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This paper assesses endogenous technical change (ETC) in climate-
economy models, using the models in the Innovation Modeling Comparison Project 
(IMCP) as a representative cross-section. ETC is now a feature of most leading 
models. Following the new endogenous growth literature and the application 
of learning curves to the energy sector, there are two main concepts employed: 
knowledge capital and learning curves. The common insight is that technical 
change is driven by the development of knowledge capital and its characteristics 
of being partly non-rival and partly non-excludable. There are various different 
implementations of ETC. Recursive CGE models face particular difficulties in 
incorporating ETC and increasing returns. The main limitations of current models 
are: the lack of uncertainty analysis; the limited representation of the diffusion 
of technology; and the homogeneous nature of agents in the models including the 
lack of representation of institutional structures in the innovation process.

1. INTRODUCTION

The rise of climate change on national and international policy agen-
das has been accompanied by increased global efforts to develop policy instru-
ments for controlling GHG emissions. In recent years, policy discussions have 
progressed beyond environmental standards, taxation and other environmental 
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economic instruments like permit trading. All parties to the debate, both political 
and academic, agree that the development of new, low carbon and energy saving 
technologies, together with their widespread adoption will be crucial for climate 
change mitigation. This has been addressed by developments in both national and 
international climate policy, including the Joint Implementation and Clean Devel-
opment Mechanism structures introduced in the Kyoto Protocol. 

There are two reasons why technology is important for climate change 
analysis. Firstly, it is the application of technology that has caused the anthro-
pogenic contribution to climate change in the historical context; both coal and 
oil were part of processes of transformations of economies and societies. Under-
standing the history of technology then helps us to direct the course of future tech-
nical change. Secondly, a change to a low carbon society will require widespread 
development and mass deployment of new, low carbon technologies. 

Energy economic modeling of climate policy also has to reflect the main 
features of the climate change problem. A timescale of the order of 100 years is 
necessary, because the Greenhouse effect of CO

2
 changes the climate over a time 

period of 50-100 years or more. The climate system spreads the CO
2
 throughout 

the atmosphere, making climate change a global issue and a public good in the 
broadest sense of the term. GHG emissions from one country affect the climate 
of all other countries. Representation of economic changes for such long-term 
horizon poses a wealth of challenges for modeling.

There is broad agreement in the literature that a reduction in emissions 
of 60%+ from the industrialized world (relative to current emissions levels) will 
be necessary to avoid dangerous rates of climate change associated with severe 
consequences to climate and ecosystems (IPCC, 2001). Moreover, countries that 
are becoming major world economies – such as China, India and Brazil– will have 
to follow a different technological path, if GHG emissions are not to increase, let 
alone decrease. Therefore, addressing climate change necessitates broad-ranging 
structural changes in global economic activity and technological changes that fa-
cilitate these activities. Technology policy therefore offers potential to overcome 
barriers to climate change mitigation, and modeling technologies is particularly 
important for the economic analysis of climate change mitigation.

In recent years, there have been considerable developments in macro-
economics and energy economics, both theoretical and empirical, on the theme 
of technological change. These have primarily been in the new macroeconomic 
endogenous growth literature and the application of the learning curve manage-
ment literature to the energy sector. As a consequence, there has been a transition 
in the climate energy literature, such that endogenous technical change1 is now a 
major feature of many analyses. As discussed below in Section 2, the processes of 

1.  ETC, where technical progress is dependent upon variables and processes within the model, 
leads to possibilities for policy to induce technical change (ITC) by influencing these processes. If ETC 
is included, policy operates through the ETC mechanisms of the model to generate ITC that would not 
otherwise occur. This is in contrast to exogenous or autonomous technical change, often represented 
through the autonomous energy efficiency improvement (AEEI) in climate-economy models.



technical change are complex; ETC is a much more realistic representation than 
the AEEI approach. However, the advance brings much more than increased real-
ism. Economic analysis has shown that there are some significant market failures 
in R&D, which in the case of climate change are in addition to the environmental 
externalities. Therefore, there is a need to examine the case for policy intervention 
(the subject of a large literature outside climate policy). This cannot be done if the 
economic processes of technical change are not modeled.

The absence of ETC can significantly bias policy assessments. In the 
presence of ETC, a policy intervention can influence both the relative rates of 
technological change across industries/sectors as well as the aggregate rate. Given 
a policy that reallocates limited funds for R&D and/or investment between sec-
tors, it is not obvious a priori how allowing for ETC affects the aggregate rate of 
technological change relative to models with exogenous technological change. 
A model with ETC should generate higher overall technological change only if 
the sectors that expand as a result of a policy intervention enjoy more spillovers, 
faster potential for learning by doing, or faster increasing returns (and associated 
cost-reductions) than the sectors that contract as a result of the policy. Otherwise 
the speedier technological change in the expanding sectors may be offset by the 
slower technological change in those sectors from which innovation resources are 
redeployed. Finally, models with ETC may give very different results to climate 
economy models with autonomous energy efficiency improvement (AEEI hereaf-autonomous energy efficiency improvement (AEEI hereaf- (AEEI hereaf-
ter) (Grubb, Köhler and Anderson, 2002). The Synthesis Report of this special is-
sue (Edenhoher et al., 2006a) demonstrates the new richness of results and issues 
that are raised by incorporating ETC.

