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The Transferability Approach: Crossing

the Reality Gap in Evolutionary Robotics
Sylvain Koos, Jean-Baptiste Mouret and Stéphane Doncieux

Abstract—The reality gap, that often makes controllers evolved
in simulation inefficient once transferred onto the physical robot,
remains a critical issue in Evolutionary Robotics (ER). We hy-
pothesize that this gap highlights a conflict between the efficiency
of the solutions in simulation and their transferability from
simulation to reality: the most efficient solutions in simulation
often exploit badly modeled phenomena to achieve high fitness
values with unrealistic behaviors. This hypothesis leads to the
Transferability approach, a multi-objective formulation of ER
in which two main objectives are optimized via a Pareto-based
Multi-Objective Evolutionary Algorithm: (1) the fitness and (2)
the transferability, estimated by a simulation-to-reality (STR)
disparity measure. To evaluate this second objective, a surrogate
model of the exact STR disparity is built during the optimization.
This Transferability approach has been compared to two reality-
based optimization methods, a noise-based approach inspired
from Jakobi’s minimal simulation methodology and a local search
approach. It has been validated on two robotic applications: 1)
a navigation task with an e-puck robot; 2) a walking task with
an 8-DOF quadrupedal robot. For both experimental set-ups,
our approach successfully finds efficient and well-transferable
controllers only with about ten experiments on the physical robot.

I. INTRODUCTION

EVOLUTIONARY ROBOTICS (ER) [39], [46] deals with

the use of Evolutionary Algorithms (EA) in robotics.

Such algorithms are indeed attractive black-box optimization

methods that put only few constraints on the optimal behavior

by relying on a fitness function to compare the potential

solutions. This fitness function links each evaluated solution to

a value that reflects its efficiency on the task to achieve and, as

ER concerns robots, it should theoretically be computed on the

studied robot [16]. In practice, each evaluation on a physical

device can be very time-consuming. Besides, as the behavior

that corresponds to a given solution is not known before

its evaluation, harmful behaviors can be transferred onto the

robot. Consequently, the few works in which controllers have

been directly evolved on the robot often optimized few indi-

viduals during few generations, which reduces the efficiency of

the evolutionary methods. For instance in [19], controllers for

a small helicopter have been evolved with a population of 20

individuals during 30 generations, with few minutes between

generations to avoid over-heating, that is only 600 evaluations

during the optimization process. In [52], optimization has

directly been applied to a prototype ornithopter machine to

maximize its lift with 3000 evaluations on the physical system

during the optimization, which seems more consistent with
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ISIR, CNRS UMR 7222, Université Pierre et Marie Curie, F-75005, Paris,
France. Contact: koos@isir.upmc.fr

evolutionary techniques, but other optimization tasks would

require several tens of thousands of evaluations [15].

For these several reasons, simulation models are an ap-

pealing way to evaluate the fitness in a fully secure set-up,

while significantly speeding up the optimization process [22].

Accurate simulators can be even slower than experiments in

reality, which lead to prohibitively long optimization pro-

cesses. To obtain simulation models with lower computational

costs, it is sometimes necessary to neglect some complex

physical phenomena, which leads to simpler simulators, of

course less accurate, but also faster. The dynamics of the robot

can also not be fully known: for instance, bird-size UAVs

or small helicopters bring into play little-known dynamics,

which leads to approximate simulation models. Consequently,

the dynamic model of the robot used to build a simulation

model can itself be inaccurate. When the fitness is computed

in simulation, the evolutionary process is likely to exploit such

inaccuracies between the simulation model and the reality in

an opportunistic manner to achieve high fitness values with

unrealistic behaviors. In practice, even if many works in ER

are successful to build non-trivial and efficient controllers

that correspond to original and complex behaviors [51], [55],

these attractive results are often locked in the simulated world

because of bad transfers from simulation to reality. This

transfer problem is called reality gap [29] and is arguably the

most critical issue that currently prevents the use of ER for

practical robotic applications. For instance, numerous reality

gap problems have been reported when applying an EA to a

12-DOF bipedal walking robot [48]. It should be noted that the

reality gap problem is not specific to ER, as any optimization

method based on a simulation model encounters reality gap

issues (for instance in [3] when designing control structures

for a quadrotor helicopter). A gap can even exist when the

controllers are directly evolved on the real system, if the

experimental set-up which allows to evaluate the individuals

is too different from the real environment of the robot. It has

notably been observed in [19] on a small helicopter.

The goal of this work is to introduce the Transferability

approach, a general methodology to help crossing the reality

gap and to bring Evolutionary Robotics and simulators back

together. This approach aims at:

• finding controllers that are both relevant for a given task

in simulation and transferable from simulation to reality;

• conducting as few experiments as possible on the physical

robot during the optimization process.

Our first insight concerns the simulation models: even if

a simulation model is somehow inaccurate, it also contains



2

realistic parts as it is designed to accurately mimic some

physical phenomena. Efficient behaviors that mainly rely on

these realistic parts of the simulation model should transfer

pretty well onto the physical device and then achieve good

performances in reality.

A controller is said transferable if the corresponding be-

haviors of the robot observed in simulation and in reality are

similar. Our approach takes into account the transfer quality

of the evaluated controllers under the form of a transferability

measure. For a given controller, this transferability measure

compares the corresponding real and simulated behaviors and

becomes an objective to optimize during the optimization

while looking for efficient controllers. As solutions that behave

at best in simulation frequently exploit bugs or badly modeled

phenomena, making them not transferable, transferability and

efficiency appear to be conflicting objectives. In order to look

for relevant trade-off solutions, we then propose to optimize

solutions with a Pareto-based Multi-Objective Evolutionary

Algorithm (MOEA) in which two objectives are defined: a

task-dependent fitness computed in simulation only and a

transferability objective.

To estimate the transferability of a given controller from

simulation to reality, we introduce a simulation-to-reality

disparity (STR disparity) measure that evaluates the disparities

between the corresponding simulated and real behaviors of the

robot: the higher the STR disparity, the worse the transferabil-

ity. However, as the number of transfers has to be minimized,

the exact STR disparity value for each controller cannot

be obtained. Consequently, we build during the optimization

process a surrogate model that approximates the STR disparity

function with function interpolation techniques.

Preliminary results have been obtained with the Transfer-

ability approach with an 8-DOF wheeled-legged quadrupedal

robot on a walking task [35]. In the current paper, the approach

is additionally applied to a navigation task in a T-maze [26]

and both applications allow systematic comparisons between

the Transferability approach and state-of-the-art methods.

After presenting some previous work on the reality gap

problem, we introduce the Transferability approach in a

robotic context. The approach is next validated on two robotic

applications (cf. above) and compared to two robot-based

optimization methods, a noise-based approach inspired from

Jakobi’s minimal simulation methodology and also a local

search approach. Three main aspects are next investigated, no-

tably regarding the quality of the approximated STR disparity,

before discussing the underlying hypotheses of the approach.

II. PREVIOUS WORK ON THE REALITY GAP PROBLEM

Several works deal with the reality gap problem and one

can distinguish three main types of approaches: (1) reality-

based optimization approaches where optimization takes place,

fully or partly, on the physical robot; (2) simulation-based

optimization approaches with an entire optimization process

in simulation; (3) robot-in-the-loop simulation-based optimiza-

tion approaches, that fully optimize solutions in simulation, but

also allow few transfer experiments during the process.

A. Reality-based optimization

As the reality gap results from inadequacies between the

reality and the simulation, a first attempt to deal with this

problem consists in evolving the solutions directly on the

real device. Such experiments have been done in [16] with

a Khepera mobile robot, to find robust controllers that can

adapt to the variations encountered by the robot during a

navigation task in a maze: environment, battery lifetime,

. . . The optimization took more than 60 hours with about

8000 evaluations on the physical robot, while the task seems

relatively simple. As a case in point, similar approaches have

been implemented on Sony AIBO robots [24], [33]1 and on a

nine-legged robot [59].

Pollack et al. [50] proposed an alternative that partly allows

to tackle high computational cost of optimizing in reality. As

part of the GOLEM project, one of whose goals consists in

co-evolving morphologies and controllers, the solutions were

mostly evolved in simulation and only the last generations of

the optimization process were conducted on real robots. First,

the robot’s morphology and its controller were co-evolved with

a realistic simulation. Next, an embodied evolution took place

on a population of physical robots with the best morphology to

overcome the reality gap. Nolfi et al. reported a similar work

regarding a navigation task addressed by a mobile Khepera

robot with 30000 evaluations in simulation followed by 3000

evaluations on the physical robot [47].

Such approaches assume that the optimal solutions found

with the simulation model are relatively close to the true

optimal ones on the real robot, i.e. that the high values of

the fitness function in simulation are not too misleading. Con-

sequently, a local search around the controllers seen as optimal

in simulation should be sufficient to retrieve near optimal

controllers in reality. This assumption is clearly debatable

when the optimal solutions in simulation achieve high fitness

values because of inaccuracies or bad modeled dynamical

phenomena.

B. Simulation-based optimization

The prohibitive computational cost of direct optimization

on physical robots has led some researchers to envisage full

optimization processes in simulation [53]. A first attempt to

deal with the reality gap is to build more accurate simulation

models. If all physical phenomena are well-modeled, there

should not be any significant gap between simulation and re-

ality. However, simulation models often are trade-offs between

accuracy and computational cost: although the reality gap

problem highlights the need of accurate simulators, accurate

models can lead to very high computational costs, which are

incompatible with optimization techniques. It has notably been

underlined in [11] with visually guided robots. Besides, some

kinds of robots rely on little-known dynamics like bird-sized

unmanned aerial vehicles [38] or small helicopters. For such

devices, perfect simulations are still out of reach.

To cope with not fully accurate simulation models, some

techniques have been developed in order to evolve controllers

1About 1000 experiments in 3 hours in [33].
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that exhibit robust enough behaviors in simulation or that are

based on robust enough mechanisms to transfer well onto the

real robot. Among such approaches, the most formalized one is

Jakobi’s minimal simulation [26]. It consists in only modeling

meaningful parts of the physical system in relation to the

target behavior by dropping the complex physical phenomena

that are only involved in bad or unstable behaviors. The

unwanted phenomena are hidden in an envelope of noise

or not modeled at all so that the evolved solutions cannot

exploit them and have to be robust enough to achieve high

fitness values. This approach has been successfully applied to

design walking gaits for an octopod robot [28]. The robustness

can also be achieved by optimizing the potential solutions

with several minimal simulation models whose parameters are

slightly varied from a generation to another. It has been applied

to a navigation task with a Khepera mobile robot in a T-

maze [27]. Similar robustness issues have been investigated

in [40], also with Khepera mobile robots: by only choosing

the most realistic amount of noise to add on the simulated

sensor values, the transfer from simulation to reality did not

lead to any performance loss. The robustness of the optimized

behaviors can also be obtained by only evaluating the solutions

with several simulation environments and initial conditions as

in [56].

Other approaches deal with the reality gap as a variation of

the environment that can be overcome online by some adap-

tive mechanisms. In [17], plastic neural network controllers

have been used to integrate several sub-behaviors and also

to overcome a gap when a solution is transferred onto the

real device by online adaptation to the “new” environment.

There was no clear separation between simulation and reality.

The robustness is then directly linked to the mechanism of

plasticity. The robot can also explicitly build an approximate

model of its environment to use it as a reference and then adapt

to environment variations. For instance in [21], an anticipation

module allowed to build a model of the motor consequences

in the simulated environment. If some differences are en-

countered once in reality between this model and the current

environment, a correction module performs online adaptation

to improve the behavior and overcome the gap.

