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THE TRANSITION MATRIX BETWEEN THE SPECHT AND WEB BASES IS

UNIPOTENT WITH ADDITIONAL VANISHING ENTRIES

HEATHER M. RUSSELL AND JULIANNA S. TYMOCZKO

Abstract. We compare two important bases of an irreducible representation of the symmetric group: the
web basis and the Specht basis. The web basis has its roots in the Temperley-Lieb algebra and knot-theoretic
considerations. The Specht basis is a classic algebraic and combinatorial construction of symmetric group
representations which arises in this context through the geometry of varieties called Springer fibers. We
describe a graph that encapsulates combinatorial relations between each of these bases, prove that there is
a unique way (up to scaling) to map the Specht basis into the web representation, and use this to recover a
result of Garsia-McLarnan that the transition matrix between the Specht and web bases is upper-triangular
with ones along the diagonal. We then strengthen their result to prove vanishing of certain additional entries
unless a nesting condition on webs is satisfied. In fact we conjecture that the entries of the transition matrix
are nonnegative and are nonzero precisely when certain directed paths exist in the web graph.

1. Introduction

In this paper we study two closely-related pairs of objects: 1) graphs equipped with an edge-labeling
that represents the action of certain permutations, and 2) natural bases for representations of the symmetric
group. Using properties of the graphs, we prove that the bases are related by a transition matrix that is
upper-triangular with ones along the diagonal. Our presentation is combinatorial, though the underlying
motivation is geometric and representation-theoretic (see below, or for more detail [2, 5, 18, 30, 32]).

The vertices of the graphs we study are classical combinatorial objects. In one graph, the vertices are
standard Young tableaux of shape (n, n): in other words they are ways to fill a 2 × n grid with the integers
1, 2, . . . , 2n so that numbers increase left-to-right in each row and top-to-bottom in each column. Standard
Young tableaux are fundamental objects not just in combinatorics but also in representation theory and
geometry (see, e.g., Fulton’s book for an overview [9]). They arise in our context as a geometrically-natural
characterization of the cells in a topological decomposition of a family of varieties called Springer fibers
[10, 28, 29, 33].

In the second graph, the vertices are webs. Webs are drawn as arcs connecting pairs of integers 1 ≤
i < j ≤ 2n on the number line. One other name is noncrossing matchings; as this suggests, these arcs
must not intersect each other. In the literature, the webs we have just described are also called sl2 webs
or Temperley-Lieb diagrams, and have been studied extensively [13, 15, 21, 27]. In general, there are webs
for each slk that diagrammatically encode the representation theory of U(slk) and its quantum deformation
(cf. [3]). In the quantum context, webs give rise to knot and link invariants including the Jones polynomial
[14, 25]. Webs for other Lie types have also been studied [20].

This paper focuses on the algebraic applications of webs and tableaux rather than the geometric appli-
cations. Consider webs as a formal basis of a complex vector space. This vector space carries a natural
S2n-action coming from the category of Uq(sl2) representations (described further below). The resulting
web representation is irreducible and in fact is the same as the irreducible S2n-representation on the classic
Specht module of shape (n, n), whose basis of Specht vectors is naturally indexed by the standard Young
tableaux of shape (n, n) [24, 28, 29].

Relating different bases of symmetric group representations is an extremely fertile field with a long tra-
dition in symmetric function theory [22, Sections I.6 and III.6]. More recently Kazhdan-Lusztig and others
compared the Springer basis to the Kazhdan-Lusztig basis, and in fact the Kazhdan-Lusztig polynomials
encode the transition matrix between those bases [10, 16, 17]. Garsia-McLarnan relate the Kazhdan-Lusztig
and Specht bases, showing the change-of-basis matrix with respect to a certain ordering of basis elements is
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upper-triangular with ones along the diagonal [11, Theorem 5.3]. In the context of this paper, the Kazhdan-
Lusztig and web bases coincide [7], but this is not true in general [12]. Webs in our context also coincide
with the dual canonical bases for certain tensor products of Uq(sl2) representations, but again this is not
true of webs for slk when k ≥ 3 [6, 19].

This paper asks: how are the web basis for sl2 and the Specht basis related? This question has been
indirectly addressed via the study of the Kazhdan-Lusztig and dual canonical bases and their relationships
to the Specht and similar bases [11, 26]. The perspective of webs gives us new information about change-
of-basis coefficients in the sl2 case and provides a foundation for studying more general web and Specht
bases.

To relate these bases, we construct a web graph and a tableau graph with vertices of webs and standard
Young tableaux respectively. Two standard tableaux have an edge between them in the tableau graph
if one can be obtained from the other by exchanging i and i + 1. This graph also appears in geometry,
where it encodes information about the components of Springer fibers [23, Definitions 6.6 and 6.7] and in
mathematical biology, where it encodes matchings of complementary base pairs of DNA [31]. Similar but
different graphs occur naturally in other contexts, including combinatorics (for instance the Bruhat graph,
see for an overview [1, Chapter 2]) and geometry (where it characterizes geometric relationships between
components of Springer fibers [8]).

The web graph requires more technical background to describe explicitly so we defer details to Section 2.
Intuitively the web representation can be thought of as coming from first twisting two adjacent strands in
the web and then resolving according to traditional skein relations [28, Theorem 5.9]. The web graph has a
directed edge from one web w to another w′ if this twisting-and-resolving process results in the combination
w + w′ and if w′ has more nested arcs than w.

Our first main result is Theorem 2.2, which proves that the web graph and the tableau graph are isomorphic
as directed graphs via the traditional bijection between webs and standard tableaux [10]. We then use earlier
results about the tableau graph [23] to conclude that the graphs are directed, acyclic graphs with a unique
greatest element and a unique least element. Thus the reachability condition within the graph induces a
poset structure on both webs and tableaux.

The language of tableaux better illuminates some properties of the graph while the language of webs is
better suited to demonstrate other properties. For instance Section 3 shows that the tableau graph is a
subgraph of the Bruhat graph. From this perspective Corollary 3.9 proves that distance in the tableau graph
is measured by the number of inversions in certain permutations corresponding to tableaux. From the other
perspective Section 4 describes a way to compute distance graphically using webs: distance from the origin
is measured by the amount of nesting within a web. This allows us to interpret the partial order in terms of
nesting and unnesting, which occupies the rest of Section 4.

