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ABSTRACT

Aims. We present 11 high-precision photometric transit observations of the transiting super-Earth planet GJ 1214 b. Combining these
data with observations from other authors, we investigate the ephemeris for possible signs of transit timing variations (TTVs) using a
Bayesian approach.
Methods. The observations were obtained using telescope-defocusing techniques, and achieve a high precision with random errors
in the photometry as low as 1 mmag per point. To investigate the possibility of TTVs in the light curve, we calculate the overall
probability of a TTV signal using Bayesian methods.
Results. The observations are used to determine the photometric parameters and the physical properties of the GJ 1214 system. Our
results are in good agreement with published values. Individual times of mid-transit are measured with uncertainties as low as 10 s,
allowing us to reduce the uncertainty in the orbital period by a factor of two.
Conclusions. A Bayesian analysis reveals that it is highly improbable that the observed transit times is explained by TTV caused by
a planet in the nominal habitable zone, when compared with the simpler alternative of a linear ephemeris.
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Table 1. Log of the transit observations of GJ 1214 for this work.

Date Telescope Start End Number of Exposure Filter Airmass Scatter Aperture PSF area
instrument (UTC) (UTC) exposures time (s) mmag sizesa (px) (px2)

2010/07/06 DFOSC 05:01 06:44 33 150 I 1.40–2.18 0.97 21, 57, 77 1385
2010/07/14 DFOSC 00:56 05:59 142 80–90 I 1.33–2.02 1.18 19, 30, 46 1134
2010/08/02 DFOSC 00:25 04:31 154 60 I 1.24–1.87 0.99 15.5, 28, 46 755
2010/08/21 DFOSC 00:02 03:58 154 60 I 1.21–2.45 1.29 16, 26, 48 804
2011/06/03 DFOSC 02:33 05:11 101 60 R 1.61–1.21 1.36 16, 24, 45 804
2010/08/06 BFOSC 19:52 22:55 71 90 i 1.30–1.61 1.74 12, 20, 40 452
2011/08/25 BUSCA 19:52 22:58 123 90 g 1.19–1.30 3.20 8, 16, 24 201
2011/08/25 BUSCA 19:52 22:58 125 90 r 1.19–1.30 1.92 20, 55, 65 1257
2011/08/25 BUSCA 19:52 22:58 125 90 z 1.19–1.30 2.66 25, 35, 45 1963
2010/04/29 GROND 05:52 08:38 89 50 i 1.31–2.54 3.65 no defocus −

2010/04/29 GROND 05:52 08:38 90 50 r 1.31–2.54 4.80 no defocus −

Notes. (a) The three numbers are the apertures radii in pixels of the object aperture and the inner and outer edge of the sky annulus.

1. Introduction

The transiting exoplanet GJ 1214 b was discovered in 2009 by
the MEarth project1 (Charbonneau et al. 2008). This planet
transits a nearby M dwarf (Charbonneau et al. 2009), with a
mass 0.15 M⊙ and the planet is generally classified as a super-
Earth with a mass and radius (Mp = 6.37 M⊕ and Rp = 2.74 R⊕
according to Kundurthy et al. (2011), in this study we find
Mp = 6.26 M⊕ and Rp = 2.85 R⊕) between that of Earth and
Neptune, a type of planet that has no solar system analogue.
GJ 1214 b is one of the lowest temperature transiting exoplan-
ets known and, as it is also detectable with radial velocity (RV)
methods – a very interesting target for detailed study.

Due to the relatively low mean density of GJ 1214 b, ρp =

1.49 ± 0.33 g cm−3 in this study, it has been suggested to hold
some extended atmosphere or gaseous envelope. But the planet
composition in this mass and radius range is degenerate (Adams
et al. 2008), warranting further studies in order to determine its
composition. Defining what the atmosphere consists of can help
determine the planet composition. Rogers & Seager (2010) de-
scribes three possibilities for the interior and atmospheric com-
position of GJ 1214 b. It could be (1) a mini-Neptune with a
H/He gas envelope; (2) a “water world” with a water-rich and
ice-dominated interior and a water-vapour-dominated envelope;
or (3) a rocky planet with an atmosphere mainly consisting
of H2.

Recent results from among others the Kepler mission
(Latham et al. 2011) and gravitational microlensing (Gould et al.
2010) gives reason to believe that multiple systems are common.
It is therefore inherently interesting to look for traces of transit
timing variations in any transiting system and especially so in
GJ 1214, as the planet seems to be at the inner edge of the hab-
itable zone, with an equilibrium temperature of in the region of
393 to 555 K (Charbonneau et al. 2009), i.e. finding a planet in
a slightly larger orbit would be very interesting.