The Innovation Modeling Comparison Project marks the first attempt at 
comparing different approaches to the incorporation of ETC (and consequently 
ITC (footnote 1) arising from related policies) into climate-economy models. The 
variety of models represented in the project that provides a cross-section of exist-
ing ETC climate economy models, demonstrates the range of methods and ideas 
in use. The ETC approaches used in the ten models represented in the IMCP are 
reported in the individual papers in this issue, while the Synthesis Report dis-
cusses the results obtained for a range of stabilization targets. Table 1 of the Syn-
thesis Report also contains a summary of the ETC features in the IMCP models. 
Although there are a wide variety of formulations of ETC, underlying these mod-
els is a common intuition that knowledge capital and its growth is a fundamental 
driver of technical progress.

The objective of this paper is to review the theoretical and empirical lit-
erature on ETC and ITC, identify key insights and analytical methods that inform 
approaches to climate-economy modeling and assess the transition in modeling 
technical change in the IMCP models. The structure of this paper is as follows: 
Section 2 describes the advances in understanding of the economics of techni-
cal change and their application in the endogenous growth and the energy sec-
tor literatures and also examines the empirical evidence. Section 3 assesses the 
state of the art as represented by the IMCP models and shows the influence of 
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emerging literature in the incorporation of increasing returns as a major feature 
of the IMCP models. Section 4 assesses the strengths and weaknesses of the vari-
ous approaches when applied to ETC in climate mitigation economics, including 
particular difficulties faced by Computable General Equilibrium (CGE) models. 
Section 5 concludes. 

2. ADVANCES IN THE THEORY AND MEASUREMENT OF  
    TECHNICAL CHANGE

There are three literatures that have influenced climate economy models. 
The changes in modeling have been most heavily influenced by the new endog-
enous growth theory with its introduction of knowledge as a capital stock deter-
mining productivity, although the empirical evidence for these models is mixed. In 
contrast, the learning curve literature which describes the reductions in unit cost 
with increases in production in firms and sectors arose from empirical observa-
tions. Hence there are significant increasing returns to scale in sectors critical for 
climate policy such as power generation. The forms in which learning curves are 
used, however, have relatively weak theoretical underpinnings. Reflecting the ‘top-
down’ and ‘bottom-up’ modeling approaches of climate/energy policy analysis, the 
two streams of literature combine to make important contributions by introducing 
increasing returns to scale in knowledge, with an explicit treatment of processes of 
technical change.. The current understanding of processes of technical change has 
come from a third source, the innovation literature, which emphasizes the role of 
spillovers, uncertainty and path dependence. Together, these three literatures take 
modeling into a world of imperfect competition as a result of spillovers. 

This section briefly reviews the insights from the innovation literature to 
describe the current understanding of technical change. We consider the theoreti-
cal and empirical contributions to show how the adoption of ETC has required 
significant innovation in modeling. The common underlying idea of a ‘stock of 
knowledge capital’ opens up the possibility of combining the theoretical and em-
pirical insights from these literatures to provide an improved understanding of 
the implementation of technical change. The innovation literature also demon-
strates that there are pervasive market failures in technical change. Increasing 
returns through learning-by-doing (experience) and learning-by-searching mean 
that there will be imperfect competition in technical change. These increasing 
returns can cause path dependency, with the possibility of lock-in to sub-optimal 
technologies. Knowledge spillovers mean that private R&D and investment may 
be considerably less than the social optimum. This may be amplified by barriers 
to technology diffusion through trade restrictions and limitations to foreign direct 
investment (FDI). The uncertain returns to R&D may also result in socially sub-
optimal expenditures, if society can accept or spread risk more efficiently than 
private firms. These considerations give an efficiency justification for public sup-
port for R&D, for example through subsidies and expanded patent rules.

 



2.1 Insights from the Innovation Literature 

Spillovers

The innovation literature has developed a sophisticated understanding 
of the economics of technical change. However, in its application to economic 
analysis, technical change presents difficult challenges.

Technology is partially a public good, but of a complex sort. Technology 
is embodied in physical goods but is fundamentally knowledge. Knowledge may 
be of practices, scientific understanding and of supporting institutions, such as 
educational or market institutions. It is clearly important to understand the process 
from which knowledge arises – whether by learning, by research and/or by doing. 
Technology is also non-rival in character: once the technology is developed, its 
use by one agent does not diminish its availability to others. Knowledge, as rep-
resented in specifications and patents, can be communicated almost at zero cost, 
and can often be inferred from publicly available sources such as products, patents 
and published material. However, transfer of technology requires that recipients 
of knowledge have the ability to apply the information. Also, part of any technol-
ogy is tacit knowledge that cannot be transferred. Hence in practice, technology 
is partly non-excludable. These properties result in spillovers such that technical 
change is characterized by non-linearities.

The innovation literature also emphasizes the impact of uncertainty. By 
ignoring different strategies from heterogeneous firms and path dependence in tech-
nological development and adoption, the theoretical approach with a single ‘typical’ 
firm will leave out important factors in technical change. Technology is also embod-
ied in physical capital. This leads to a similar set of considerations: Are externalities 
also a feature of physical capital accumulation and what is their relationship to R&D 
investment? R&D is the process of invention and innovation – of learning by search-
ing for new ideas and developing them. Diffusion is mainly triggered by investment 
in physical capital. Hence there is the classical distinction between invention, inno-
vation and diffusion as different parts of the innovation process.