Whether the robustness is obtained by the optimization

process in simulation or by some adaptive mechanisms, all

these approaches rely on the following hypothesis: the level

of robustness is sufficient to overcome the reality gap. In

Jakobi’s methodology, it can be quite tricky to find which

parameters have to be changed and from which amount to

variate them. Besides, one can wonder if adaptive mechanisms

are always able to retrieve the global optimum in reality

from the global optimum in simulation. If the real behavior

corresponding to the optimal controller in simulation differs a

lot from its simulated counterpart, such mechanisms are rather

likely to retrieve local optima in reality with significantly

worse performances.

C. Robot-in-the-loop simulation-based optimization

The robot-in-the-loop simulation-based optimization ap-

proaches also rely mostly on simulators but some transfer ex-

periments are allowed during the optimization. In [6], Bongard

et al. introduced a co-evolutionary process, the Exploration-

Estimation Algorithm, that evolves two populations: simu-

lators and controllers. The simulators have to model the

previously observed real data and the controller that discrim-

inates at most between these simulators is transferred onto

the real device to generate new meaningful learning data

for the simulation part. This process is iterated until a good

simulator is found and relevant controllers for a given task

can next be built on it. These simulators allow to speed

up the evaluation of the controllers, while being upgraded

by conducting some meaningful transfer experiments on the

real device. Moreover, resorting to an update heuristic based

on a disagreement measure allows to reduce the number of

experiments required to explore efficiently the solution space.

This approach has been successfully implemented with a four-

legged robot [8]. A similar method based on multi-objective

evaluation of the solutions has been applied to a stabilization

task with a simulated quadrotor helicopter [34].

Also based on co-evolution between simulators and con-

trollers, the Back-to-Reality algorithm [58] does not resort to

a disagreement measure, but tries to reduce the fitness variation

observed between simulation and reality. Once the controllers

have sufficiently converged to the best simulator, they are

transferred onto the real robot and the fitness variations of

the individuals that behave at best in reality are used to

evolve better simulators, and so on. As for the Exploration-

Estimation Algorithm, the co-evolution process ends when a

good simulator and a good controller are found. The approach

has successfully been applied to a ball-kicking task with a

Sony AIBO robot.

However, such co-evolutionary methods rely on the assump-

tion that the simulation model can become accurate enough

to allow perfect transfers with only few experiments. It is

plausible when modeling simple dynamics or simply adjusting

a few parameters, but debatable for optimizations on a wider

search space.

The optimization process can itself directly rely on a so-

called surrogate model by evaluating the individuals with

a simple model of the fitness function instead of building

an entire simulation model. The surrogate model has to be

upgraded during the optimization process by conducting some

test experiments depending on a given update heuristic. As

a case in point, such an approach has successfully been

applied to fast humanoid locomotion [23]. Without relying

on EA, similar approaches have been applied to reality gap

problems in the field of reinforcement learning. Abbeel et

al. notably applied such techniques to aerobatic helicopter

flight [2]. From several trajectories previously made by a pilot,

they identified an approximate local model of the helicopter

dynamics before learning the optimal flight policy which was

next transferred onto the physical device. If the policy did

not work in reality, the corresponding data obtained in reality

were used to upgrade the local dynamic model and the policy

optimization took place again. The process was iterated until

the optimal policy worked in reality. A similar method was

applied in [1] to the autorotation of a remote control helicopter

in case of an engine failure. The results obtained for these

applications are quite impressive. However, it can only be
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applied when a human pilot/operator is able to mimic the task

to solve in order to identify the dynamic model.

D. Concluding thoughts

This state-of-the-art on the reality gap problem leads us to

five main thoughts:

1. Optimizing on the physical robot is an appealing way, but

it leads to slow optimization processes and some risky

behaviors can be transferred;

2. Completing the optimization process by some evaluations

onto the real robot is only meaningful if the optimal

solutions in simulation are close to the optimal ones in

reality, that is if the reality gap is small enough;

3. There is no guarantee that a robust controller only opti-

mized in simulation will be robust enough to transfer well

in reality and such a robustness is hardly assessable;

4. Adaptive mechanisms inside the controller structure may

not efficiently re-adapt to optimal behaviors in reality if

the gap is too strong;

5. To our opinion, the robot-in-the-loop simulation-based

optimization approaches are currently the most promising

ones, but building a perfect simulator or a meaningful

surrogate model is arguably difficult, especially if it is

built from scratch or improved during the optimization

process as is often the case.

One of the most pivotal point is the use of simulation

models: is it necessary to build it from scratch or to improve

it as is often the case in the robot-in-the-loop simulation-

based optimization approaches? For all practical purposes,

simulation models are often available when working on robotic

applications and while a simulation model can lead to reality

gap problems, it is also designed to properly describe the

dynamics of a given system: it probably contains both accurate

parts and inaccurate ones. Our main idea is to base the

optimization on a simulation model that remains fixed during

the whole process. The approach then looks for the most

efficient controllers whose behaviors are sufficiently based on

the realistic parts of the simulation model to transfer well onto

the real robot. Consequently, we do not build a simulation

model from scratch nor modify it, but we rather exploit an

already available simulator where it mimics the reality at

most.

III. THE TRANSFERABILITY APPROACH

A. Principles

The Transferability approach fits into the robot-in-the-loop

simulation-based optimization approaches. The optimization

process relies on a simulator designed once and not improved

afterwards. Our first hypothesis is that, despite reality gap

problems, this simulation model is locally reliable with some

parts accurate enough to ensure good transfers to reality as

illustrated on Fig. 1. However, the gradient provided by the

fitness in simulation does not guide the search in the same

direction as the real gradient: the best solutions found in

simulation are not transferable to reality and behave signif-

icantly worse on the robot. The Transferability approach aims

at finding efficient solutions that mostly exploit these well-

modeled parts of the simulator. To evaluate the quality of

a given controller’s transfer from simulation to reality, we

rely on a transferability measure that compares a simulated

behavior with its counterpart in reality and quantitatively

reflects their closeness. We secondly hypothesize that the

reality gap mainly stems from a conflict between two aspects:

the efficiency of solutions in simulation and the transferability

of those solutions from simulation to reality. It leads to a multi-

objective formulation of ER in which two main objectives are

optimized via a Pareto-based MOEA: (1) the task-dependent

fitness; (2) the transferability objective.

The transferability measure cannot be obtained for each

solution as it means many transfer experiments on the robot.

We claim that if the value of this function is known for a

few selected solutions, that is if a few solutions are trans-

ferred during the optimization, a transferability function can

be approximated for all the other solutions by interpolation.

This interpolated transferability objective allows to guide the

evolutionary search towards good compromise solutions, both

efficient in simulation and transferable from simulation to

reality. The whole process is pictured on Fig. 2.

In this work, the transferability of a given controller is

assessed by a simulation-to-reality disparity (STR disparity)

measure, which estimates the disparities between the corre-

sponding behaviors respectively observed in simulation and

on the physical robot: the higher the STR disparity, the worse

the transferability. As the STR disparity cannot be computed

for each potential solution, we rely on a surrogate model to

approximate this second objective. The surrogate model is

interpolated thanks to a few transfer experiments conducted

during the optimization, according to an update heuristic, that

allows to periodically select which controllers are the most

meaningful to transfer regarding the current surrogate model.

As the Transferability approach aims at finding solutions

both efficient in simulation and transferable from simulation to

reality, it does not always find the optimal solutions in reality,

but rather good compromises between efficiency in simulation

and transferability. If the optimal solutions in reality indeed

rely on unrealistic parts of the simulation, as illustrated on the

Fig. 3, the approach will consequently avoid them, because

they are not transferable. The Transferability approach is

therefore based on the hypothesis, that the realistic parts of the

simulation include behaviors, which are sufficiently relevant to

efficiently address the task. We hypothesize that this situation

is unlikely to occur for realistic robotic applications, because

the mechanical models used as simulations are designed to

model the most important phenomena regarding the task to

solve.

Another case can arguably be problematic. As pictured on

the Fig. 4, the optimal solution in simulation may also be

optimal in reality, while corresponding to a non-transferable

behavior. As the Transferability approach looks for transfer-

able zones in the simulation, this optimal solution is avoided.

However, this case can easily be detected, as the fitness value

in reality obtained with the best solution found with the

Transferability approach should be lower than the fitness value

in reality of the most efficient solution in simulation. Based on
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Fig. 1. Illustration of the reality gap problem on a fictional 1-dimensional optimization problem. While the simulation model is locally reliable, optimizing
the fitness objective lead to non-transferable solutions: there is a significant performance loss when they are transferred onto the robot.

Fig. 2. Illustration of the Transferability approach. If some points are known in reality, it allows to interpolate an approximation of the transferability function.
According to this approximate function, well-modeled parts of the simulation can be distinguished from the unrealistic ones: it is then looked for solutions,
which are efficient in simulation and transferable from simulation to reality.

this observation, this case was never encountered in the two

experiments studied in this paper.

B. From an exact STR disparity to a surrogate model

The STR disparity function D∗ links, for any possible

controller c, the corresponding behavior in simulation b(c)
in the behavior space B, to its exact STR disparity value

D∗(b(c)). By an abuse of notation, for a given controller c, the

corresponding exact STR disparity value is noted D∗(c). Such

a STR disparity function cannot be used directly as an objec-

tive, because it would mean that each potential solution in the

population is transferred in reality while being evaluated. Both

real and simulated behaviors are indeed needed to compute the

corresponding exact STR disparity value. Consequently, we

rely on a so-called surrogate model to approximate the STR

disparity function during the optimization process.

Fig. 3. The optimal solution in reality may correspond to a non-transferable
behavior in simulation. In this case, as the Transferability approach looks
for transferable solutions, it may not find the optimal solutions in reality.
We hypothesize that this situation does not happen for realistic robotic
applications, because the mechanical models used as simulations are designed
to model the most important phenomena regarding the task to solve.
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Fig. 4. The optimal solution in simulation may correspond to the optimal
solution in reality, despite a significant performance loss when transferring it
on the robot. The Transferability approach therefore may avoid the optimal
zones in simulation and miss the optimal solutions in reality. However, this
case can be detected, as the fitness value in reality obtained with the best
solution found with the Transferability approach should be lower than the
fitness value in reality of the most efficient solution in simulation. This case
was never observed in the two experiments presented in the paper.

Surrogate models [23], [31], [57] are usually resorted to in

real engineering problems when evaluating an individual on

the target system means very high computation costs or too

long experiments. Then, instead of a direct evaluation on the

physical system, solutions are optimized via an approximate

model of it. For instance, in EA, a surrogate model can be

used to approximate the fitness objective. This model has also

to be updated during the optimization by conducting some

pertinent experiments on the physical system.

Building the surrogate model: In order to build a surrogate

model of the STR disparity function during the evolutionary

optimization, some transfer experiments have to be performed

during the run to obtain some exact STR disparity values.

We want this process to verify the three following constraints:

(C1) The number of experiments remains small; (C2) close

behaviors in simulation (regarding a given behavioral distance)

should have close STR disparity values; (C3) the experiments

are iteratively or periodically generated. This last constraint is

necessary when using EA, because we usually do not have a

good sampling of behaviors at first in the initial population.

There are many approximation techniques that can be

used to build a surrogate model. Among them, interpolation

methods try to find an approximate model whose error on the

known data points is null. Some of the most used interpola-

tion methods are: 1) Radial Basis Function [30]; 2) Inverse

Distance Weighting model [54]; 3) Kriging model [32]. Such

interpolation methods rely on a distance function to compare

solutions: the value predicted for a given solution mostly

depends on the exact values of solutions that are close to it.