Additional planets can be revealed via their gravitational
effects on the transiting planet. This would result in telltale
systematic deviations in the mid-transit times from a linear
ephemeris, a phenomenon known as transit timing variation
(TTV) (Agol et al. 2005; Holman & Murray 2005). GJ 1214 b is
well-suited to such an analysis due to its short transits, allowing
precise measurements of mid-transit times, and its short period,
which means many transits are observable. One disadvantage is

1 https://www.cfa.harvard.edu/~zberta/mearth/Welcome.

html

its relative faintness, which could cause a loss of precision in the
measured transit times.

We have gathered photometric observations of 11 transits in
the GJ 1214 system, and modelled them to estimate the transit
times. Inclusion of results from the literature leads to a total time
interval of 833 days over which TTVs can be investigated. In the
following work we cast the problem of detecting a TTV signal as
a model selection problem and via Bayesian methods calculate
the probability that the data, as a whole, actually contain a TTV
signal.

In Sect. 2 we present the new data and their reduction, which
in Sect. 3 are analysed in order to obtain new transit times
and physical properties. Section 4 contains a description of the
Bayesian model selection process.

2. Observations and data reduction

We observed five transits of GJ 1214 b in the period of
2010 July 6th to 2011 June 3rd, using the Danish 1.54 m tele-
scope at ESO La Silla and the focal-reducing camera DFOSC.
The plate scale of DFOSC is 0.39′′ per pixel. The full field of
view is 13.7′ × 13.7′, but for each transit observation the CCD
was windowed down to reduce the readout time from around 90 s
to approximately 30 s. The four transits in 2010 were observed
through a Cousins I filter, while the 2011 transit was observed
in Johnson R. An observing log is given in Table 1.

The transits were observed with the telescope defocused, in
order to use longer exposure times whilst avoiding CCD satu-
ration. This approach allowed us to decrease the Poisson and
scintillation noise by exposing for a larger fraction of the time
during transit (see Southworth et al. 2009). The impact of flat-
fielding errors was minimised by the use of defocusing and by
autoguiding the telescope throughout the observations. The di-
ameters of the defocused point spread functions (PSFs) ranged
from 31 to 42 pixels.

We also observed one transit of GJ 1214 b using the 1.52 m
Cassini Telescope at the Loiano Observatory, Italy. The BFOSC
CCD imager was used, and was defocused with the same ap-
proach as taken for the Danish telescope observations (see
Southworth et al. 2010).

One transit was observed simultaneously in the g, r and z fil-
ters using the Calar Alto 2.2 m telescope and the BUSCA four-
beam CCD imager. A fourth dataset was obtained in the u-band
but, as expected, yielded a light curve which was too noisy to be
useful. For further discussion on the observing strategy we used
for BUSCA please see Southworth et al. (2012).
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Finally, one transit was observed in 2010 using the GROND
seven-beam imager on the 2.2 m MPI telescope at ESO La Silla.
The observations were performed without telescope defocusing.
Useful results could be obtained for only the r and i filters, with
the star proving too faint in the g, z and JHK channels.

The data were reduced using the pipeline described in
Southworth et al. (2009), which performs standard aperture
photometry with the /2  routine. A range of aper-
ture sizes were tried, and the ones which gave the least noisy
light curves were adopted (Table 1). The form of the transit is
insensitive to the choice of aperture sizes, and to the presence of
two faint stars within the sky annulus.

Comparison stars to be used for relative photometry were
chosen within the field, and the / routine determined
relative magnitudes for these and GJ 1214, from the given co-
ordinates and aperture radius. Potential comparison stars that
proved to be variable or too faint were discarded. Relative pho-
tometry of GJ 1214 was obtained against an optimally weighted
ensemble of comparison stars.

The resulting GJ 1214 light curve does not have a constant
magnitude out of transit, primarily due to changes in airmass
and intrinsic stellar variability. To correct any systematic trends,
the out-of-transit data points were fitted with a straight line.
Simultaneous optimisation of the comparison star weights and
the out-of-transit polynomial was used to obtain the final light
curves, which are shown in Fig. 1.

Three additional light curve were obtained from the
Exoplanet Transit Database3 (Poddaný et al. 2010). These were
contributed by Johannes Ohlert (2010/07/18) and Thomas Sauer
(2010/06/29 and 2010/07/07).

3. Light curve analysis

3.1. Analysis with JKTEBOP

The light curves were analysed with the 4 code
(Southworth et al. 2004a,b), originally developed as 
(Popper & Etzel 1981; Etzel 1981) for modelling light curves
of detached eclipsing binaries. The use of the code for exoplanet
transit light curves is discussed in detail in Southworth (2008).