As an application, we study the transition matrix between the web basis and the Specht basis. To
construct this matrix, we explicitly give an S2n-equivariant isomorphism from the Specht module to web
space, and in fact prove in Corollary 5.4 that this equivariant isomorphism is essentially unique. In an earlier
paper, the authors constructed a map of representations from web space to the Specht module [29, Lemma
4.2], so we conclude that the previous map is the inverse of the one defined in this paper.

Our final results identify the Specht basis with its image in web space under this equivariant isomorphism
and then analyze the transition matrix between the Specht and web bases. Theorem 5.5 proves that the
transition matrix is upper-triangular with ones along the diagonal, which Garsia-McLarnan proved earlier
using the Kazhdan-Lusztig basis [11]. Using our framework, we strengthen this result in Theorem 5.7 which
shows that in addition the (w,w′) entry is zero unless w � w′ according to the partial order induced by the
web graph.

We make two conjectures that are supported by all current data: 1) For all w � w′ the (w,w′) entry is
nonzero, and 2) all entries in the transition matrix are nonnegative. We also conjecture that similar results
hold for webs for sl3.

The second author was partially supported by NSF DMS-1362855. The authors gratefully acknowledge
helpful comments from Sabin Cautis, Mikhail Khovanov, Greg Kuperberg, Brendon Rhoades, Anne Schilling,
and John Stembridge.
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2. Preliminaries on Webs and Tableaux

2.1. Young tableaux and Specht modules. Let m ∈ N and let λ = (n1 ≥ n2 ≥ . . . ≥ nk) denote a
partition of m. A Young diagram of shape λ is a top- and left- justified collection of boxes where the ith row
has ni boxes. In this paper we focus on the case where m = 2n for some positive integer n and where the
partition λ = (n, n). In this case Young diagrams of shape λ have two rows of equal length.

A Young tableau of shape λ is a filling of the Young diagram of shape λ with the numbers {1, . . . ,m} such
that every number occurs exactly once. If the numbers increase strictly from left to right along rows and
from top to bottom along columns, the tableau is standard. Denote by Tn the set of standard Young tableaux
of shape (n, n). We remark that the number of elements of Tn is the nth Catalan number Cn = 1

n+1

(

2n
n

)

.
Let S2n be the symmetric group consisting of permutations of 2n elements. Denote by si the permutation

that transposes i and i + 1 and leaves all other values fixed. It is natural to permute entries of tableaux as
follows: for each Young tableau T define si · T to be the Young tableau obtained by swapping entries i and
i + 1 in T . However, depending on the entries in T it is possible that T ∈ Tn while si · T /∈ Tn. In other
words this action does not preserve the subset of standard Young tableaux.

Specht modules were developed in essence to turn this into a well-defined action of the symmetric group.
Consider the complex vector space V Tn with basis indexed by the set of standard Young tableaux Tn. Given
T ∈ Tn we denote the corresponding vector in V Tn by vT . The vector space V

Tn is called the Specht module
for the partition (n, n).

The Specht module V Tn is actually a subspace of a larger vector space generated by equivalence classes of
tableaux called tabloids. A tabloid is an equivalence class of tableaux up to reordering of rows. Denote the
tabloid containing a specific tableau T by {T }. The Specht vector vT corresponding to a (not necessarily
standard) tableau T is defined as

vT =
∑

σ∈Col(T )

sign(σ){σ · T }

where Col(T ) is the group of permutations that reorder the columns of T . The Specht module V Tn is the
span of the Specht vectors, and it has basis given by the vectors corresponding to standard tableaux.

The natural symmetric group action on tableaux described above preserves tabloids and thus acts on the
Specht module. In fact the Specht module is irreducible under this symmetric group action. We will need
the following facts about this action.

• Let T be a standard Young tableau of shape (n, n) and let σ ∈ S2n be a permutation for which σ ·T
is also a standard Young tableau. Then the action on Specht vectors satisfies

(1) σ · vT = vσ·T .

(See e.g. [9, Exercise 3, page 86].) We remark that if si ·T /∈ Tn then it is still true that σ ·vT = vσ·T
but the vector vσ·T is no longer a basis vector of the Specht module.

• Let T0 be the standard Young tableau of shape (n, n) whose top row is filled with the odd numbers
1, 3, 5, . . . , 2n−1 and whose bottom row is filled with the even numbers 2, 4, 6, . . . , 2n. Then for each
odd i = 1, 3, 5, . . . , 2n− 1

(2) si · vT0
= −vT0

.

To see this, observe that if T0 is the column-filled tableau defined above then si ∈ Col(T ), and so
the claim holds.

2.2. Webs. Next we describe webs and the S2n-action on web space. A web on 2n points is a nonintersecting
arrangement of arcs above a horizontal axis connecting 2n vertices on the axis. We enumerate the vertices
from left to right and reference arcs according to their endpoints, so (i, j) is in the web w if i < j and vertices
i and j are connected by an arc in w. We sometimes know the endpoints of an arc but not their order, in
which case we use the notation {i, j}. The figures typically do not number the vertices in webs. Denote the
set of all webs on 2n points by Wn. Like standard Young tableaux of shape (n, n) the set Wn is enumerated
by the Catalan numbers.

Let VWn be the complex vector space with basis indexed by the set of webs Wn. Given a web w ∈ Wn

we denote the corresponding vector in VWn by w. This differs from the notational convention for vectors in
V Tn because we consider permutations acting both on the set Tn and the vector space V Tn and these actions

3



only sometimes coincide. Indeed only the Specht module V Tn admits a true group action. By contrast there
is only one action of S2n on the vector space VWn .

To define this action choose w ∈ VWn and si ∈ S2n. The image si · w is:

si · w =















−w if (i, i+ 1) is an arc in w, and otherwise

w + w′ where w′ differs from w only in the two arcs incident to i and i+ 1,
with w containing {i, j} and {i+ 1, k} and w′ containing (i, i+ 1) and {j, k}

Note that the relative order of i, j, and k determines if these arcs are nested or unnested.
With respect to this action VWn is an irreducible representation and in fact coincides with the represen-

tation on the Specht module [24, 29]. One can also construct and study this representation via skew Howe
duality [3].

