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1. Introduction. Recent years have seen the increased use in many fields of passive
electrical two terminal-pair networks lacking inductive elements. In particular, those
networks having a common ground have found widespread employment in servo-
mechanism design. In these applications, the network function of prime interest is
generally the transfer function A(p) defined as the ratio of steady state output voltage
to input voltage in the domain of the complex frequency variable p.

Our discussion of the transfer function in the sequel will be given in terms of RC-
networks. However, it is known that by means of simple transformations the results in
the RC-case can be made applicable to networks containing any two kinds of elements
only. We will indicate these transformations later for LC-networks, important in classical
filter theory, and for RL-networks. The actual statement of our results for these two
cases is left as an exercise for the reader.

Despite its importance, there have been few investigations of any generality con-
cerned with the transfer function. Being given a class of networks, the basic questions
with regard to the transfer function are: (1) by what properties may one characterize
the transfer functions which arise from this class of networks; (2) given a transfer func-
tion having these properties, how does one obtain corresponding networks of the class.
If, as we may, we write

A(p) = KN/D = K(pn + chp"'1 + • ■ • + an)/(pm + b^-1 +•••+&„) (1.1)

where N and D have no common factors, we require a complete characterization of
K, N and D for the class of networks under discussion as well as a synthesis procedure.
It is important to note, that since we are interested in what can be obtained from the
networks alone without amplifiers, transformers or similar devices, the description of the
multiplicative constant K is just as essential as that of N or D.

With this view of the problem in mind, we find that the bulk of the literature on
RC transfer functions, besides concerning itself with quite special networks, only
partially treats the questions here raised. Thus, generally, the constant K is ignored,
and incomplete conditions on N and D are given. The complete problem as stated here
has thus far been investigated in the case of rather specialized classes of networks.
Bower and Ordung [2] have considered the transfer function of the symmetric lattice
using a geometric method while we [4] have treated this network analytically as well
as the L and general ladder networks.

In the present paper, we do not restrict ourselves to networks of any special internal

*Presented to the American Mathematical Society, February 24, 1951. (Cf. Bulletin of the American
Mathematical Society, Vol. 57 (1951) pp. 182-3.)
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structure but treat the general grounded two terminal-pair (3 external terminals) and
also the general two terminal-pair (4 external terminals) RC networks (abbreviated 3
T.N., 4 T.N., respectively.) An informal description of our results follows. For more
precise statements, see Theorems 1 and 2. It is well known that the transfer function
of a 3 T.N. or 4 T.N. is a rational function with real coefficients, regular at infinity, and
having negative real, simple poles. In addition to these properties, we find that for the
3 T.N., the zeros of N may not be positive real. For given N and D, K must be a number
in the interval 0 < K < K0, where K0 is a constant depending upon N and D which is
explicitly determined. Conversely, a 3 T.N. may be constructed which realizes any
transfer function A(p) whose K, N, D satisfy the preceding conditions. In this con-
nection, Guillemin [5] had previously shown that if a, > 0 in N, then a 3 T.N. exists
realizing the transfer function A(p) for some unspecified K. In the case of the 4 T.N.,
we find that there is no restriction on the zeros of N. It is necessary and sufficient that
K lie in an interval — K0 < K < K0 , where again K0 is given explicitly in terms of N
and D.

With regard to the above results, we remark that they do not imply the corre-
sponding complete theorems for any structural sub-classes of 3 T.N. or 4 T.N. such as
were discussed in [2] and [4]. For the transfer functions associated with a sub-class have
further distinctive properties which are peculiar to the particular internal network
structure of that sub-class and which permit synthesis in that structure.

Finally, we note that the results of the paper may be modified to take account of
any resistive load or source.

2. The grounded two terminal-pair network. Theorem 1. The necessary and sufficient
conditions that a real rational function A (p) given by (1.1) be the transfer function of an
RC - 3 T.N. are:

(i) The zeros of D are distinct negative numbers.

(ii) The zeros of N may not be positive real but are otherwise arbitrary.

{Hi) m > n.

(iv) The number K satisfies the inequalities 0 < K < K0, where K0 is the least of the
three quantities* Kd, b„,/an, 1 if m = n and of the first two quantities if m > n. If K0 ^ Kd
then K may equal K0 . Here Kd is the least positive value of k (if it exists) for which the
equation D — kN = 0 has a positive multiple root.

