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Participants in 2 experiments interacted with computer simulations designed to foster

understanding of scientific principles governing complex adaptive systems. The

quality of participants’ transportable understanding was measured by the amount of

transfer between 2 simulations governed by the same principle. The perceptual con-

creteness of the elements within the first simulation was manipulated. The elements

either remained concrete throughout the simulation, remained idealized, or switched

midway into the simulation from concrete to idealized or vice versa. Transfer was

better when the appearance of the elements switched, consistent with theories pre-

dicting more general schemas when the schemas are multiply instantiated. The best

transfer was observed when originally concrete elements became idealized. These

results are interpreted in terms of tradeoffs between grounded, concrete construals of

simulations and more abstract, transportable construals. Progressive idealization

(“concreteness fading”) allows originally grounded and interpretable principles to

become less tied to specific contexts and hence more transferable.

Cognitive psychologists and educators have often debated the merits of concrete

versus idealized materials for fostering scientific understanding. Should chemical

molecules be represented by detailed, shaded, and realistically illuminated balls or

by simple ball-and-stick figures? Should a medical illustration of a pancreas in-

clude a meticulous rendering of the islets of Langerhans or convey in a more styl-

ized manner the organ’s general form? Our informal interviews with mycologists

at the Royal Kew Gardens (personal communication, Brian Spooner and David

Pegler, May 1998) indicate a schism between authors of mushroom field guides.
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Some authors argue that the ideal book format for teaching readers to identify

mushrooms is to present actual photographs of specimens. Other authors argue

that line drawings are more effective than photographs despite their decreased real-

ism because they can subtly emphasize diagnostic features and reduce variation

unrelated to species identification. Our experiment explored the cognitive costs

and benefits of concrete and idealized external representations.

The influence of concreteness is studied in the context of participants learning

abstract scientific principles while interacting with computer simulations that

instantiate those principles in particular domains. Participants’ effective under-

standing of a principle is measured by their ability to comprehend and solve prob-

lems in a new domain that is governed by the same principle. The initial and trans-

fer domains are superficially dissimilar, so effective transfer requires participants

to be sensitive to their abstract commonality. We are interested in analogical trans-

fer not as an end in itself, but as an indicator of a participant’s understanding of the

shared deep similarity between superficially dissimilar but abstractly related do-

mains (Barnett & Ceci, 2002; Bransford, Brown, & Cocking, 1999; Carraher &

Schliemann, 2002; Gentner, 1989; Holyoak, 1984; Novick & Holyoak, 1991;

Rumelhart, 1980).

We first describe some of the competing costs and advantages associated with

conveying scientific principles with concrete, contextualized materials. This anal-

ysis leads us to propose a possible method for improving transfer that we call “con-

creteness fading.” Concreteness fading is the process of successively decreasing

the concreteness of a simulation with the intent of eventually attaining a relatively

idealized and decontextualized representation that is still clearly connected to the

physical situation that it models. Then we present two experiments examining the

transfer of knowledge from an initial simulation to an abstractly related simula-

tion. Concreteness fading is compared to the converse method of “concreteness in-

troduction,” as well as to controls that maintain a constant level of concreteness or

idealization throughout the simulation. These conditions allow us to explore the

roles of external concreteness, graphical variability, and sequential order of graph-

ical formats in the acquisition of abstract scientific understanding.

THE BENEFITS OF BEING CONCRETE

Well-established lines of philosophical and psychological argumentation have con-

verged on the thesis that abstract understanding is most effectivelyachieved through

experience with perceptually rich, concrete representations. Even if one’s goal is to

develop abstract scientific knowledge, there are several reasons to believe that these

abstractions are not effectively learned through direct exposure to the abstractions in

verbal or mathematical form. Instead, the abstractions are effectively learned by ex-

posure to pictures, movies, interactive simulations, and real-world physical experi-
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ences that embody the abstractions. By concrete external representations, we are in-

cluding both perceptually detailed and rich materials as well as materials affording

concrete, perceptual-motor activity. A brief description of some of these arguments

is presented here and summarized in the left column of Table 1.

Decision makers are often more strongly affected by vivid, perceptual informa-

tion than abstract statistical information (Nisbett & Ross, 1980) or descriptions

lacking rich detail (Reyes, Thompson, & Bower, 1980). Deductive reasoning is fa-

cilitated when the domain is familiar and concrete rather than abstract (Wason &

Shapiro, 1971). For example, people are better able to solve logically equivalent

versions of a reasoning task when the cover story for the task concerns a familiar

rather than an unfamiliar situation (Johnson-Laird, Legrenzi, & Legrenzi, 1972).

Concrete materials can support abstract reasoning because they can be explicitly

designed to promote true inferences from perceptual representations to abstract

principles (Bassok, 1996). Good external representations are crafted so that percep-

tually salient properties correspond to critical formal abstractions (Goldstone &

Barsalou, 1998; Larkin & Simon, 1987). For example, the acquisition of mathemati-

cal expertise is facilitated if the perceptual chunks afforded by automated tutoring

systems provide inductive support (Koedinger & Anderson, 1998) for important

mathematical formalisms (Koedinger & Anderson, 1990). In general, we can engi-

neer our environment and our perspective on this environment so that the perceptu-

ally salient cues properly support higher level cognitive processes.
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TABLE 1

Advantages of Concrete and Idealized Representations

Advantages of Concreteness Advantages of Idealization

Concrete information is easier to remember than

abstract information.

Idealizations are potentially more transferable to

dissimilar domains because knowledge is not

as tied to a specific domain.

It is often easier to reason with concrete

representations using mental models than

abstract symbols.

The critical essence of a phenomenon is

highlighted because distracting details are

eliminated.

Visual processes used for concrete objects can

be co-opted for abstract reasoning.

There may be an active competition between

treating an entity as a symbol versus an

object, and idealization makes symbolic

interpretations more likely.

Concrete details are not always “superficial,”

but rather provide critical information about

likely behavior and relevant principles.

Cognitive processing of less important but

complex concrete elements is conserved.

Concrete materials are often more engaging and

entertaining and less intimidating.

Idealizations facilitate interpretations of a

situation in terms of abstract relations rather

than specific attributes.

Concretely grounded representations are more

obviously connected to real-world situations.



The value of concrete representations has been frequently noted in education.

One recommendation coming out of this research has been to use concrete materials

that can be physically manipulated to teach abstract concepts (Moch, 2001). A

well-known example of this strategy is to teach addition and subtraction of large

numbers using Dienes blocks (Fuson & Briars, 1990). These blocks are arranged in

units (individual cubes), longs (lines of 10 cubes), flats (sets of 10 lines), and boxes

(stacks of 10 flats). The goal of using Dienes blocks is not only to solve specific nu-

meric problems but also to provide students with a well-grounded, intuitive under-

standing for more formal arithmetic operations. Other well-known pedagogical

manipulatives include geoboards (boards with a lattice of pegs and loose rubber

bands to wrap around the pegs), Cuisenaire rods (colored wooden bars cut to integer

lengths), and balance beams. The use of physical manipulatives has been advocated

as providing scaffolding for abstract concepts (Bruner, 1966). Although proposals

for manipulatives have outstripped carefully executed studies documenting their

value, there is growing empirical evidence that manipulatives do offer educational

benefits, by connecting abstract mathematical concepts to the real world (Kennedy

& Tipps, 1994), overcoming students’anxietyabout mathematics (Martinez, 1987),

and teaching mathematics in an entertaining and engaging manner.

Manipulatives have traditionally been understood as concrete objects, but the

seemingly oxymoronic term virtual manipulative has been coined to refer to com-

puter-based, interactive simulations with graphical and dynamic elements that

model real-world entities (Moyer, Bolyard, & Spikell, 2002). A computer simula-

tion explicates scientific concepts by creating simplified, working models that are

typically under parametric control by the simulation’s user (Miller, Lehman, &

Koedinger, 1999; Resnick, 1994; Schank & Farrel, 1988; Wilensky & Reisman,

1999). Computer simulations have been shown to confer a number of advantages

over traditional educational practices. First, they provide a perceptual grounding

for concepts that might otherwise be too abstract to readily comprehend. Second,

they promote an active, hands-on, problem-solving stance that, in turn, often fos-

ters a deep understanding of a phenomenon (National Research Council, 1999).

Third, they provide effective exposure to experimentation skills that involve a cy-

cle of hypothesis formation, testing, evaluation, and revision (White, 1993; White

& Frederiksen, 1998). A noteworthy example of an apparently effective, grounded

pedagogical simulation environment is Starlogo and its offshoots, StartlogoT and

Netlogo (Resnick, 1994; Resnick & Wilensky, 1998; Wilensky, 1991, 1999, 2001).

The Starlogo world consists of fixed patches, and moving agents that interact with

the patches and each other. Students control dynamic parameters of the world by

manipulating sliders, buttons, and the mouse. Interactive, graphical, and flexible

simulations allow students to learn scientific principles such as the diffusion of be-

liefs, the spread of epidemics, self-organization in slime molds, the population dy-

namics of predator–prey systems, and the behavior of populations of gas mole-

cules under pressure. Although formal laboratory studies of the pedagogical
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efficacy of Starlogo have not yet been conducted, students’ interactions with

Starlogo systems indicate that these systems can foster intuitive understandings of

complex systems more effectively than experience with formal equations or

noninteractive movies (Resnick & Wilensky, 1998; Wilensky & Resnick, 1999).