The size of the planet relative to the size of the star is directly
related to the transit depth. models the sky projections of
the two objects as biaxial spheroids, dividing them into concen-
tric circles and assigning a limb darkening to each of the rings
before estimating the flux. With optical observations of a plan-
etary system, it is safe to assume that the secondary object, the
exoplanet, is dark, so the surface brightness ratio can thus be set
to zero. Using  we fitted for the inclination i of the orbit,
the sum and ratio of the fractional radii k = rp + r⋆ and rp/r⋆.
The fractional radii are rp = Rp/a and r⋆ = R⋆/a, where Rp

and R⋆ are the absolute planetary and stellar radii, respectively,
and a is the semi-major axis of the orbit. We also fitted for the
time of minimum of each light curve, Tmid, using a fixed orbital
period of P = 1.58040490 days (Berta et al. 2011). The mass ra-
tio, which only affects the shape of the ellipsoids describing the
components, was fixed at q = 0.0002, which is sufficiently close
to the value 0.00013 found in this paper. We found that changes,
less than one order of magnitude, in this value have a negligible
effect on the results.

2 Distributed within the  Astronomy User’s Library at
http://idlastro.gsfc.nasa.gov/
3 http://var2.astro.cz/ETD/index.php
4  is written in 77 and the source code is available at
http://www.astro.keele.ac.uk/~jkt/

Fig. 1. The 11 observed transit light curves of GJ 1214 b, plotted in the
same order as listed in the observing log in Table 1. For the observations
taken in multiple filters simultaneously the datapoints are coloured in
spectral order, i.e. blue for bluest etc.

Limb darkening (LD) affects the shape of a transit light
curve. LD will cause the bottom of the transit to have a curved
shape. We tried fitting four different LD laws: linear, square-
root, logarithmic and quadratic. LD coefficients can be found
from stellar atmosphere models given the effective temperature
and surface gravity. Only Claret (2000, 2004) provides LDCs
for stars as cool as GJ 1214 A. We used values for a star of
Teff = 3000 K and log g = 5.00 (cgs units).

We analysed the combined 2010 Danish telescope data, find-
ing that one LD coefficient could be included as a fitted param-
eter. We therefore fitted for the linear coefficient whilst holding
the nonlinear coefficient fixed at the theoretical value. For the
other datasets we had to fix both coefficients in order to avoid
unphysical results. The best fits to the Danish telescope data are
plotted in Fig. 2.

In order to obtain uncertainties in the fitted parameters we
first rescaled the error bars of the datapoints to give a reduced χ2
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Table 2. Photometric parameters of GJ 1214 from the best-fitting light curves to the 2010-season data from the Danish telescope.

LD law Linear Square-root Logarithmic Quadratic
r⋆ + rp 0.0812 ± 0.0030 0.0803 ± 0.0032 0.0805 ± 0.0033 0.0777 ± 0.0040
k 0.1222 ± 0.0014 0.1209 ± 0.0015 0.1212 ± 0.0016 0.1190 ± 0.0021
i 87.97+0.37

−0.28 88.12+0.42
−0.33 88.09+0.42

−0.35
88.50+0.78

−0.50
u 0.45 ± 0.06 0.05 ± 0.06 0.59 ± 0.06 0.28 ± 0.07
v 0.70 fixed 0.20 fixed 0.40 fixed
r⋆ 0.0724 ± 0.0027 0.0717 ± 0.0028 0.0718 ± 0.0028 0.0694 ± 0.0035
rp 0.00886 ± 0.00039 0.00866 ± 0.00042 0.00870 ± 0.00044 0.00826 ± 0.00055
σ (mmag) 1.18 1.18 1.18 1.18

Notes. σ is the rms scatter of the data around the best fit.

Fig. 2. Combined Danish telescope light curve of the 2010 data (top)
and the 2011 light curve (bottom), versus the best  fit (solid
lines 2010, dashed 2011) with the logarithmic LD law. The residuals
to the fits are plotted below, where the lines mark zero residual.

of unity for each transit light curve. This step is necessary be-
cause the data errors returned by the  algorithm are normally
too small. We then performed 1000 Monte Carlo simulations
(see Southworth et al. 2004b) on each light curve to derive the
errorbars in the fitted parameters quoted in Table 2.

The light curve from 2010/07/06 was unintentionally ob-
tained using an exposure time of 150 s, which is significant com-
pared to the duration of the ingress and egress. When fitting these
data we used the possibility within  to numerically inte-
grate the light curve model in order to obtain an unbiased fit
(Southworth 2011).