Weyant and Olavson (1999) briefly review the literature on innovation. 
Schmookler (1966) emphasized the role of market pull factors: under the environ-
ment where major innovations create new markets and developing new products 
is relatively easy, the challenge to entrepreneurs lie in assessing market needs. In 
contrast, Rosenberg (1976) emphasized the supply of innovations: production ca-
pacity evolves over time, as a result of unpredictable product and process innova-
tions. Many product and process innovations are appropriable without patents – a 
combination of learning/learning curves, lead-time effects and tacit knowledge. 
Innovations are mainly (private) profit led, since firms’ knowledge is a vital and 
appropriable part of new technologies.

Spillovers are a major theme of the energy technology literature. Reflect-
ing the analytical methods of Archibugi and Michie (1997), Weyant and Olavson 
(1999) distinguish between intra- or inter-sectoral spillovers, as well as local and 
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international spillovers. Furthermore, spillovers may be embodied or disembod-
ied in the production process i.e. whereas some spillovers reduce input costs or 
resource requirements, knowledge spillovers are the application of ideas from one 
production process to another. Spillovers may occur in many directions: up–down 
spillovers in a value chain for a single product; horizontally between firms within 
an industry; between firms in different industries; and across countries, for ex-
ample where there is international trade and FDI.

Since spillovers are not only a geographical phenomenon and they pos-
sess public good characteristics, it is the relationship between different agents 
along the knowledge chain that determine the direction and intensity of spillovers. 
Sijm (2004) reviews ITC in climate-economy models and spillovers. In energy-
economy models with learning curves, spillovers most naturally come from the 
cost reductions being assumed to take place in more than one industry or more 
than one region. However, the representation of spillovers across industries is 
often limited. A common simplification for incorporating spillovers is to assume 
that learning is dependent on R&D, investment or production cumulated over re-
gions. The extreme case is to assume that all (global) expenditures contribute to 
cost reductions that apply to all regions. The no spillover case would assume zero 
correlation between technology costs across regions. This is in contrast to hetero-
geneous prices across regions, although the two forms of imperfect competition 
– regional variations in costs and regional variations in prices – are related.

How frequent and important are these spillovers? Empirical studies show 
that spillovers from R&D are prevalent and often large (e.g. Griliches, 1992). 
Studies such as Mansfield (1977, 1996), Pakes (1985), Jaffe (1986), Hall (1995) 
and Jones and Williams (1998) typically find that social rates of return are approx-
imately four times higher than private rates of return for R&D. Nevertheless, spill-
overs are difficult to model as processes, because they depend on the diffusion of 
knowledge, rather than sales in markets or even patents. Because spillovers gener-
ate positive externalities, the incentives for R&D may be too low from an efficien-
cy point of view, because they reduce appropriability for the private firm. These 
sound theoretical arguments for policies to support R&D are reflected in current 
policy debates about supporting new technologies such as power generation from 
renewables which by themselves, cannot compete in current main energy markets. 
Given the history of commercial failure in government R&D programs (e.g. su-
personic aircraft and nuclear power), however, there is strong reluctance among 
policymakers to ‘pick winners’ and cultivate technology paths. 

Uncertainty

The return to investments in new knowledge is, by definition, uncer-
tain. Since the objective of R&D and innovation lie not only in discovering new 
technologies and products, but also to develop new markets for those products, 
uncertainty is pervasive. This clearly has important implications for the financ-
ing of R&D: how can uncertainty (hence investment risk) be minimized to at-



tract finance? This has been a particular problem for new or alternative energy 
technologies faced with fierce competition from cheap fuel sources such as coal. 
Investment in wind, for example, is viable only where continuing policy support is 
guaranteed. Other investment factors are also critical, in particular, uncertainties 
about the availability of resources and security of supply.

Freeman and Soete (1997), in their discussion on the history of indus-
trial organization of R&D, also emphasize the role of uncertainty. They argue 
that firms’ strategies for innovation centre around the management of uncertainty 
– firm innovation behavior is dependent upon ‘competencies’ in R&D, manufac-
turing and marketing. The heterogeneity between firms allow for the empirical 
assessment of the role of uncertainty, as firms in the same sector respond differ-
ently to market conditions. At an aggregate level, this requires either a descriptive 
approach based on historical analysis, or a stochastic approach if the model is 
to be general. From a macroeconomic perspective, if the innovations are to be 
adopted on a large scale, clusters of innovations can be identified which follow 
a diffusion pattern through sectors and economies. Weyant and Olavson (1999) 
also stress heterogeneity and discontinuity in technology development. Freeman 
and Soete (1997), following Schumpeter (1939), emphasize competition among 
heterogeneous technologies in the early stages of new technologies. This requires 
modeling the switching processes to new technologies, such as non-linear depen-
dence on relative prices of fossil fuel vs. new low carbon technologies.

Montgomery and Smith (forthcoming) point out a distinct problem asso-
ciated with climate R&D: the lack of market preference for low carbon energy or 
transportation products. Given that conventional (high-carbon) products are priced 
below their social cost, low-carbon substitutes are more expensive partly because 
the externality is not included. Low carbon technologies therefore attract socially 
sub-optimal levels of investment from profit maximizing private firms. Where ex-
ternalities exist, it is therefore necessary for policy to correct price signals such 
as to internalize the costs of carbon into private decision-making. However, with 
long time horizon and high scientific uncertainty associated with climate change, 
the degree of policy uncertainly for investors in energy/carbon technologies is ex-
ceptionally high. Hence the uncertainty and lack of guarantee of policy prevents 
firms from undertaking large scale, long term investments required to drive rapid 
diffusion of low carbon technologies.

