

The transition phase of a Gun-Launched Micro Air Vehicle: Nonlinear Modeling and Control

Corentin Chauffaut

Directeurs de thèse : Rogelio Lozano et Sergio Salazar (LAFMIA)

Séminaire ASER - 9 septembre 2012

Outline

- Introduction
- Modeling
- Transition φ problems
- Control
- Simulations
- Experimentation

Séminaire ASER - 9 septembre 2012

Conclusion

GLMAV concept

- Joint project between the ISL, the HEUDIASYC, the CRAN and SBG Systems
- Transformation of a projectile into a MAV

Image: Image:

3

500

GLMAV vs Conventional MAV

	GLMAV	Fixed- Wing/VTOL aircraft MAV
Target ETA	Very fast	Fast
Energy consumption	No energy used until rotors deployment	Energy used during the whole flight envelope
Hovering control	Swashplate (mechanical complexity)	NA / Control surfaces or tilting-rotor
Crosswind robustness	Low drag	High drag (wings)

Notations

Dynamic model structure

Simulation dynamic model Translational dynamics

$$m\begin{pmatrix} \dot{u} \\ \dot{v} \\ \dot{w} \end{pmatrix} = \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} - m\begin{pmatrix} 0 & -r & q \\ r & 0 & -p \\ -q & p & 0 \end{pmatrix} \begin{pmatrix} u \\ v \\ w \end{pmatrix}$$
$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \mathbf{T}(\Omega_i, \delta_{c_{X/y}}) + \mathbf{f_{body}}(\mathbf{V_{prop}}, \mathbf{V_{body}}, \mathbf{V_{wind}}) + \mathbf{f_p}$$

Simulation dynamic model Rotational dynamics

I

$$\begin{pmatrix} \dot{p} \\ \dot{q} \\ \dot{r} \end{pmatrix} = \begin{pmatrix} L \\ M \\ N \end{pmatrix} - \begin{pmatrix} 0 & -r & q \\ r & 0 & -p \\ -q & p & 0 \end{pmatrix} \mathbf{I} \begin{pmatrix} p \\ q \\ r \end{pmatrix}$$

$$\begin{cases} L = -d\beta sin\delta_{c_{X}}\Omega_{2}^{2} \\ M = d\beta sin\delta_{c_{Y}} cos\delta_{c_{X}}\Omega_{2}^{2} \\ N = \gamma_{1}\Omega_{1}^{2} + \gamma_{2}\Omega_{2}^{2} \end{cases}$$

Koehl & al, 2010

Ballistic torques
$$\begin{cases} \mathbf{M}_{\mathbf{A}} = qSDC_{M}(\frac{\mathbf{V}}{\|\mathbf{V}\|} \otimes \frac{\mathbf{z}_{\mathbf{b}}}{sin\delta}) \\ \mathbf{M}_{\mathbf{D}} = -qSDC_{H}(\mathbf{z}_{\mathbf{b}} \otimes \dot{\mathbf{z}}_{\mathbf{b}} \frac{D}{\|\mathbf{V}\|}) \\ \mathbf{M}_{\mathbf{R}} = -qSDC_{I} \frac{\omega D}{\|\mathbf{V}\|} \mathbf{z}_{\mathbf{b}} \end{cases}$$

SQ P

4 □ ▶ 4 ∰ ▶ 4 ≧ ▶ 4 ≧ ▶

Introduction Modeling Transition φ problems Control Simulations Experimentation Conclusion Sensors availability Initial conditions Transition strategy

Sensors availability during the ballistic and transition phases

Launching conditions errors

ıtc

Introduction Modeling Transition φ problems Control Simulations Experimentation Co clusion Sensors availability Initial conditions Transition strategy

Control strategy during the transition phase

4 🗆 🕨 4 🗇 🕨 4 🖻 🕨

Simplified model for control

MAV has 6DOF Control inputs :

- thrust: *u*_T
- rotor torques: M_R

$$\begin{cases} m\dot{\mathbf{v}} = -m\mathbf{g} + \mathbf{T} & \text{with} \quad \mathbf{T} = -u_T \, \mathbf{z}_{\mathbf{b}} = -u_T \, \mathbf{R} \mathbf{z}_{\mathbf{e}} \\ \dot{\mathbf{q}} = \mathbf{Q}(\mathbf{q})\omega & \text{and} \quad \mathbf{Q}(\mathbf{q}) = \frac{1}{2} \begin{pmatrix} -\varepsilon^T \\ \eta \mathbf{I}_3 + \mathbf{S}_{\varepsilon} \end{pmatrix} \end{cases}$$

< 🗆 > < 🗇 >

< ∃ >

SQ P

∍ ⊾

Hierarchical control

Backstepping-based velocity control

The control laws on the thrust and rotors torques are:

•
$$u_T = \|\overline{\mathbf{u}}_T\| = \|m(\mathbf{g} - \mathbf{K}_{\mathbf{v}}\delta_{\mathbf{v}})\|$$

•
$$\mathbf{M}_{\mathbf{R}} = \mathbf{S}_{\omega} \mathbb{I} \omega + \mathbb{I} \left(\mathbf{R}_{\mathbf{d}}^{\mathsf{T}} \left(-\mathbf{K}_{\omega} \delta_{\omega} - \frac{1}{2} \widetilde{\eta} \widetilde{\epsilon} + \left(\mathbf{K}_{\mathbf{q}} \widetilde{\epsilon}^{\mathsf{T}} \widetilde{\omega} \right) \widetilde{\epsilon} - \left(\mathbf{K}_{\mathbf{q}} \left(\widetilde{\eta} \left(\widetilde{\eta} \mathbf{I}_{\mathbf{3}} + \mathbf{S}_{\widetilde{\epsilon}} \right) \right) \right) \omega \right) \right)$$

SQ P

4 🗆) (A 🗇) (A 🚍)

Initial conditions:

- $Vz^b = 100m/s$
- $\phi = 90 + 37^{\circ}$

Orientation and velocity

Actuators: thrust and servo-motors

Séminaire ASER - 9 septembre 2012

nar

4 🗆 🕨 4 🗇 🕨 4 🖻 🕨

Results with initial conditions errors

Séminaire ASER - 9 septembre 2012

DAG

Velocity control (blue) / trust control only (green), without and with (triangle markers) wind perturbations

Séminaire ASER - 9 septembre 2012

Image: A Image: A

-

590

utc Recherche

Velocity control (blue) / trust control only (green), without and with (triangle markers) wind perturbations

590

Introduction Modeling Transition φ problems Control Simulations Experimentation (Attitude control Future experiments

clusion

Attitude control on the GLMAV-lite

Loading GLMAV.avi

Introduction Modeling Transition φ problems Control Simulations Experimentation Co Attitude control Future experiments

"Deployment" with zero initial velocity

utc Recherche

Using a plane to drop the GLMAV

- Less dangerous than using the tube-launch method
- Deployment conditions controlled

Conclusion

- Detailed dynamic model of the GLMAV for the ballistic and transition regimes
- Analyze of the transition phase problems
- Control strategy and non-linear control proposed
- · Validation in simulation of the control strategy

Future work

 Implementation of the velocity control phase on the GLMAV-lite prototype

< □ ▶ < 🗇 ▶ < Ξ ▶

Thanks for your attention. Any questions ?