3.2. Physical properties of the system

It is possible to calculate the physical properties of the GJ 1214
system from our measured photometric parameters and from
published values of the stellar effective temperature, metal
abundance and orbital velocity amplitude. We obtained final
values for r⋆, rp and i from our results for the 2010 Danish
Telescope data. Each was calculated as the mean of the values
from the solutions using the four LD laws, with the uncertainty
being the quadrature sum of the largest individual uncertainty
plus the standard deviation of the four individual parameter val-
ues. For the star we adopted the temperature Teff = 3026±150 K
and orbital velocity amplitude K⋆ = 12.2 ± 1.6 m s−1 from

Charbonneau et al. (2009), and the metal abundance
[

Fe
H

]

=

+0.39 ± 0.15 from Rojas-Ayala et al. (2010).

The physical properties were then calculated by requiring
the properties of the star to match the tabulated predictions of
the DSEP stellar evolutionary models (Dotter et al. 2008). This
step was performed using the procedure outlined by Southworth
(2009). The DSEP model set was chosen because it is the only
one of the five sets used by Southworth (2010) which reaches to
sufficiently low stellar masses.

The input and output parameters for this analysis are given in
Table 3 and show a reasonable agreement with literature values.
The mass, radius and surface gravity of the star are given by M⋆,
R⋆ and log g⋆, respectively. The mass, radius, surface gravity
and mean density of the planet are denoted by Mp, Rp, gp and ρp,
respectively.

The measured physical properties will be subject to sys-
tematic errors as theoretical evolutionary models are not per-
fect representations of reality. Southworth (2009) found that
this systematic error was generally 1% or less for the masses
and radii of transiting planets and their host stars. In the case
of GJ 1214 this systematic error could be significantly larger,
due to the relatively poorer theoretical understanding of 0.2 M⊙
stars, but will still be significantly smaller than the statistical
uncertainties quoted in Table 3.

3.3. Orbital period determination

The times are given in barycentric Julian days (BJD), and have
been calculated from UTC with codes provided by Eastman
et al. (2010). By augmenting our measured Tmid values with ones
from the literature (Table 4), we are able to refine the orbital
ephemeris for GJ 1214, refitting for P and T0 the zero epoch:

Tmid = BJD(TDB) 2 455 320.535733 ± 2.1 × 10−5 (1)

+ 1.58040456 ± 1.6 × 10−7 × E

where E is the orbit count with respect to the reference epoch.
The reduced χ2 for this fit is 1.24. The estimated period is identi-
cal to the previous estimates, but the uncertainty on the period P
has been reduced by approximately a factor of two (Berta et al.
2011; Carter et al. 2011; Kundurthy et al. 2011). The fit and the
residuals are plotted in Fig. 3. Given the rather large spread in
data points compared with the period, one would not expect this
estimate of the period to be afflicted by significant systematic er-
ror. On the other hand the T0 could have systematic error, which
is handled in the later Bayesian analysis by marginalising out
this parameter.
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Table 3. Derived physical properties of the GJ 1214 system.

r⋆ 0.0713± 0.0037
rp 0.00862± 0.00059
i (deg) 88.17± 0.54
Teff (K) 3026± 150
[

Fe
H

]

(dex) +0.39± 0.15

K⋆ (m s−1) 12.2± 1.6
M⋆ ( M⊙) 0.150± 0.011
R⋆ ( R⊙) 0.216± 0.012
log g⋆ (cgs) 4.944± 0.013
Mp ( MJup) 0.0197± 0.0027
Rp ( RJup) 0.254± 0.018
gp (m s−2) 7.6± 1.5
ρp ( ρJup) 1.12± 0.25
a (AU) 0.01411± 0.00032

Notes. The upper part of the table contains the input parameters to the
property-calculation algorithm and the lower part the output parameters.

4. Transit timing variation as Bayesian model

selection

A system with a transiting planet enables the possibility of de-
tecting additional unseen planets in the timing data by TTVs,
that is, look for systematic trends in the residuals of Fig. 3. We
will in the following outline a method for quantitatively assess-
ing the probability of whether such a signal exists in the timing
dataset or not.

One could simply fit an appropriate function describing mu-
tual gravitational perturbations, and evaluate a measure like the
classical squared sum of residuals. But it is, in general, true that
a model with more free parameters will be able to fit noise bet-
ter, i.e. produce a lower squared sum of residuals by fitting non-
physical features. The problem is especially prominent when the
sought effect is on the same order as the uncertainty in the data,
in which case it is not easy to determine how much of an im-
provement in the squared sum of residuals one should demand
for a more complex model to be plausible.