An important design consideration when developing pedagogical computer

simulations is determining how concrete to make the simulation elements. High

levels of detail, produced by realistic rendering of objects within the simulation,

may benefit learners by making a phenomenon concrete and by increasing the sim-

ilarity between the simulation and real-world situations (DiFonzo, Hantula, &

Bordia, 1998). In fact, most research in virtual reality has as an explicit goal the re-

alistic mimicking of real-world phenomena (Grady, 1998; Heim, 2000). Using

highly realistic computer simulations is often an intrinsically motivating experi-

ence because they are entertaining and evocative.

THE BENEFITS OF IDEALIZATION

Although this evidence suggests the pedagogical power of concrete, or at least

“virtually concrete,” learning materials, this conclusion has received a number of

challenges, summarized in the right column of Table 1. Although the virtual reality

community typically assumes “the more realistic, the better,” other researchers

have argued that simplified, relatively idealized representations are useful for dis-

tilling a situation to its essence (Gianutsos, 1994; Goldstone, Steyvers, & Rogosky,

2003; Smith, 2003). Idealization may assume various forms, from representations

that eliminate detailed physical properties to symbolic, mathematical formalisms.

In the following review, we focus on idealizations that are simplified physical-spa-

tial representations because this is how we operationalize idealization in the re-

ported experiments.

A strong empirical case for the value of less realistic representations comes

from DeLoache’s (1991, 1995; also DeLoache & Burns, 1994; DeLoache &

Marzolf, 1992) research on children’s use of physical models as representations. In

her standard paradigm, a child around the age of 2.5 years is shown a model of a

room; the child watches as a miniature toy is hidden behind or under a miniature

item of furniture in the model, and the child is told that a larger version of the toy is

hidden at the corresponding piece of furniture in the room. Children were better

able to use the model to find the toy in the actual room when the model was a

two-dimensional picture rather than a three-dimensional scale model (DeLoache,

1991; DeLoache & Marzolf, 1992). Furthermore, DeLoache (2000) decreased

children’s access to a model of a room by placing it behind a window, allowing the

children to see but not manipulate the model. This manipulation improved chil-

dren’s performance. Conversely, in another experiment, children who were given
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10 min of playtime with the model before being asked to use it as a symbol for the

real room were less effective at finding the toy.

DeLoache (1995), Uttal, Liu, and DeLoache (1999), and Uttal, Scudder, and

DeLoache (1997) explained these results in terms of the difficulty in understand-

ing an object as both a concrete, physical thing and as a symbol standing for some-

thing else. As an object’s concrete, physical properties become more salient, its

ability to serve as a symbol decreases. A two-dimensional picture serves as a better

symbol because its concrete properties are less salient. More generally, Uttal et al.

(1999) argued that concreteness is not always beneficial. Although concreteness

can help young children detect symbolic relations, it can make it more difficult for

them to comprehend the abstract concepts represented by the concrete object. An-

other example of this is found in transfer among word problems in mathematics.

Bassok and Holyoak (1989) examined transfer between isomorphic domains of

arithmetic progression in algebra and constant acceleration in physics. They found

greater positive transfer from the algebra problems to the physics problems than

vice versa. They interpreted their results as showing that when abstract mathemat-

ics is easily isolated from the content-specific cover story in which it occurs, it

transfers widely to different situations. Likewise, children (Rattermann & Gentner,

1998) and adults (Goldstone, Medin, & Gentner, 1991; Markman & Gentner,

1993) are less likely to respond on the basis of abstract relations among objects in a

scene and are more likely to respond on the basis of superficial object attributes as

the richness of the objects in the scene increases. As with the DeLoache studies,

when the concrete manifestation of an abstraction is difficult to ignore, then it ad-

versely impacts responding on the basis of abstractions.

Consistent with this tension between abstract and superficial construals, several

researchers caution against the unbridled use of concrete manipulatives for educa-

tion. One difficulty of teaching with concrete objects is that the connection be-

tween the objects and the desired abstraction is typically not transparent to a stu-

dent, and unless students are explicitly instructed on the connection, use of

manipulatives may not result in general arithmetic knowledge (Clements &

McMillen, 1996; Uttal et al., 1997, 1999). Research has often failed to show a con-

sistent advantage for manipulatives over more traditional instructional methods

(Sowell, 1989). Resnick and Omanson (1987) found that mathematical knowledge

gained with Dienes blocks did not generalize well to solving symbolic problems.

Students did learn to effectively solve subtraction and addition problems with the

blocks, but their performance did not positively correlate with their ability to solve

symbolic problems such as “24 + 19 = ?”

Schwartz (1995), Schwartz and Black (1996a, 1996b), and Schwartz and

Moore (1998) argued that realistic displays encourage people to use analog and

dynamic imagery, whereas more schematic displays encourage analytic reasoning

strategies. For example, Schwartz (1995; Schwartz & Black, 1996a) asked adults

to determine whether marks on hinges and gears would meet if the mechanisms
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were put in motion. When the display of the mechanisms was photo-realistic, peo-

ple imagined the dynamics of the devices closing or rotating into position. In con-

trast, when the display of the mechanisms was a diagram, people instead extracted

the metric properties of the display that they then compared or used in thumbnail

derivations. Schwartz and Moore found greater use of mathematical reasoning

when a proportional reasoning problem was displayed with a drawn diagram rather

than with a photograph. Although these experiments did not reliably show better

performance for idealized diagrams than more realistic representations, they did

show that an advantage of idealization is that they promote more formal reasoning

methods that are less influenced by physical constraints.

A major difficulty with manipulatives is that they bias students toward concrete

construals of situations, and if a student is at risk to give a situation a concrete rather

than abstract construal, then the manipulative may exacerbate this tendency

(Ambrose, 2002). Consistent with this, Goldstone and Sakamoto (2003) explored

factors that facilitate the transfer of an abstract scientific principle from one domain

toanother.Students interactedwith twocomputersimulations thatweregovernedby

the same principle. For example, students learned about simulated annealing in the

context either of balls falling on a hilly landscape or finding a pathwayaround obsta-

cles. The initial simulation was presented using relatively realistic or idealized ele-

ments.Better transferbetweensimulationswasfoundwhentheelementswere ideal-

ized, particularly for students with relatively poor initial understanding. Following

DeLoache’s lead, they interpreted their results in terms of a competition between ab-

stract and concrete construals of the simulations. Individuals prone to concrete

construals tended to overlook abstractions when concrete properties or superficial

similarities were salient. Thus, both concrete manipulatives and computer simula-

tions potentially run the risk of tying students’understanding too tightly to the stud-

ied context, limiting the transportability of the underlying abstraction.

CONCRETENESS FADING AND INTRODUCTION

The previously discussed review indicates advantages and disadvantages to both

concrete and idealized presentation strategies. On the one hand, concrete pedagog-

ical materials provide useful and engaging perceptual scaffolding for abstract con-

cepts that would be difficult to convey otherwise. On the other hand, concrete ma-

terials may encourage learners to develop internal representations that are overly

literal and tied to specific contexts. A valuable pedagogical goal is to find instruc-

tional methods that combine the perceptual scaffolding provided by concrete ma-

terials with the potential for abstract transfer fostered by more idealized materials.

To this end, we put forth the method of concreteness fading as a candidate for

partially satisfying both goals of grounded and generalizable representations. By

concreteness fading, the graphical elements used in a simulation are originally

CONCRETE AND IDEALIZED SIMULATIONS 75



concrete but become more idealized over time. The intention is for early experi-

ence with concrete representations to promote intuitive and strong connections be-

tween the elements of the simulation and their corresponding real-world elements.

Then, by later idealizing the elements, the psychological representations associ-

ated with the elements become less tied to their specific domain and hence more

capable of being transferred to new domains that are superficially dissimilar.

One of the intellectual predecessors of concreteness fading is the work of Ter-

race (1963a) on errorless learning and his work on fading (Terrace, 1963b). Ter-

race (1963a) succeeded in training pigeons to learn a red–green discrimination

without the pigeons making any errors. Pigeons pecked at a red key to receive food

reinforcement. The green key started out as a dark key that appeared for only a

short period of time and, as such, was unlikely to elicit responses. Pigeons contin-

ued to ignore the green key as it brightened and appeared for longer periods of

time. Two advantages of errorless learning are that the learners do not experience

unpleasant and distracting emotions associated with errors, and they do not con-

fuse error responses with correct responses and thereby set down incorrect habits.

Terrace (1963b) subsequently used fading to have pigeons who had already

learned the red–green discrimination learn a horizontal–vertical discrimination

without making errors. Vertical and horizontal lines were initially superimposed

on top of red and green backgrounds, respectively. Pigeons would respond on the

basis of their learned red–green discrimination. Gradually, the backgrounds were

faded out so that only the lines remained. Both errorless learning and fading have

been shown to dramatically improve discrimination learning. The analogy to con-

creteness fading is that, initially, participants can use a perceptually rich, concrete

representation to understand a situation. Then, if this perceptual information is

faded out, participants may continue to respond on the basis of other abstract rela-

tions that were associated with the perceptual information.

Another example of fading with direct relevance to developing abstract repre-

sentations is the work of Kotovsky and Gentner (1996; see also Gentner & Wolff,

2000) on 4-year-olds’ responding to relational similarities. Children were given a

task requiring them to say whether a structure embodying symmetry (e.g., XOX)

was more similar to another instance of symmetry (e.g., HIH) or to a second struc-

ture lacking symmetry (e.g., IHH). On some trials, there was perceptual support

for placing X in correspondence with H and O in correspondence with I. For exam-

ple, X and H were both dark and large, and O and I were both light and small. On

other trials, this perceptual support was lacking. Children were better able to make

their choices based on symmetry when these choices were supported by perceptual

similarities. More interesting, children were better able to make symmetry-based

choices that lacked perceptual support when these trials were preceded by trials

with the perceptual support present. The researchers (see also Gentner & Medina,

1998) argued that the initial matches between relationally similar structures helped

children grasp relational structures by creating an initial set of correspondences
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that were consistent with a relational interpretation. Then, when these perceptual

supports were faded out, relational responding continued.