In the Transferability approach, the distance function, noted

bdist, is defined on the behavioral space B in simulation. It

ensures that solutions related to close behaviors in simulation

according to bdist correspond to close STR disparity values

(constraint C2). In the rest of the article, this behavioral

distance function bdist is called in silico metric, as it only

compares simulated behaviors. It has to be distinguished from

the STR disparity function D∗ which compares simulated and

real behaviors, but both can be computed on similar behavior

definitions.

Radial Basis Function (RBF) interpolation [30] builds an

approximation of the target function by a weighted sum of

some predefined radial basis functions. As additional RBFs can

easily be incorporated into the approximation when new data

points are available, it is consistent with online interpolation.

Nevertheless, such a method has several degrees of freedom:

the types of RBFs, the number of RBFs and the learning

method to find the weights. Moreover, new data points globally

affect the whole interpolated function, because the weights

of all the RBFs are modified at the same time, while local

modifications should be more appropriate [18].

The Inverse Distance Weighting method (IDW) [54] is much

simpler to use. Each term of the interpolating function is linked

to one data point for which the exact value of the function

to approximate is known. Such a method only depends on

one power parameter k that defines the smoothness of the

interpolating function. The main drawback is that the predicted

value always lies between the maximal exact value and the

minimal exact value used for the interpolation.

Kriging is a group of popular interpolation geostatistical

methods [23], [32], somewhat similar to IDW interpolation.

For the IDW method, the weights assigned to each interpolated

point while predicting the value of an unknown point only

depends on the distance function bdist. Kriging additionally

assumes a correlation between the interpolated data. Con-

sequently, the weights are based not only on the distance

function, but also on the correlation function between the

interpolated points (directions, trends, . . . ). To model such a

correlation, an empirical variogram has to be built that links

the observed variance among the interpolated points to the

distance from each other. As building an empirical variogram

requires a lot of preliminary experiments, classic correlation

functions are usually used for optimization problems [31]

in place of an ad-hoc function derived from an empirical

variogram.

While Kriging is a very popular method to build surrogate

models, some works show that Kriging interpolation leads

to good results only if the underlying spatial arrangement is

sufficiently known [37]. If not, Kriging methods lead to similar

or even worse results than less computationally expensive

approaches (it was compared to the IDW method in [37] and

[44], for instance). Moreover, Kriging models include several

parameters, which implies many experiments to initialize the

model. For instance, the ordinary Kriging method introduces

1 + 2 * n parameters, if n is the size of the input space, which

means at least 1 + 2 * n preliminary experiments. If n is

large, that is in the case of many input parameters, it leads to

numerous preliminary experiments before the surrogate model

can be used.

In this work, we choose the Inverse Distance Weighting

interpolation method to build the surrogate model of the STR

disparity function, as it does not clash with any of the three

constraints while being easy and fast to implement.

Choice of an in silico metric: For each controller evaluated

in simulation, the corresponding behavior is summed up by n
values, called behavioral features. Once computed, these fea-
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tures allow to define a behavioral distance between individuals

in simulation, the in silico metric. Let b
(1) and b

(2) be the

vectors of the n behavioral features computed in simulation

and corresponding to the controllers c(1) and c(2), the in silico

metric bdist between these controllers is:

bdist(c
(1), c(2)) = ||b(1) − b

(2)||

This in silico metric allows to compare controllers in a

simple and fast manner without any dependence or assumption

on controllers’ genotype and phenotype.

Surrogate model of the STR disparity: If some controllers

have already been transferred onto the real robot (at least once)

and the corresponding exact STR disparity values have been

computed, a surrogate model D̂ of the STR disparity function

can be interpolated by Inverse Distance Weighting (IDW) from

these values. Let C be the set of all possible controllers, let

CT ⊂ C be the set of the already transferred controllers and

D∗(ci) the exact STR disparity value corresponding to each

controller ci ∈ CT . The surrogate model of the STR disparity

D̂ is built as follows2:

∀c ∈ C, D̂(c) =

∑

ci∈CT

D∗(ci) bdist(ci, c)
−2

∑

ci∈CT

bdist(ci, c)−2
.

The use of a surrogate model implies the choice of an

update heuristic that selects which test experiments have to

be conducted on the physical device in order to pertinently

upgrade the model. We choose a relatively simple heuristic

that promote controllers whose minimal behavioral distance

in simulation to the already transferred controllers is higher

than a pre-defined threshold τdiv . It should ensure that the

surrogate model is not build on a too localized part of the

behavior space.

C. Optimization scheme

Evaluation objectives: Each controller is evaluated by three

objectives:

1. the task-dependent fitness, to find good controllers;

2. the corresponding approximated STR disparity com-

puted with the surrogate model, to find transferable

controllers;

3. the behavioral diversity objective.

This last objective allows to maintain behavioral diversity

among the population, which efficiently enhances exploration

of the controller state space [15], [42].

Behavioral diversity: To quantify the diversity of a con-

troller from the already transferred ones, we define a behav-

ioral diversity value as follows. Let CT be the set of the

already transferred controllers and bdist the in silico metric, the

behavioral diversity value diversity(c) for a given controller

c is:

2We select the power parameter value k = 2.

diversity(c) = min
ci∈CT

bdist(c, ci)

This diversity value does not directly depend on the geno-

type nor on the phenotype of the controller to evaluate, as it

is only derived from the behavior of the robot. It promotes

solutions that show the most different behaviors from those

of the already transferred controllers according to the in

silico metric bdist. In such a context, the update heuristic

defined earlier boils down to randomly selecting one individual

among those whose diversity value is higher than the diversity

threshold τdiv . It ensures that any new experiment selected by

the update heuristic is meaningful.

D. Algorithm outline

To initialize the surrogate model of the STR disparity, we

assume that a controller c0 has already been transferred onto

the real system at the beginning of each optimization process.

The corresponding exact STR disparity value D∗(c0) and the

behavioral features in simulation are computed.

Each generation of the algorithm takes place as follows (Fig.

5):

A. evaluation of each controller:

A1. computation of the behavioral features and the

task-dependent fitness objective in simulation;

A2. evaluation of the two other objectives: approxi-

mated STR disparity and diversity objective, ac-

cording to the distance bdist to the already trans-

ferred controllers;

B. if some controllers have a high enough diversity, one

among them is transferred onto the real system depend-

ing on the update heuristic used;

C. application of the evolutionary operators and generation

of the next population.

The transfer step B occurs at each generation according to

the update heuristic: once all controllers are evaluated, at most

one controller from the population is transferred onto the real

system. In order to transfer different enough behaviors from

those corresponding to the already transferred controllers and

then to limit the number of experiments, the update heuristic

relies on a diversity threshold τdiv: one controller, randomly

selected among those in the current population whose behav-

ioral diversity value is greater than τdiv , is transferred.

The diversity threshold is designed by hand to achieve

a given number of transfer experiments on average during

the whole optimization process. When no controller has a

sufficiently high diversity value at a given generation, there

is no transfer. When a controller is transferred, it is added

to the set of the already transferred controllers CT and the

corresponding exact STR disparity value is recorded. It is

next used to update the surrogate model of the STR disparity

function.

E. Best solution of a run

We assume at first that a threshold D∗

threshold on the STR

disparity values can be empirically chosen in such a way
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Fig. 5. Steps of the proposed algorithm at each generation – A1. The behavioral features and the task-dependent fitness are evaluated for each controller
in simulation. A2. The simulated behavior of a given controller allows to compute the corresponding approximated STR disparity value as predicted by the
surrogate model along with the diversity value based on the distance bdist to the already transferred controllers. B. If this behavioral diversity value is high
enough for some controllers, one among them is randomly picked up to be transferred onto the real system and the corresponding exact STR disparity value
is computed by comparing the observed simulated and real behaviors of the robot. C. The evolutionary operators are applied to controllers and the selection
step builds the next population.

that STR disparity values greater than D∗

threshold empirically

means bad transfers.

One can discern two main classes of applications: (A1) the

optimality of any solution is known once the corresponding

behavior is evaluated: the controller is optimal if it solves

the task even if its fitness is not maximal; (A2) there is no

clear criteria that allows to distinguish optimal solutions from

non-optimal ones: the fitness is simply maximized. For the

class A1, the goal of the optimization process boils down to

find an optimal individual in reality, that is a controller which

solves the task. Therefore, as some transfer experiments are

conducted during the optimization when using the Transfer-

ability approach, an optimal individual in reality can be found

before the end of the whole process. In this case, the process

can be stopped as soon as such an individual is observed and

this individual is the best solution of the run.

If no optimal individual in reality is observed during the

optimization for an application of the class A1, some criteria

have to be defined to select the best solution. The same criteria

are used for applications of the class A2. At the end of any

evolutionary multi-objective run, there is a set of best solutions

instead of a single one: the set of non-dominated solutions

or non-dominated set. We call transferable non-dominated

set the part of the non-dominated set that corresponds to

STR disparities lower than D∗

threshold. There are two possible

cases: if the transferable non-dominated set is empty, the best

solution of the run is the solution with the lowest STR disparity

in the non-dominated set, although it should not transfer well;

otherwise, we have to choose a best compromise solution in

this transferable set.

Fig. 6. How to select the best solution: two classes of applications.

Let us construct the approximated ideal point whose coor-

dinates are the optimal values for each objective in the trans-

ferable non-dominated set. We then select as best compromise

solution the solution whose distance to the approximated ideal

point is minimal. It is illustrated on Fig. 6.

F. Validation on two robotic applications

Our approach has been validated with an e-puck robot on

one of Jakobi’s early experiments on the reality gap problem

(class A1, [26]). This application allowed us to compare our

approach with a noise-based approach inspired from Jakobi’s



9

Fig. 7. Left, diagram of the sensors used with the Khepera mobile robot in the
original set-up. Right, both test cases of the reproduced Jakobi’s experiment
pictured with the Khepera mobile robot.

one, which is actually the most formalized methodology

dedicated to the reality gap problem. Another set-up dealing

with walking gait optimization is next investigated with an 8-

DOF wheeled-legged quadrupedal robot (class A2, Fig. 13).

For this second application, preliminary results have been

published in [35]. Additionally, our approach is compared to

two reality-based optimization methods and two simulation-

based optimization methods on both applications.

IV. APPLICATION I: E-PUCK IN A T-MAZE

A. Experimental set-up

Our first application aims to reproduce one of Jakobi’s

experiments on the reality gap problem [26], [27], notably

to compare our approach with Jakobi’s one that nowadays

remains the most formalized methodology dedicated to this

problem. In the original set-up, a two-wheeled robot has to

turn at the junction of a T-maze according to the position

of a previously encountered light. The robot uses six front

infrared distance sensors and one light sensor on each side.

The experiment is made of two test cases. When the light

is on the right (resp. the left), the robot has to turn on the

right (resp. on the left) at the junction. This simple set-up is

illustrated on the Fig. 7.

Instead of the Khepera mobile robot, the similar e-puck

robot is employed [41]. Nevertheless, the light sensors of

the e-puck robot appear not to be reliable enough and our

experimental set-up is slightly different from the original one.

The light detection has been replaced by a color detection

using the camera of the e-puck.3 During the left test case, the

left visual sensor V 1 is 1 only if the bottom left pixel of the

camera is black and the right one V 2 is always 0. During

the right test case, the right visual sensor V 2 is 1 only if the

bottom right pixel of the camera is white and the left one V 1
is always 0. Our set-up is illustrated on the Fig. 8.

According to Jakobi’s methodology, a minimal simulation

of this experimental set-up has to be built by splitting the

task in two sub-parts: first, the robot moves in a corridor

where it can detect the color patterns; next, when the robot has

traveled a given distance, it pops in a second corridor where

it has to turn in the right direction. Regarding the sensing

capabilities of an e-puck robot, this simulation model differs

from a T-maze because it does not model the junction. When

the robot pops in the second corridor, there should not be a

wall behind it. Consequently, Jakobi argues that if the robot

3The camera resolution is 40 × 40.