Proof: (a) Necessity. As stated in the introduction, conditions (i) and (iii) are well known
in the case of a 4 T.N. To establish these conditions it is sufficient to write the transfer
function (1.1) in the equivalent form

A(p) = Y12/Y22, (2.1)

where Yl2 and F22 are the short circuit transfer and driving point admittances, re-
spectively, of the 4 T.N. and then apply Cauer's results on RC admittances and Brune's
residue conditions. (Cf. [6], pp. 134-136, 211-212, 216-218). Since a 3 T.N. may be con-
sidered as a 4 T.N. with one input and one output terminal joined together (i) and (iii)
also apply to a 3 TN.

*If an = 0, omit bm/an . It may be shown that in any case at least one of the three quantities Kd ,
bm/On , 1 actually appears as an upper bound for K.
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For the proof that the remaining conditions are necessary, the 3 T.N. shown in
Fig. 1 is considered upon a nodal basis. Here the ground terminal is taken as node 0,
the other input and output terminals as nodes 1 and 2 respectively. For our purpose
the remaining nodes are identified so that each branch is an R and a C in parallel. Hence

the admittance (i ^ j) of the branch between nodes i and j is of the form ap + b,
a > 0, b > 0. Of course y,,- = yti . Write

t
va = Z y<i 0' = i, 2, • • •, t),

j'-o

where t + 1 is the total number of nodes. Then yH is also linear in p with non-negative
coefficients. Let I be the current impressed on node 1 by the driving source and denote
by E{ the voltage from node 0 to node i. As is well known [1], the equations of the nodal
system are

I= ynEi Vi2^2 ■ ■ ■ yiiEt

0 = 2/21S1 -}- 2/22^2 ■ ■ ■
(2.2)

0 = -ytiEi - -•••-(- yttEt .
Since by definition A (p) = E2/E, , it follows from these equations that

A(p) = A,/A2 , (2.3)
where

y 21 2/23 ■ ■ * 2/21

2/31 2/33 " " ■ 2/31
Aj = = c0p' + c,p" 1 + • • • + c, , (2.4)

-2/d —y>3 ••• 2/" l
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2/22 2/23 " " ' Vu

A, =
2/32 y33 ■ ■ ■ 2/31

= d0p* + dips 1 + • • • + d, , d0 5^ 0. (2.5)

2/i2 2/i3 * ' ' 2/<'
Here Ax and A2 may have common factors and by (iii) the degree of Ax may actually
be less than s.

It may be shown that*
0 <"e,<d, (j = 0, 1, ■■■ , s). (2.6)

(In order not to interrupt the train of the argument at this point we defer the proof
to Appendix A). It follows that none of the zeros of Ax and hence of A(p) can be positive
real. This establishes (ii). Also since c,- > 0, d0 > 0, it follows that in the reduced form
of the transfer function (1.1), K > 0. Then by (ii), an > 0 in (1.1). (But note that some
a, (i ^ n) may be negative).

In order to establish the necessity of (iv) let us suppose the roles of nodes 0 and 1
in Figure 1 are interchanged. This new 3 T.N. whose ground terjninal is node 1 and
whose other input and output terminals are nodes 0 and 2 respectively, while all other
nodes are left unchanged, is termed the complementary network (of the original network)
and its transfer function A'(p) is called the complementary transfer function. Then for
this network under the same impressed current I as before, the input voltage is — Ex
while the output voltage is I'J2 — i,', . Hence

A'(p) = (E2 - Ei)/—Ey = 1 - A{p).
Using (1.1), we find

A'{p) = (D — KN)/D, (2.7)
where it is clear that numerator and denominator are relatively prime. Hence the re-
duced form for A' (rp) corresponding to (1.1) is

A'(p) = K' pQ + a[v+ ••• + < , (2.8)
pm + hp-1 + • • ■ + bm

where, as shown above, K' > 0, a'Q > 0. Comparison of the two expressions for A'(p)
given by (2.7) and (2.8) shows that these last inequalities require K < 1 if m = n,
K < b„,/an if a„ 9^ 0 respectively.

The remaining inequality on K in (iv) is obtained by first showing that the transfer
function of a 3 T.N. has what may be called the "interval property" with respect to its
multiplicative constant K. That is, if A(p) as given by (1.1) is the transfer function of a
3 T.N. then

A*(p) = K*N/D, 0 < K* < K, (2.9)
is also the transfer function of a 3 T.N.