One is forced to penalise models for having too many pa-
rameters. Thus the problem is no longer a problem of param-
eter estimation, but a problem of model selection. One needs
to apply Occam’s razor. One formal way of doing so is via
Bayesian model selection, which is completely analogous to, but
distinct from, Bayesian parameter estimation. Whilst it might
not be possible to estimate the parameters of a model with any
certainty, a wide range of plausible parameters which do im-
prove the squared residuals by some amount would lend credi-
bility to the notion that the model in question is true. How true
can be expressed as a probability.

The search for a TTV signal can conveniently be cast as
a model selection problem. If there is a TTV signal there has
to be some kind of pattern in the residuals listed in Table 4.
The expected signal from perturbation from another body can
be calculated with an N-body orbital mechanics code.

4.1. Bayesian estimation

4.1.1. Parameter estimation

Following the development in (Chap. 3 Gregory 2005), Bayesian
parameter estimation can conceptually be thought of as testing
a range of mutually excluding hypotheses Hi, i.e. one assumes a

Table 4. Mid-transit times from the literature and the present work.

Tmid Epoch Residual (O–C) Ref.
BJD(TDB) ×10−4

245 4980.748682 ± 0.000104 –215 –0.702161 3
245 4980.748570 ± 0.000150 –215 –1.822165 4
245 4983.909820 ± 0.000160 –213 2.586553 4
245 4983.909507 ± 0.000090 –213 –0.543450 3
245 4988.650808 ± 0.000049 –210 0.329618 4
245 4999.713448 ± 0.000115 –203 –1.589879 3
245 5002.874670 ± 0.000190 –201 2.538827 4
245 5269.962990 ± 0.000160 –32 2.025110 4
245 5288.928200 ± 0.001100 –20 5.577393 4
245 5296.830130 ± 0.000230 –15 4.649176 4
245 5307.892454 ± 0.000271 –8 –0.430327 2
245 5315.794693 ± 0.000080 –3 1.731454 4
245 5315.794850 ± 0.000230 –3 3.301455 4
245 5315.794968 ± 0.000930 –3 4.481454 1
245 5315.795050 ± 0.000660 –3 5.301451 1
245 5315.794564 ± 0.000066 –3 0.441452 3
245 5318.955230 ± 0.000170 –1 –0.989833 4
245 5326.857404 ± 0.000110 4 0.521950 3
245 5334.759334 ± 0.000066 9 –0.406266 3
245 5353.724539 ± 0.000307 21 3.096014 2
245 5353.723870 ± 0.000180 21 –3.593988 4
245 5356.884950 ± 0.000150 23 –0.885273 4
245 5364.787000 ± 0.000150 28 –0.613490 4
245 5375.849970 ± 0.000130 35 0.767009 4
245 5377.431461 ± 0.000420 36 11.631362 1
245 5383.752050 ± 0.000130 40 1.338790 4
245 5383.751635 ± 0.000160 40 –2.811207 1
245 5383.752143 ± 0.000260 40 2.268790 2
245 5385.332107 ± 0.000610 41 –2.136850 1
245 5391.654105 ± 0.000059 45 1.660576 4
245 5391.654029 ± 0.000160 45 0.900575 1
245 5396.395438 ± 0.000200 48 2.853647 1
245 5410.618895 ± 0.000100 57 1.012855 1
245 5415.360098 ± 0.000180 60 0.905925 1
245 5429.583692 ± 0.000160 69 0.435133 1
245 5715.637033 ± 0.000170 250 1.583700 1
245 5799.397830 ± 0.000500 303 –4.865397 1
245 5799.398465 ± 0.000270 303 1.484603 1
245 5799.398686 ± 0.000270 303 3.694603 1

References. 1: This work, 2: Kundurthy et al. (2011), 3: Berta et al.
(2011) and 4: Carter et al. (2011).

parametrised model M. This model can be thought of as a logical
disjunction (“or”) M = H1 + H2 + ... where the hypothesis Hi

implies that a given parameter θ has the particular value θi.
For mutually exclusive probabilities the sum rule applies.

Assuming that the parameter θ does indeed take a value, one
can write
∑

i

p(Hi|M) = 1. (2)

From Bayes’ theorem one learns that

p(Hi|D,M) =
p(Hi|M)p(D|Hi,M)

p(D|M)
(3)

where the left hand side p(Hi|D,M) is the posterior probability
of Hi, i.e. the probability of the hypothesis Hi in the light of the
data D. The term p(D|Hi,M) is the probability of the data D if
Hi true. This quantity is known as the likelihood of Hi. The term
p(Hi|M) is known as the prior and represents the probability one
assigns to Hi in the light of one’s model before any data becomes

A10, page 5 of 10



A&A 549, A10 (2013)