Fig. 8. Left, diagram of the sensors used with the e-puck robot. Right, our
experimental set-up pictured with the e-puck robot.

Fig. 9. Left, representation of the T-maze used as minimal simulation; right,
photography of the real T-maze with both color patterns

detects this wall in simulation, its sensors have to be noised so

that the optimal behaviors found in simulation cannot exploit

it and fail when transferred onto the real device (see Fig. 9).

The implementation of the noise zone is detailed in the next

section.

No slippage or friction are modeled in the simulator. The

variation of robot’s orientation during a step is equal to the

difference between the distance covered by the two wheels

divided by the diameter of the robot (about 75 mm).

The distance sensors of the robot are modeled as follows:

depending on the position of the robot in the simulated

maze, the distance to the walls are computed in the 6 sensor

directions. The model between the distance d in millimeters

and the sensor value s4 has been built on the basis of sensor

data from the e-puck robot used during the experiments. The

full sensor model is defined as follows5:

s =







3300, if d < 6
3500 ∗ F (d), if 6 ≤ d ≤ 60

20, if d > 60

The function F has been obtained by polynomial regression

between the logarithm of the sensor values and the distance to

the walls. A degree 2 polynomial function was found sufficient

to fit the relation, which led to:

F (d) = exp(0.601− 0.118 ∗ d+ 7.22 · 10−4 ∗ d2)

The sensor values are noised with uniformly distributed

random deviates in the range [−15, 15] and normalized by

3500 when used as inputs for the controller.

4E-puck robot’s infrared sensor values lie in the interval [0, 3500].
5As we do not use the same type of robot as in [26], the model sensor

is different. Moreover, it is not detailed in the original work, how the sensor
model was built.
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Fig. 10. Left, valid connections encoded in the genotype. Right, full network
developed from the genotype.

We use exactly the same structure of recurrent neural

network controllers as in the original set-up [26]. Each network

contains 10 neurons: 8 non-motor neurons, each one receiving

information from one sensor, and 2 motor neurons computing

the speeds of the wheels. Besides, each neuron has at most 3

outgoing connections. In order to obtain bilaterally symmetric

neural networks, the genotype only encodes half the network:

the 5 neurons corresponding to the left sensors and the

left wheel. To develop the full network, the half-network is

reflected across the midline as illustrated on the Fig. 10.

The activation function is the same as in the original set-

up. Let Tj be the threshold of the jth neuron and let wij

be the weight of the connection from the ith neuron to the

jth neuron, the activation Aj of the jth non-motor neurons is

computed as follows:

Aj =

{

0, if
∑

Aiwij < Tj

1, if
∑

Aiwij ≥ Tj

The motor neurons have a different activation function:

Aj =







0, if
∑

Aiwij − Tj < −1
∑

Aiwij − Tj, if −1 <
∑

Aiwij − Tj ≤ 1
1, if

∑

Aiwij − Tj > 1

The genotype encodes 7 parameters for each of the 5 “left”

neurons: 1) its threshold value (16 values regularly spaced

from -1 to 1); 2) the destination neuron of its 3 possible

outgoing connections (integer values from 1 to 16)6; 3) the

3 weights corresponding to these 3 connections (16 values

regularly spaced from -2 to 2). Each neuron depends on

7 parameters and the full genotype contains 35 parameters.

The genotype is encoded as a string of 140 bits (4 bits per

parameter).

During the evaluation step, the behavior of an individual

is simulated during 150 steps from a fixed initial position in

each test case. At each step, the neural network is updated

and the outputs of the motor neurons are multiplied by the

maximal wheel speed and applied to the wheels. For each test

case, the fitness value is computed as the covered Manhattan

distance (in mm) from the initial position to the final position

of the simulated robot plus a bonus of 1000 mm if it turns

in the right direction at the junction. Let c be the controller

to evaluate, if the robot has traveled dx mm along the x-axis

6As there only are 10 neurons in the network, fictive neuron numbers (from
11 to 16) are used to encode non-existing connections so that the number of
outgoing connections by neuron can be changed.

and dy mm along the y-axis, the corresponding fitness value

is computed as follows:

fitness(c) = dx + dy +

{

1000, if right way at junction

0, if wrong way at junction

The fitness values are averaged on both test cases to

compute the global fitness value of an individual. The maximal

fitness value is about 1700 mm. In reality, the e-puck robot

is controlled through a Bluetooth connection by a laptop that

sends new wheel speeds at each 0.4 seconds during 150 steps.

A test case then lasts 1 minute and a full experiment lasts

around 2 minutes (two test cases). The maximal wheel speed

is fixed to 2 cm per second 7.

For the experiments in reality, robot’s 2D trajectory is

recorded with two CODA cx1 scanners (Charnwood Dynamics

Ltd, UK). To track the motion of the robot, we rely on 1

marker on its top.

B. Problems encountered when implementing Jakobi’s ap-

proach

In order to obtain controllers that transfer well from simula-

tion to reality, Jakobi argues that if we look for robust enough

individuals in simulation, they should transfer well onto the

real device and also be robust in reality. Here, we only consider

the reality gap problem and the concerns on robustness in

reality are not especially evaluated.

In the T-maze problem, the discrepancies between the

simulation and the reality are mainly a result of the sensors

of the e-puck robot. The infrared sensor values can indeed

dramatically deviate from an experiment to another, as well

as the duration of the color pattern detection by the camera.

To cope with these potential discrepancies, some parameters

of the simulation model are varied during the optimization,

in order to prevent over-fitting of the solutions to a specific

context. In Jakobi’s set-up, each individual is then evaluated in

ten simulations whose parameters change from one generation

to another. Nevertheless, three important points of the original

approach are not detailed in [26] and [27]:

• the amount by which each parameter has to be varied

from trial to trial is not specified;

• the implementation of the noise zone at the end of

the first corridor is sparsely described: “sometimes [the

infrared sensors] returned maximum values, sometimes

low values, sometimes totally random values” [27];

• there is no criterion to select the best-of-run individual.

Moreover, all parameters appear to be independently

changed from individual to individual from generation to

generation, which can lead to significant effects on the fitness:

fitness obtained in large mazes can be higher than fitness

obtained in small mazes. Preliminary experiments with such

optimization schemes did not lead to individuals with high

fitness or high robustness in simulation with the budget of

evaluations fixed for the set-up.

7The maximal wheel speed in Jakobi’s original setup was 8 cm per second
and the simulation was updated 10 times per second. As the Bluetooth
connection with the e-puck robot only allows 2.5 updates per second, we
decided to divide the maximal wheel speed by 4.
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C. Approaches

1) Noise-based approach inspired from Jakobi’s one: In

order to obtain individuals with good robustness abilities in

simulation with the desired budget of evaluations (about 2·105

evaluations), we made the following choices in response to the

three points raised above:

• we define for each parameter a set of discrete values it

can take and all the individuals are evaluated in the same

ten simulations at each generation;

• the sensors, which detect the noise zone, return values

generated at random in [0, 3500];
• at the last generation, the best solution is the one whose

fitness value in simulation is maximal on the ten current

simulations, although it is not always the one with the

best robustness abilities.

In our set-up, the varying parameters are: 1) the maze size

(4 values regularly distributed from 500 mm to 650 mm);

2) the initial orientation of the robot (9 values regularly

distributed from -20 to 20); 3) the length of the color patterns

(5 values regularly distributed from 20 mm to 120 mm). The

evolved individuals have to achieve the task in 10 chosen

simulations among the 180 possible ones at each generation.

One of these simulations approximately corresponds to the

real values of the parameters: 550 mm for the map size, 0

for the initial orientation and 70 mm for the length of the

color patterns. At the beginning of the generation, the value

of each parameter of the ten simulations is randomly selected

in the corresponding discrete set.

2) Transferability approach: The Transferability approach

relies on multi-objective optimization with a Pareto-based

ranking scheme. The individuals are optimized in the simula-

tion with the real parameter values. The two following entities

have to be defined at first: the exact STR disparity measure

and the behavioral features used for the in silico metric.

We define the STR disparity measure on a given controller

as the sum of two nMSE respectively computed on the x-

values and on the y-values between the corresponding tra-

jectories observed in reality and in simulation during the 150

steps. Let St = {xt
S , y

t
S} and Rt = {xt

R, y
t
R} be the horizontal

position of the robot respectively recorded in simulation and

in reality, let xS (resp. yS , xR, yR) be the mean of xt
S (resp.

ytS , xt
R, ytR), the exact STR disparity D∗(c) of the controller

c is:

D∗(c) =

150
∑

i=1

(xi
S − xi

R)
2

xS xR

+

150
∑

i=1

(yiS − yiR)
2

yS yR

We empirically choose a threshold on the STR disparity

value equal to D∗

threshold = 0.1.

The in silico metric is based on a 6-dimensional behavior

(3 for the “left” test case, 3 for the “right” one): 1) the

covered Manhattan distance obtained during the corresponding

test case; 2) the minimal distance to the left wall in the

first corridor; 3) the minimal distance to the right wall in

the first corridor. Before computing the behavioral distance

bdist between two individuals in simulation, the corresponding

behavioral features are normalized by their upper bounds in

the simulation: {800, 100, 100, 800, 100, 100}.

The diversity threshold is empirically fixed at τdiv = 0.25
in order to conduct around 15 transfer experiments in

reality during a whole optimization. Nevertheless, we clearly

know in this experiment when an individual is optimal in

simulation or in reality (class A1 on the Fig. 6), when

the corresponding behavior is evaluated. Consequently, we

can stop the optimization process as soon as an optimal

individual in simulation appears to be also optimal when

transferred onto the e-puck robot with a sufficiently low

STR disparity value. Moreover, in order to transfer as few

individuals as possible, only individuals that are optimal

in simulation are transferred onto the e-puck robot during

the optimization process. This constraint does not concern

the individual transferred at the beginning of the process

to initialize the surrogate model, which is randomly generated.

3) Evolution on the physical robot: For comparison, we

conduct a simple evolution directly on the real robot. Each

individual is evaluated by the fitness on the physical robot

and a diversity objective. The diversity value is computed as

the average Hamming distance based on the binary genotype

(string of 140 bits) to the rest of the population. The size of

the population is 4 and the number of generations is 5, which

implies 20 experiments on the robot by run. Because this

approach relies on much more experiments in reality than the

other approaches, it has only been repeated 3 times to have

the same amount of experiments in reality in total (about 60

experiments for each approach).

4) Surrogate modelling of the fitness: A classic way to

optimize controllers with expensive fitness functions comes

down to directly building a surrogate model of the fitness

in reality [31], instead of relying on a simulation model: the

surrogate model tries to approximate the relation between the

control parameters and the real fitness. Once such a model is

available, the best solution is the controller that maximizes the

approximate fitness function according to the model.

To build the surrogate model, a given number of selected

controllers have to be transferred onto the physical robot

to record the corresponding fitness values in reality. The

controllers to be transferred can be randomly generated, but

they are usually selected with an update heuristic, which

explores the zones where the model can be at most improved.

For the T-maze problem, the surrogate model can hardly

rely on Kriging interpolation with our budget of evaluations

on the robot: the controller depends on 35 parameters, which

implies at least 71 experiments to initialize the Kriging model.

Consequently, we use the Inverse Distance Weighting (IDW)

interpolation to build the surrogate model.