2.3. The tableau graph and the web graph. We now construct two graphs, one with vertices given by
standard Young tableaux and the other with vertices given by webs. Edges will come from the S2n-action
on each object. We will then prove that these two graphs are isomorphic as directed graphs.

Let ΓTn be the graph whose vertex set is Tn with an edge between T and T ′ if and only if there is a simple
transposition such that si · T = T ′. We typically consider the graph to have labels on the edges, and label
the edge between T and T ′ by si if si · T = T ′. We also consider the directed graph with same vertex set

and edge set as ΓTn but with each edge directed T
si−→ T ′ if i is below i+1 in T . We use the same notation

for both graphs, and call each the tableau graph. Figure 1 shows ΓT3 .

1 2 3
4 5 6

1 2 4
3 5 6

1 2 5
3 4 6

1 3 4
2 5 6

1 3 5
2 4 6

s3

s2s4

s4s2

s3

s2s4

s4s2

Figure 1. The (3, 3) tableau and web graphs

Let ΓWn be the directed graph with vertex set Wn and a labeled, directed edge w
si−→ w′ between

w,w′ ∈ Wn if and only if both

• si · w = w + w′ and
• w has unnested arcs (j, i) and (i+ 1, k).

(The first condition is a necessary condition for the edge to exist and the second determines its direction.)
We call ΓWn the web graph. Figure 1 shows ΓW3 .

Remark 2.1. Note that the target endpoint w′ of an edge w
si−→ w′ in the web graph must contain the arc

(i, i+ 1). Moreover the arc (i, i+ 1) is nested under the arc (j, k).

We use an explicit combinatorial bijection ψ : Tn → Wn between standard Young tableaux and webs
that arises from geometric considerations [10]. Given T ∈ Tn the corresponding web ψ(T ) is constructed by
the following process. Begin with 2n evenly spaced vertices on a horizontal axis. Starting with the leftmost
number in the bottom row of T , connect the corresponding vertex to its nearest unoccupied lefthand neighbor.
Repeat this process moving from left to right across the bottom row of T . For example, recall that T0 is the
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standard tableau whose ith column is filled with 2i − 1 and 2i for each i and define w0 to be the web with
arcs (1, 2), (3, 4), . . . , (2n− 1, 2n). Then

ψ(T0) = w0.

Figure 1 shows more examples: the map ψ sends each vertex in the tableau graph to the corresponding
vertex in the web graph.

In fact the map ψ induces an isomorphism between the directed graphs ΓTn and ΓWn as we now prove.

Theorem 2.2. The directed graphs ΓWn and ΓTn are isomorphic. Furthermore the isomorphism is given by
the bijection ψ between tableaux and webs described above.

Proof. Suppose T and T ′ are two standard tableaux. Let w be the web that corresponds to T and w′ be the
web that corresponds to T ′. The following are equivalent by the definitions:

• entry i is below i+ 1 in T
• i is a right endpoint and i+ 1 is a left endpoint in w
• the web w has a pair of unnested arcs (j, i) and (i+ 1, k)

There is an edge T
si−→ T ′ in the tableau graph if and only if si · T = T ′ and i is below i+1 in T . By above

this is true if and only if w and w′ are identical except that w contains arcs (j, i) and (i + 1, k) while w′

contains arcs (j, k) and (i, i+ 1). In other words, this is equivalent to the existence of the edge w
si−→ w′ in

the web graph.

We conclude that T
si−→ T ′ if and only if w

si−→ w′ and therefore ΓWn and ΓTn are isomorphic as directed,
labeled graphs via the bijection between tableaux and webs. �

Since the graphs are isomorphic, results from other papers on the tableau graph apply to the web graph
[23, 31]. For instance, the following result collects several properties of the tableau graph that we will need.

Proposition 2.3 (Pagnon-Ressayre). The web and tableau graphs are directed, acyclic graphs with a unique
source and a unique sink.

Figure 1 shows that the corresponding undirected graph has cycles whenever n is large enough. Note also
that this proposition means the graph represents the Hasse diagram of a poset. Section 4 studies this poset
structure graphically using webs.

While the two graphs are isomorphic, we retain the language and notation of both graphs throughout this
manuscript for several reasons: 1) certain properties are easier to see using one interpretation and not the
other; 2) each graph has its own “hidden properties” that the other doesn’t (e.g. the tableau graph can be
thought of as an undirected graph because each si acts as an involution when defined on a tableau).

3. Fundamental properties of the web and tableau graph

In this section we describe the graph ΓTn . One key tool is viewing the tableau graph as a subgraph of
the Bruhat graph; from that we obtain a way to measure distance in the tableau graph as the number of
inversions of certain permutations.

First we identify explicitly the unique source and unique sink in the tableau (or web) graph. This unique
source is the heart of the proof of representation theoretic Theorem 5.1.

Lemma 3.1. The column-filled tableau T0 is the unique source in ΓTn. The corresponding web w0 with arcs
(1, 2), (3, 4), . . . , (2n− 1, 2n) is the unique source for ΓWn.

The tableau whose first row is filled with {1, 2, 3, . . . , n} is the unique sink in ΓTn. The corresponding web
has arcs (1, 2n), (2, 2n− 1), . . . , (n, n+ 1) and is the unique sink for ΓWn.

Proof. We prove that w0 is a source using the web graph. All edges incident to w0 in ΓWn are directed out
since w0 contains no nested arcs.

We identify the sink via its tableau. Note that the tableau with {1, 2, 3, . . . , n} along the first row is
incident to just one edge, namely the edge that exchanges n and n+1. Since n is on the top row we conclude
that the tableau is the endpoint of the directed edge and is thus a sink. �

In the next few lemmas, we describe local properties of the graphs ΓWn and ΓTn . The first says that
consecutive edges in a path have different labels.
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Lemma 3.2. Suppose that T
si−→ T ′

sj
−→ T ′′ in the tableau graph. Then i 6= j.

Proof. By definition of edges in ΓTn we know i is in the first row and i+1 is in the second row in T ′. Hence
the edge from T ′ to T ′′ cannot have label si. �

Similarly edges that are incident to the same tableau must have different labels, which is refined in the
next lemma.

Lemma 3.3. Let T be a tableau. Suppose that T
si−→ T ′ and T

sj
−→ T ′′ are two distinct edges in the tableau

graph. Then |i− j| > 1.