These uncertainties have some important implications for climate policy 
analysis. The technological uncertainties mean that future (relative) costs of dif-
ferent technologies are uncertain, so it is necessary to characterize these in order 
to develop cost effective policies that will provide strong enough signals to over-
come the reluctance to invest in new energy technologies.

Path Dependence

Following Rosenberg (1976) who pointed out the need to go beyond ini-
tial conditions and view the path of technological change as a sequence of events, 
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Freeman and Soete (1997), Weyant and Olavson (1999) and other authors em-
phasize the importance of path dependence that lead to inertia in the technology 
system. A corollary of this is technological lock-in (David, 1985) – the processes 
by which a particular technology establishes dominance by growing exploitation 
of increasing returns to scale. New competing technologies then face institutional, 
infrastructural and cultural barriers in addition to any initial cost disadvantage. 
With increasing returns, it is not by default that the ‘best’ technologies become 
dominant and markets may indeed lead production locked into inferior technolo-
gies. This can be thought of as a form of temporal spillover.

Howells (2005, ch3.) gives empirical demonstrations of the process of 
path dependence – once a particular technology shows a clear competitive advan-
tage, widespread adoption enables the benefits of increasing returns-to-scale to be 
appropriated. Namely, for both civil aircraft in the 1930s and wind turbines, an 
initial wide variety of technologies and competing approaches to innovation led to 
success for a small group of manufacturers. A series of incremental developments 
resulted in a defining product in both cases that led the way to mass adoption – the 
DC3 aircraft in the 1930s and Danish wind turbines in the 1980s. The theoretical 
implication is the need to differentiate between competing technological solutions 
and their cost dynamics over time.

Technology Diffusion

Modern economies are subject to a continuing process of globalization. 
Archibugie and Michie (1997, ch.1) discuss how technological change is depen-
dent on the economic, social, political and geographical context. They argue that 
the national system of innovation is critical in determining technological perfor-
mance, while processes of globalization tend to magnify the success or lack of 
success of national industries. For modeling, this implies that models need to 
differentiate between different economic regions, while incorporating the inter-
national process of cross-country technology diffusion and knowledge transfer 
or spillovers. Keller (2004) surveys the literature on international technology dif-
fusion. He concludes technology diffusion is a major determinant of economic 
growth in many countries, yet the effects are country specific and requires micro-
economic analysis and disaggregated data. However, Keller is caution in drawing 
explicit policy messages as many factors are at play here – trade, FDI and the 
ability of receiver countries to ‘absorb’ new knowledge are all important, but the 
literature is mixed about the strength of the effects.

Market failures associated with technology diffusion therefore provide 
a considerable challenge for economic analysis of GHG mitigation. Increasing 
returns mean that there will be imperfect competition in technical change. These 
increasing returns can cause path dependency, with the possibility of lock-in to 
sub-optimal technologies. The uncertain returns to R&D may also result in social-
ly sub-optimal expenditures. The public good character of spillovers means that, 
without policy intervention, private industry will under-invest in R&D compared 



with the socially optimal levels. The under-investment may be amplified in the 
global context by barriers to technology diffusion through trade restrictions and 
limitations to foreign direct investment. Imperfect information and search costs 
of available knowledge may also impede technological diffusion, and addressing 
these market failures may generate large returns to society. 

2.2 The Endogenous Growth Literature

In this section we review the endogenous growth literature, to show how 
‘top-down’ climate economy models have adopted the macroeconomic literature 
on ETC. The macroeconomic literature on growth has turned again to technologi-
cal progress in recent years. Solow (1957) was for a long time the basis of think-
ing about the economics of technological change in macroeconomics. He argued 
that the unexplained element of increased productivity in his econometric analysis 
of US data on economic growth was due to technological progress. This became 
known as the ‘Solow residual’.

The next major step was to explain technological change. The recent en-
dogenous growth literature, surveyed by Aghion and Howitt (1998), has been built 
on the concept of knowledge capital, starting with Romer (1986, 1990). Romer 
(1986) rediscovered the ‘Y=AK’ endogenous growth model, in which production is 
dependent on knowledge, a function of physical capital. The knowledge stock A is a 
global public good, introducing positive spillovers from incomplete appropriability 
i.e. increasing returns to scale to the production function. Romer (1990) extended the 
model to include imperfect competition through increasing returns to scale, through 
a fixed cost element in an intermediate goods sector. This extra form of increasing 
returns then generates a model of oligopolistic competition. The treatment of knowl-
edge stock is usually similar to physical capital – it is assumed to be dependent on 
cumulated R&D expenditures – thus these models incorporated ETC.