Our implementation relies on the same update heuristic as in

the Transferability approach. The generation of the controller

to be transferred is included in a multi-objective evolutionary

optimization process. A population of 200 individuals is

evolved during 1000 generations based on two objectives to be

maximized: the fitness approximated by the surrogate model

and a diversity objective. It allows to guide the search for new
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transfer experiments towards seemingly efficient solutions or

towards the most different solutions from the already trans-

ferred ones. At each generation, a controller is transferred onto

the physical robot, among those whose diversity value is above

a pre-defined threshold. If no controller has a sufficiently high

diversity value, no controller is transferred.

The diversity objective is computed as the minimal Ham-

ming distance based on the binary genotype8 to the already

transferred controllers. Let CT be the set of the already

transferred controllers, the diversity value diversity(c) cor-

responding to the controller c is computed as follows:

diversity(c) = min
ci∈CT

Hamming(c, ci)

The diversity threshold is set to τdiv = 0.55, which allows

about 6 transfer experiments onto the robot during a run. The

best solution of a run is the transferred controller with the

highest fitness value.

5) Control approach: For the Control approach, each

controller is evaluated by its global fitness in the simulation

with the real parameter values. There is no transfer during the

optimization and the best solution of the run is the controller

whose fitness value is maximal.

6) Control approach + Local search: Concerning the last

implemented approach, the optimization process follows the

same scheme as in the Control approach. Once the best

solution in simulation is selected, it is used as the starting

point of a local search to maximize the fitness on the physical

robot. The following process is iterated 5 times at the end of a

run9: the best solution is mutated and if the mutated individual

achieves a better fitness on the robot, it becomes the new best

solution. If the best solution obtained at first in simulation is

already optimal in reality, this solution is kept and no local

search is conducted

D. Results

Table I sums up the location of the evaluation step (simu-

lation, reality or both) along with the number of experiments

done on the physical robot by run for each approach.

All the approaches have been implemented using the state-

of-the-art MOEA NSGA-II [14], based on non-dominated sort-

ing and elitist tournament selection.10 For single-objective op-

timization schemes (Control approaches), NSGA-II is equiv-

alent to an elitist tournament-based EA. Two operators are

defined on the genotype described above: recombination

crossover and bitwise mutation with probability 0.7 (a mutated

individual undergoes about 2 bit changes). Except for the

evolution on the physical robot (4 individuals, 5 generations,

8The Hamming distance between two binary genotypes is the number of
bits different between the bitstrings.

9The number of iterations is derived from the number of transfer experi-
ments that revealed to be enough on average for the Transferability approach
(cf. table I).

10This work has been implemented within the Sferesv2 framework [43].
The source code is available at: http://www.isir.fr/evorob db

Fig. 11. Left, fitness of the best solutions found with all the approaches.
Right, exact disparity values computed for these individuals. Means and
standard deviations are computed on 10 runs, except for the evolution on
the robot with 3 runs. Error bars indicate one unit of standard deviation. The
number of experiments done on the physical robot by run for each approach is
indicated in Table I. The Transferability approach behaves at best and always
finds best solutions that are both transferable (disparity values lower than
D∗

threshold
= 0.1) and optimal in reality on the e-puck robot.

repeated 3 times), a population of 200 individuals is evolved

during 1000 generations and each approach is run 10 times.

Quantitative results are shown on Fig. 11 and in table II.

The Control approach behaves well for 3 runs out of 10 by

finding best solutions both optimal in simulation and in reality.

On average, the best solutions achieve a 1696 mm fitness value

in simulation (sd = 3 mm) and a 832 mm fitness value on the

physical robot (sd = 599 mm) with 0.25 disparity (sd = 0.27).

It demonstrates that there is a reality gap problem between

our minimal simulation and the real set-up, but also that

the minimal simulation is relatively realistic, as it sometimes

allows to find optimal solutions in reality. A typical behavior

obtained in reality with the Control approach is pictured on

Fig. 12.

For the Control approach + Local search, the best solutions

after the local search achieve 873 mm on average in reality

(sd = 569 mm) with 0.26 disparity (sd = 0.12 mm) compared

to the best solution found at first in simulation. Although the

local search allows to upgrade the fitness values by 59 mm

on average (sd = 38 mm), which is significantly greater than

0 (Welch’s t-test p-value = 3 · 10−3), none of the improved

solutions are optimal on the robot. A local search is not able

to retrieve as high fitness values on the physical robot as in

simulation.

The two reality-based optimization approaches, evolution on

the physical robot and surrogate modelling of the real fitness,

achieve clearly worse results, with respective average fitness

values of 469 mm (sd = 45 mm) and 466 mm (sd = 77 mm).

The best solutions for these two approaches go straight to the

end of the first corridor without taking into account the color

patterns. It highlights that only few experiments on the robot

are not sufficient to find the optimal behaviors from scratch,

notably because of the wide control space (1.4 · 1042 possible
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Approach
Running Success Percentage of

time rate solved simulations

Control app. ∼ 4h 30% 27%

Control app. + Local search ∼ 4.25h 30% 27%

Noise-based app. ∼ 12h 30% 83%

Transferability app. ∼ 0.75h 100% 19%

TABLE II
RUNNING TIME AND SUCCESS RATE ONTO THE PHYSICAL ROBOT FOR ALL

THE APPROACHES COMPUTED ON 10 RUNS. THE PERCENTAGE OF SOLVED

SIMULATIONS INDICATES HOW THE BEST SOLUTIONS FOUND WITH EACH

APPROACH BEHAVE ON THE 180 POSSIBLE SIMULATIONS USED WITH THE

NOISE-BASED SET-UP.

individuals).

Concerning the noise-based approach, the original results

obtained in [26] are not reproduced: only 3 runs out of 10

lead to optimal solutions in reality, while the method always

worked in the original set-up. On average, the best solutions

achieve 1383 mm in simulation (sd = 507 mm) and 1054

mm in reality (sd = 520 mm) with 0.20 disparity (sd =

0.22). It is not very surprising, because there are a lot of

missing details to accurately re-implement Jakobi’s approach

and some of our choices can have led to worse results.

However, the noise-based approach behaves better than both

Control approaches on average. In addition, recent results on

a similar experimental set-up suggest that the noise-based

approach needs a larger budget of evaluations to converge [49].

The Transferability approach works well for all the 10

runs with low disparity values and no significant gap between

simulation and reality regarding the fitness values. On average,

the best solutions achieve 1644 mm in simulation (sd = 23

mm) and 1645 mm in reality (sd = 35 mm) with 0.05 disparity

(sd = 0.03)11. A typical behavior obtained in reality with the

Transferability approach is pictured on Fig. 12. The approach

also clearly outperforms the method based on surrogate mod-

elling of the real fitness. Building a reliable surrogate model of

the real fitness function from scratch would probably require

more experiments on the robot for this application.

Another interesting result (cf. table II) concerns the running

time: while conducting few experiments in reality should slow

down the optimization process, it allows to solve the task in

very few generations (52 generations on average, less than 1

hour) with 6 transfers onto the e-puck robot by run on average

(cf. table I). Indeed, as the optimality of the individuals is

directly known once the corresponding behavior is evaluated

in the T-maze, such an algorithm can be stopped as soon

as an optimal solution is found. On the contrary, the two

other approaches have to be run during a fixed number of

generations before any transfer, successful or not, onto the

real device.

The percentage of solved simulations in table II corresponds

to the proportion of the 180 possible simulations in the noise-

based set-up that are solved on average by the best solutions

found with each approach. For noise-based approach, the high

value (83%) proves that the optimization process looks for the

most robust solutions in simulations while no one solves all

11Videos of typical behaviors obtained with the Control approach and the
Transferability approach are available at http://people.isir.upmc.fr/koos.

the test cases. Anyway, it appears that there is no clear link

between this “robustness” value and the transferability from

simulation to reality.

The values are much lower for the Control approach and

the Transferability approach, respectively 27% and 19%. It

notably means that the best solutions found with the Trans-

ferability approach would not have been selected with noise-

based approach. In other words for this experimental set-up,

robustness in simulation does not always mean transferable

controllers and transferable controllers does not lead to par-

ticularly robust behaviors in simulation.

In conclusion, the Transferability approach clearly outper-

forms the reality-based optimization methods, along with our

implementation of the noise-based approach. It appears to be

a simple methodology to cross the reality gap for the T-maze

problem.

Fig. 12. Left, typical behavior evolved with the Control approach: the
transferred behavior is inefficient and the robot does not solve the task. Right,
typical behavior evolved with the Transferability approach: the robot solves
the task in both test cases. For each approach, the left column (resp. right) of
figures corresponds to the case with the color pattern on the left (resp. right).

V. APPLICATION II: QUADRUPEDAL WALKING ROBOT

Locomotion problems have often been addressed in Evo-

lutionary Robotics. In particular, quadrupedal walking offers

the advantage of various kinds of gaits: from static and easy

to model walks to more dynamic and complex ones. As these

gaits do not need the same level of accuracy to be correctly

modeled in simulation, they are expected to achieve different

transferability performances on the real device. To exploit such

a gait variety, our second application consists in finding as fast

as possible transferable walking gaits on a quadrupedal 8-DOF

robot (Fig. 13). The fitness is the distance covered by the robot

during a fixed time. Contrary to the previous application, the

optimality of a given solution cannot be directly derived from
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Approach
Evaluation Number of experiments

simulation reality on the physical robot

Evolution on robot x 20

Surrogate modelling
IDW x 6 (mean, sd = 1)

of the fitness

Control app. x 1

Control app. + Local search x x 6

Noise-based app. x 0

Transferability app. x x 6 (mean, sd = 2)

TABLE I
LOCATION OF THE EVALUATION STEP: FULLY IN SIMULATION, FULLY IN REALITY OR PARTLY IN BOTH. AVERAGE NUMBER OF EXPERIMENTS ON THE

PHYSICAL ROBOT DURING A RUN FOR EACH APPROACH.

the corresponding behavior whether in simulation or on the

real robot (class A2 on the Fig. 6), as the maximal robot speed

is unknown.

A. Robot and experimental set-up

The physical robot is made from a Bioloid Kit and has

been built after the wheeled-legged robot Hylos [20] designed

for autonomous planetary/volcanic exploration. The reduced-

scale robot reproduces Hylos’ degrees of freedom and its

global geometry. Each leg includes 4 Dynamixel AX-12+

Robot Actuators. As we deal with walking gaits, we only

control 2 actuators by leg and wheels’ positions are fixed.

Each leg then includes an upper leg motor and a lower leg

motor, all controlled in position. The speed of the servos is

automatically fixed by the built-in controller and only depends

on the position error (see Dynamixel documentation for more

details). The maximal speed value is fixed at 1.75 rad/s. During

the experiments, the robot is supplied with a power cable

and controlled with a USB2Dynamixel device connected to

a laptop.

We also use a simulator relying on the Bullet Physics

Library, an open source physics engine [5]. All the parameters

are set to the default values proposed by the library. The

ground is simulated with non-zero friction. The engine uses the

Projected Gauss Seidel constraint solver for handling collision

and joint constraints with a maximal number of iterations

set to 200. (see the Bullet Documentation for more details:

http://bulletphysics.org).

The reality gap problem with this simulation model springs

from two main reasons:

• the slippage observed on the physical ground is not

accurately modeled;

• some unstable behaviors lead to unrealistically high fit-

ness values in simulation, notably because of leg contacts.

For our application, the following points have been carefully

modeled: dimensions of the robot, masses of the different

parts, mass asymmetry of the main body, contact areas of

the wheels, servos’ built-in controller (according to the Dy-

namixel documentation). The simulated robot is made of 14

rigid bodies and 8 hinge constraints to model joints. Jakobi’s

methodology can hardly be envisaged for such an application,

as it is difficult to define a set of relevant parameters in

simulation whose variations would lead to robust controllers.

