1). The double coset space N |S3|N is a line segment. The isotropy
groups are N and Q at the endpoints and Z4 (generated by j ) in the interior.

By the double coset theorem and Proposition 1, case m = 3, we have

0 = e(λ⊗R C) + τ∗(Q,N)(e(χ2 ⊗R C))− τ∗(Z4, N)(ρ∗(Z4, N)(e(λ⊗R C))).

But

e(ρ∗(N,S3)(Λ⊗R C)) = e(λ⊗R C)e(µ⊗R C)

and ρ∗(Z4, N)(µ) has the section. Hence by the above splittings and transfer prop-
erties we obtain

e(ρ∗(N,S3)(Λ⊗R C))

= −τ∗(Q,N)(e(χ2 ⊗R C))e(µ ⊗R C)

= −τ∗(Q,N)(e2(χ2 ⊗R C)e(χ3 ⊗R C)).

Since τ∗(N,S3)(1) = 1 by the analogue of Proposition 1 for the self-conjugate
cobordism, this proves

e(Λ⊗R C) = −τ∗(Q,S3)(e2(χ2 ⊗R C)e(χ3 ⊗R C)).

We may prove relations analogous to (3.1) by changing N to its conjugate sub-
group in S3, but this follows also by symmetry.

Now

τ∗(Q,S3)(e2(χ1 ⊗R C)e(χ2 ⊗R C))

= τ∗(N,S3)(τ∗(Q,N)(e2(χ1 ⊗R C)e(χ2 ⊗R C)))

= τ∗(N,S3)(e2(λ⊗R C)(−e(λ⊗R C) + τ∗(Z4, N)(ρ∗(Z4, N)(e(λ⊗R C)))

= τ∗(N,S3)(−e3(λ⊗R C)) + τ∗(Z4, S
3)(ρ∗(Z4, N)(e3(λ ⊗R C))).

The first summand is zero by Proposition 1 (by its analogue). The second summand
is also zero. This follows immediate from the following theorem

Theorem [Fe]. Assume NG(H)/H is not discrete, where NG(H) is the normalizer
of H in G. Then τ∗(H,G) = 0.
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The proof of (3.2) is analogous.
Now since (see Section 2) the symplectic Euler class of Λ⊗RH (the Euler class of

Λ⊗R C in SC∗ ) coincides with
∑

i≥1 φ
4
ix

8i (with the image of
∑

i≥1 φ
2
i x

4i in SC∗

theory) up to multiplication by a unit of MSp0(BS3
+) (by a unit of SC0(BS3

+)),
this proves

Corollary 3.3. φ4
i = 0, and the images of φ2

i in self-conjugate cobordism are zero.

Remark 3.4. It follows from the relation between the transfer and the umkehr map
[BG], [BO] that Proposition 1 is true also for m = 2 and m = 6.

4. On four-fold products of Ray classes

Here we improve the above method and obtain

Proposition 4.1. All four-fold products of Ray classes are zero, and the images
of double products of these classes in self-conjugate cobordism are zero.

The proof is organized as follows:
Let N be the normalizer of the torus U(1) in Sp(1) as above. Consider again

the bundle

p : BN → BSp(1)

and the map

f : BN → BZ2

induced by projection of N on the Weil group Z2. Let τp be the transfer map for
p.

We have the following relations.

Proposition 4.2. In MSp∗(BSp(1)4) = MSp∗[[x1, x2, x3, x4]] we have∑
i,j,k,l≥1

φiφjφkφlx
2i
1 x

2j
2 x

2k
3 x2l

4 =
∑

m,n,p,q≥0

τ∗p f
∗(γmnpq)x

m
1 x

n
2x

p
3x

q
4,

where γmnpq are elements from ˜MSp∗(BZ2).

Proposition 4.3. In SC∗(BSp(1)2) = SC∗[[y1, y2]] we have∑
i,j≥1

ψiψjy
2i
1 y

2j
2 =

∑
m,n≥0

τ∗p f
∗(δmn)ym1 y

n
2 ,

where ψi is the image of φi in self-conjugate cobordism and the δmn are elements
from ˜SC∗(BZ2).

We shall see later that the map fτp induces trivial homomorphism for any gen-
eralized cohomology theory h∗ .

Proposition 4.4.