There are precursors to concreteness fading that are directly relevant to peda-

gogy. The aim of Freudenthal’s (1983) “progressive formalization” program is to

teach students mathematics by gradually shifting from concrete and realistic situa-

tions to more formally based representations. Koedinger and Anderson (1998) pro-

vided experimental evidence for the pedagogical efficacy of bridging from con-

crete to abstract representations in contrast to the opposite sequence. Nathan

(1998) described a computational simulation called ANIMATE that allows stu-

dents to directly manipulate equations to see visible consequences in the simula-

tion that represents entities in the equation. Novice word-problem solvers face two

potential difficulties—overreliance on the concrete situation models and

overreliance on the formal methods to the exclusion of information from the repre-

sented situations. By initially introducing students to the concrete situation, and

subsequently encouraging students to reason explicitly about the situations, Na-

than (see also Nathan, Kintsch, & Young, 1992) found that the opposing difficul-

ties can be avoided and students can successfully generalize their situation-spe-

cific knowledge to more formal understanding.

A final rationale for concreteness fading is that this process of idealizing a phys-

ical display may complement a corresponding psychological process of fading.

Schwartz and Black (1996b) proposed a conceptual process of fading by which in-

ternally represented attributes of the external referents are removed. In a gear-turn-

ing problem, a set of gears that are initially represented in terms of surfaces and

teeth become successively faded to simple circles, then rotation directions, and fi-

nally numeric quantities (see also Dixon & Bangert, 2004). A physical concrete-

ness fading operation that parallels conceptual fading may serve as a helpful exter-

nal cognitive aid that is well coordinated with preferred internal representations.

In testing the effectiveness of decreasing the concreteness of a simulation, we

compare this concreteness fading technique to the converse method of “concrete-

ness introduction.” Concreteness introduction presents initially idealized elements

that become more concrete over time. Both concreteness introduction and fading

involve elements with variable appearance. Research has shown that presenting an

abstraction with variable concrete manifestations increases the likelihood of ac-

quiring the underlying abstraction (Bruner, 1966; Gick & Holyoak, 1980, 1983).

One possible reason for good extraction of an abstraction with multiple physical

instantiations is that the common abstraction is the primary commonality across

the different instantiations. With only one physical instantiation, concrete and ab-

stract properties are equally plausible candidates for attention. With multiple phys-

ical instantiations, only the abstract properties are retained throughout and thus be-

come highlighted as good candidates for attention.

To explore whether stimulus variation in itself fosters abstract transfer, we in-

cluded experiment conditions with a constant appearance of elements. In one con-
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dition elements were idealized throughout the initial training simulation. In an-

other condition, the elements were consistently concrete. If appearance variability

is helpful in promoting transportable abstractions, then we would expect both the

concreteness fading and concreteness introduction conditions to yield better trans-

fer performance than these two conditions with no element variability. Conversely,

if element variability distracts learners from developing abstract representations

(Uttal et al., 1999), then the opposite ordinal pattern should result.

In our experiments, we employa rather modest manipulation of concreteness and

idealization. In both concrete and idealized conditions, the elements are in fact

graphicallypresented. Theyvary in their amount of detail and the extent to which the

graphical element intrinsically contains sufficient information to identify the

real-world, concrete entity that it represents. In the concrete condition, for example,

antsappearas linedrawingsofantswithdetails that includeheads, thorax, abdomen,

and legs. In the idealized condition, ants appear as simple black dots. This modest

manipulationofconcreteness isbeneficial forour initial experimentationbecause, if

an influence of concreteness is found, it can be relatively unambiguously inter-

preted. However, we acknowledge that the size of our experimental effects maywell

be reduced because of the subtlety of the manipulation. Furthermore, exploring a

greater range of concreteness variation would allow greater generalization.

EXPERIMENT 1

Experiment 1 explored the relative value of consistently concrete elements, consis-

tently abstract elements, concreteness fading, and concreteness introduction in

terms of transferring an abstract principle across simulations. Learners interacted

with two simulations that were related by a common scientific principle and were

given quizzes that measured their comprehension of the principle.

The principle that we proposed to teach was “competitive specialization.” One of

the most important notions of cognitive science is that the parts of a system can orga-

nize themselves without the help of leader or centralized plan (Resnick, 1994;

Resnick & Wilensky, 1993). Parts that start out homogeneous and undifferentiated

can each become specialized as a result of interactions between the parts (O’Reilly,

2001). A well worked out example of this is the development of neurons in the pri-

mary visual cortex that are specialized to respond to visually presented lines with

specific spatial orientations (von der Malsburg, 1973). Another application of

self-organization is the allocation of resources to cover a territory. It is often optimal

for different agents to be specialized for different regions. In these situations, a good

solution is found if every region has an agent reasonably close to it. For example, an

oil company may desire to place oil drills such that they are well spaced and cover its

territory. If the oil drills are too close, they will redundantly access the same oil de-

posit. If the oil drills do not cover the entire territory, then some oil reserves will not
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be used. As another example, flies and dung beetles often distribute themselves to

food sources so that they are well separated and have a plentiful supply of food to

cover. It has been shown that in some situations animals will distribute themselves

optimally, matching the distribution of food resources (Stephens & Krebs, 1987).

An elegant solution to problems of (close to) optimal covering such as these is

to allocate agents (e.g., neurons, oil drills, flies) by executing the following three

steps repeatedly: (a) randomly selecting a resource from among the entire set of re-

sources to be covered, (b) determining the closest agent to this resource, and (c)

adapting this closest agent toward the resource with a relatively fast rate and adapt-

ing all other agents toward the resource with a relatively slow rate.1 This algorithm

works by creating adapted and differentiated agents. If all agents adapt as quickly

as the closest agent, then, ironically, they cover the territory less optimally as a

group, because all of the agents occupy a similar position at the territory’s center of

mass. By quickly moving the agent closest to a selected resource, it becomes even

more adapted to the resource for which it was already specialized. By slowly mov-

ing the other agents, they are still free to become specialized for other, less well

covered resources.

Ants and Food

The first example of competitive specialization involved ants foraging food re-

sources drawn by a user. The ants followed exactly the three rules described previ-

ously. At each time step, a piece of food was randomly selected, and the ant closest

to the food moved with one rate, and all of the other ants moved with another rate.

In interacting with the simulation, a learner can reset the ants’ positions, clear the

screen of food, place new ants, move ants, start or stop the ants’ movements, and

set a number of simulation parameters. The two most critical user-controlled pa-

rameters determine the movement speed for the ant that is closest to the selected

food (called “closest rate” in Figure 1) and the movement speed for all other ants

(“not closest rate”). Starting with the initial configuration of three ants and three

food piles shown in Figure 1, several important types of final configuration are

possible and are shown in Figure 2. If only the closest ant moves toward a selected

piece of food, then this ant will be the closest ant to every patch of food. This ant

will continually move to new locations on every time step as different patches are
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sampled but will tend to hover around the center of mass of the food patches. The

other two ants will never move at all because they will never be the closest ant to a

food patch. This configuration is suboptimal because the average distance between

a food patch and the closest ant (a quantity that is continually graphed) is not as

small as it would be if each of the ants specialized for a different food pile. If all of

the ants move equally quickly, then they will quickly converge to the same screen

location. This also results in a suboptimal solution because the ants do not cover

the entire set of resources well. Finally, if the ant closest to a selected patch of food

moves more quickly than the other ants, but the other ants move too, then a nearly

optimal configuration is achieved. Although one ant will initially move more

quickly toward all selected food patches than the other ants, eventually this ant will

move toward a patch of food, thereby distancing itself from another patch of food

that will then be controlled by another ant.

An important, subtle aspect of this simulation is that poor patterns of resource

covering are self-correcting if good parameter values are used. If there are two ants

and two resources, both ants will often initially be closer to one of the resources.

However, when food from the other resource is selected, one of the two ants will still

be the closest ant to it, and this ant will quicklymove toward the uncovered resource.

80 GOLDSTONE AND SON

FIGURE 1 A screen-dump of an initial configuration for the “ants and food” simulation. At

each time step, a patch of food is randomly selected, and the ant closest to the patch moves to-

ward the patch with one speed (specified by the slider “closest rate”) and the other ants move to-

ward the patch with another speed (“not closest rate”).



As it moves away from the crowded resource, the other ant will take control of terri-

tory formerly controlled by the departing ant. Rather quickly, the departing ant will

no longer be the closest ant to any food in the formerly crowded resource and will

then quicklymove toward the less covered resource. The macroscopic impact of this

interaction between ants and resources is almost always surprising to our partici-

pants. Ants will almost always self-organize themselves in a one-to-one relation to

the resources regardless of the lopsidedness of their original arrangement.
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FIGURE 2 If only the ant closest to a selected food patch moves, and if all of the patches are

fairly close, then often a single ant will move toward the average position of all of the food

patches. If all ants move equally quickly, then all ants will move toward the average position. If

the ant closest to a selected food patch moves much faster than the other ants but all ants move a

bit, then each of the ants will become specialized for one food patch. This third possibility illus-

trates competitive specialization.