To prove this, suppose A (p) arises from the network of Figure 1. We may write

*That dj > 0 is of course well known if either the conductance or capacitance matrix of the y»,-
occurring in A2 is positive definite.
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A{p) as in (2.1). Now modify the 3 T.N. by introducing a new branch joining nodes 0
and 2 whose admittance is (K — K*)Y22/K*. Then the modified 3 T.N. will have as
short circuit driving point and transfer admittances Y2* = F22 + (K — K*) Y22/K* and
Y1* = Y12 respectively; so that the corresponding transfer function is given by (2.9).

Now suppose A(p) in (1.1) is the transfer function of a 3 T.N. and let Kd be defined*
as in Theorem 1, (iv). Then K < Kd . For by what has just been proved, if K > Kd ,
A *('[)) = KdN/D is also a 3 T.N. transfer function. But then the complementary transfer
function (D — KdN)/D would have a positive real zero, in contradiction to (ii).

At first glance the bounds given for K in Theorem 1, (iv) seem quite unrelated.
However, one may alternatively characterize K0 in (iv) as the greatest lower bound of
all positive k for which the equation D — kN = 0 has a positive real root. It may then
be shown that this implies the statement as given in (iv).

(6) Sufficiency. Suppose now that A (p) satisfies the conditions of Theorem 1. We
shall construct a 3 T.N. whose transfer function is A(p). For this purpose, we first
write A(p) in a special form suggested by the fact that, before algebraic simplification,
every transfer function has the form (2.3) with dj > c; > 0. We define this special
form, called an R-function {realizable function), as follows: A real rational function

R(p) = (g»pl + giP1'1 + • • • + gi)/(h0pl + h1p!_1 + • • • + ht), h0 ^ o, (2.10)

is said to be an .R-function if the zeros of its denominator are negative real and distinct,
and if 0 < < ht (i = 0, 1, • ■ • ,1). We call I the degree of the R-function. The ex-
pression of a rational function as an R-function is not unique.

It is shown in Appendix B that a function A (p) satisfying the conditions of Theorem
1 may be written as an R-function. In the sequel, we give an algorithm for realizing
every R-function as the transfer function of a 3 T.N. Our method consists of an in-
duction on the degree I of the R-function.

The case I = 0 is trivial. If I = 1, i.e., R(p) = (g0p + gi)/(Kp + K) with h.Ji, ^ 0,
0 < g0 < h0 ,0 < Sl < h, , then R(j>) is realized by an L-network whose series and
shunt arm admittances are Ya = g0p + gx and Yb = (h0 — g0)p -f (A, — <-/,) respectively.
Note that the Y22 of this network is h0p + h, .

Now suppose that all R-functions of degree less than I > 2 are realizable as transfer
functions of 3 T.N. Also assume that for R{p) = U/V of degree f < I, U and V as in
(2.10), the Y22 of the corresponding network is of the form V/S where S is a polynomial
of degree / — 1. We will show that (2.10) is realizable as the transfer function of a
3 T.N. such that its Y22 is of the form X!'-o h{p'~'/T where T is a polynomial of degree
1 - 1.

Let the negatives of the zeros of the denominator in (2.10) be 71 < y-2 < ■ ■ • < yt .
Choose any o-; (i = 1, 2, • • • , I — 1) such that

0 < 7, < o-i < 72 < cr2 < • • • < < 7, .

Then the function Z = h0 nu (V + T i)/p n:=: (p + a-;) is an RC-impedance who
canonical expansion is

i-i
Z = h0 + Ao/p + £ Ai/(p + <r,), A, > 0 (t = 0, 1, • • • , I - 1). (2.11)

*It follows that Kd is one of the roots of the equation in k obtained by equating the discriminant of
D — kN = 0 to zero. For the expression of the discriminant of an algebraic equation in terms of its
coefficients see [3].
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In (2.11) the terms of the right member with h0 omitted form another RC-impedance
which we write as c nu (p + i<)/v nu (p + <Ti), c > 0. We have

0 < < <Ti < £2 < c2 < • • • < < ffi-i . (2.12)

From (2.11) it now follows that

ho n (p + 7i) = hp n (P + c.) + c fl (p + ?,)• (2.13)
* = 1 t -1 i = 1

If we let

hp IT (p + a.) = H Kpl~l and c II (P + £<) = X) K'pl~\
» = 1 » = 0 t = 1 t = 1

then the h' and h'/ are all positive; and equating coefficients of like powers of p in (2.13)
gives

h0 — hi, , hi = hi + h'/ (i = 1, 2, • • • , I — 1), /i, = h['. (2.14)

Since 0 < yt < h{ in (2.10), and in view of (2.14), there exists for each i (i = 1, 2, • • • ,
I — 1) at least one pair g\ , g'/ such that

<7, = g'i + g'i , 0 < g[ < h'i , 0 < gY < K. (2.15)
Take g'0 = g„ and g[' = gt .