Proof. Two distinct edges directed out of T must have different labels by definition, say si and sj for i 6= j.
The definition of si and sj implies that i and j are in the second row of T but i+1 and j+1 are in the first
row. Therefore i 6= j + 1 and j 6= i+ 1 and so |i− j| > 1. �

This leads immediately to the following corollary about the structure of the web and tableau graphs.

Corollary 3.4. For each pair of edges T
si−→ T ′ and T

sj
−→ T ′′ in the tableau graph, there is a diamond

formed by two directed paths T
si−→ T ′

sj
−→ T ′′′ and T

sj
−→ T ′′ si−→ T ′′′ as shown in Figure 2.

Proof. If si · T and sj · T are both standard and |i− j| > 1 then sisjT = sjsiT is also standard. �

T
′′′

T

T
′

T
′′

sisj

sjsi

Figure 2. A diamond in the graph ΓTn

The previous claim is a kind of “diamond lemma” for web and tableau graphs, specializing a similar lemma
in the Bruhat graphs of permutations [1, Proposition 2.2.7]. This is not accidental: the tableau graph is in
fact a subgraph of the well-known Bruhat graph, as we discuss in the rest of this section.

Given a tableau T we can construct a permutation σT in one-line notation by reading the entries of T in
a specific order (see e.g. [4, Definition 3.5 and subsequent]). For our purposes one particular reading order
is most useful, as defined next.

Definition 3.5. For each tableau T ∈ Tn construct a permutation σT by reading the entries of T in the
order that T0 is filled, namely down each column from the leftmost to the rightmost column.

For example the tableau T0 corresponds to the identity permutation 1 2 3 4 · · · 2n while the word
corresponding to the sink in the tableau graph is 1 (n+ 1) 2 (n+ 2) 3 (n+ 3) · · ·n (2n).

With this description, the following proposition is immediate.

Proposition 3.6. The tableau graph is a subgraph of the Bruhat graph. The vertices consist of those
permutations that correspond to standard Young tableaux of shape (n, n) and the edges consist of those edges
(i, i+ 1) that connect vertices σ ↔ (i, i+ 1)σ in the Bruhat graph.

Note that this is not an induced graph: there are edges corresponding to non-simple reflections in the
Bruhat graph (and even in the Hasse diagram of Bruhat order) that do not appear in the tableau graph.

Remark 3.7. The above discussion is a concise version of [23, Theorem 8.1]. The bijection between per-
mutations and tableau used by Pagnon-Ressayre relates to ours by change of base point, since they do not
associate the identity permutation to T0 [23, Theorem 8.9].

Recall that the number of inversions of a permutation in one-line notation is the number of instances of
a pair · · · i · · · j · · · with i > j. Also recall that a product sj1sj2 · · · sjk of simple reflections is called reduced
if there is no way to write the same permutation as a product of fewer simple reflections.
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Lemma 3.8. If there is a directed edge T
si−→ T ′ in the tableau graph then the number of inversions of σT

is one fewer than the number of inversions of σT ′ .

Suppose that T
si1−→ T1

si2−→ T2 · · ·
sik−→ Tk is a directed path in the tableau graph. Then si1si2 · · · sik is a

reduced word in the permutation group.

Proof. If an edge labeled si is directed out of the tableau T then i is in the second row of T and i + 1 is in
the first row. Since T is standard i must be in a column to the left of the column of i+ 1 and so i is to the
left of i+1 in σT . Thus the pair i, i+1 do not contribute an inversion in σT and by the same argument they
do in σT ′ . The rest of the entries are the same so the first claim holds. We can restate the second claim as
follows:

• the permutation σTk
has k more inversions than σT and

• the permutations satisfy σTk
= si1si2 · · · sikσT .

The permutation si1si2 · · · sik thus has k inversions and so is a reduced word [1, Section 1.4, Proposition
1.5.2]. �

This result says that directed paths in the tableau graph correspond to reduced words for permutations.
However note that there could be reduced words for a permutation that can’t be constructed from paths in
the tableau graph, since some simple reflections label edges that are not in the tableau graph.

We close this section by noting that distance in the graph is counted by the inversions in σT .

Corollary 3.9. For each tableau T in the graph, the distance dist(T0, T ) between T and T0 is the same as
the number of inversions of σT .

Proof. Let T be a tableau. The distance dist(T0, T ) is the length of a directed path from T0
σ

−→ T . By
Lemma 3.8 this is also the length of the permutation σ which is by definition σT . �

4. Nesting and the partial order in the web graph

This section explores the partial order from the perspective of the web graph. The main results prove that
the partial order (and the statistics that arise from it, including distance from the source) can be interpreted
easily in terms of a graphical property of webs. This property, called nesting, is defined next.

Definition 4.1. For each arc a in a web w, let n(a) be the number of arcs that a is nested beneath in w.
Define the nesting number n(w) of a web to be the sum of the values n(a) taken over all arcs in w.

The next result shows how nesting numbers change when exactly two arcs are nested or unnested in a
particular web. In the proof, we use the notion of an umbrella arc defined as follows.

Definition 4.2. Let a = (r, s) be an arc in the web w. The arc b = (r′, s′) is the umbrella arc of a if
r′ < r < s < s′ and there is no arc c = (r′′, s′′) with r′ < r′′ < r < s < s′′ < s′. If there is no such arc, we
say a has no umbrella arc.

j j′ k k′

w

j j′ k k′

w′

Figure 3. n(w′) = n(w) + k − j′

Lemma 4.3. Suppose w is a web with arcs (j, j′) and (k, k′) where j′ < k, and w′ is the web with arcs (j, k′)
and (j′, k) that is otherwise identical to w. Then n(w′) = n(w) + k − j′ ≥ n(w) + 1.

Proof. If there were an arc in w with exactly one endpoint between j′ and k then this arc would cross (j, k′)
in w′ violating our hypotheses. It follows that (j, j′) and (k, k′) in w and (j, k′) in w′ all have the same
umbrella arc and so

nw((j, j
′)) = nw((k, k

′)) = nw′((j, k′)).
7



Observe that (j′, k) has umbrella arc (j, k′) in w′ and hence nw′((j′, k)) = nw′((j, k′)) + 1.
Now let a = (r, s) be an arc common to w and w′. We compare nw(a) and nw′(a).