Pattern Learning

The second example of competitive specialization is more abstract, dealing with

the development of categories of visually presented patterns. The simulation was

based on the unsupervised neural network learning algorithm of competitive learn-

ing (Rumelhart & Zipser, 1985). It is often desirable to have a system create cate-

gories that naturally capture the systematicities in a set of patterns. For example, if

we present a system with examples of the letter “A” and examples of the letter “B,”

it is useful for the system to develop two categories—one for each type of letter.

Once developed, these categories can be used as an efficient way of coding new in-

puts of the same types. One way of automatically creating appropriate categories is

to randomly initialize the categories and then repeatedly select a picture, find the

category that is most similar to the selected picture, adjust this category so that it

even more closely resembles the selected picture, and adjust all of the other catego-

ries at a slower rate. This technique does not always produce optimal categories

(for improvements to this algorithm, see Goldstone, 2003) but usually results in

categories that resemble the major categories implicit among the pictures.

Learners interacting with the simulation can control the rates by which the most

similar category (the “winner”) and the other categories (the “losers”) adjust to-

ward a selected picture, draw and edit pictures, set the number of pictures and cate-

gories, and start or stop the adjustment of categories. A continuously updating

graph shows the similarity between the selected picture and the closest category to

the picture and is computed by taking the inner product of the vectors representing

the picture and category in question. Figure 3 shows an initial configuration of ran-

domized categories and three pictures of letters that were drawn by a user. Figure 4

shows three potential category configurations resulting from different parameter

settings. If the adaptation rate for the winning category is positive but the rate for

losing categories is zero, then a single category will adapt toward all three letters

(which are similar because of their common black backgrounds), leaving the other

two categories unchanged. The single winning category will become a blend of all

three letters, and consequently none of the letters will have a category that closely

resembles it. The second panel shows the categories that emerged when all catego-

ries adapted equally quickly toward a presented picture. All categories will quickly

become an identical blend of the same three pictures. The categories become pro-

gressively more similar to each other rather than differentiated over time because

they are influenced by each presented picture in the same way. The third panel

shows the category differentiation that occurs when the winning category adapts

rapidly whereas the losing categories adapt much more slowly. Now each category

becomes specialized for one and only one of the pictures. Although one category

initially adapts more quickly toward all three pictures than the other categories, the

other categories will eventually become similar to the pictures. At some point, one

picture will attract the fast adapting category, and as the category adapts to become
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more similar to the picture it will become less similar to the remaining pictures

than another category. When this happens, one of the remaining categories will

now adapt quickly to the remaining pictures. This process eventually leads to a

one-to-one assignment of categories to pictures. The analogy between this situa-

tion and the ants foraging for food is hopefully clear. The three panels of Figure 2

are analogous to the respective panels in Figure 4. The two domains are deeply re-

lated because they are both instantiations of the principle of competitive special-

ization and are governed by the same mathematical formalism (Kohonen, 1995).

Method

Participants. Eighty-four undergraduate students from Indiana University

served as participants to fulfill a course requirement. The students were split

evenly into four conditions: consistently idealized, consistently concrete, ideal-
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FIGURE 3 A screen-dump for the simulation “pattern learn.” Users drew pictures, and prior

to learning, a set of categories were given random appearances. During learning, a picture was

selected at random, and the most similar category to the picture adapted its appearance toward

the picture at one rate (specified by the slider “most similar”) whereas the other categories

adapted toward the picture at another rate (“not most similar”).
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FIGURE 4 If only the category closest to a selected picture adapts, and the pictures are fairly

similar, then often a single category will become a blend of all of the pictures. If all categories

adapt equally quickly, then each category will become a blend of all of the pictures. If the cate-

gory most similar to a selected picture adapts much more quickly than the other categories but

all categories adapt a bit, then each category will become specialized for one picture. These

three outcomes are analogous to the three outcomes shown in Figure 2.



ized-then-concrete (concreteness introduction), and concrete-then-idealized (con-

creteness fading).

Materials. Participants were allowed to freely explore the simulations shown

in Figures 1 through 4. When presented with a simulation, participants were also

given a one-page instruction sheet showing the rules by which the simulation oper-

ated and a general goal or line of inquiry to pursue while exploring the simulation.

For the ants and food simulation, the goal was to have the ants distribute themselves

to the food resources such that all of the resources had an ant that was reasonably

close to it. For the pattern learning simulation, the goal was to develop category pic-

tures that captured thenaturalgroupspresent in theuser-drawnpictures.Participants

were given graphic examples of the goals. Participants were told that there were no

hidden rules that described the behavior of the systems; everything that the agents

did was governed by the three rules. Finally, participants were given descriptions of

the important parameters of each simulation that were under their control.

Each simulation had a set of button and slider parameters on the left side of a

43-cm screenandagraphicwindowonthe right sideof thescreen.Participantscould

draw and erase food resources and pictures in the graphics window. By moving the

mouse and pressing buttons, participants could directly affect the graphics window

by drawing, erasing, moving, and placing agents and cells. Buttons were used to re-

set thesimulations, clear thescreen,obtainhelponusing thesimulations, turnonand

off thesimulations, and initiate thequiz.User-controlledsliderswereused tocontrol

the continuously varying parameters of the simulations, such as the distance that the

closest ant moved when a piece of food was randomly selected. See Figures 1

through 4 for the parameters used in both simulations and their arrangement. Each

simulation also contained a continuously updating graph that plotted how a relevant

measure of performance in the simulation varied over time (e.g., average closeness

of ants to food patches). Free versions of the Macintosh software can be downloaded

at http://cognitrn.psych.indiana.edu/rgoldsto/complex/.

Both simulations had dynamically changing displays inside the graphic win-

dow. These displays were updated every 17 msec and were instantaneously af-

fected by user-controlled changes to parameter values. For example, as a partici-

pant reduced the movement amount of the closest ant to a piece of food, he or she

would immediately see the ant move more slowly.

The simulations were all run on Macintosh iMac G4 computers. The partici-

pants were run in groups of 4 to 7, with each participant in an individual,

sound-proofed cubicle with an overhead 25-watt light.

Procedure. Participants were told that they would be exploring two computer

simulations but were not told that they were related in any way. For each of the simu-

lations, they were first given an instruction page orienting them to the rules, parame-

ters, and goal of the simulation. Then theywere allowed to freelyexplore the simula-
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tion for 20 min. During this time, a research assistant was available to answer

questions that thestudentshadabout the rulesgoverning theagents’behaviorand the

interface controls. During the exploration period, all key presses, mouse move-

ments, and parameter changes were recorded by the computer, with time and dura-

tioninformationattached.SeeAppendixAfor the instructionsgiventoparticipants.

After the exploration period, participants were told to take the quiz by pressing

the “Quiz” button. The computer then presented seven multiple-choice questions,

samples of which are shown in Appendix B. Participants indicated their choice by

clicking the mouse button while the cursor was inside a circle associated with the

choice. After a choice was made, the computer automatically proceeded to the next

question without giving any feedback on the correctness of a response. Participants

were not allowed to go back to earlier questions.

Participants were first given one of four different versions of the ants and food

simulation. After exploring this simulation and taking its associated quiz, partici-

pants were all transferred to the pattern learning simulation and after 20 min took

the quiz associated with this simulation. In the consistently concrete condition, the

ants and food had the appearances shown in Figures 1 and 2. The ants were de-

picted by relatively simple line drawings of black ants, and the food consisted of an

orange peach and a red apple. In the consistently idealized version of the ants and

food simulation, the ants were small black dots and the food sources were green

patches, as shown in Figure 5. Participants “painted” food in the same manner in

the concrete and idealized simulations, although in the concrete version, fractional

portions of food were not allowed. The instructions for the two versions of the ants

and food exercise were changed to reflect their different appearances, and extra
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FIGURE 5 An example of the idealized version of the ants and food simulation.



measures were taken to assure that participants would interpret the small black

dots as ants in the idealized condition. In particular, in a diagram from the simula-

tion, green and black dots were labeled as food and ants, respectively. In the con-

creteness fading condition, concrete versions of ants and food were used for the

first 10 min of the simulation. At the 10-min point, a message appeared on the

screen that read “We are now changing the appearances of the food and ants, but

they still behave just as they did before.” From that point on, idealized versions ants

and food were used. In the concreteness introduction condition, idealized versions

of ants and food were replaced by concrete versions after 10 min.

After the second pattern learning simulation, participants were invited to de-

scribe what they felt they had learned about the simulations. Participants were in-

vited to make drawings of scenarios from the simulations, describe the behavior,

and then explain why the behavior occurred. Participants were also encouraged to

explain why the simulations’ critical parameters had their effect. These interviews

were conducted one-on-one, so typically only 1 participant per experimental ses-

sion was interviewed, and, in several sessions, time did not permit interviewing

any of the participants. From the 84 participants, 12 participants were interviewed,

with equal numbers of participants in each of the four conditions. Each interview

lasted about 10 min.

Results

The four appearance conditions for the ants and food simulation differed in their

quiz performances according to a between-subjects analysis of variance

(ANOVA), F(3, 80) = 9.1, p < .01. Quiz scores on the initial training simulation are

shown by the four left bars of Figure 6. Post hoc tests revealed that the idealized

training condition produced worse performance than either concreteness fading or

concreteness introduction, and the concrete training condition produced worse

performance than concreteness fading, Fisher’s PLSD (Protected Least Significant

Difference) p < .01. To assess the benefits of appearance variability, the idealized

and concrete conditions were combined together to form an average “consistent”

quiz performance, and the concreteness fading and concreteness introduction con-

ditions were averaged together to form a “variable” performance measure. The

variable conditions performed better than the consistent conditions, with average

quiz error rates of 56.8% and 61.3%, respectively, F(1, 82) = 8.7, p < .01.