Fig. 13. Quadrupedal walking robot used in our experimental set-up.

Consequently, we did not try to apply Jakobi’s approach to

this application.

Experiments conducted in simulation and in reality follow

the same outline. At the beginning of each experiment, all joint

angles are set to 0. The 3-dimensional trajectory of robot’s

geometric center is then sampled at 20 Hz for 10 seconds

(i.e. 200 data points). New motor positions are sent each 0.1

seconds according to the controller. Once an evaluation is done

on the real robot, the initial position is reset to (0, 0, 0) in the

dataset by subtracting the initial coordinate values from each

data point. It allows not to depend on initial positions when

comparing trajectories.

For the experiments in reality, robot’s horizontal 2D trajec-

tory is recorded with three CODA cx1 scanners (Charnwood

Dynamics Ltd, UK). To track geometric center motion, we

rely on 2 markers, 1 on each side of the robot (front and rear,

see Fig. 13). The trajectory of the geometric center is then

obtained by averaging the 2 markers’ positions.

To study the reality gap problem in minimal conditions,

we rely on one simple sinusoidal controller by motor. All the

sinusoidal controllers depend on the same two real parameters

(p1, p2) ∈ [0, 1]2. The desired angular position αd of the

motor i at time t is obtained by:

αd(i, t) =
5π

12
∗ dir(i) ∗ p1 −

5π

12
∗ p2 ∗ sin(2πt− φ(i))12

12Angular positions of the Dynamixel AX-12+ Robot Actuators are con-
strained in [− 5π

12
, 5π
12

].
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Fig. 14. Fitness landscape in simulation of the application II (covered
distance, mm). This picture shows the covered distances in simulation
computed for all the possible individuals on the whole control space (about
2.6 ·105 individuals). The control parameters p1 and p2 respectively are in x-
coordinates and in y-coordinates. The color denotes the strength of the fitness
value.

dir(i) is 1 for both motors of the front-right leg and for

both motors of the rear-left leg, -1 otherwise (see Fig. 13 for

orientation). The phase angle φ(i) is 0 for the upper leg motors

of each leg and π/2 for the lower leg motors of each leg. Both

motors of one leg consequently have the same control signal

with different phases.

The fitness is the distance covered by the robot in 10

seconds. Although there are only two parameters to optimize,

the fitness landscape in simulation is complex as shown on

Figure 14. Such fitness variations highlight a highly non-linear

relation between genotype and phenotype in this application.

B. Approaches

1) Transferability approach: The exact STR disparity mea-

sure is based on the real and simulated distances from the

origin
√

x2 + y2 of the robot’s geometric center that are

computed respectively from the recorded real and simulated

trajectories for each sampled data point. These distances are

used to evaluate the exact STR disparity of the transferred

controller. Let S and R be the distances from the origin

respectively obtained in simulation and in reality, let S (resp.

R) be the mean of S (resp. R), the exact STR disparity

D∗(c) of the controller c is the normalized Mean Square Error

(nMSE) between S and R:

D∗(c) =

200
∑

i=1

(Si −Ri)
2

S R

Such a STR disparity measure allows to accurately evaluate

variations between simulated and real trajectories that corre-

spond to a given controller. It ensures that only transferable

controllers will correspond to low STR disparities.

The in silico metric is based on the following 3 behavioral

features computed in simulation to sum up the behavior of

each evaluated controller:

• the distance covered during the experiment (the fitness);

• the mean height of the geometric center of the robot;

• the angular orientation of the robot at the end of its

behavior.

At each controller evaluation made within the simulator,

these behavioral features are computed and normalized with

the values {1.5, 0.2, 3.14} before any use. It corresponds to

their upper bound values in the simulation. We only allow 10

transfers on average for each run with a diversity threshold

value τdiv = 0.1.

2) Evolution on the physical robot: For comparison, we

conduct a simple evolution directly on the real robot. Each

individual is evaluated by the covered distance in reality and

a diversity objective. The diversity value is computed as the

average Euclidean distance based on the vectors of control

parameters (p1, p2) to the rest of the population. The size of

the population is 4 and the number of generations is 5, which

implies 20 experiments on the robot by run. Because this

approach relies on much more experiments in reality than the

other approaches, it has only been repeated 5 times to have

the same amount of experiments in reality in total (about 100

experiments for each approach).

3) Surrogate modelling of the fitness: A classic way to

optimize controllers with expensive fitness functions comes

down to directly build a surrogate model of the fitness in

reality [31], instead of relying on a simulation model: the

surrogate model tries to approximate the relation between the

control parameters and the real fitness. Once such a model is

available, the best solution is the controller that maximizes the

approximate fitness function according to the model.

To build the surrogate model, a given number of selected

controllers have to be transferred onto the physical robot

to record the corresponding fitness values in reality. The

controllers to be transferred can be randomly generated, but

they are usually selected with an update heuristic, which

explores the zones where the model can be at most improved.

For the quadrupedal locomotion problem, the use of Kriging

interpolation is consistent with our budget of evaluations on

the robot: the controller depends on 2 parameters, which

implies only 5 experiments to initialize the Kriging model.

Consequently, we implement two variants of this method

depending on which interpolation techniques is used to build

the surrogate model: Inverse Distance Weighting (IDW) or

Kriging.

a) Using Inverse Distance Weighting: For this variant,

our implementation relies on the same update heuristic as in

the Transferability approach. The generation of the controller

to be transferred is included in a multi-objective evolution-

ary optimization process. A population of 40 individuals is

evolved during 100 generations based on two objectives to be

maximized: the fitness approximated by the surrogate model

and a diversity objective. It allows to guide the search for new

transfer experiments towards seemingly efficient solutions or

towards the most different solutions from the already trans-

ferred ones. At each generation, a controller is transferred onto

the physical robot, among those whose diversity value is above

a pre-defined threshold. If no controller has a sufficiently high

diversity value, no controller is transferred.



16

The diversity objective is computed as the minimal Eu-

clidean distance based on the genotype to the already trans-

ferred controllers. Let CT be the set of the already transferred

controllers, the diversity value diversity(c) corresponding to

the controller c is computed as follows:

diversity(c) = min
ci∈CT

Euclidean(c, ci)

The diversity threshold is set to τdiv = 0.075, which allows

about 10 transfer experiments onto the robot during a run.

The best solution of a run is the transferred controller with

the highest fitness value.

b) Using Kriging: As there are only two control param-

eters for this application, we also implement a variant of this

approach by using Kriging interpolation to build the surrogate

model of the real covered distance. Our implementation is

closely based on the method described in [23] and does not

rely on evolutionary optimization. As the surrogate model

builds the relation between the two control parameters and

the covered distance in reality, five preliminary experiments

are needed to initialize the Kriging model. In order to limit the

number of experiments conducted onto the robot, the model

is always initialized with the same five experiments, which

correspond to the following vectors of control parameters: (0,

0), (1, 0), (0, 1), (1, 1), (0.5, 0.5).

The update heuristic proposed by [23] follows 3 steps:

• an optimization process takes place to find both the

maximizer cmaxfit of the approximated fitness and the

maximizer cmaxerr of the expected mean square error

according to the current Kriging model;

• if cmaxfit is not too close to an already transferred con-

troller, it is transferred; otherwise, cmaxerr is transferred;

• the surrogate model is updated with the new data points.

The whole heuristic is repeated 10 times, to allow 10

transfer experiments by run. As the search space is relatively

small, we randomly generate 104 individuals to find both

maximizers cmaxfit and cmaxerr without optimization: the

controller with the maximal approximated fitness is cmaxfit

and the one with the maximal expected mean square error is

cmaxerr. The maximizer cmaxfit is too close to an already

transferred controller, if their Euclidean distance is lower than

a pre-defined threshold ǫ. The threshold ǫ is set to 0.025.

The Kriging-based approach has been run 10 times. The

best solution of a run is the transferred controller with the

highest real fitness value. The implementation and the use of

the Kriging model rely on the DACE Matlab toolbox [36].

4) Control approach: For the Control approach, each

controller is evaluated by a single objective: the covered

distance in simulation. There is no transfer during the run and

the best solution of the run is the controller that maximizes

the covered distance. Evolutionary operators and parameters

are the same as those described for the Transferability

approach.

5) Control approach + Local search: As for the previous

application, this approach is the same as the Control approach,

followed by a local optimization on the physical robot. Once

the best solution in simulation is selected, it is used as

the starting point of a local search to maximize the fitness

on the physical robot. The following process is iterated 10

times13: the best found solution is mutated and if the mutated

individual achieves a better covered distance on the robot, it

becomes the new best found solution.

6) Control approach + Diversity: The last implemented

approach optimizes two objectives: (1) the covered distance

in simulation; (2) the behavioral diversity objective. Let CS

be the archive of the already selected controllers and bdist the

in silico metric, the behavioral diversity value diversity(c)
for a given controller c is:

diversity(c) = min
ci∈CS

bdist(c, ci)

The archive CS is built as follows: at each generation of the

optimization process, if some controllers have a diversity value

greater than the diversity threshold τdiv , one among them is

randomly selected and added to CS .

C. Results

The Table III sums up the location of the evaluation step

(simulation, reality or both) along with the number of experi-

ments done on the physical robot by run for each approach.

As for the previous application, all the approaches have been

implemented using the MOEA NSGA-II [14]14. The evolved

genotypes contain the two parameters of the controllers

(p1, p2) ∈ [0, 1]2. Two operators are defined on the genotype:

Gaussian point mutation15 and recombination crossover. The

mutation probability is 0.5. Exception for the evolution on the

physical robot (4 individuals, 5 generations, repeated 5 times)

and the Kriging-based method, each approach has been run 10

times with a population of 40 individuals evolved during 100

generations.

1) Results with the Control approaches: The best solutions

obtained with the Control approach achieve 1294 mm on

average (sd = 55 mm) in the simulation and 411 mm on

average (sd = 425 mm) on the real robot. The corresponding

STR disparity values are 4.90 on average with standard devi-

ation 8.78. A typical gait obtained in reality with the Control

approach is pictured on Fig. 18. The gap problem is a little bit

complex because among the best solutions found in 10 runs, 3

controllers out of 10 transfer well on the physical robot with

high fitness and 7 do not. Two conclusions can be drawn from

these results:

• there is a reality gap problem between the simulation

model and the real robot;

• however, the simulator is worthwhile because it allows

sometimes to find good solutions that transfer well on

the real robot.

The Control approach + Local search achieves better results

regarding the covered distance in reality with 557 mm on

13The number of iterations is derived from the number of transfer experi-
ments done on average with the Transferability approach (cf. table III).

14This work has been implemented within the Sferesv2 framework [43].
The source code is available at: http://www.isir.fr/evorob db

15Mutation parameters: 0 mean, 0.2 standard deviation
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average (sd = 489 mm) and with 2.53 disparity on average

(sd = 3.00), compared to the initial best solution found in

simulation. The fitness in reality is improved by 146 mm

on average (sd = 90 mm). Although such an improvement is

significantly greater than 0 (Welch’s t-test p-value = 3 ·10−4),

the solutions improved from non-efficient controllers are not

efficient in reality either. Consequently, such a local search

does not allow to retrieve similar fitness values than in

simulation and is not sufficient to cross the reality gap in this

set-up.