• If a is to the left of j (namely r < s < j), to the right of k′ (namely k′ < r < s), or above the arcs
(namely r < j < k′ < s) then nw(a) = nw′(a).

• If a is beneath arc (j, j′) in w then j < r < s < j′ and hence a is beneath arc (j, k′) but not (j′, k)
in w′. Thus nw(a) = nw′(a). If k < r < s < k′ then by a symmetric argument nw(a) = nw′(a).

• If a is between arcs (j, j′) and (k, k′) in w then j′ < r < s < k′. Therefore a has the same umbrella
arc as (j, j′) and (k, k′) in w and so

nw(a) = nw((j, j
′)) = nw((k, k

′)).

However a has umbrella arc (j′, k) in w′ so nw′(a) = nw(a) + 2.

Summing over all arcs in w′ we conclude that

n(w′) = n(w) + 1 + 2

(

k′ − j − 1

2

)

= n(w) + k′ − j

�

This leads to a collection of small but important corollaries about how the nesting number changes in the
web graph.

Corollary 4.4. Suppose that w → w′ is an edge in the web graph. Then n(w′) = n(w) + 1.

Proof. Since w → w′ is an edge in the web graph, there is a simple transposition si with si · w = w + w′.
Furthermore the webs w and w′ are identical except that w has arcs (j, i) and (i + 1, k) while w′ has arcs
(j, k) and (i, i+ 1). The result follows from Lemma 4.3. �

It follows that distance from the web w0 is the same as the nesting number.

Corollary 4.5. In the web graph the distance and nesting number are the same, and both are the same as
the number of inversions of the permutation corresponding to T in Definition 3.5:

dist(w0, w) = n(w) = # inversions of σψ−1(w)

Proof. We prove this inductively. The base case is true since n(w0) = 0. Consider a web w′ that is distance
k from w0. Then there is an edge w → w′ from a web w whose distance from w0 is n(w) = k − 1 by the
inductive hypothesis. Corollary 4.4 and Corollary 3.9 complete the proof. �

Moreover there are only two ways the nesting number can change when acting on a web by si.

Corollary 4.6. Assume that si ·w = w+w′ where w 6= w′. Then either n(w)+ 1 = n(w′) or n(w) > n(w′).

Proof. Note that (i, i + 1) is not an arc in w since otherwise si · w = −w. Thus w has two distinct arcs
incident on i and i+ 1, say with (unordered) endpoints {i, j} and {i+ 1, j′}.

If j < i < i + 1 < j′ then the arcs are unnested. Thus there is an edge w → w′ in the web graph labeled
si and so the nesting number increases as n(w) + 1 = n(w′) by Corollary 4.4.

If not then either j′ < j < i < i+1 or i < i+1 < j′ < j since the arcs are noncrossing. This time Lemma
4.3 implies that the nesting number drops. �

In fact the previous result could be refined since Lemma 4.3 says that the nesting number drops by one
if j = i − 1 and j′ < j < i < i + 1, by one if j′ = i+ 2 and i < i+ 1 < j′ < j, and by at least three for any
other in any other case when j′ < j < i < i+ 1 or i < i+ 1 < j′ < j.

The next collection of results will further analyze the partial order � and show that certain natural web
properties (e.g. two arcs are nested or unnested) can be interpreted directly in terms of �. First we show
that in the web graph at most one edge labeled si is directed into a given web w.

Lemma 4.7. Let w ∈ Wn with arc (i, i+ 1). If (i, i+ 1) has an umbrella arc then there is exactly one web
w′ for which there is an edge w′ → w labeled si. If (i, i+1) has no umbrella arc then there is no edge labeled
si directed into w.

8



Proof. The endpoint of any edge labeled si is a web containing the arc (i, i + 1) where the nesting number
of arc (i, i+ 1) is at least one, so if (i, i+ 1) has no umbrella arc then there is no edge w′ → w labeled si.

If (i, i+1) has an umbrella arc (j, k) then consider the web w′ with arcs (j, i) and (i+1, k) that otherwise
agrees with w. On the one hand si ·w

′ = w′ +w by construction. On the other hand suppose that T ′ and T
are the tableaux corresponding to w′ and w respectively and consider the tableau graph, which is isomorphic
to the web graph. The map si is defined on T because the fact that si ·T

′ = T implies that i and i+1 are in
different rows and columns of T . The map si is a well-defined involution on its domain so exactly one edge
incident to T in the tableau graph is labeled si. This proves the claim in this case. �

We can also count the number of ways of acting by si to reduce nesting number and obtain a web w. We
think of these as “invisible backward edges” in the graph ΓWn as illustrated in Figure 4.

n(w) = 4

n(w′

1) = n(w′

2) = 5

n(w′

3) = 7

s6 s6

s6

Figure 4. There are three webs with s6 · w
′
i = w′

i + w and n(w′
i) > n(w).

Lemma 4.8. Let w ∈ Wn with arc (i, i + 1). The number of webs w′ such that si · w
′ = w′ + w and

n(w′) > n(w) is the number of arcs in w with the same umbrella arc as (i, i+ 1).

Proof. Suppose that (j, k) has the same umbrella arc as (i, i+1) in w. It follows that either k < j < i < i+1
or i < i + 1 < k < j. In other words (j, k) is either to the left of i or to the right of i + 1. Define w′ to be
the web with arcs (j, i + 1) and (k, i) that otherwise agrees with w. By construction si · w

′ = w′ + w and
n(w′) > n(w).

Now suppose that (j, k) does not have the same umbrella arc as (i, i+ 1) in w. Then there is an arc in w
with exactly one endpoint between (j, k) and (i, i+ 1). In that case there is no way to change only the arcs
incident to the endpoints j, k, i, i+1 in w without violating the noncrossing condition, so there is no web w′

that differs from w only on the endpoints j, k, i, i+ 1. This proves the claim. �

i i+1

w
···
−→

i i+1

w′

i i+1

w
···
−→

i i+1

w′

Figure 5. A path exists from w to w′ in ΓWn , so w � w′.

In the next lemma we show that it is always possible to pull an arc over a sub-web diagram, as shown in
Figure 5.

Lemma 4.9. Suppose that w′ is obtained from w by expanding one arc to form an umbrella over a larger
subdiagram, as in Figure 5. Then w � w′.