The four training conditions also differed in their transfer to the pattern learning

simulation, as shown by the four right bars of Figure 6, F(3, 80) = 13.5, p < .01. Per-

formanceonpattern learningwassignificantlybetterwhen theantsandfoodsimula-

tionwaspresentedusingconcreteness fading thananyof the threeotherpresentation

conditions, Fisher’s PLSD p < .01. Concreteness introduction resulted in better

transferperformance thaneitherconcreteor idealizedconditions,Fisher’sPLSD p<
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.01. Combining together the variable and consistent conditions as before yielded

transferquizerror ratesof50.1%and57.5%,respectively, F(1,82)=15.0,p<.01.

Although the concrete and idealized conditions did not significantly differ from

each other according to post hoc tests for either the ants and food or pattern learn-

ing simulations, the results in Figure 6 suggest an interaction between simulation

and condition. A repeated-measures ANOVA conducted with simulation as a

within-subject variable and condition as a between-subject variable revealed an in-

teraction between these two variables with quiz score as a dependent measure, F(3,

80) = 4.8, p < .01. In the first simulation, the concrete condition yielded high quiz

scores whereas the idealized condition showed higher scores in the transfer simu-

lation. When we limited this ANOVA to only the concrete and idealized condi-

tions, the interaction was still significant, F(1, 80) = 5.3, p < .01.

Participants who performed well on the first simulation quiz tended to also

perform well on the second simulation. In particular, there was a Pearson corre-

lation of r = .60 between the quizzes for the two simulations, Fisher’s r to Z
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FIGURE 6 Quiz results from Experiment 1. The four bars on the left show performance on

the initial quiz as a function of how elements from the initial simulation were presented. The

four bars on the right show performance on the transfer quiz as a function of how elements from

the initial simulation were presented.



transformation, p < .01. There were also significant correlations between quiz

performance and participants’ manipulations while exploring the simulation. For

each participant, the number of times that they manipulated each slider and but-

ton was tallied and correlated with quiz performance. For the initial ants and

food simulation, two sliders were significantly correlated with quiz perfor-

mance: closest rate (r = .4, p < .01) and not closest rate (r = .37, p < .01). The

analogous sliders were also the only two sliders or buttons that were signifi-

cantly correlated with performance on pattern learning: most similar (r = .44, p

< .01) and not most similar (r = .42, p < .01).

In assessing the observed condition-dependent transfer, it is helpful to deter-

mine whether the transfer differences could be completely accounted for by differ-

ences in initial simulation understanding. Initial simulation understanding cannot

explain the transfer difference between idealized and concrete conditions because

the idealized condition produced worse initial simulation quiz performance than

the concrete condition but produced better transfer to the second simulation. How-

ever, to assess this account for all four conditions, we conducted a regression anal-

ysis in which we partialed out the influence of initial quiz performance on transfer

quiz score. With the initial score partialed out and the condition dummy-coded

along four variables, there was still a significant influence of condition on transfer,

F(3, 80) = 4.5, p < .01, R2 = 0.19. Thus, we concluded that the advantage of con-

creteness fading was not simply due to its producing the best understanding of the

initial simulation.

Given the relatively modest effect sizes of our concreteness manipulations, a

potential concern was that the effects may be caused by just one or two of the quiz

items. We conducted an item analysis to investigate the generality of the influence

of graphical concreteness. The percentage of error responses to the initial quiz

questions ranged from 50% to 68% for the seven questions. An item by condition

ANOVA revealed significant main effects of both item, F(6, 480) = 6.5, p < .01,

and condition, F(3, 80) = 7.9, p < .01, but no significant interaction between these

two variables. The lack of a significant interaction suggests that we do not have

good cause to reject the null hypothesis that the influence of condition had equal

effects over all of the items. A similar item analysis was conducted on the transfer

simulation quiz with similar results indicating main effects of item, F(6, 480) =

7.2, p < .01, and condition, F(3, 80) = 6.0, p < .01, but not a significant interaction

between these variables.

A preliminary analysis of the interviews indicated that the most distinctive dif-

ferences between the four conditions occurred when participants described the be-

havior of the ants and food simulation. This is presumably because the four condi-

tions manipulated the appearance of graphical elements in this simulation. Given

the relatively small number of participants interviewed in this experiment, analy-

ses of these results will be integrated with Experiment 2’s interviews and reported

in that experiment.
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Discussion

The best performance on both the initial and transfer simulations was obtained

when the initial simulation’s elements were initially concrete but became idealized

over the course of the initial simulation. Concreteness fading has the advantage of

providing an initial, concrete grounding for simulation elements but also eventu-

ally idealizing these elements in a manner that allows them to be generalized to ab-

stractly similar but superficially dissimilar situations. The benefits of concreteness

fading are consistent with theories that stress the tradeoff between concrete repre-

sentations that make model-world relations transparent and idealized representa-

tions that promote understandings that can be transported to new situations. A

problem with exclusively idealized representations is that participants may require

additional cognitive resources to keep track of the relation between the model and

the represented world. Concrete representations make this relation clear, thereby

freeing cognitive resources. However, a problem with exclusively concrete repre-

sentations is that the resulting understanding may be too influenced by the training

domain to produce wide generalization.

Both concreteness fading and concreteness introduction employ concrete and

idealized representations. As such, the advantage of concreteness fading over

concreteness introduction must be due to something more than employing both

representations. One likely candidate is that the initial concrete presentation pro-

motes correct correspondences between the world and model when they are

most needed—at the beginning of the simulation when participants are most un-

certain about the meaning of the simulation’s elements. When originally con-

crete elements are idealized, learners are unlikely to forget the elements’ original

correspondences. However, if originally idealized elements are only subse-

quently made concrete, it may be difficult for learners to remember the interpre-

tation of the simulation elements, and this would make learning inefficient dur-

ing the initial simulation. Another way of putting the advantage of concreteness

fading is that it allows learners to initially develop a grounded understanding of

a specific domain using superficial appearances as a “crutch,” and then it re-

moves this crutch, thereby allowing the learner’s representations to be more

transportable to new situations.

A remaining question is “Why does concreteness fading help even the initial

simulation performance?” Concreteness fading resulted in better performance on

the ants and food simulation than either idealized or concrete conditions. De-

veloping an abstract construal of a situation might be expected to result in better

transfer to superficially dissimilar situations, but its value for comprehension of

the situation itself is more surprising. Part of an explanation for this might be that

the quiz questions for the initial simulation also required an abstract construal of

the ants and food simulation. The questions were designed to test learners’appreci-

ation of the principle of competitive specialization. Concreteness fading may offer
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benefits over a continuously concrete presentation because it emphasizes the ab-

stract competitive specialization principle.

Anotherpart of theexplanation for thebenefit of concreteness fading is that it em-

ploys varied graphical elements. Both of the conditions that presented variable

graphical elements produced better performance than the two conditions that used

constant elements throughout. This advantage for presenting a simulation with vari-

able elements was found for the simulation itself as well as for the transfer simula-

tion. In our domains, abstractions are apparently fostered by presenting multiple

physical instantiations of the same abstract roles. This is consistent with Bruner’s

(1966) arguments for presenting multiple kinds of manipulatives when teaching a

novel abstract concept and Gick and Holyoak’s (1983) finding that abstract schema

induction is facilitated by presenting multiple instantiations of the schema.

On the question of whether simulation elements should be idealized or con-

crete, Experiment 1 yielded conflicting results. Overall, across both simulations,

there was not a significant difference between consistently concrete and consis-

tently idealized conditions. However, there was a significant interaction involving

simulation. For the initial simulation, the trend was for a concreteness advantage,

but for the transfer simulation the trend was reversed. This interaction replicates

previous results using the same pair of simulations (Goldstone & Sakamoto, 2003)

and indicates a dissociation between performance on a task and generalization of

the performance to an analogous task. Such dissociations have been previously ob-

served, for example, with the initial learning and transfer of dart trajectories travel-

ing through water (Judd, 1908) and the alteration of matchstick shapes to create

new shapes (Katona, 1940). The dissociation can be interpreted in terms of how

tightly a learner’s knowledge is tied to the particular training domain. In the con-

crete condition, the learners’ knowledge is predicted to be tightly tied to a domain.

This domain specificity could be modeled by overspecialized conditions in condi-

tion–action production rules (Anderson, 1993) or computational learning algo-

rithms that overfit training data and subsequently produce insufficiently general

rules. The consequence of overspecialization is that the learner may be able to per-

form well on the trained domain but shows little ability to transfer his or her knowl-

edge to related domains. By contrast, if the learner’s knowledge is more abstract, it

will transfer well to analogous domains, but this increased capacity for transfer

may be at the expense of a solid and concrete understanding of the original domain.

EXPERIMENT 2

Experiment 1 tested learners’ understanding of an abstract principle by giving

learners quizzes. Experiment 2 was an effort to replicate the results from Experi-

ment 1 using an alternative, performance-based measure of transfer. This measure

gauged whether participants can better solve problems in the transfer simulation
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when the problems have been preceded by a related simulation (Schunn & Dunbar,

1996). Participants who have a hard time expressing in words the competitive spe-

cialization principle may still be able to apply knowledge gained from the initial

simulation to solve posed problems during the transfer simulation. When learners

were transferred to the second simulation, they were given problems to solve that

required appreciation of competitive specialization. Performance was measured

by the time required to supply solutions to these problems.