Now consider the functions

Ri(p) = X g\pl'{/Kp tl(P + O = X) gip'^'/ho fl {p + o-;),

^2(p) = X g'i'p' 7c n (p + £<)•
1=1 1=1

These are R-functions of degree I — 1 at. most. Hence by the hypothesis of induction
there exist two 3 T.N. ra and r2 whose transfer functions are R, and R2 respectively,
and whose F22's are

F22' = ho fl (p + and Y% = c ff (p + ?,)/X.2.S2
t=l t-1

respectively. Here Si and S2 are polynomials of degree 1 — 2 while Xi and X2 are arbitrary
positive impedance-level constants whose values do not affect the transfer functions.
We shall presently fix X, and X2 .

Now in view of (2.12) we can choose /3, (i = 1, 2, • • • , I — 1) such that

£i < < fi < £2 < P2 ^ <*2 ^ ^ £1-1 ^ /3j_i < o"j—1 •

Hence

<y22' = h0p fl (p + <Ti)/(p + &<), ^22' = c f[ (p + £,)/(? + P.) (2.16)
» = 1 t = 1

are both RC-admittances. We are going to modify the networks I\ and r2 so that their
transfer functions remain unchanged but their F22's become and ^22' respectively.
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In Fig. 2 consider the networks I\' and Fa where Zx and Z2 are RC-impedances to be
determined. Evidently the transfer functions of and T'z are the same as those of I\

T' 7
Fig. 2.

and r2. However, the F22's of the new networks are 1/{ZX + 1/F22') and 1/(Z2 + 1/YiV)
respectively. If these are to equal and ^22' respectively, then it is necessary and
sufficient that Z} and Z, as given by

= 1/^22 ~ 1 /Yg, Z2 = 1/yiV - 1 /Y™ (2.17)
be RC-impedances. Now in canonical form

1/^' = B0/p + g Bt/(p + aO, = Co + E CJ{p + fc)
* = 1 i-1

with

B{ > 0, C, > 0 (« = 0, 1, ••• , I - 1);

and

1 /Y<» = X, E Dt/(p + a,), 1/Yg = X2 E Et/(p + |<)
t-1 »=1

with

Di > 0, Et> 0 (i = 1, 2, ••• , I - 1).
Hence

2: = B0/p + E (B{ — \iDt)/(p + *(), z2 = Co + E (C< - W/(p + £,),
1 »=1

and by taking Xi and X2 sufficiently small and positive, Zx and Z2 will be RC-impedances.
The F12's of the networks T{, r2 in view of (2.1), are, respectively,

<y»> = y£Rl = g gip1-1-/ fl (P + /SO,
»'«0 t-1

= E H (p + /3.)-»=i »-i
Now connect the networks and r2 in parallel to form a new 3 T.N., T. Then

[6 p. 146] the F12 and F22 of T are given by F12 = ■yJJ* + F22 = + <y^\
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Replacing the %2's and *y22's by their expressions given above and using (2.13) and
(2.15) we find that the transfer function A(p) of T is (2.10) while

r22 = £ hlP"7 ri(P + &)■
i=0 i = 1

This completes the induction*.
The preceding synthesis procedure may be modified to accommodate any given re-

sistive source and load. In the general case, this may require a finite reduction in the
value of the maximum realizable K. However, if the source is zero or the load is infinite,
all K except possibly K0 may be realized.

As an illustration, we outline the synthesis procedure for the case of a resistive load,
which we may take as 1 ohm without loss of generality. If K < K0 we may suppose
the R-function in (2.10) which corresponds to the transfer function is such that 0 <
g, < hi . The procedure is now started by choosing r,- (i — 1,2, • • • , I) such that 0 <
T\ < 7i < t2 < • • • < Ti < 7( . Then as before we have

K n (p + 7.) = fio n (p + + c' n (p + x>), c > o,
i = 1 i = 1 t-1

where TJ<X1<T2<X2< ■ • • < X;-i < . The original synthesis procedure is now
applied to

£ QiV^/K EI (P + Ti)
t-0 t=l

to give a 3 T.N. F whose F22 is

m n (p + t,)/ n (p + Xi), m > 0.
t -1 »= 1

If the Ti are taken sufficiently close to the 7, this will always be possible. The network
consisting of F working into the load then realizes the original transfer function.