Proof. The argument is the same whether we expand the umbrella to the left or to the right, so we consider
only the case of expanding to the left as shown on the left in Figure 5.

We proceed by induction on the number of arcs in the web w. If there are exactly two arcs then w has

arcs (1, 2) and (3, 4) while w′ has arcs (1, 4) and (2, 3). In this case w
si−→ w′ is an edge in the web graph so

w � w′.
9



Assume the claim holds for all webs with n arcs, and let w,w′ be webs with n+1 arcs arranged as shown
on the left of Figure 5. Consider the intermediate web w′′ that is identical to w except w′′ has arcs (1, 2n+2)

and (i, i+ 1) whereas w has arcs (1, i) and (i + 1, 2n+ 2) as shown in Figure 6. There is an edge w
si−→ w′′

i i+1

w′′

Figure 6. There is an edge w
si−→ w′′ in ΓWn .

in the web graph. Use the inductive hypothesis on the collection of arcs on vertices 2, . . . , i + 1 to obtain a
directed path in the web graph from w′′ to w′. We conclude w � w′ as desired. �

We use the previous lemma to show that any pair of webs that differ in only two arcs have a directed
path between them in the web graph.

Theorem 4.10. Suppose that w and w′ differ only in the arcs incident to vertices j < j′ < k < k′ and
suppose that w contains arcs (j, j′) and (k, k′) while w′ contains arcs (j, k′) and (j′, k) as shown in Figure
7. Then w � w′.

Proof. The proof follows from repeated applications of Lemma 4.9. Figure 7 shows the key intermediate
steps. First apply Lemma 4.9 to find a path from w to the web w1 obtained by moving the left endpoint
of arc (k, k′) over the arcs between (j, j′) and (k, k′). Next there is an edge labeled sj′ from w1 to w2 by
construction. Finally w′ is obtained from w2 by expanding the arc (j′, j′ + 1) to form an umbrella over the
shaded region indicated in Figure 7, so Lemma 4.9 guarantees a directed path from w2 to w′. Thus there is
a directed path from w to w′ as desired. �

j j′ k k′

w

�

j j′ k k′

w1

sj′
−→

j j′ k k′

w2

�

j j′ k k′

w′

Figure 7. Path between w and w′ in the web graph

Remark 4.11. Khovanov uses a partial order on the set Wn to relate knot invariants to the cohomology of
(n, n) Springer varieties. His partial order is determined via a directed graph with edges w → w′ whenever
w and w′ are related as in Figure 3, so the edge set in ΓWn is a subset of the edge set in Khovanov’s graph.
Theorem 4.10 implies Khovanov’s partial order and the one described here coincide. Distance in Khovanov’s
setting is in general shorter because there are more edges in his graph and distance is defined via the shortest
undirected path.

5. An equivariant map relating the Specht and web bases

Let V Tn and VWn be the complex S2n representations generated by complex linear combinations of Specht
vectors of shape (n, n) and webs of shape (n, n) respectively. In this section we define a map φ : V Tn → VWn

that is equivariant with respect to the actions in Section 2 and then study its properties. We begin with an
observation about any such map: it must send the Specht vector vT0

to the web w0.

Theorem 5.1. Let φ : V Tn → VWn be a linear map. If φ is S2n-equivariant then φ (vT0
) = aw0 for some

a ∈ C.
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Proof. Let φ (vT0
) =

∑

w∈Wn
cww with cw ∈ C. Let i be odd and consider w ∈ Wn. If (i, i + 1) ∈ w then

si · cww = −cww. If not then si ·w = w +w′ for some web w′ containing the arc (i, i+ 1). Partitioning Wn

into webs that contain the arc (i, i+ 1) and webs that do not, we see

si · φ (vT0
) =

∑

w∈Wn

(i,i+1)∈w

si · cww +
∑

w∈Wn

(i,i+1)/∈w

si · cww

=
∑

w∈Wn

(i,i+1)∈w

−cww +
∑

w∈Wn

(i,i+1)/∈w

cww +
∑

w∈Wn

(i,i+1)∈w

bww

where the third sum in the final step above collects webs with arc (i, i+ 1) that came from acting on a web
without arc (i, i+ 1). (Note that bw is one of the coefficients from the middle sum, reindexed.) Recall from
Equation (2) that si · vT0

= −vT0
. Since φ is equivariant we know that si · φ (vT0

) = −φ (vT0
). Considering

the middle sum in the final step above, we conclude that cw = 0 for all w ∈ Wn with (i, i + 1) /∈ w. The
equation above holds for all odd i and so cw = 0 unless w contains arcs (1, 2), (3, 4), . . . , (2n − 1, 2n). The
only web containing all of these arcs is w0. We conclude that φ (vT0

) = aw0 for some a ∈ C as desired. �

This motivates the following definition of a linear map between the Specht module and web space.

Definition 5.2. Let T0 be the column-filled tableau of shape (n, n) and w0 the corresponding web. Define
the map φ : V Tn → VWn to be φ(vT ) = σ · w0 where σ = si1 · · · sik labels a directed path from T0 to T in
the tableau graph.

We first confirm that the map is in fact well-defined.

Lemma 5.3. The map φ is well-defined. i.e. φ(vT ) is independent of choice of path σ from T0 to T .

Proof. Since the tableau graph is connected, there is always a path from T0 to an arbitrary tableau T . Say
that σ = si1 · · · sik and σ′ = sj1 · · · sjk label two directed paths from T0 to T in the tableau graph. This
means that σ · T0 = σ′ · T0 = T by definition of the tableau graph. This means the Specht vectors satisfy
σ · vT0

= σ′ · vT0
= vT by Equation (1).

The tableau graph is a subgraph of the Bruhat graph and hence σ = σ′ as permutations. Then we have
σ · w0 = σ′ · w0 since VWn is a representation of S2n. We conclude that φ(vT ) is independent of path
chosen. �

This allows us to prove that the map φ is equivariant with respect to the S2n actions defined in Section 2.
In fact this essentially means that φ is the only equivariant isomorphism between these two representations.

Corollary 5.4. The map φ is S2n-equivariant and is (up to scaling) the only equivariant isomorphism
V Tn → VWn .