One can argue that the Control approach is not able to find

transferable controllers, because it does not find the true opti-

mal solutions in simulation. Then, with an additional diversity

objective, the Control approach + Diversity 16 should lead to

better individuals in simulation and then better performances

in reality. Nevertheless, the results shown on the Fig. 16

tends towards the opposite conclusion: the Control approach +

Diversity indeed finds better solutions in simulation on average

(1379 mm, sd = 54 mm), but these individuals are significantly

less transferable to reality than with the Control approach

with a 3.20 disparity on average (sd = 3.22) and less efficient

with a 385 mm covered distance on the real robot on average

(sd = 279 mm). Moreover, among the best solutions found

in 10 runs with the Control approach + Diversity, none are

both efficient and transferable, although 3 out of 10 are with

the Control approach. Consequently, the Control approach

leads to better results, possibly because it does not always

find the true optimal solutions in simulation, which is quite

in agreement with the antagonism we hypothesize between

efficiency and transferability.

In order to study more in details the reality gap problem

for this application, the best individuals found with the

Control approach + Diversity have been transferred onto the

physical robot every 5 generations. The Figure 15 sums up

the fitness of these individuals in simulation and in reality

(average and standard deviation). Two conclusions can be

drawn from the graph: 1) the individuals randomly generated

at the initial generation are neither transferable nor efficient

in reality; 2) the solutions become less efficient in reality and

less transferable during optimization, which highlights some

over-fitting effects. It notably means that undoing over-fitting

is not sufficient to retrieve efficient solutions in reality in this

application.

2) Results without the simulation model: Contrary to the

previous application, the three reality-based optimization

approaches, evolution on the physical robot and both methods

based on the surrogate modelling of the real fitness, behave

relatively well and significantly better than the Control

approaches regarding the obtained covered distance in reality.

There is no significant difference between the performances

of these three approaches and the use of Kriging does not

lead to better results than with IDW interpolation. (Welch’s

t-test p-values > 0.73). Such results show that the real

fitness landscape of this application is likely to be simple

16We select the same diversity threshold τdiv = 0.1 as with the Transfer-
ability approach, which leads to archives CS of 11 individuals on average
(sd = 1).

Fig. 15. Fitness of the best individuals found with the Control approach

+ Diversity plotted every 5 generations in simulation (top) and in reality
(bottom). Error bars indicate one unit of standard deviation.

contrary to the landscape observed in simulation (Fig.

14), as optimization with few experiments lead to good

results. However, we emphasize that Kriging methods are

hardly adaptable to experiments with many parameters to be

optimized due to numerous preliminary transfer tests on the

test to initialize the surrogate model.

3) Results with the Transferability approach: The observed

numbers of transfers are presented in table III and validate the

choice of τdiv = 0.1. The Transferability approach behaves

clearly better than the 3 Control approaches (see Fig. 16)

with better STR disparity values (Welch’s t-test p-value <
6 · 10−3), also lower than D∗

threshold = 1, and finds more

efficient controllers regarding the covered distance objective

on the real robot (Welch’s t-test p-values < 4 · 10−2) despite

the very small number of transfer experiments (11 in a run

on average, cf. table III). The best trade-off individual among

the best solutions obtained with the Transferability approach

achieves 1132 mm in the simulation and 1099 mm on the real

robot with a 0.004 STR disparity value17. On average, the best

solutions achieve 906 mm in the simulation (sd = 210 mm)

and 848 mm on the real robot (sd = 239 mm) with a 0.16

disparity value (sd = 0.25). A typical gait obtained in reality

with the Transferability approach is pictured on Fig. 12.

The Transferability approach then finds, for this application,

good solutions that transfer well on the real robot with only

few transfer experiments conducted onto the physical robot.

It strengthens the global interest in such an approach to cross

the reality gap problem.

Compared to the reality-based optimization approaches, the

Transferability approach behaves quite better, although there

is no strong statistical significance (Welch’s t-test p-values <
0.1). As there only are two parameters to optimize, the real

fitness landscape indeed is likely to be simple, although the

relation between the landscapes observed in simulation and

in reality is not. The Figure 17, which pictures the exhaus-

17Videos of typical behaviors obtained with the Control approach and the
Transferability approach are available at http://people.isir.upmc.fr/koos.
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Approach
Evaluation Number of experiments

simulation reality on the physical robot

Evolution on robot x 20

Surrogate modelling IDW x 10 (mean, sd = 1)

of the fitness Kriging x 10

Control app. x 1

Control app. + Local search x x 10

Control app. + Diversity x 1

Transferability app. x x 11 (mean, sd = 2)

TABLE III
LOCATION OF THE EVALUATION STEP: FULLY IN SIMULATION, FULLY IN REALITY OR PARTLY IN BOTH. AVERAGE NUMBER OF EXPERIMENTS ON THE

PHYSICAL ROBOT DURING A RUN FOR EACH APPROACH.

Fig. 18. Left, typical gait evolved with the Control approach: inefficient be-
havior due to slippage effects. Right, typical gait evolved with Transferability
approaches: the behavior in reality is similarly efficient as the behavior in
simulation.

tive landscape in simulation and the approximated landscape

in reality, indeed is consistent with these thoughts. When

evolving more complex control structures, such reality-based

approaches should behave much worse, as is the case with the

first application with a much larger search space.

VI. FURTHER INVESTIGATIONS

Following these successful results, we now investigate 3

main points on the Transferability approach:

• Is the surrogate model of the STR disparity measure

accurate?

• Which types of behavioral distances are appropriate as

STR disparity measure and as in silico metric?

• Is the update heuristic relevant and is a diversity objective

needed?

To conduct such investigations in a reasonable amount of

time, we decided to resort to a fully simulated experimental

set-up based on the application with the quadrupedal walking

robot. In place of transfers from simulation to reality, we solve

a fictive reality gap problem between a simplified simulator

and the accurate simulator used in the previous section. They

only differ from each other by the modeling of the servos’

built-in controller. The simple simulator relies on a propor-

tional relation between the speed and the position error, while

the accurate one is based on the Dynamixel documentation.

The reality gap problem is stronger in this set-up than in the

original one, because optimal solutions in the simple simulator

achieve unrealistic fitness values (about 14000mm) and the

maximal fitness value in the accurate simulation only lies

between 1300mm and 1400mm.

A. Concerning the surrogate model

To determine if the surrogate model is accurate compared

to the exact STR disparity measure, we conducted 10 runs

of the Transferability approach as described in the section

III with a diversity threshold τdiv = 0.05, that corresponds

to 25 transfers by run on average from the simple simulator

to the accurate one (observed numbers of transfers: mean =

26, sd = 6). The graph 19 shows for all the individuals on

the last non-dominated sets of each run the corresponding

approximated STR disparity values and the corresponding

exact STR disparity values.

According to the graph 19, the surrogate models of the

STR disparity function tends to: (1) overestimate the exact

function for the low disparity values; (2) underestimate the

exact function for the very high disparity values. It is highly

linked to the main drawback of the Inverse Distance Weight-

ing interpolation technique: the predicted value always lies

between the minimum and the maximum of the interpolated

data points.

Despite this side-effect of the IDW interpolation, the Pear-

son’s correlation coefficients between the approximated STR

disparity and the exact one are relatively high, with an average

of 0.76 (sd = 0.11). Similar results have been obtained on 10

runs with a diversity threshold τdiv = 0.025 that corresponds

to 45 transfer experiments by run (observed numbers of

transfers: mean = 44, sd = 8): Pearson’s correlation coefficient

of 0.74 (sd = 0.12). It indicates that there is a strong positive

monotonic relation between the approximation and the exact

function. Such considerations often are sufficient to conclude

that the surrogate model is of good quality [25]: the surrogate

model seems to provide the evolutionary search with a good

gradient.

However, in our approach, the approximated STR disparity

function is not only a mean to guide the search towards

transferable zones of the simulation, but is also used to
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Fig. 16. Results obtained with the quadrupedal walking robot: covered distance in simulation and in reality (mm, left) and the exact disparity (right) of the
best solutions obtained with each approach. Means and standard deviations are computed on 10 runs, except for the evolution on the robot with 3 runs. Error
bars indicate one unit of standard deviation. The number of experiments done on the physical robot by run for each approach is indicated in Table III.

distinguish transferable controllers from non-transferable ones.

The absolute quality error of the model consequently is of

importance. When computing the nMSE between the approx-

imated STR disparity and the exact one, we obtain 0.43 on

average (sd = 0.29) with 25 transfer experiments and 0.38

nMSE on average (sd = 0.21) with 45 transfer experiments.

Such low nMSE values indicate that the approximated STR

disparity value is rather accurate, which validates the choice

of the simple IDW interpolation, at least on this application.

B. Concerning the behavioral distances

In the Transferability approach, two behavioral distances are

used: (1) the transferability measure that compares simulated

behaviors with real ones; (2) the in silico metric that only

compares behaviors in simulation.

Let us call dfeat the feature-based behavioral distance

defined on the covered distance, the mean height of the robot

and its final angular orientation18 and dtraj the trajectory-

based behavioral distance based on the horizontal distance

covered by the robot. We can now define 4 variants as summed

up in the table IV. The bFeat+DTraj variant corresponds to

the original approach.

Each of these 4 variants have been repeated 10 times with

two different threshold values τdiv respectively corresponding

18For the normalization of the features the vector {14.0, 0.76, 3.14} is
used. It corresponds to their upper bound values in the simple simulator.

TABLE IV
FIRST SET OF VARIANTS: IN SILICO METRIC AND STR DISPARITY.

Variants
in silico metric STR disparity

bdist D∗

bFeat+DTraj dfeat dtraj
FeatOnly dfeat dfeat

bTraj+DFeat dtraj dfeat
TrajOnly dtraj dtraj

to 25 transfers and 45 transfers by run on average and the

results are shown on the Fig. 20. The variant bFeat+DTraj

clearly achieves the best results. The TrajOnly variant also be-

haves well regarding the STR disparity values, but it achieves

significantly lower fitness values. Both variants based on the

feature-based distance as transferability measure behave much

worse. The trajectory-based distance dtraj then appears to be

more efficient as a transferability measure than dfeat. The

feature-based behavioral distance is probably too compact as

it only takes into account 3 heterogeneous behavioral features.

Building a transferability measure on such sparse informations

does not provide a gradient precise enough to lead towards

good trade-off solutions.

Regarding the in silico metric, there is also a significant

difference between the variants bFeat+DTraj and TrajOnly.

To investigate this point, we compute the nMSE between the

approximated STR disparity based on the surrogate model and

the exact STR disparity function on the Pareto front for each
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Fig. 17. Left, exhaustive fitness landscape in simulation of the application II (covered distance, mm). Right, interpolation of the fitness landscape in reality
based on about 5500 transfer experiments. These experiments have mostly been conducted in the zone p1 < 0.6. For higher values of p1, the robot is not
able to move efficiently, which systematically leads to low fitness values.

Fig. 19. Approximated STR disparity compared to exact STR disparity (right, with log-scale) for the individuals in the Pareto front obtained in 10 runs of
the Transferability approach with a diversity thresholds τdiv = 0.05 (584 individuals in all).

run. For bFeat+DTraj, we respectively obtain on average a

0.43 nMSE when 25 transfer experiments are allowed (sd =

0.29) and a 0.38 nMSE with 45 transfer experiments (sd =

0.21). Much worse values are observed with the TrajOnly

variant: respectively 0.72 (sd = 0.52) and 1.13 (sd = 0.79).

Consequently, the accuracy is much worse for the TrajOnly

variant and more experiments during a run lead to even worse

accuracy, which means that the trajectory-based behavioral

distance dtraj is not efficient as in silico metric. An effective

in silico metric bdist indeed has to distinguish the different

classes of behaviors observed in simulation. For instance,

in the application with the quadrupedal robot, the three be-

havioral features separate behaviors that are efficient or not

(covered distance), that make the robot overturns or do not

(mean height), that are more or less stable (final orientation).

Contrariwise, a distance between 2D-trajectories likely is not

as discriminant as such a feature-based distance.

Such results validate our original approach with a feature-

based behavioral distance as in silico metric and a trajectory-

based behavioral distance as transferability measure.