Method

Participants. Eighty-eight undergraduate students from Indiana University

who did not participate in Experiment 1 served as participants to fulfill a course re-

quirement. An equal number of participants were assigned to the four presentation

conditions.

Materials. The same two simulations used in Experiment 1 were used again.

The transfer simulation, pattern learning, was slightlymodified so that some buttons

and drawing functions were disabled. These were disabled so that participants could

not findsolutions forproblems in the transfer simulationwithoutusingacompetitive

specialization strategy. In particular, the Reset, Paint, Erase, Copy, and Noise but-

tons were disabled, as were the No. of Categories and No. of Pictures sliders.

Procedure. As with Experiment 1, participants first explored the ants and

food simulation for 20 min and answered its associated multiple-choice quiz. Then

participants were transferred to the second simulation, pattern learning. Partici-

pants were given the rules for this simulation and descriptions of the controls.

Rather than freely exploring the simulation as participants in Experiment 1 did,

Experiment 2 participants were given three problems to solve of increasing diffi-

culty. The goal for each of the problems was to create category units that perfectly

covered the input patterns. In the goal state, every input pattern had a category unit

that perfectly matched it. For all three problems, there were two input patterns and

two categories. In the first problem, one of the inputs was a solid bar occupying the

left eight cells of a 15 × 15 grid, and the other input was a solid bar occupying the

right seven cells of a 15 × 15 grid. These inputs shared the same values on 0% of

their cells. This is an easy problem within the simulation because, even though the

categories start off as randomized and homogenous, the category that is closest to

one of the input patterns is always different from the category that is closest to the

other input. In the second problem, one of the inputs was a large letter “A” in the

middle of the screen and the other input was a large letter “B.” These letters had the

same values on 70% of their cells.

In the third problem, one stimulus was a large horizontal bar 15 cells wide and 6

cells high appearing at the horizontal midline with a thin vertical bar with dimen-
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sions of 3 cells wide and 5 cells high appearing below the horizontal bar, thus

forming a “T” shape. The other stimulus had the same vertical bar appear above the

same horizontal bar, forming an inverted T shape. These two stimuli have the same

values on 87% of their cells. This is a difficult problem to solve because even if ap-

propriate slider values are given for how quickly the most similar category and

other categories adapt towards an input, participants must still wait about 10 sec for

the categories become specialized. Initially, one category almost always becomes

the most similar category to both input patterns and quickly assumes an appear-

ance that is the blend of both inputs. Assuming the optimal strategy of adapting the

most similar category quickly and the other category slowly, the other category

eventually adapts toward both inputs as well, and, once it is sufficiently similar to

the inputs, it is the closest category to one of the two patterns and each category can

then become specialized to a single input.

The computer simulation automatically detected when a participant solved a

problem.When thenormalized inner product of each input picture to its most similar

category was greater than 0.98, the simulation announced a successful solution had

been reached and automatically presented the next problem to the learner. After a

learner successfully solved all three pattern learning problems (or 20 min had tran-

spired), theyweregiventhe transferquizusedinExperiment1.Allbut4of thepartic-

ipants were able to complete the three problems within 20 min. A solution time of 20

min was recorded for the participants who failed to solve all three problems.

As with Experiment 1, a subset of participants were given an interview after the

second simulation in which they made drawings of scenarios from the simulations,

described the resulting behavior, and explained why the behavior occurred. Twelve

of the 88 participants were so interviewed, 3 from each of the four conditions.

Results

The four appearance conditions for the ants and food simulation differed in their

quiz performance according to a between-subjects ANOVA, F(3, 84) = 7.6, p <

.01. Quiz scores on the initial training simulation are shown by the four left bars of

Figure 7. Post hoc tests revealed that the idealized training condition produced

worse performance than all of the other conditions, Fisher’s PLSD p < .01. As with

Experiment 1’s results, the idealized and concrete conditions were combined to-

gether to form an average consistent quiz performance, and the concreteness fad-

ing and concreteness introduction conditions were averaged together to form a

variable performance measure. The variable conditions performed better than the

consistent conditions, with average quiz error rates of 57.9% and 60.7%, respec-

tively, F(1, 86) = 7.3, p < .01.

The four training conditions also differed in their explicit quiz-based transfer to

the pattern learning simulation, as shown by the four gray bars on the right side of

Figure 7, F(3, 84) = 11.7, p < .01. Performance on pattern learning was signifi-
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cantly better when the ants and food simulation was presented using concreteness

fading than any of the three other presentation conditions, Fisher’s PLSD p < .01.

Concreteness introduction resulted in better transfer performance than the con-

crete condition, Fisher’s PLSD p < .01. Combining together the variable and con-

sistent conditions yielded transfer quiz error rates of 51% and 57.6%, respectively,

F(1, 86) = 9.5, p < .01.

The results from the transfer measure of performance closely mirrored the ex-

plicit transfer measure. Conditions that produced relatively good quiz perfor-

mances also produced fast solution times to the three problems. The solution times

to all three problems were summed together to create the right axis of Figure 7.

Overall, there was a highly significant effect of condition on cumulative solution
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FIGURE 7 Explicit and implicit performance results from Experiment 2. Quiz result perfor-

mance (gray bars) is read off of the left vertical axis, and time to solve problems (white bars) is

read off of the right vertical axis. The four presentation conditions all refer to the presentation

format during the initial ants and food simulation.



times, F(3, 84) = 6.5, p < .01. Transfer solutions were found significantly faster

when preceded by the concreteness fading version of the initial simulation than ei-

ther consistently idealized or concrete versions, and the concreteness introduction

version resulted in significantly faster solution times than the concrete version,

Fisher’s PLSD p < .01.

To address the question of differences between the two measures of transfer, a

multivariate analysis was conducted with the performance measure variable having

two levels—time to solve problems and percentage of errors on transfer quiz—and

condition as a between-subject variable. The resulting ANOVA revealed the same

main effect of condition that the previous analyses revealed but did not reveal an in-

teractionbetweenperformancemeasureandcondition, F(3,84)=1.5, p>.2.This re-

sult, then,didnotsuggestanyreliabledifferencesbetweenourmeasuresof transfer.

Although the concrete and idealized conditions did not significantly differ from

each other according to post hoc tests for either the ants and food or pattern learn-

ing simulations, the results in Figure 7 suggest the same interaction between simu-

lation and condition that was found in Experiment 1. Using quiz performance as a

dependent measure, a repeated-measures ANOVA conducted with simulation as a

within-subject variable and condition as a between-subject variable revealed an in-

teraction between these two variables, F(3, 84) = 5.2, p < .01. When we limited this

ANOVA to only the concrete and idealized conditions, the interaction was still sig-

nificant, F(1, 86) = 5.9, p < .01.

As with Experiment 1, we conducted item analyses to gauge whether the influ-

ence of concreteness was found for all of the initial quiz questions. The percentage

of error responses to the initial quiz questions ranged from 47% to 65% for the

seven questions. An item by condition ANOVA revealed significant main effects

of both item, F(6, 504) = 7.3, p < .01, and condition, F(3, 84) = 7.2, p < .01, but no

significant interaction between these two variables. A similar item analysis was

conducted on the transfer simulation quiz with similar results indicating main ef-

fects of item, F(6, 504) = 5.7, p < .01, and condition, F(3, 84) = 6.8, p < .01, but no

significant interaction between these variables.

Interviews. The interviews from Experiments 1 and 2 were combined because

the procedure involving the initial simulation was identical for the two experiments,

and analyses indicated that the largest difference between the conditions was in par-

ticipants’descriptions of the first ants and food simulation. This is expected because

the conditions only varied in the graphical representations used for the first, not the

second, simulation. Given the greater diagnosticity of the ants and food simulation

descriptions, only these descriptions were further analyzed. To analyze the descrip-

tions of the 24 participants, unique descriptions were identified for each of the four

conditions. A unique description was defined as a phrase given by a participant in a

condition that was not given bya participant in anyother condition. The large major-

ityof thedescriptions (76%)werenotunique,but ratherweregivenbyseveralpartic-
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ipants across different conditions. Table 2 provides a list of the unique descriptions.

To obtain this table, equivalence matching was performed to combine phrases from

different participants that conveyed nearly the same meaning. For example, 3 partic-

ipantsmentionedantsscaringeachother:“Oneant scared theothersaway,”“Thisant

is scared off by this other ant,” and “because they are frightened off by the ant who’s
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TABLE 2

Unique Descriptions by Participants in Experiments 1 and 2 to the Ants

and Food Simulationa

Idealized Concrete Concrete to Idealized Idealized to Concrete

“Food in this clump

pulls this ant away

even though it starts

off far from it.”

“One ant scares the

others away.” (3)

“The ants move at

different speeds,

depending on what

food they’re

moving to.”

“When other ants

move too quickly,

then they leave

their old, good

locations.”

“Animals move

quickly to food that

they are close to.”

“The ants get tired after

awhile.” (2)

“The closest ant to

this food is

attracted to it.” (2)

“The ants that are far

away from a piece

of food aren’t

attracted to it.”

“Each ant will move to

one of the piles.” (2)

“This ant decides to

focus on one food

pile.”

“When all ants move

the same speed,

they end up in the

same spot.” (2)

“The fruit is so close

together that the

ants try to cover

both groups.”

“It helps to make an

ant move quickly at

first, and then more

slowly.”

“The ants are tempted

by both food piles.”

(2)

“Because this ant is

the only one that’s

moving, it’s trying

to cover too many

blobs.”