We conclude this section with the observation that theorems analogous to Theorem 1
exist for 3 T.N. having only resistance and (self) inductance or capacitance and (self)
inductance. As shown in [4, Sec. 7] these are obtained from Theorem 1 by replacing p
by 1/p in the RL case and by replacing p by p2 in the LC case.

3. An illustrative example. As an illustration of the foregoing theory and synthesis
procedure consider the function A(p) = KN/D = K(p2 — p + 9)/(p + l)(p + 14).
First let us determine for what range of K, A (p) is the transfer function of a 3 T.N.
Since m = n = 2, a2 = 9, b2 = 14, Theorem 1 tells us that 0 < K < K0 where K0 =
min [Kd , 14/9, 1]. To calculate Kd it is best to proceed indirectly by first eliminating
k between the equations I) — kN = 0 and d/dp (D — kN) = 0. This gives 16 p2 +
10 p — 149 = 0 whose roots p, = —3.380, p2 = 2.755 are the multiple roots of I) —
kN = 0 which occur for all variations of k. Only the latter of these is positive and corre-
sponding to it we find k = D(p2)/N(p2) = 4.546 = Kd . Hence K0 = min
[4.546, 14/9, 1] = 1.

*A variation of the above procedure may be obtained by modifying the decomposition as given in
(2.13). Using either procedure an appropriate choice of (2.15) will frequently lead to simple network
realizations. Still another modification of the synthesis procedure makes it possible to always choose
Zi as a condenser and Zi as a resistor in Fig. 2 at each stage of the synthesis.
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Let us choose (as we may by Theorem 1) K = K0 = 1. To apply the synthesis
procedure, we must first write A(p) as an i?-function. Using the ideas of Appendix B
(or by inspection) we find that the introduction of the common factor (p + 3) into
A (p) converts it into the R-function

R = (p3 + 2p2 + 6p + 27)/(p + 1) (p + 3) (p + 14).

Following the procedure of §2(6) choose cr, = 2, <r2 = 6. Then (2.13) reads p3 -f- 18p2 +
59p + 42 = p(p2 + 8p + 12) + (10p2 + 47p + 42), from which = 6/5, £2 = 7/2.
Now, for simplicity, in (2.15) let 2 = 2 + 0, 6 = 0 + 6; also choose /?i = 3/2, = 4.
Then we get

Ri = (p3 + 2p2)/p{p + 2){p + 6) = p/(p + 6), R2 = (6p + 27)/10(p + 6/5)(p + 7/2),
while according to (2.16)

•yii} = P(P + 2 ){p + 6)/(p + 3/2 )(p + 4)
and

= 10(p + 6/5) (p + 7/2)/(p + 3/2)(p + 4)
respectively.

The transfer function R, being of first degree is realized by an L-network Tj whose
series and shunt arm impedances are Zla = Xx/p and Zn = Xj/6 respectively, and whose
Y'j.1' = {p + 6)/Xi . Use (2.17) to determine Z, taking X, = 3/8 for simplicity. Then
Zx = 1/2 p + l/8(p + 2). Finally form as in Fig. 2.

As for R2 , it is of the second degree and hence the reduction procedux-e is repeated
for it to obtain R?, and R( of the first degree. We give the results, the notation being
evident from what has preceded.

r, _  6p + 27  7! iji /?! (71 72
10(p + 6/5)(p + 7/2) ' 6/5, 14/9, 7/4, 2, 7/2 '

10p2 + 47p + 42 = 10p(p + 2) + (27p + 42);

t? _ n qi(3, _ 10p(p + 2) . _ 6p + 27 (4) 27(p + 14/9)
3 ' y22 (p + 7/4) ' Ki 27(p + 14/9) ' y22 (p + 7/4)

The transfer functions R3 and ft, are realized by L-networks r3 , r4 whose series and
shunt arm impedances are Z3a = <», Z3b = (p + 7/4)/10p(p + 2); Zia = X4/(6p + 27),
Zih = X4/(21p + 15) respectively; and whose F22's are F22' = ty?2t3> and F22' =

z, z,la i—Q- ~

zlbO

r/ p'
l 2

Fig. 3.