Proof. Observe that φ(vT0
) = w0. By Theorem 5.1 and the definition of φ we conclude that any equivariant

map on V Tn agrees with φ on the basis of V Tn . There is at least one equivariant map between V Tn and
VWn because the two representations are isomorphic. Since a linear map is determined by what it does on
a basis, we conclude φ must be equivariant and thus is (up to scaling) the only equivariant isomorphism
between V Tn and VWn . �

Let T ′ be a standard tableau with corresponding web w′. Then, using notation similar to the proof of
Theorem 5.1, we can express φ(vT ′ ) as follows:

φ(vT ′ ) =
∑

w∈Wn

cw
′

w w.

Our goal is to describe the coefficients cw
′

w coming from the map φ. The following theorem also follows from
work of Garsia-McLarnan relating the Kazhdan-Lusztig basis to Young’s natural basis [11, Theorem 5.3].

Theorem 5.5. The map φ is upper-triangular with ones along the diagonal.
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Proof. Complete the partial order on webs coming from the web graph to a total order < in a way that also
respects nesting numbers, meaning that if n(w̃) < n(w′) then the web vectors satisfy w̃ < w′. Consider the
matrix for φ with respect to that ordering of the web basis.

Now let T ′ be a standard tableau. It is sufficient to show that for φ(vT ′ ) the following statements hold:

(1) If cw
′

w 6= 0 then n(w) ≤ n(w′) with n(w) = n(w′) if and only if w = w′ and

(2) cw
′

w′ = 1.

We proceed via induction on the distance from T0 or equivalently the nesting number of the associated web.
The base case is true by definition since φ(vT0

) = w0.
Assume the result is true for all tableaux of distance less than k from T0 and let T ′ be a tableau with

distance k from T0. This means there is an edge T ′′ si−→ T ′ in the tableau graph from a tableau T ′′ at
distance k − 1 from T0. By the inductive hypothesis

φ(vT ′′ ) =
∑

w∈Wn

cw
′′

w w

with the coefficients cw
′′

w satisfying properties (1) and (2). Moreover by definition of φ we have

φ(vT ′) = si · φ(vT ′′ ) =
∑

w∈Wn

cw
′′

w si · w.

Consider w ∈ Wn such that cw
′′

w 6= 0 and w 6= w′′. Then n(w) < n(w′′) by hypothesis. After acting by
si either si · w = −w or si · w = w + w̄ for some web w̄. Corollary 4.6 implies that w̄ has nesting number
at most n(w′′) and hence strictly smaller than n(w′). Thus all webs that come from terms other than w′′ in
φ(vT ′′ ) are strictly less than w′ in the order coming from the web graph.

Now consider the action of si on w
′′. By assumption si · w

′′ = w′′ + w′. We conclude both that w′ is the
only web with nesting number n(w′) with a nonzero coefficient in φ(vT ′ ) and that its coefficient is cw

′′

w′′ = 1
as desired. �

We now refine this result: if cw
′

w 6= 0 then not only is w ≤ w′ but in fact w � w′ in the partial order
defined by the directed web graph. Our argument will proceed much like the previous result.

We begin with a lemma that, loosely speaking, stacks together the “diamond lemma” repeatedly (namely
Corollary 3.4).

Lemma 5.6. Assume w � w′′′ with w′′′ si−→ w′ and w
si−→ w′′. Then w′′ � w′.

Proof. Let w, w′, w′′, and w′′′ be as in the statement above. Since w � w′′′ there is a path

w
sj1−→ w1

sj2−→ w2

sj3−→ · · ·
sjk−→ w′′′ si−→ w′

in the web graph. We prove that there is also a path in the web graph from w′′ to w′ using induction on
k = d(w,w′′′).

If k = 0 then w = w′′′. Since edges come from a well-defined symmetric group action on VWn , there is at

most one edge labeled si directed from w = w′′′ in the web graph. Since w′′′ si−→ w′ and w
si−→ w′′ we have

w′′ = w′ and so w′′ � w′.

If k = 1 then w
sj1−→ w′′′ si−→ w′. Lemma 3.2 showed that consecutive edges in the web graph have different

labels. Therefore j1 6= i and so the edge w
si−→ w′′ in the web graph is distinct from the edge w

sj1−→ w′′′.

Lemma 3.4 now shows that there is an edge w′′
sj1−→ w′ and thus w′′ � w′.

Assume w′′ � w′ whenever w is less than distance k from w′′′ and now suppose that the distance between

w and w′′′ is k. The first edge w
sj1−→ w1 in the path from w to w′′′ satisfies either j1 = i or j1 6= i. If j1 = i

then w′′ = w1 and so w′′ lies on a path from w to w′′′. Since w′′′ has an edge to w′ we conclude w′′ � w′.
Finally consider the case when j1 6= i. By Corollary 3.4 there exists a web w̄ in the web graph along with

edges w′′
sj1−→ w̄ and w1

si−→ w̄. The distance between w1 and w′′′ is less than k so we can use the inductive
hypothesis to conclude w̄ � w′. Since there is an edge from w′′ to w̄ we conclude w′′ � w′. �

This brings us to the main theorem.

Theorem 5.7. If cw
′

v 6= 0 then there is a directed path from v to w′ in the web graph, namely v � w′.
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Proof. The proof inducts on the distance between w′ and w0 in the web graph. The base case is when the
distance is zero, namely w0 � w0. Assume that if cw

′

v 6= 0 then v � w′ for all w′ less than distance k from

w0. Now assume w′ has distance k from w0 and consider any web w′′′ with an edge w′′′ si−→ w′ in the web
graph. As before we have

φ(vT ′ ) = si · φ(vT ′′′ ) =
∑

w ∈ Wn

w � w′′′

cw
′′′

w si · w =
∑

w ∈ Wn

w � w′′′

cw
′′′

w (w + w′′)

where we take w′′ to be −2w when si · w = −w.
The two ways for a web to have nonzero coefficient in φ(vT ′ ) correspond to the terms w and w′′ in the

previous expression: either the coefficient of w gets a contribution of cw
′′′

w from the first summand in one of

the terms or the coefficient of w′′ gets a contribution of cw
′′′

w from the second summand in one of the terms.
In the first case (where w plays the role of v) we have w � w′′′ by assumption and so since w′′′ −→ w′ we
conclude w � w′ as desired. (If w′′ = −2w this argument also applies.)