Grossman and Helpman (1994) point to international interdependence 
through trade, introducing yet another form of spillover. As Aghion and Howitt 
(1998) argue, these theoretical developments revitalized the economic literature 
on growth, leading to insights for the analysis of business cycles, sustainable 
development, international income distribution and a renewed awareness of the 
fundamental role of industrial innovation in macroeconomic growth. The authors 
further developed these ideas to incorporate ‘Schumpeterian’ growth – the idea 
otherwise known as Schumpeter’s idea of ‘creative destruction’ – which implies 
that firms search in an uncertain world for innovations that qualitatively improve 
the production technology and make previous technologies obsolete. This is yet to 
be applied to climate-economy models, 

2.2.1 Empirical Assessments of the Endogenous Growth Models

The empirical evidence for these imperfect competition endogenous 
growth models is mixed. For ETC, there were several critiques of the Schum-
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peterian innovation models. Aghion and Howitt (1998) discuss several of these 
critiques. Growth accounting studies, in particular for East Asian countries, sug-
gested that growth came from capital accumulation, rather than technical change 
(Young, 1995; Jorgenson, 1995). Jones (1995) found that, for OECD countries, 
substantial increases in R&D activity, measured by numbers of scientists and en-
gineers engaged in R&D, did not lead to faster total factor productivity growth. 
Jones argues that this is due to decreasing returns to scale in knowledge genera-
tion. Long run growth then becomes proportional to the rate of population growth 
and is independent of structural characteristics of the economy, a return to the 
conclusions of the Solow model. This is in contrast to the innovation literature on 
spillovers discussed above. Agion and Howitt argue that there are two reasons for 
Jones’ result. Firstly, the increasing complexity of technology makes it necessary 
to raise R&D over time, in order to keep the proportional innovation rate constant 
for each period. Secondly, as the number of products increases, each innovation 
has a smaller proportional impact. These two arguments mean that a constant 
percentage rate of growth in total factor productivity requires increasing levels of 
R&D activity to maintain a constant percentage growth rate. 

The ‘AK’ models were challenged by Mankiw, Romer and Weil (1992) 
who augmented the Solow growth model with a human capital factor in the pro-
duction function. Mankiw, Romer and Weil (1992) find evidence to suggest that 
growth rates are converging in line with the results of Solow-Swan growth mod-
els, yet as Evans (1996) highlights, this is incompatible with the Schumpeterian 
growth models. Technical change, however, remained exogenous within these dis-
cussions by Mankiw, Romer and Weil and Evans.

Temple (1999) is highly critical of the findings by Mankiw, Romer and 
Weil (1992), that 80% of international variation in per capita incomes can be ex-
plained by population growth, physical and human capital investment rates, with 
little role for technological progress. He questions the assumption that investment 
rates are exogenous to the level of income and uncorrelated with efficiency. He is 
also critical of the methodology used to measure schooling that ignores primary 
schooling, as it tends to exaggerate the variation in human capital across countries.

 Aghion and Howitt (1998) extend their Schumpeterian growth model 
to include population growth and consequent growth in the number of products, 
together with a multi-country framework. This enables them to find results that 
are consistent with the evidence from growth accounting, scale effects and cross-
country growth. Schumpeterian growth models do indeed deliver testable hypoth-
eses: R&D intensity displays similar properties to the long run growth rate; the 
long run growth rate should be positively correlated with the flow of patents; and 
entry of new firms and flow of new products and negatively correlated with exit 
and the rate of capital obsolescence. Aghion and Howitt caution that there has 
been little empirical work on testing the implications of Schumpeterian growth 
models. They give ambiguous predictions on the relation between competition 
and growth. However, there is some supporting evidence from microeconometric 
studies that structural parameters can affect productivity growth. Blundell et al. 



(1994) found that the arrival rate of innovations has a significant positive correla-
tion with firms’ market share and a significant negative correlation with a measure 
of market concentration. Nickell (1996) found evidence of strong positive correla-
tion between the levels of competition and productivity growth.

Aghion and Howitt also discuss a fundamental problem of measurement 
– the data from national accounts is collected in a way that assumes that knowledge 
is fixed and common. Yet as there are no commonly accepted empirical measures 
for the fundamental concepts in the new theories (e.g. the stock of technological 
knowledge, the stock of human capital, resource cost of knowledge acquisition, 
the rate of innovation and the obsolescence of knowledge), it is difficult to test the 
Schumpeterian theories and thus to reach conclusions about their applicability.

Temple (1999) surveys empirical research on macroeconomic growth 
across countries that use reduced form models, where the mechanisms of growth 
are not made explicit.. This is a much-criticized literature partly due to method-
ological problems in the use of time series econometrics, and Temple puts forward 
arguments for the use of panel analysis. The inconclusive empirical results also 
undermine the credibility of the literature – with a range of estimates of conver-
gence rates of 0-30% a year it gives little insight into whether there is convergence 
in growth rates. Coe and Helpman (1995) find large effects of foreign R&D on 
domestic total factor productivity (TFP). Eaton and Kortum (1994) found that 
half the US productivity growth depends on foreign technology improvements, 
suggesting that evidence for a common long run growth rate is consistent with 
endogenous growth models where international spillovers would make technical 
progress common across countries.

Temple finds mixed evidence for convergence of efficiency in OECD 
manufacturing in the 1970s and 1980s suggesting convergence in growth rates can 
be attributed to services. He finds some evidence of decreasing income dispersion 
between countries linked through trade, which may reflect technology transfer 
through trade. Furthermore, robust correlation is found between investment rates 
and growth, and strongest econometric result that returns to physical capital are 
diminishing is in accordance with the Solow-Swan model. The survey implies de-
veloping countries, investment in equipment, possibly incorporating technology 
transfer, is important in determining growth, less so in OECD countries.