“The ants end up

getting caught in

the middle between

the two piles

because they move

toward each pile.”

“Food is randomly

selected and then

ants move to it.”

“The ants decide not to

go to food that is

being eaten by

another ant.”

“If this food pile is

picked, then this

ant will move to it

the fastest.”

“The dots should be

spacing themselves

out more, but are

clumping up

instead.”

“The ants don’t like to

be crowded.” (3)

“The ants are like

magnets that repel

each other.”

“This ant sees that the

other ant is already at

this food pile, and so

it stays at its own

food pile.”

aEach description was provided by a single participant, except for the phrases followed by numbers

indicating the frequency of the phrase within the condition.



already there.” These three descriptions were combined together in Table 2 and la-

beled by one of the participants’ actual phrase.

The clearest trend is that participants in the concrete conditions were more

likely to give domain-specific, arthropocentric interpretations of the ants’ behav-

ior. Only in the concrete condition did participants describe ants as scaring each

other away, avoiding crowds, being tempted by food, or being tired. A judge tallied

the number of domain-specific interpretations over all of the descriptions, both

unique and shared. For an interpretation to count as domain-specific it needed to be

(a) applicable to sentient agents like ants but not nonsentient agents like the catego-

ries of the second simulation, (b) described in terms of “ants” or “food” rather than

more abstract language such as “forager” or “groups,” and (c) not simply a specific

instantiation using ants and food of the abstract rules that in fact governed the ants’

behavior. With these criteria, for the concrete, idealized, concreteness fading, and

concreteness introduction conditions, the number of domain-specific descriptions

were 18, 4, 6, and 8, respectively.

A second textual analysis was conducted on the abstractness of the terms used to

describe the ants and food simulation. For example, the food resources were vari-

ously described by different participants as “resources,” “blobs,” “clumps,”

“splotches,” “supply,” “edible stuff,” “food,” “fruit,” “apples,” and “oranges.” The

first five terms were classified as abstract because theydid not directly invoke edibil-

ity,andthe last five termswereclassifiedasconcretebecause theydopresumeedibil-

ity. Similarly, ants were most often called “ants” by participants but were occasion-

ally described using more abstract language that was not tied to the ants context:

“thing,” “mover,” “dot,” “spot,” and “forager.” Restricting our attention to only ver-

bal descriptions of ants and food, the percentage of abstract descriptions for con-

crete, idealized, concreteness fading, and concreteness introduction conditions

were 28%, 59%, 42%, and 34%, respectively. These values indicate greater use of

abstract language for the idealized than concrete condition, with the remaining two

conditions falling between these extremes but closer to the concrete condition.

Discussion

The results of Experiment 2 closely matched those from Experiment 1 in three im-

portant respects. First, the concreteness fading condition resulted in the best per-

formance on both the initial and transfer simulations. Second, there were initial

and transfer simulation advantages for conditions with variable, rather than consis-

tent, graphical elements. Third, there was an interaction between the two consis-

tent appearance conditions (idealized vs. concrete) and simulation (initial vs.

transfer), such that concrete elements in a simulation tended to produce better per-

formance on the simulation itself compared to idealized elements, but the converse

ordinal relation was found for the transfer simulation. Neither of these ordinal rela-

tions was significant by itself, but the interaction was significant. This interaction
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indicates that simulation appearance differentially affects comprehension of the

simulation and transfer from the simulation. One likely account for the interaction

is that a concrete simulation helps learners develop a strong representation of the

simulation itself, but the representation may be too tied to the specific simulation

to foster robust transfer.

The results from the problem-based measure of transfer were consistent with

the quiz measure. The manipulations of concreteness affected not only verbal

knowledge that was probed through written quizzes, but also practical knowledge

of how to solve problems.

GENERAL DISCUSSION

Experiments 1 and 2 provide converging evidence that the choice of graphical ele-

ments in a simulation influences transfer from the simulation to another abstractly

related but superficially dissimilar simulation. Taken together, the experiments in-

dicated four important results. First, both initial simulation and transfer perfor-

mance was better when a simulation was presented with elements of variable,

rather than uniform, appearance. Second, performance was particularly good

when originally concrete elements were switched to more idealized representa-

tions halfway into a simulation. This concreteness fading method resulted in reli-

ably better performance than the converse method of concreteness introduction on

both initial and transfer simulations. Third, concrete displays were superior to ide-

alized displays for the trained simulation itself, but the opposite trend was found

for transfer to an abstractly related simulation. Fourth, these trends were found for

both a quiz-based measure of comprehension and a performance-based measure.

These results have a bearing on the relation between concrete and abstract thought

and also on practical issues for the design of pedagogically motivated simulations.

Concrete and Abstract Representations

The effect of graphical appearance in both experiments suggests competing advan-

tages for concrete and abstract representations. Concrete displays are advanta-

geous because they provide a strong and intuitive link between the elements of the

modeling world and the elements of the modeled world. Even though all partici-

pants were explicitly told what the elements in a simulation represented, this

knowledge is likely to be stronger when the superficial appearance of an element

reflects its meaning. In describing cognitive advantages conferred by graphical

representations, Scaife and Rogers (1996) noted that some representations allow

“computational offloading”—they reduce cognitive effort by offering external in-

formation sources. A concrete representation of an ant that looks like an ant affords

computational offloading because it does not require learners to keep in their mind
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the correspondences between modeling and modeled worlds. Likewise, Larkin

and Simon (1987) argued that good external representations of a problem make ex-

plicit aspects that would otherwise need to be internally computed.

The converse advantage of idealized displays is that they promote internal rep-

resentations that are not tied to a single domain. Considerable research has docu-

mented the concrete nature of human thought (Johnson-Laird et al., 1972; Nisbett

& Ross, 1980). With respect to learning specifically, the “situated cognition”

movement emphasizes that knowledge is highly dependent on the particular con-

text (Lave, 1988). Oftentimes, concreteness blinds people to the deep commonali-

ties between situations (Gentner & Toupin, 1986; Gick & Holyoak, 1980; Holyoak

& Koh, 1987; Ross, 1987). People frequently are reminded of situations on the ba-

sis of superficial rather than abstract similarities (Gick & Holyoak, 1983; Reed,

Ernst, & Banerji, 1974; Reeves & Weisberg, 1994; Ross, 1989). Finding methods

that foster more abstract remindings is challenging, but important and possible

(Barnett & Ceci, 2002). One such method is to present relatively idealized,

decontextualized elements. Bassok and Holyoak (1989) found that algebraic for-

mulae were learned in more generalizable forms when taught using a relatively ab-

stract algebra context rather than a more concrete physics context.

Consistent with the risk of concreteness producing overly context-tied represen-

tations, participants exploring earlier versions of these simulations were more likely

to think about domain-general principles of competition between agents trying to

collect resources in idealized than concrete graphics conditions. For example, learn-

ers in theconcreteconditionweremore likelythan learners in the idealizedcondition

to describe the ants as “getting tired,” “being happywith their share of food,” “seeing

another ant already occupying a food patch,” and “scaring other ants away.” Several

of these descriptions were partially correlated with the true rule-governed behavior

of the ants, and so participants may have been able to answer some of the ants and

food quiz questions correctly using these arthropocentric interpretations. However,

these descriptions are all specific to ants and consequently would not transfer very

effectively to new competitive specialization situations.

The good performance obtained with concreteness fading makes sense from the

perspective of these competing advantages of concrete and idealized representa-

tions. Concreteness fading was proposed as a promising instructional method be-

cause it allows simulation elements to be both intuitively connected to their in-

tended interpretations but also idealized in a manner that promotes transfer.

Concreteness introduction might be expected to have both of these properties as

well, and so it is useful to assess why concreteness fading was superior to concrete-

ness introduction. Part of the answer is likely that providing an initial concrete

grounding is more helpful in promoting understanding than providing this ground-

ing later. During the interviews, a few participants in the concreteness fading con-

dition spontaneously reported that having the ants switch to dots was not disruptive

because they could easily continue to interpret the dots properly. One participant
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said, “I just treated the dots and ants as the same thing, and this was easy because

they were both black.” If participants are successful in naturally interpreting black

dots as ants when they are preceded by ants, then one of the primary disadvantages

of decontextualized representations is significantly mitigated. People’s natural

tendency to interpret ambiguous objects so as to be consistent with prior, unambig-

uous objects (Leeper, 1935; Medin, Goldstone, & Gentner, 1993) may allow ideal-

ized objects to continue to be interpreted as they were when they were concrete.

Schwartz (1995; Schwartz & Black, 1996a, 1996b) presented a related theoreti-

cal treatment of the complementary advantages of concrete and abstract represen-

tations. By this account, idealized, low-fidelity materials encourage people to

think about the materials as referents. Concrete, high-fidelity materials encourage

people to reason about the referent itself and consequently cause people to employ

solution processes that have real-world analogs. These analog processes, like ro-

tating and pulling, are intuitive and perceptually scaffolded, but more abstract

construals are likely to be more general and efficient for complex problems.

Schwartz speculated that

One might use an actual image of a person sliding down an inclined plane to help the

student think in terms of forces as they are perceptually experienced. After these per-

ceptual notions are brought to mind and reflected upon, one may want to switch to

more abstract drawings of two dimensional blocks on oblique lines. (p. 721)

This possibility is supported by our concreteness fading results.