o-
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27 (p + 14/9)/X4 respectively. Hence we need only determine a Z4 using (2.17) and taking
X4 = 7/36. This gives Z4 = 1/27. Now form r4 as in Fig. 2 and denote by r2 the parallel
combination of r3 and r4 . Introducing the impedance level factor X2 in r2 the F22 of
r2 is given by Y'2V = 10(p + 6/5)(p + 7/2)/\2{p + 7/4). Again use (2.17) to determine
Z2 taking X2 = 4/7. Then Z2 = 1/10 + 4/175(p + 6/5). Forming r2 from r2 and Z2
as in Fig. 2, the required final network is the parallel combination of F[ and r2 as shown
in Fig. 3.

4. The two terminal-pair network. Theorem 2. The necessary and sufficient conditions
that a real rational function A (p) given by (1.1) be the transfer function of an RC — 4 T.N.
are:

(i) The zeros of D are distinct negative numbers.

(ii) m > n.

(Hi) The number K satisfies the inequalities —K0<K<K0, where K0 is the least of
the three quantities \ Kd |, | bm/an |, 1 if m = n and of the first two quantities if m > n.
If K0 ^ | Kd | then K may actually equal ±K0 . Here Kd is that real value of k of smallest
absolute value (if it exists) for which the equation D — kN = 0 has a positive multiple root.

Proof (a) Necessity. For (i) and (ii) see the remarks in Sec. 2. To prove (iii) consider
the 4 T.N. of Fig. 4 on a nodal basis taking the input terminals as nodes 0 and 1, the

Fig. 4.

output terminals as nodes 2 and 3, and choosing the remaining nodes as in the 3 T.N.
case. Let E01 and E32 be the input and output voltages, respectively. Then in the nota-
tion of Sec. 2 we have A(p) = E32/E0l = (E2 — E3)/Ei . It follows from (2.2) that

A(p) = (A, - A3)/A2 (4.1)

with Aj and A2 as in (2.4), (2.5) and

A, =

2/31 2/32 2/34 • * * 2/31

2/21 2/22 2/24 ■ • * 2/21

2/41 2/42 2/44 ■ • ■ 2/41

2/<l 2/(2 2/14 '' * 2/ll

= c'op' + c[p' + • • • c', .
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Since A3 is of the same form as we have

0 < c' < dj (j = 0, 1, ••• ,s), (4.2)

in addition to (2.6).
If we equate the two expressions for 1 ± A(p) obtained from (1.1) and (4.1), we

have

CD ± KN)/D = [A2 dh (A, - A,)]/A2 .

Since the fraction on the left is evidently in reduced form, and in view of (2.6) and (4.2),
it follows that | K | < 1 if m — n and that D ± KN = 0 has no positive real roots.
This in turn implies that | K \ < | b„Jan | if an ^ 0, and that j K | < | Kd | for Kd as
defined in Theorem 2. This last fact follows as in the 3 T.N. case; for the "interval
property" of K holds for a 4 T.N. with 0 < | K* | < | K \ in (2.9).

(b) Sufficiency. Let A(p) satisfy the conditions of Theorem 2. Then proceeding as
in Appendix B we-find that both D + KN and D — KN have leading coefficients
positive and have no positive real zeros. Thus there exists a polynomial P having distinct
negative real zeros such that P(D + KN) and P(D — KN) have non-negative co-
efficients. We may suppose P and D relatively prime. If

PD = £ hiP'-' and KPN = £ g
t=0 t=0

it therefore follows that | g{ \ < hi (i = 0, 1, • • • , 1). Write A(p) = KPN/PD =
{Ni — N.2)/PD, where Ari consists of those terms of KPN having positive coefficients
while —N2 consists of those terms of KPN having negative coefficients. Then NJPD
and N2/PD are R-functions. Hence by the results of Sec. 2 there exist two 3 T.N.,
T, and r2 whose ground, input and output terminals are 0, 1, 2 and 0, 1, 2' respectively,
and whose transfer functions are Ai = NJPD and A2 = N2/PD respectively. Now
form the 4 T.N. shown in Fig. 5 whose input terminals are 0 and 1 and whose output

0
Fig. 5.

terminals are 2 and 2'. The transfer function of this network is evidently A, — A2 = A.
Remarks similar to those of Sec. 2 may also be made here concerning source and load,
and the RL and LC networks.
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Appendix A

Consider the determinant

an ^12 cti3 * * * d\

H =

d21 CI22 &23 * * * &2n

a31 d32 (Z33 * * * &3n

anl an2 &n3 * * * ar

where a,-,- = «.,(« = 2, 3, • • • , n) and all the ati(i t6 j) and an are independent
variables. We shall prove that H is a polynomial (multilinear form) in the a,-,(i 9^ j)
and an with non-negative coefficients.