 4800

 5000

 5200

 5400

 5600

 5800

J
u
lia

n
 D

a
y
s
-2

4
5
0
0
0
0

Best-Fit
Kundurthy et al. (2011)

Berta et al. (2011)
Carter et al. (2011)

This work

-45

 0

 45

-300 -200 -100  0  100  200  300

R
e
s
id

u
a
l 
in

 s

Epoch

Fig. 3. Times of mid-transit from the literature
and this work. In the upper plot the errorbars
are smaller than the point marker and are thus
not shown. The lower plot shows the residuals
on a different scale. Some of the observations
are taken with instruments that simultaneously
observe in several filters so some of the data
points coincide in time.

available. Finally the term in the denominator p(D|M) is known
as the global likelihood or the evidence.

Based on assumptions one can deduce the value of p(D|M)

∑

i

p(Hi|D,M) =

∑

i p(Hi|M)p(D|Hi,M)

p(D|M)
= 1. (4)

Thus

p(D|M) =
∑

i

p(Hi|M)p(D|Hi,M). (5)

That is, the denominator, which does not depend on the
individual hypotheses Hi, is the sum of the numerator over Hi.
The process of summing over all the hypothesis is known as
marginalisation. It is clear that the evidence serves as a normal-
isation constant. For parameter estimation this normalisation is
unimportant, as in most cases one simply seeks the maximum
posterior value without regard to normalisation. But for model
selection this evidence term is important.

4.1.2. Model selection

Model selection is carried out following the exact same pro-
cedure as above, only assuming a disjunction of models I =
M1 + M2 + ... + MN , instead of a disjunction of hypotheses.

Bayes’ theorem now reads

p(Mi|D, I) =
p(M|I)p(D|Mi, I)

p(D|I)
(6)

one immediately recognises the second term in the numerator
as the evidence term from Eq. (5). Just as the probability of a
parameter is proportional to the likelihood times the prior, the
probability of a model is proportional to the evidence times the
prior. The denominator in Eq. (6) can be calculated like the evi-
dence in Eq. (5), assuming that one of the Mi is the true model. In
other words the probability of a model is given by marginalising
over all the parameters in the model.

Often it is more convenient to work with odds ratios O and
Bayes factors B defined as

Oi j =
p(Mi|I)

p(M j|I)

p(D|Mi, I)

p(D|M j, I)
=

p(Mi|I)

p(M j|I)
Bi j. (7)

Assuming that

∑

i

p(Mi|D, I) = 1 (8)

one can write the probabilities of the individual models as

p(Mi|D, I) =
Oi1
∑

j O j1

· (9)

It is crucial to notice that these odds ratios implicitly result
in an Occam’s razor. One may notice that the evidence term
in Eq. (5) takes the form of an average of the likelihood over
the prior. Hence penalising complicated models by their unused
prior space, e.g. large swathes of prior space with negligible like-
lihood, will pull down the average of the likelihood over the
prior. In other words, the more plausible model is the one that
makes more sharp predictions with fewer adjustable parameters.
Note that the form of the priors and the prior ranges are as much
part of the model specification as the functional form of the like-
lihood function, which is no surprise given that probabilities are
purely a function of one’s state of knowledge. There is nothing
inherent in nature about probabilities. Also note that assigning
probabilities according to Eq. (9), i.e. normalising to a total sum
of one, implicitly assumes that one of the models is true.

4.1.3. MultiNest

The mainstay of Bayesian posterior distribution evaluation has
for many years been Monte Carlo methods, in particular Monte
Carlo Markov chain (MCMC) algorithms. Unfortunately it turns
out that most MCMC incarnations generally have trouble accu-
rately estimating the evidence term, in particular when the pos-
terior has multiple modes. Indeed many of the various MCMC
packages available do not directly calculate the evidence term.

As noted before, the estimation of parameters does not
require one to calculate the evidence term, but model selec-
tion does. A recent innovation in Monte Carlo methods is the
MultiNest algorithm, which is specifically designed to accu-
rately evaluate evidences (Feroz & Hobson 2008; Feroz et al.
2009).

A10, page 6 of 10

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201219996&pdf_id=3


K. B. W. Harpsøe et al.: The Transiting System GJ1214

4.2. Application of Bayesian model selection to TTV search

TTVs arise from the dynamics of a planetary system if there
is more than one planet in the system. But as it is commonly
known, the three body problem and higher is chaotic over long
time scales. Such a signal could show up as a change in apparent
orbital period, or the phase of the orbit.

Given these ambiguities we have then chosen to frame the
search for a TTV signal as a Bayesian model selection problem.
To every transit we observe we can unambiguously assign an
epoch, given prior information on the orbital period, which in
the case of GJ 1214 b is approximately 1.5804 days. We have
calculated the probability of the linear no-TTV model versus
models with TTV simulated with an N-body code.