Temple (1999) also argues that macroeconomic data is too aggregated 
to address the issues of interest in human capital, such as schooling quality or 
health. Macroeconomic studies on human capital find that it explains little of the 
variation in changes in output. This is problematic, because it contradicts the mi-
croeconomic evidence that schooling does lead to higher wages. There is wide-
spread agreement that human capital accumulation is not a sufficient condition for 
growth. The question here is: under what circumstances is human capital accumu-
lation beneficial and what are the constraints that need to be included in models?

Temple suggests that R&D has an important role in growth, with a wealth 
of microeconomic evidence e.g. private rates of return as high as 30-50% for R&D 
in the US in the 1950s and 1960s. There is also evidence of significant knowledge 
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spillovers, so that social returns to R&D may be even higher (Griliches, 1992). 
However, whether there are increasing returns to research is a question for which 
the evidence is mixed. Given the difficulties in measuring knowledge and ideas, 
the challenge posed here is immense. Even the model of Jones (1995) mentioned 
in the discussion by Aghion and Howitt (1998) above allows research to have 
significant level effects on output, so R&D would remain an important policy 
variable. This point does not, however, address the contradiction between the mi-
croceonomic and the macroeconomic evidence. The debate thus remains open. 
The macroeconomic empirical issue of structural transformation has not been 
adequately addressed, although the development literature is extensive. Temple 
(1999) concludes that macroeconomic data on factor accumulation and efficien-
cy change has given unconvincing results, such that disaggregate analysis using 
structural models to examine the mechanisms of growth is probably more fruitful. 
Scott (1991) shows that gross investments in physical capital are a good explana-
tory variable to capture the unexplained part of growth in the Solow model.

To summarize, the theoretical endogenous growth literature has em-
phasized the role of knowledge capital spillovers in technical change and hence 
economic growth. However, empirical analyses have failed to conclusively dem-
onstrate their importance. Criticisms of the theory of spillovers in the empiri-
cal literature have serious limitations; the argument is made problematic by the 
difficulties in measuring knowledge or human capital and their contribution to 
innovation in a meaningful way at the aggregate level. Part of the challenge is 
in identifying the relationship between knowledge capital and physical capital. 
Physical capital accumulation is assumed to embody new knowledge, but differ-
entiating between physical and knowledge capital and their relative contribution 
to productivity improvements remain. Knowledge capital is hence fundamental 
to productivity growth rates, but empirical analysis at microeconomic level gives 
more convincing conclusions. It is to this we turn next.

2.3 Microeconomic Evidence on Technical Change –  
      Learning/Experience Curves 

Many climate economy models incorporate knowledge indirectly through 
learning using experience curves. Such curves relate investment and/or R&D ex-
penditures to cost reductions. In practice, we find the terms ’learning curves‘ and 
’experience curves‘ used interchangeably throughout the literature. Our review of 
the literature suggests that while such curves document the correlation between 
cumulative experience with a technology and falling costs, questions remain as to 
the causal links between experience and costs. As such, we refer to such models 
as ‘experience curves’ in this section, to make clear that work remains to be done 
to explain the causal links between learning and cost reductions. Here, we briefly 
review the experience curve literature in industry in general and its application to 
energy technologies in the context of climate change mitigation.

Incorporating experience curve relationships in analysis can allow a far 



richer set of possible scenarios and introduces strong path dependence: the costs 
of future technologies and systems are intimately bound up with the investments 
made in earlier decades. The incorporation of experience curves into modeling 
also creates great complexity and has significant impact on not only numerical 
results, but also qualitative aspects of conclusions drawn from economic model-
ing. For these reasons, their use and their empirical basis necessitate careful ex-
amination. The literature on experience curves has little discussion on theoretical 
explanations, although as explained above, the innovation literature thoroughly 
examines increasing returns in manufacturing evident from decreasing costs of 
production which are observed as an experience curve in a firm. 

2.3.1 ‘Learning rates’ in the Literature

The literature on observed experience curves frequently summarizes ob-
servations in terms of a single parameter – the ‘learning rate’. Argote and Epple 
(1990) survey the literature in manufacturing which go as far back as studies by 
Wright (1936) on aircraft production in the 1930s and by Rapping (1965) on 
shipbuilding. Positive experience curves have been found both in manufacturing 
and service sectors. Recent contributions to this literature consider the learning 
processes that lead to experience curves e.g. Thornton and Thompson (2001) for 
shipbuilding. Furthermore, it extends the idea to production processes e.g. Jaber 
and Guiffrida, (2004) for reductions in defects and in current industries, and Hatch 
and Mowery (1998) for new industries such as semiconductors. Argote and Epple 
(1990) draw attention to the considerable variability in learning, not only across 
industries, but even within different plants of the same company. Variability is 
also observed in studies of international technology diffusion and its effects on 
growth in different countries (Keller, 2004). Dutton and Thomas (1984), quoted 
in Argote and Epple (1990), provides a frequency distribution of progress ratios 
(% cost reduction for a doubling of cumulative output) for 108 cases, with a range 
of 55% to 96% for the progress ratio and a case where the ratio is over 100%, 
i.e. where costs increase with cumulated output. The mode of this distribution is 
81-82%, which has led to the common assumption of an 80% progress ratio i.e. a 
20% reduction in unit cost/doubling of output.