This is evidently true for n = 1, 2. Suppose it is true for determinants of the form
H of order less than n(n > 3). We may write H = Hi + H2 where //, contains those
terms which are independent of aln(i = 1,2, • • • , n — 1) and H2 those terms which
are linear in each ain(i = 1, 2, •••,»— 1) separately. In H, if we let ain =
0(i = 1, 2, ■ ■ • , n — 1) we find

(111 Cl\2 ' ' * ®1(„-

H i = o„
fl21 a22 ' " ' a2 (n-1)

0(n-l)l a(»-l)2 a(n-l)(n-l)

where a{, = ai{ — ain(i = 2, 3, • • • , n — 1). Hence applying the hypothesis of induction
we conclude that the terms of Hi have positive coefficients.

As for H2 each of its terms is contained in at least one of the polynomials a,„ dH/dain
{i = 1, 2, • • ■ , n — 1). Now*■}

0 0 0 1

dH
3aln

CJ2I ^22 ®23 * * * &2n

dnl an2 ®n3 ' ' '

^nl &n2 ^n3 * " * ^n(n-l)

d2l ®22 ®23 ' ' " &2(n-l)

"a(»-l)l —<l(n-l)2 ®(»-l)3 * " * a(n-l



1952] TRANSFER FUNCTION OF TWO TERMINAL-PAIR RC NETWORKS 125

and for i = 2, 3, • • • , n — 1,

flll ®12

dH
dain

C&21 ^22

a„i an2

CI 11 Cti2

&21 ^22

"^(t-l)l ^(i-l)2

"&(» + !)! &(» + !)

&nl &n2

&1»

&2i

" ^ni

Gin

&2n

-1

an

fll(»-l) fll(t + l) * * * (,aii ~f" &ln)

* &2(»-l) a2(t- + i) * * * ($2t -|- 0,2n)

0(<-l)»-l) ®(<-l)(i + l) ••• —(fl(.-l)i 4" fl(i-l)n)

"®<i + l)(i-l) a(.+l)(> + l) ~ (a(i + l)i "t" a(»+l)i»)

" dn(i~-1) ®n( t + 1) • • • (otnn ®n»)

Replacing a,0 + a,„(« = 2, 3, • • • , n — 1) by new variables a'i0 in the first case, and
a,-, + j = 1,2, • • • , n — 1) by new variables a'n in the second case, Ave see that
the final determinant in each case is reduced to a determinant of the same form as H
but of order n — 1. Hence the terms of //2 also have positive coefficients and the above
italicized statement about H is proved.

Now make the following specialization: n = t — 1, an = ?/(, + m(z = 1, 2, • • • , t — 1),
a.-; = y«+i>(f+i)(i = 1, 2, ••• , t - 1; i = 2, 3, •••,<- 1; i ^ j), a,0 = 2/(,+i)2 +
yu + Do(i = 1, 2, • • • , t — 1). Then H becomes Ai and we find that At is a polynomial
in the ?/,• ,• (i 5^ j) with non-negative coefficients. This proves the ct > 0(i = 0, 1, • • • , s)
in (2.4).

In A! replace the elements of the first column by y20, — y™, • • • , — Vtn respectively,
to form A[ . Then by symmetry A,' is also a polynomial in the ya(i 9^ j) with non-
negative coefficients. Now in A2 of (2.5) add the sum of columns 2, 3, • • • , t — 1 to
column 1. We see that A2 = Ai + A( . This proves that d, > c,(j = 0, 1, • • • , s).

Appendix B

Lemma*: Let F(p) = ap" + • • • , a > 0 be a real polynomial having no positive real zeros.
Then there exists a polynomial P = U(P + s<) with the bi > 0 and distinct, such that
PF is a polynomial with non-negative coefficients.

*For a more general result which includes this one see [7]. We include the following simple con-
structive proof so as to keep the paper self-contained with regard to the synthesis procedure.
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The real irreducible factors of F are either of the form p + r with t > 0 or
p2 — 2p cos <pp + p2 with p > 0, 0 < (p < 2x. It clearly suffices to prove the lemma for
F equal to this latter quadratic polynomial with 0 < cos <p < 1. Replacing p by pp we
may without loss of generality suppose that p = 1.