4.2.1. Non-TTV model

Assuming no transit timing variation, we would expect that the
relation between the time of mid-transit and the epoch is per-
fectly linear. In the Bayesian framework presented above, given
the distribution of errors and the prior ranges, we can calculate
the probability of this particular model itself and compare it di-
rectly to the probability of the model with a TTV signal.

As the prior ranges are included in the overall posterior prob-
abilities of the models it is necessary to assign ranges to these
priors, i.e. the posterior probability takes the form of an average
of the likelihood over the prior; see Eq. (5).

The parameter T0 in both the models is related to the defini-
tion of the epoch. It is simply the Julian date of the mid-transit of
epoch 0. When the epoch is defined, this quantity is in principle
known, but we cannot determine it exactly; hence, we introduce
a systematic error. In a Bayesian framework we can take this
into account by marginalising out T0. The prior range of T0 has
been chosen to correspond to the largest error in the two mea-
surements that pertain to epoch 0 in Table 4.

4.2.2. TTV models

Unfortunately there is no known analytic solution to the general
three body problem. Hence, to calculate the TTV arising to a
third perturbing body in the system one has to rely on numeri-
cal orbital integration codes. One such code is S (Levison
& Duncan 1994), which has been employed here. For our pur-
poses we have adapted the FORTRAN code used in Nesvorný
& Morbidelli (2008), with this adapted code we where able to
satisfactorily reproduce results in that article.

For the purpose of this investigation it was assumed that
GJ 1214 b is in a circular orbit, which is likely given the results in
Charbonneau et al. (2009) where the eccentricity is estimated to
be less than 0.27. Further we assume that GJ 1214 b is perturbed
by an planet in a coplanar circular orbit.

Given a trial mass m, period P and mean longitude λ of the
hypothetical perturbing planet, and assuming the time of first
transit to be t = 0, the provided code calculates the time of all
future transits taking into account the gravitational interaction
between the planets. In the simple case of two coplanar circu-
lar orbits the argument of periapsis simply determines the angu-
lar separation of the two planets at the start of the integration.
The standard deviation of the TTV signal as a function of these
parameters can be calculated numerically as done in Fig. 4.

The majority of perturber parameter space will give rise to
negligible TTV, but from Fig. 4 two regions of perturber pa-
rameter space which can give rise to significant TTV, compa-
rable to the uncertainty of our data, can be identified. One region

Fig. 4. Standard deviation, in units of seconds, of the TTV signal of
GJ 1214 b calculated for different masses of the perturber. The various
mean motion resonances are clearly visible. The blue shaded area marks
perturber orbits that would make the orbit of GJ 1214 b unstable.

consists of periods in the range from the 2:1 resonance, at a rel-
ative period of 0.5, to the inner edge of the instability strip. The
other region is from the outer edge of the instability strip to the
2:1 resonance, at a relative period of 2. In both of these regions,
perturbers down to a mass of about 0.1 Earth mass will give rise
to TTV of a second or more. Hence we will use these ranges
as prior ranges in the model selection. The two regions will be
treated as two different models to be tested against each other.
The upper mass range for these two models will be set by the
accuracy of radial velocity data from Charbonneau et al. (2009),
where radial velocity data with a accuracy of about 10 m/s were
presented. We estimate that in the outer model, perturbers heav-
ier than 6 Earth masses are excluded and for the inner model,
perturbers heavier than 5 Earth masses are excluded by RV data.
The two TTV models are presented in Table 5 together with the
non-TTV (i.e. linear) model, and their priors.

4.3. Discussion

The final results of these three models have been summarised
in Table 5, along with the prior ranges of the parameters. We
conclude that there is a very strong preference for the no-TTV
model, given the calculated overall probabilities of the three
models, because the relatively low quality, in the form of large
uncertainties, of the available data does not allow us to reach
complicated conclusions.

It should be noted that posterior probability of the model in-
cludes these prior ranges, hence the probability of the model can
be thought of as the probability that a planet in this part of pa-
rameter space explains the transit times of GJ 1214 b. But note
that the probability of a model is normalised by the prior vol-
ume, so a model with larger prior ranges or more parameters
will be less probable, unless heavily supported by data. Large
prior ranges are equivalent to lack of prior knowledge, hence one
needs strong evidence to accept a complicated model in absence
of prior knowledge.

MultiNest is in essence a Monte Carlo code and it does pro-
duce posterior samples, which can be analysed similarly to the
samples produced by conventional Monte Carlo codes to pro-
duce estimates of the posterior probability of the parameters and
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Table 5. Table of parameters for the non-TTV and two TTV models that have been analysed.