Now we decompose the second case (where w′′ plays the role of v) even further: if si · w = w + w′′ then

either w
si−→ w′′ or d(w,w0) > d(w′′, w0) by Corollary 4.6. The first case is Lemma 5.6 for which w′′ � w′

as desired.
In the final case w′′ and w differ only in the arcs incident to vertices j, i, i+1, and k. By comparing distance

(equivalently nesting number) we know that {j, i} and {k, i + 1} are in w with k < j < i or i + 1 < k < j
while (k, j) and (i, i+ 1) are in w′′. Thus w′′ � w by Theorem 4.10. We conclude that w′′ � w′ as desired
since w′′ � w � w′′′ → w′. �

We conclude with the following conjecture, which incorporates the two conjectures from the Introduction.

Conjecture 5.8. For every tableau T ′ with corresponding web w′, the vector φ(vT ′ ) has the following form

φ(vT ′ ) = w′ +
∑

w∈Wn
w≺w′

cw
′

w vw

where cw
′

w > 0 for all w in the sum.

We also conjecture the main theorem of this paper extends to webs for sl3 and perhaps all sln.

References

[1] Anders Björner and Francesco Brenti. Combinatorics of Coxeter groups, volume 231 of Graduate Texts in Mathematics.
Springer, New York, 2005.

[2] Sabin Cautis, Joel Kamnitzer, et al. Knot homology via derived categories of coherent sheaves, I: The sl(2)-case. Duke

Mathematical Journal, 142(3):511–588, 2008.
[3] Sabin Cautis, Joel Kamnitzer, and Scott Morrison. Webs and quantum skew Howe duality. Mathematische Annalen,

360(1-2):351–390, 2014.
[4] Barry Dewitt and Megumi Harada. Poset pinball, highest forms, and (n− 2, 2) Springer varieties. The Electronic Journal

of Combinatorics, 19(1):P56, 2012.
[5] Bruce Fontaine, Joel Kamnitzer, and Greg Kuperberg. Buildings, spiders, and geometric Satake. Compos. Math.,

149(11):1871–1912, 2013.
[6] Igor B. Frenkel and Mikhail G. Khovanov. Canonical bases in tensor products and graphical calculus for Uq(sl2). Duke

Math. J., 87(3):409–480, 1997.
[7] Igor B. Frenkel, Mikhail G. Khovanov, and Alexandre A. Kirillov Jr. Kazhdan-Lusztig polynomials and canonical basis.

Transformation groups, 3(4):321–336, 1998.
[8] Lucas Fresse. Betti numbers of Springer fibers in type a. Journal of Algebra, 322(7):2566–2579, 2009.
[9] William Fulton. Young tableaux, volume 35 of London Mathematical Society Student Texts. Cambridge University Press,

Cambridge, 1997. With applications to representation theory and geometry.
[10] Francis Y. C. Fung. On the topology of components of some Springer fibers and their relation to Kazhdan-Lusztig theory.

Adv. Math., 178(2):244–276, 2003.
[11] Adriano M. Garsia and Timothy J. McLarnan. Relations between Young’s natural and the Kazhdan-Lusztig representations

of Sn. Advances in Mathematics, 69(1):32–92, 1988.
[12] Matthew Housley, Heather M Russell, and Julianna Tymoczko. The Robinson–Schensted correspondence and A 2-web

bases. Journal of Algebraic Combinatorics, 42(1):293–329, 2015.
[13] Vaughan FR Jones. Index for subfactors. Inventiones mathematicae, 72(1):1–25, 1983.

13



[14] Vaughan FR Jones. A polynomial invariant for knots via von Neumann algebras. Bulletin of the American Mathematical

Society, 12(1):103–111, 1985.
[15] Louis H Kauffman. State models and the Jones polynomial. Topology, 26(3):395–407, 1987.
[16] David Kazhdan and George Lusztig. Representations of Coxeter groups and Hecke algebras. Invent. Math., 53(2):165–184,

1979.
[17] David Kazhdan and George Lusztig. A topological approach to Springer’s representations. Adv. in Math., 38(2):222–228,

1980.
[18] Mikhail Khovanov. Crossingless matchings and the cohomology of (n, n) Springer varieties. Communications in Contem-

porary Mathematics, 6(04):561–577, 2004.
[19] Mikhail Khovanov and Greg Kuperberg. Web bases for sl(3) are not dual canonical. Pacific J. Math., 188(1):129–153, 1999.
[20] Greg Kuperberg. Spiders for rank 2 Lie algebras. Comm. Math. Phys., 180(1):109–151, 1996.
[21] W BR Lickorish. Calculations with the Temperley-Lieb algebra. Commentarii Mathematici Helvetici, 67(1):571–591, 1992.
[22] I. G. Macdonald. Symmetric functions and Hall polynomials. Oxford Mathematical Monographs. The Clarendon Press

Oxford University Press, New York, second edition, 1995. With contributions by A. Zelevinsky, Oxford Science Publications.
[23] NGJ Pagnon and Nicolas Ressayre. Adjacency of Young tableaux and the Springer fibers. Selecta Mathematica, 12(3-

4):517–540, 2007.
[24] T. Kyle Petersen, Pavlo Pylyavskyy, and Brendon Rhoades. Promotion and cyclic sieving via webs. J. Algebraic Combin.,

30(1):19–41, 2009.
[25] Nicolai Reshetikhin and Vladimir G Turaev. Invariants of 3-manifolds via link polynomials and quantum groups. Inventiones

mathematicae, 103(1):547–597, 1991.
[26] Brendon Rhoades and Mark Skandera. Bitableaux and zero sets of dual canonical basis elements. Annals of Combinatorics,

15(3):499–528, 2011.

[27] G. Rumer, E. Teller, and H. Weyl. Eine für die valenztheorie geeignete basis der binaren vektorinvarianten. Nachr. Ges.

Wiss. gottingen Math.-Phys. Kl., pages 499–504, 1932.
[28] Heather M. Russell. A topological construction for all two-row Springer varieties. Pacific J. Math., 253(1):221–255, 2011.
[29] Heather M. Russell and Julianna S. Tymoczko. Springer representations on the Khovanov Springer varieties. Math. Proc.

Cambridge Philos. Soc., 151(1):59–81, 2011.
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