As part of the IMCP, we surveyed the literature quantifying experience 
curves in the energy sector, with results as presented in Figs 1-3. The literature 
dates back at least to the early 1980s (Zimmerman, 1982; Joskow and Rose, 1985). 
The great majority of published learning rate estimates relate to electricity genera-
tion technologies. As illustrated in Figure 1, estimates associated with different 
technologies and time periods span a very wide range, from around 3% to over 
35% cost reductions associated with a doubling of output capacity. Negative es-
timates have even been reported for technologies when they have been subject to 
costly regulatory restrictions over time (e.g. nuclear, and coal if flue gas desulphu-
rization costs are not separated), and for price-based (as opposed to cost-based) 
learning rates in some periods reflecting aspects of market behavior. 
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The data suggest some broad yet useful patterns. For many energy tech-
nologies, learning rates appear higher in earlier stages. Thus early coal develop-
ment (US 1948-1969) showed rapid learning in contrast to later evidence (US 1960-
1980). Gas turbine data also suggest some evidence of learning depreciation (either 
kinked or smooth). However, wind energy has demonstrated a wide range of learn-
ing rates with no obvious pattern across locations or even time periods (early versus 
late development stages). Solar PV in general has enjoyed faster rates of learning 
than other renewable technologies. Grübler, Nakićenović and Victor (1999b), IEA 
(2000) and McDonald and Schrattenholzer (2001) survey the evidence for energy 
technologies, showing that, in line with the more general results mentioned earlier, 
unit cost reductions of 20% associated with doubling of capacity has been typical 
for energy generation technologies, with the exception of nuclear power.

This learning rate literature has led, in some cases, to the use of a general 
“rule of thumb” learning rates of 20%. This is a plausible proxy of the observed 
rates for many electricity generation technologies, but – in addition to the issues 
of interpretation discussed below – the evidence on the decline of learning rates 
over time suggests it may err on the high side, if treated generically across these 
technologies as a constant in long-run modeling exercises. Indeed, the applica-
tion of such learning rates has led to cost reductions so high that some studies 
have artificially imposed a ’floor price‘ to prevent technologies like wind energy 
from becoming absurdly cheap, which then changes the effective assumed aver-
age learning rate.

Amongst the non-electric supply technologies (for liquid fuels see Fig-
ure 2), the difference in learning rates between offshore and onshore gas pipelines 
is striking – 3.7% versus 24%. There is also marked difference between Oil at 
Well and North Sea Extraction (25% versus 5%).

It is notable that those technologies enjoying exceptionally high learning 
rates – like photovoltaics – have been able to benefit directly from advances made 
in electronics and silicon technology in general. The pattern for rapid learning in 
electronics technologies is carried through to the End-Use technologies (Fig 3). 
End-use technologies appear to display higher learning rates in general, and par-
ticularly so within electronics based technologies (diodes and DC converters). 

2.3.2 Interpreting Experience Curves and Learning Rates 

The fact that the magnitude of learning rates seems to depend to a large 
extent on both the technology and the choice of data points/time period (e.g. with 
low R2 values) illustrates the need to understand better the underlying elements 
and issues in experience curves. Although some of the variability in published 
analyses is slightly reduced for those relating to costs – avoiding the additional 
variability induced by diverse market pricing strategies – there is clearly a need to 
understand better the influence of other explanatory variables. To what extent do 
experience curves give us insights into technological change, and how robust are 
the conclusions when applied in models? 
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Figure 2. Learning Rates in Liquid Fuels

Sources: Adapted from McDonald & Schrattenholzer 2001 
(1) Blackwood (1997); (2) Zhao (1999); (3) Fisher (1974); (4) IEA (2000); (5) Goldemberg (1996)

Figure 3. Learning Rates in Energy End-use-related Technologies

Sources: Adapted from McDonald & Schrattenholzer 2001 
(1) Iwatune (2000); (2) Akisawa (2000); (3) Lipman & Sperling (1999); (4) Rabitsch (1999)



Cost reductions may come from cross-sectoral learning (spillovers), R&D 
undertaken to develop new products and develop new markets, or from learning by 
doing e.g. incremental improvements in the technical performance of machinery 
or production processes as engineers and the workforce gain experience with new 
machines and products. There may be increasing returns to scale in investment, 
which is difficult to separate from learning by doing in production. Even after ex-
cluding market pricing effects, there are several important issues to be disentangled 
in interpreting cost-based experience curve data. The relationship between cost and 
’learning‘ is indirect in the sense that both are plotted over time, hence many fac-
tors may come into play over that time. We distinguish three major issues.

The Role of Direct R&D 

Firstly, in general, direct R&D expenditure come from both public and 
private sources. To what extent can learning be attributable to this? The ’two fac-
tor‘ experience curve analysis explores this question by its attempt to separate cost 
reductions that result from R&D expenditures and capital investment. Unfortu-
nately, this decomposition poses new problems, and sometimes leads to unstable 
results. Furthermore, the causal relationship between increased R&D expenditure 
and greater market scale (and hence overall level of finance flowing into the sec-
tor), remains uncertain. Robust conclusions from the market application of this 
analysis cannot be drawn therefore, without establishing the extent to which R&D 
expenditure, market scale and R&D productivity are interrelated. A key problem is 
predicting (from history) what the return will be on future investments in R&D.