Let Pi = (p + l)6 where 6 is an integer such that

We have

where

6 > 2 cosip/(l — cos <p). (B.l)

6 + 2

P.F = £ eiP\

0, - (») - 2 c«,„(. » J + (. > 2) (i - o, 1, ... , 5 + 2),

and is the binomal coefficient, with (^j defined as zero if i > b or i < 0.

Now d0 = 06+2 = 1 > 0; and = 0i+1 = 6 — 2 cos p > 0 by (B.l). If 2 < i < b,

<b-2)b
i — 1

We have z(6 — i + 2) < (i + 6 — i + 2)2/4 = (6 + 2)2/4; and (b — i + 1 )(b — i + 2) +
- 1) = {6(6 + 2) + [6 - 2(» - l)]2}/2 > 6(6 + 2)/2. Hence in (B.2), the bracket

satisfies the inequality, [ ] > 26/(6 + 2) — 2 cos y > 0 by (B.l). Since the co-
efficients di of PiF are all positive we may by continuity considerations form P[ =

+ ^«) with the 5,- sufficiently close to 1 and distinct, such that P'F has positive
coefficients. This proves the lemma. We note that the method used in the above proof
may not necessarily lead to the simplest polynomial P.

Now let A(p) satisfy the conditions of Theorem 1. Then evidently KN is a poly-
nomial such as F in the lemma. But D — KN is also such a polynomial! To prove this
we first show that D — KN has no positive real zeros. Consider the zeros f, («) of D —
kN = 0 where k is a non-negative, real parameter. When k = 0 these zeros are the zeros
of D and hence are negative real and distinct. Then for small positive k the f, will be
negative real and distinct. As k increases positively, positive real may arise only if
one of the following has occurred: (a) a f, has gone through zero, (b) a has gone
through °°, (c) two or more complex f, have become equal on the positive real axis.
In case (a) we must have k > bm/an(an ^ 0); in case (b) k > 1 if m = w; in case (c)
k > Kd . Hence, by (iv) in Theorem 1, if k = K, I) — KN has no positive real zeros.

We must still show that the leading coefficient of D — KN is positive. This is evident
unless m = n, K — K0 = 1. In this case, we have D — N = (6— am_i)p*,
6„_r — om_r 5^ 0, r < m. Suppose the leading coefficient 6m_r — ara_r < 0. Consider
the polynomial Qi = XXo where em_,- = 6m_,- — a„_, if am_< < 0 and em_< =
b„-i — (1 — e,)am_,- , 61 > 0 if a„_,- > 0. For ej sufficiently small the leading coefficient
of Q, will be negative so that there exists a p0 > 0 such that (p„) < 0. Now
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to r

D(Po) - (1 - W = « X) + X [bm-i - (1 - «)a„_,]pj
»-r + l t = 0

m

< e X) «m-.jPo + Qi(Po) for 0 < € < «! .
t - r +1

Hence for e sufficiently small, say e = e2 < et , D(p0) — (1 — e2)N(p0) < 0 while
£>(-) — (1 — e2)N(oo) > 0. Thus D(p) — (1 — e2)N(p) = 0 has a positive real root,
which contradicts what has been proved above about D — kN = 0 for k < K0 . Thus
by the lemma, there exist two polynomials and P2 such that KP,N and P2(D — KN)
have non-negative coefficients. Then /J,/J2 will simultaneously convert KN and D — KN
into polynomials with non-negative coefficients. We may suppose Pi , P2 and D are
relatively prime in pairs. Now let

A(p) = KN/D = KPiP2N/P^P.D = E g.p1"*/ £ hiP'-\
i=0 i= 0

Then the zeros of the denominator of the last fraction are negative real and distinct, and
by considering KPiP2N and P,P2(D — KN) it follows that 0 < g> < hi(i = 0,1, • • • , I).
Hence the last fraction is an R-function.

We remark that if K0 = 1 or bm/an and if R0 is an R-function corresponding to K0 ,
then KR0/K0 corresponds to any K in the range 0 < K < K0 . However, if K0 = Kd ,
no such R-function R0 exists and the degrees of the R-functions corresponding to K in
the range 0 < K < Kd must increase indefinitely as K —> Kd .
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