C. Concerning the update heuristic and the diversity objective

We now implement a second set of variants (table V) de-

pending on: (1) the update heuristic used to choose the transfer

experiments; (2) the presence or lack of the diversity objective.

The “random” update heuristic consists in choosing at random

the controller to transfer among those whose diversity value

is greater than the diversity threshold τdiv as used in the

original approach. The “max. diversity” heuristic consists in

transferring the controller that maximizes the diversity value

only if it is greater than τdiv . The RandomT & Div variant

corresponds to the original approach.
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TABLE V
SECOND SET OF VARIANTS: UPDATE HEURISTIC AND DIVERSITY

OBJECTIVE.

Variants
Diversity Update
objective heuristic

RandomT & Div × random

MaxDivT & Div × max. diversity

RandomT & NoDiv random

Each variant has been repeated 10 times, with two di-

versity threshold values τdiv that respectively correspond to

25 transfers and 45 transfers by run on average. All the

results are shown on the Fig. 21. The variants RandomT &

Div and MaxDivT & Div behave well, but the RandomT &

Div variant shows best results, as it looks for better trade-

off solutions. MaxDivT & Div variant finds worse trade-off

solutions on average than RandomT & Div variant, in terms of

disparity with τdiv = 0.05 (Welch’s t-test p-value=0.071) or of

distance with τdiv = 0.025 (Welch’s t-test p-value=0.029). It

means, counter-intuitively, that transferring the most different

controller from the already transferred ones is not ideal.

Compared to a more intermediate controller, its neighborhood

indeed contains fewer individuals and the corresponding exact

disparity value can therefore be less informative. Then, with

similar numbers of transfers, the “random” update heuristic

seems to be preferable to the “max. diversity” update heuristic.

The poor results obtained with RandomT & NoDiv show

that the “random” update heuristic is not sufficient to find

good trade-off solutions: the behavioral diversity objective

is necessary in this set-up, as it explicitly drives the search

towards individuals different from those already transferred,

thus probably increasing the accuracy of the approximated

STR disparity.

VII. DISCUSSION

A. Antagonism between efficiency and transferability

In our approach, controllers are evaluated in simulation

by a task-dependent fitness and a STR disparity value. As

we hypothesized that these 2 objectives are conflicting, we

proposed to evaluate individuals in a multi-objective way.

This antagonism has to be discussed according to the results

obtained in both set-ups. Some previous hints were shown in

[35] in a fully simulated set-up.

Our main result highlighting this antagonism is the dif-

ference of performances between the Control approach and

the Control approach + Diversity on the application with

the quadrupedal walking robot. Although the addition of a

diversity objective to the fitness function allows to find more

efficient solutions in simulation [15], the former approach

behaves clearly better in reality than the latter one. It indi-

cates that the most efficient solutions in simulation are not

transferable from the simulation to the physical quadrupedal

robot, because of the misleading fitness function in simulation.

Consequently, any optimization scheme only based on this

fitness function gives no guarantee that the best solutions are

efficient in reality, which empirically verifies our hypothesis

on the antagonism between efficiency and transferability for

this application.

Despite this antagonism, using a soft constraint based on

the STR disparity value could provide an alternative to multi-

objective optimization. The most popular method to handle

soft constraints in evolutionary computation is probably the

penalty method [13]; however such a method is highly depen-

dent on the threshold value used to determine if the constraint

is satisfied. Multi-objective optimization is another notable

way to deal with soft constraints by treating them as additional

objectives in a multi-objective manner [12], [13]. Handling a

constraint in such a way would be equivalent to the method

introduced in the present paper.

B. Towards an on-board transferability measure

In both applications, the transferability measure relies on

external information: the trajectory of the robot recorded with

CODA cx1 scanners. One could argue that such external

measures require heavy/costly experimental set-up which are

hardly compatible with bigger robots and that on-board senso-

rimotor informations should be preferred to compare simulated

and real behaviors.

Some recent results show that directly relying on sensor

informations can be a simple way to accurately compare be-

haviors in simulation [15]. Nevertheless, it is only meaningful

if the sensor values are accurately modeled in simulation,

sometimes despite significant amounts of noise. It is also ar-

gued in [7] that accurate quantitative comparisons between two

sensor time series is difficult because small initial disparities

can quickly lead to very different signals, which can lead to

prefer external measures for physical robots [8].

Another promising way is to exploit sensorimotor informa-

tions to obtain an accurate estimation of the trajectory by sen-

sor integration [4], [9]. The main drawback of such a method

is the drift between the real trajectory and the estimated one,

which can rapidly accumulate significant estimation errors. It

is sometimes pertinent to combine different types of sensors

(short-range distance sensors with a camera for instance) by

periodic repositioning of the estimation.

More recently, impressive results have been obtained on

wheeled robots using on-board visual odometry with very

accurate estimated trajectories [10], [45]. Such methods only

rely on a single camera [10], sometimes coupled with classic

inertial sensors [45], and appear to be robust and simple to

implement. It will be investigated in our future applications.

C. Modeling the fitness or the transferability

The use of surrogate models is increasing in robotics,

most of the time to directly approximate the fitness function

on the physical robot. Such approximations try to map the

relation between the parameters of the controller and the

fitness in reality by interpolating a global function from few

experimental data with Kriging-like methods. It then assumes

that close sets of parameters lead to close fitness values,

which can hardly be ensured with control structures like neural

networks for instance. Another issue concerns the number of

parameters introduced by Kriging methods. If the number of

input parameters is large, as is the case with classic control

structures used in ER like neural networks, Kriging models
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Fig. 20. Comparison between the behavioral distances: covered distance (mm, left) in the simple simulation and in the accurate one, along with the exact
STR disparity values computed on trajectories (right) of the best solutions obtained with each variant. The target numbers of transfers by run on average
are written above the variant names. The bFeat+DTraj variant behaves at best. The variant TrajOnly also behaves good with 25 transfers by run but finds
less efficient individuals regarding the covered distance in reality (Welch’s t-test p-value = 2 10−4) with 45 transfers by run. All the other variants behave
significantly worse. Error bars indicate one unit of standard deviation.

require numerous experiments on the robot to be properly

initialized.

Besides, as these approaches do not rely on any prior

information on the robot (contrary to simulation-based opti-

mization), it is convenient to begin the search from an initial

controller with a non-zero fitness [23], arguably to avoid

typical bootstrap problems. As indicated by the results on

both applications, the results obtained with a surrogate model

built on the control space indeed are highly dependent on the

landscape of fitness in reality. For realistic landscapes, several

transfer experiments will be needed for exploring and building

a sufficiently accurate surrogate model to avoid local maxima

without any prior knowledge.

By modeling the transferability function rather than the

fitness, the Transferability approach can exploit the simulation

model by relying on comparisons between behaviors (even

estimated by a simulation model) and not between controllers.

The mapping between the control parameters and the corre-

sponding behaviors can indeed be highly non-linear. Building

an approximation of the transferability function in the behavior

space then seems more appropriate and straightforward than

in the controller space [15], which cannot be done by directly

modeling the fitness. In fact, selecting one of these two ap-

proaches comes down to the availability of relevant simulation

models and, in practice, simulation models are often available

for robotic applications.

D. Upgrading the simulation from the STR disparity measure

At the end of a run performed with the Transferability

approach, the obtained surrogate model of the STR disparity

function gives a rough landscape of which parts of the simula-

tion are not well-modeled and which parts are realistic. It then

is possible to use clustering methods to notably extract which

kinds of behaviors are more or less linked to bad transferability

values. Depending on the complexity of the problem, the next

step, which consists to understand how the simulation model

makes these behaviors non-transferable and finally to improve

the model, must be conducted by interacting with experts in

robotics and mechanics.

VIII. CONCLUSION AND FURTHER WORK

This paper addressed the reality gap problem in the case

of controller optimization, a critical issue in Evolutionary

Robotics, which often happens when resorting to simulators.

We introduce the Transferability approach relying on an opti-

mization scheme that looks for not only good controllers but

also transferable ones. Controllers are evaluated by 3 main ob-

jectives in a multi-objective manner: a task-dependent fitness

and a simulation-to-reality disparity that estimates controller’s

transferability using a surrogate model. The approach has first

been compared on a T-maze experiment with the mobile e-

puck robot. It has been compared to a noise-based approach

inspired from Jakobi’s state-of-the-art methodology and to

more classic reality-based and simulation-based evolutionary
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Fig. 21. Comparison between two update heuristics and the lack/presence of the diversity objective: covered distance (mm, left) in the simple simulation
and in the accurate one, along with the exact STR disparity values (right) of the best solutions obtained with each variant. The target numbers of transfers
by run on average are written above the variant names. For the variants RandomT & Div and MaxDivT & Div, the disparities are lower than the threshold
D∗

treshold
= 1: the found best solutions show good transferability properties. The RandomT & NoDiv variant behaves clearly worse. Error bars indicate one

unit of standard deviation.

approaches. Better results were achieved by the Transferability

approach regarding both exact STR disparity and covered dis-

tance in reality with very few transfer experiments during the

optimization. A second application to an 8-DOF quadrupedal

walking robot has also been investigated and our approach

again finds controllers that are relevant regarding a walking

task and that transfer well to reality. Based on these successful

results, the approach appears to be a simple and relevant

method to efficiently cross the reality gap in Evolutionary

Robotics.

Our further prospects deal with the case where multiple

simulation models are available for a single application. Each

simulation model is a compromise between accuracy and

speed. In the case of very accurate and slow simulation

models, evolutionary computation is not competitive unless a

simplified simulator is designed. Nevertheless, evolving only

on the simplified simulator leads to higher reality gaps, despite

a faster optimization. One wonders if the Transferability

Approach can take advantage of such a set-up: an accurate

but slow simulator, a faster but inaccurate simulator and the

real system. There are several points to take into account

for a given controller: 1) is the simplified simulator accurate

enough to approximate its fitness well?; 2) otherwise, can an

approximation of its fitness be inferred by conducting few

experiments in the accurate simulation in the same way than

with the approximated disparity value in the second approach?;

3) does it transfer well from simulation(s) to reality? The

main addition in comparison to the approach presented here

consists in relying on a transferability measure between the

two simulators to determine which behaviors are well-modeled

in the simplified simulator and to approximate more accurate

fitness values for those which are not. In practice, the approach

could be applied to a similar set-up presented in [55] which

deals with control of an autonomous four-wheeled robot

during aggressive maneuvers at high velocity to assess the

Transferability Approach on a realistic robotic application.
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APPENDIX A

PARAMETERS OF THE TRANSFERABILITY APPROACH

Behavioral features bi

• sparse description of the behavior in simulation used

to compute the in silico metric bdist between simulated

behaviors;

• should allow to distinguish the different types of behav-

iors observed in simulation;

• could be inferred by conducting a principal component

analysis on numerous behavioral descriptors for a large

set of simulated behaviors.

Exact STR disparity function D∗

• distance computed between a simulated behavior and a

real one corresponding to the same controller;

• should allow to distinguish transferable behavior from

non-transferable behavior;

• based on data easy to obtain on the real robot (trajectory

or sensorimotor informations).

STR disparity threshold D∗

threshold

• threshold on the STR disparity function D∗;

• disparity values lower than D∗

threshold mean that the

corresponding behaviors are transferable;

• should be fixed empirically depending on the STR dis-

parity function used.

Diversity threshold τdiv

• threshold on the diversity value in simulation used by the

update heuristic of the surrogate model;

• controllers can be transferred onto the real robot if their

diversity value is greater than τdiv;

• should be roughly fixed in simulation to ensure an ap-

proximate number of transfer experiments in a run.