Parameter Prior range Prior type Mean St. Dev. MAP ln(evidence) Probability
Linear Tmid = P · E + T0 134.98 0.9999
T0

a ±0.0002 Uniform 2 455 320.535732 2 455 320.535533
P in days ±0.0000002 Uniform 1.580405 0.000015 1.580340

Interior perturer: Tmid = TTV(a,m, λ, E) + T0 122.09 3 × 10−6

T0
a ±0.0002 Uniform –0.000003 0.0001 0.0001
λ 0−2π Uniform 3.1 1.2 1.9
P in days 0.76–1.23 Jeffrey 0.9 0.1 0.9
m in M⊙

b 0.0000003–0.0000135 Uniform 0.0000009 0.000001 0.0000006

Exterior perturber: Tmid = TTV(a,m, λ, E) + T0 122.71 5 × 10−6

T0
a ±0.0002 Uniform 0.000002 0.0001 0.00004
λ 0−2π Uniform 3.1 1.4 6.0
P in days 1.91–3.18 Jeffrey 2.7 0.3 2.7
m in M⊙

b 0.0000003–0.000018 Uniform 0.0000002 0.000002 0.0000005

Notes. (a) Nuisance parameter marginalised out. (b) These are scale parameters and should have a Jeffrey prior according to Gregory (2005).
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Fig. 5. Marginal probability and conditional probabilities for the TTV model assuming an exterior perturber from MultiNest. The parameter T0 is
a nuisance parameter, which is integrated out, hence the marginal and conditional probabilities have not been plotted.

their correlations. This has been done in Figs. 5 and 6 for the two
TTV cases, respectively.

The posterior estimate of the period P in the no-TTV shows
good agreement with the estimate produced in Sect. 3.3. To eval-
uate the evidence term we have marginalised over a range of off-
sets to take account for the uncertainly in the timing of the zero
epoch.

The plot of the posterior probabilities in Figs. 5 and 6 shows
the marginal probabilities of the parameters of a perturbing
planet, assuming that the data is explained by a perturbing planet

within the prior ranges. These marginal probabilities show pref-
erence for a light planet (small m). The gaps in the marginal
posterior of the period P occurs at strong resonances that would
give rise to TTV much larger than what is observed.

5. Conclusions

In this paper we have presented and analysed 11 new tran-
sit light curves of the exoplanet GJ 1214 b. In addition new
analyses of three previously published transits are presented.
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Fig. 6. Marginal probability and conditional probabilities for the TTV model assuming an interior perturber from MultiNest. The parameter T0 is
a nuisance parameter, which is integrated out, hence the marginal and conditional probabilities have not been plotted.

With these new data it has been possible to improve the pre-
viously estimated ephemeris and physical properties of GJ 1214
and GJ 1214 b. The calculated physical properties are consistent
with previously published values and the uncertainty in the or-
bital period has been reduced by a factor of approximately two
– P = 1.58040456 ± 1.6 × 10−7.

Furthermore a stringent analysis, incorporating available
prior knowledge in the form of orbital mechanics and previous
RV investigations, of whether transit timing variation can ex-
plain the data has been undertaken via Bayesian methods.
Specifically we have calculated the probability of three models
for explaining the data, two with a TTV and one without, as-
suming a priori that one of the models is true. This analysis has
revealed that the models with TTVs are highly improbable com-
pared to the simple model assuming no TTV. That is, the given
data does not allow us to conclude that there is a planet in the
mass range 0.1–5 Earth-masses and the period range 0.76–1.23
or 1.91–3.18 days. To be able to reach such conclusions we
would need many more consistent data points and/or higher
accuracy.

A planet with a greenhouse warming and albedo similar to
Earth at a period of approximately 4.5 days in the GJ 1214 sys-
tem, corresponding to a period relative to GJ 1214 b of 3, would
have a surface temperature of about 80 ◦C. Conversely a planet
in this orbit with an albedo similar to Venus and a greenhouse
warming of 0 would have a surface temperature of about 0 ◦C.
Hence such a planet could be at the inner or outer edge of the
habitable zone of GJ 1214 b depending on the parameters – for
high albedo and/or low greenhouse warming the habitable zone
overlaps with the region of parameter space that can reasonably

be investigated with a transit timing accuracy on the order on
10 s; see Fig. 4. Because of the orbital resonance, habitable
planets down to Mars-mass could potentially be revealed in the
GJ 1214 b system with the already achieved timing accuracy. To
investigate the habitable zone for planets more similar to Earth,
a much higher accuracy on the order of 0.01 s is called for.
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