The positive impact of concreteness fading is reminiscent of Kotovsky and

Gentner’s (1996) work on fostering abstract relational responses in children. Per-

ceptual supports helped children grasp the relational similarities, and, once grasped,

thesesupportscanberemovedwithoutdisruptingrelational responses(seealsoMix,

1999, for an example in which the abstraction involves numeric quantity). Similarly,

concreteness fadingallowed learners to first acquire interpretationsof simulationel-

ements that were supported by both concrete appearance and relational role. Then,

when the concrete cues were removed, learners could continue to respond to the ab-

stract roles. Together with Terrace’s (1963b) original working on fading, our results

indicate that an effective learning technique is to provide perceptual scaffolding that

leads to responding that is consistent with an important cue. When the perceptual

scaffolding is removed, responding to the important cue may continue without the

learners making costly interpretational errors.

CONCLUSIONS

Caution is needed to avoid overinterpreting these experimental results, because a

purposefully minimal manipulation of concreteness was employed. Still, some po-
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tential recommendations can be offered. A first recommendation is to present sim-

ulation materials with varied rather than consistent appearances (see also Bruner,

1966; Gick & Holyoak, 1980, 1983; Paas & Van Merrienboer, 1994). A second

pedagogical suggestion based on our results is that two educational uses of a simu-

lation should be distinguished. Some scientific simulations are designed to teach

students about the nature of a particular domain or situation such as heat flow, evo-

lution, or infection spread. Other simulations are designed to teach students princi-

ples that are applicable in many domains other than the specific one presented

(White, 1993; Wilensky & Resnick, 1999). These two uses must be distinguished,

because different design choices are prescribed depending on which is the in-

tended use of a simulation. In this respect, our results are consistent with Bransford

and Schwartz’s (1999) observation that instruction that leads to the best immediate

performance is not always the same as instruction that prepares learners ideally for

future learning opportunities. In our experiments, performance on the simulation

itself was better with concrete than idealized graphics, but the opposite trend was

found for transfer to an abstractly related simulation. The third, most obvious rec-

ommendation is to incorporate variants of concreteness fading in pedagogical sim-

ulations. Concreteness fading not only improved performance on the simulation

that used this method, but it also promoted the most robust transfer to a new simu-

lation governed by the same principle.

In recent years, the pedagogical use of computer simulations has grown dramat-

ically and shows little sign of abating. They are powerful teaching tools because

they provide a concrete grounding for concepts that might otherwise be too ab-

stract to be readily comprehended. They promote an active, hands-on, prob-

lem-solving stance by learners (National Research Council, 1999). Although there

is a considerable body of research that explores and tests design choices that could

impact the usefulness of simulations (Jackson, Stratford, Krajcik, & Soloway,

1996; Klahr & Carver, 1988; Miller et al., 1999; Miller & Stigler, 1991; White &

Frederiksen, 1998), there is still a deep need for research that explores systematic

differences in simulations to try to optimize their educational impact and to assess

what elements of the simulation are critical for imparting the educational benefit.

Our research attempts to address one component of this long-term pursuit.

Experiments revealed that a combination of both concrete and idealized formats

was valuable and that the particular sequence that was most valuable was to have ini-

tiallyconcrete representationsbecomemore idealizedover time.Consistentwith the

advantages of concrete representations described in Table 1, we believe, along with

many others, that computer simulations are effective pedagogical devices precisely

because of their concreteness and perceptual grounding. However, we are also inter-

ested in students applying what they have learned to domains that are superficially

unrelated to thesimulation’sdomain.Our resultsgiveusoptimism that thesemotiva-

tionsarenotnecessarilymutuallyexclusiveand thatbothperceptuallygroundedand

abstract understandings can be simultaneously achieved.
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APPENDIX A

Instructions to Participants

The instructions given to participants in the ants and food simulation were:

To explore the simulation, try the following:

1. Draw different food patches that will attract ants.

2. Change the parameters of the simulation: how many ants there are, how

fast the closest ant to a food patch (the “winner”) moves toward the food

patch, and how fast the other (“loser”) ants move toward the food patch.

3. As the ants move around, you can pick them up, move them elsewhere, add

new ants, and change any parameters.

In trying to understand this simulation, the question that you should keep in the

back of your mind at all times is: How can you change the parameters so that each

piece of food has an ant that is close to it? That is, how can you make it so that the

food is optimally covered by ants? For example, think about how a situation that

starts off with a display like
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When thinking about the simulation, remember that there are no hidden complexi-

ties to the ants’ behavior. Everything the ants do can be explained by the following

three rules:

1. One at a time, a piece of food (a green dot) is randomly selected from all the

food present.

2. The ant that is closest to the selected food (the “winner”) moves toward the

food with a speed that you specify.

3. All of the other ants (the “losers”) move toward the food with another

speed.”

The instructions for the pattern learning simulation were:

To explore the simulation, try the following:

1. Draw different pictures for the computer to use in forming its catego-

ries.

2. Change the parameters of the simulation: how many categories and pic-

tures there are, how quickly a picture changes its most similar category, and

how quickly the picture changes the other categories.

3. As the categories are being learned, you can change the pictures or catego-

ries by drawing on them, or by copying one picture to another.

In trying to understand this simulation, the question that you should keep in

the back of your mind at all times is: How can you change the parameters so

that the computer learns good categories for the pictures? That is, if there are

several pictures that look similar, they should all be grouped in the same cate-

gory, and pictures that look different should be grouped in different catego-

ries. Also, each of the categories should become specialized for some pic-

ture(s).

For example, think about how a set of four pictures that look like:

When thinking about the simulation, remember that there are no hidden complexi-

ties to the learning. Everything about how the categories move around can be ex-

plained by the following three rules:

1. The user tells the computer how many pictures and categories to allow.

2. One at a time, a picture is randomly selected.
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3. The category that is closest to the picture changes itself by an amount that

you specify so that it looks more like the selected picture. All of the other

categories adapt themselves to the picture by a different amount.

APPENDIX B

Sample Multiple-Choice Quiz Questions for Simulations

Correct answers are indicated with asterisks. Rather than showing all seven ques-

tions for each simulation, two questions are shown with their analogs and two

questions are shown without their analogs.

Ants and food

To make the ants as a population cover the food well, which strategy is the best:

1. Have the ants move as quickly as possible.

*2. Make the ant that is closest to a piece of food move more quickly than all

the other ants.

3. Make the ant that is closest to a piece of food move more slowly than all the

other ants.

4. Early on, make the closest ant move more quickly than the others, but later

on, make the closest ant move more slowly.

Why don’t the ants cover the food well if only the ant closest to a piece of food

moves?

*1. If only the closest ant moves, then this ant may be responsible for many

pieces of food, and the other ants may not cover any food.

2. If only the closest ant moves, then it may eventually get tired and stop mov-

ing at all.

3. The ant closest to a piece of food shouldn’t move much because it is al-

ready close to the food. It is the other ants that need to move.

4. If only one ant moves, then as a population, the ants are not moving very

much when a piece of food is selected.

Why don’t the ants cover the food well if the closest ant and all of the other ants all

move with the same speed?

1. The closest ant doesn’t need to move as quickly as the other ants because it

is already close to the food.
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*2. If other ants move as fast as the closest ant, then when a new piece of food

is selected, they will move away from food that they were previously cov-

ering well.

3. If all of the ants move with the same speed, then they will all get to the food

at the same time, and they won’t be able to share it efficiently if there are a

lot of ants.

4. If the closest ant moves as fast as the other ants, then it will get to the food

first and will prevent the other ants from benefiting from it.

To have the ants cover the food well, it is necessary to have the ants become spe-

cialized for particular food patches. Which action most directly allows for this spe-

cialization?

1. Make sure that there are not very many ants on the field. That way, each ant

can be far away from other ants.

2. Make sure that there are many ants on the field. That way, each ant can be-

come specialized for a tiny patch.

*3. Make the ants that are not closest to a piece of food move slowly to the

food.

4. Make the ant that is closest to a piece of food move slowly to the food.

Pattern Learn

To make categories best represent the natural groups in a set of pictures, you

should:

1. Have the categories adapt as quickly as possible.

*2. Make the category that is closest to a selected picture adapt more quickly

than all the other categories.

3. Make the category that is closest to a selected picture adapt more slowly

than all the other categories.

4. Early on, make the closest category adapt itself more quickly than the oth-

ers, but later on, make the closest category adapt more slowly.

Why aren’t good categories formed if only the picture closest to a selected picture

adapts?

*1. If only the closest category adapts, then this category will become respon-

sible for many pictures, and the other categories may not be adapted for any

picture.

2. If only the closest category adapts, then its learning may eventually be-

come exhausted, and it may stop learning at all.
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3. The picture closest to a picture shouldn’t adapt much because it is already

close to the picture. It is the other pictures that need to adapt.

4. If only one category adapts, then in general the categories are not changing

very much when a picture is selected.

If there are four pictures and two categories, the categories will emphasize the

parts that the pictures in a category share. How does this occur?

1. Categories adapt most toward parts shared by category members because

shared parts provide links between pictures belonging to different catego-

ries.

2. Categories adapt most toward parts shared by category members because

the rate of adaptation will be faster for categories that are not closest to the

selected picture.

*3. Categories adapt most toward parts shared by category members because

these parts are always present in the members, and so there will be more

opportunities for learning.

4. Categories adapt most toward parts shared by category members because

these parts are at the very essence of the category, defining what it means to

be part of the category.

If there are two pictures and only one category, what usually happens?

1. The category will alternate between the pictures, but only if it adapts very

slowly.

*2. The category will be a blend of the two pictures, highlighting parts shared

by the pictures.

3. The category will become specialized for one of the pictures only.

4. The category will not become adapted to either picture, unless it is highly

similar to them in the first place.
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