τ∗p f
∗(a) = 0, ∀a ∈ h̃∗(BZ2);

τ∗p (1) = 1.

Thus the right sides of the relations from 4.2 and 4.3 are zero. This proves
Proposition 4.1
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Proofs of 4.2 and 4.3. We need a simple lemma about orientable bundles, whose
proof follows from the fact that KO4(X) = KSp0(X).

Let η → BZ2 be the universal O(1) bundle and ζ, ζ∗, Λ the bundles from the
introduction.

Lemma 4.5. i) The bundle η ⊗R ζ ⊗H ζ∗ → BZ2 ×BSp(1) is MSp-orientable.

ii) The bundle η ⊗R

∑4
i=1 Λi → BZ2 ×BSp(1)4 is MSp-orientable.

iii) The bundle η ⊗R

∑2
i=1 Λi → BZ2 ×BSp(1)2 is SC-orientable.

Proof. i) This bundle is a Spin(4) bundle and so is MSp-orientable.
ii) Since ζi ⊗H ζ∗i = Λi +R1, the bundle ii) is MSp-orientable as a difference of

two MSp-orientable bundles

η ⊗R

4∑
i=1

ζi ⊗H ζ∗i − η ⊗R H.

iii) This bundle is a difference of SC-orientable bundles

η ⊗R

2∑
i=1

ζi ⊗H ζ∗i − η ⊗R C.

Recall from section 2 that

ẽ(Λ) = θ1 +
∑
i≥1

φix
2i, x = e(ζ).

Any two orientation classes of the given orientable bundle agrees up to multipli-
cation by an invertible element. So there is

ẽ = ẽ(η ⊗R

4∑
i=1

Λi),

which as an element from

MSp∗(BZ2 ×BSp(1)4) = MSp∗(BZ2)[[x1, x2, x3, x4]], xi = e(ζi),

has the form

ẽ =

4∏
s=1

(θ1 +
∑
r≥1

φrx
2r
s ) +

∑
m,n,p,q≥0

γmnpqx
m
1 x

n
2x

p
3x

q
4

=
∑

i,j,k,l≥1

φiφjφkφlx
2i
1 x

2j
2 x

2k
3 x2l

4 +
∑

m,n,p,q≥0

γmnpqx
m
1 x

n
2x

p
3x

q
4.

Here we take into account the relation θ1φiφj = 0 from [G].
Consider now the map

g = (f, p)× 1 : BN ×BSp(1)3 → BZ2 ×BSp(1)×BSp(1)3.

Lemma 4.6. g∗(ẽ) = 0.

Proof. Recall from Section 3 that p∗(Λ) = µ+ λ. But f∗(η) = λ and λ2 = 1. Thus
the bundle

g∗(η ⊗R

4∑
i=1

Λi) = λ(µ+ λ+ Λ2 + Λ3 + Λ4)

has the section. This proves the lemma.
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We now have in MSp∗(BN ×BSp(1)3) the relation∑
i,j,k,l≥1

φiφjφkφlp
∗(x1)

2ix2j
2 x

2k
3 x2l

4 +
∑

m,n,p,q≥0

f∗(γmnpq)p
∗(x1)

mxn2x
p
3x

q
4 = 0.

After application of the transfer homomorphism for the bundle

p× 1 : BN ×BSp(1)3 → BSp(1)4

we get Proposition 4.2.
The proof of 4.3 is analogous.

Proof of 4.4. In fact this is a particular case of Proposition 1, although we should
rewrite it as follows:

Proposition 4.7. Let Gm = Spin(m), and let ξm → BGm be the universal
Spin(m) bundle, m = 2, 3, 4, 5. Let pm : P (ξm) → BGm be the projective bun-
dle associated to ξm and let

fm : P (ξm) → BZ2

be the classifying map for the canonical real line bundle λm → P (ξm). Then τ∗m(1)
is equal to 0 if m = 2, 4 and equal to 1 if m = 3, 5;

τ∗m(a) = 0, ∀a ∈ ˜MSp∗(BZ2).

The case m = 3 gives Proposition 4.4.
We also remark that using [Bu] and Proposition 1 one can obtain a new proof of

the relation θ1θiθj = 0 proved in [GR]. Moreover, some relations between the θi’s
and the generators of the free part of the symplectic cobordism can be also derived.
We plan to present the details in a future paper.
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