 
The Role of Time and Cross-sectoral Spillovers 

Secondly, the role of time in the learning process (separate of any in-
creased deployment) must be understood. As time passes, technologies will be 
able to exploit developments in other sectors. For example, huge improvements 
in offshore oil reservoir mapping in the 1980s and 1990s first drew on advances 
in medical three-dimensional scanning techniques and later on the evolution more 
specific to oil. Cost reductions in photovoltaics must in part be attributable to 
wider developments in the semiconductor industries. 

The Direction of Causality 

The final important issue around experience curves is the question of cau-
sality. Whilst it is entirely reasonable to assume that greater market scale leads to cost 
reductions, it is equally plausible that cost reductions lead to greater market scale. 
Sufficient econometric decomposition of panel data might be able to decompose at 
least some of these factors, but we did not find such analyses in the literature. 

These three categories of caveats indicate that applying experience curve 
data in modeling projections through the use of a single implied ‘learning rate’ is 
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prone to the exaggeration of effects. The strongest reason for applying them in 
long-run modeling is not that these issues have been resolved, but rather that the 
evidence for some degree of experience-based cost reduction is overwhelming. As-
suming a learning rate determined exogenous of the model is problematic and there 
remains little consensus on the ‘genuine’ learning rate – only that zero, the implicit 
assumption in models that do not incorporate endogenous change, is a number that 
we can be most confident is wrong. Learning rates are valid but incomplete data, 
which need to be better explored, but not ignored, in economic analyses..

2.4 Microeconomic Evidence of Incentive-driven 
      Technological Change: Patent and Other Data

While many studies have examined the relationship between experience 
and costs, this work is descriptive in nature, and does not attempt to address the 
causal links between incentives and technological change. In contrast, empirical 
work linking these incentives asks how prices and/or policies affect the evolution 
of technological change. It is useful here to make a distinction between reduced 
form and structural models. Reduced form models (e.g. Newell et al., 1999) ex-
amine how the rate and direction of technological change is related to price chang-
es, but do not make explicit the mechanisms by which this happens. Structural 
models, on the other hand, link prices to variables such as R&D expenditures, or 
knowledge changes to R&D effort.

Much of this work makes use of patents or R&D spending as proxies for 
technical change. An example of the structural approach is given by Popp (2002) 
in which energy patents are regressed on energy prices and other control variables. 
Popp calculates a 0.35 elasticity of energy patents with respect to energy prices, 
and finds evidence of diminishing returns, so that less R&D is induced by a price 
change over time. Lichtenberg (1986, 1987) finds that the share of R&D devoted 
to energy increases as energy prices increase. Newell et al. (1999) use an approach 
closely related to hedonic techniques to study the effect of both energy prices and 
energy efficiency regulations on technological advances in energy efficiency for 
air conditioners and natural gas water heaters. They find that energy prices have 
the largest inducement effect. However, because their data focuses on the results 
of innovation rather than inputs to the research process, it provides no estimates 
of elasticity between research and energy prices. Other researchers have studied 
the links between environmental policy and innovation, often by regressing R&D 
or patents on pollution abatement control expenditures (PACE). Examples include 
Jaffe and Palmer (1997) and Brunnermeier and Cohen (2003). In general, these 
papers find a positive link between prices and innovation, although the magni-
tudes are often small. While these papers do not directly estimate the returns to 
the induced R&D, other work (e.g. Popp 2001) finds social returns comparable to 
the studies cited in Section 2.1. Combined, such studies allow the modeler to cali-
brate both the response of R&D to climate policy, as well as the potential impact 
of induced R&D. 



2.5 Summary: What are the Connections Between the  
      Modeling Literatures? 

To summarize, the endogenous growth literature considers knowledge 
capital accumulating through either R&D expenditures and/or physical capital 
investment. This knowledge accumulation is then assumed to lead to productivity 
improvements. The two factor experience curves model reductions in production 
costs through cumulated R&D and physical capital investment. Hence a two factor 
experience curve has the same variables and underlying idea generating technical 
change as the knowledge capital growth models. The common idea of a stock of 
knowledge capital opens up the possibility of combining the theoretical and em-
pirical insights from these literatures to provide an improved understanding of the 
implementation of technical change. In principle, the theoretical formulations of 
the growth models could be used to estimate experience curve parameters, provid-
ing a stronger theoretical base for experience curve parameterizations.

However, the case-based nature of the experience curve literature makes 
it difficult to generalize to aggregated industries often employed in top-down 
models. This problem is made clear by the current understanding of the complex-
ity of the innovation process (Montgomery-Smith, forthcoming). Different levels 
of aggregation in different models make common parameterizations problematic, 
except where models consider the same technologies at similar levels of detail. 
This is already the case among energy system e.g. hybrid models that have some 
detailed renewable energy technologies.

Technical change comes through the development of knowledge and hu-
man capital, also embodied in physical capital. There is a useful distinction to be 
made between invention, innovation and diffusion, which involve different pro-
cesses within technical change. There are positive spillovers of knowledge, such 
that innovation is characterized by increasing returns and imperfect competition. 
The experience curve literature provides empirical evidence of rates of cost reduc-
tion with experience, which vary widely. There is even more variation in the mac-
roeconomic evidence on growth rates and technology. These uncertainties lead to 
the conclusion that ETC is fundamental to economic growth, but the mechanisms 
by which this happens and the strengths of the effects not yet clear.

 The different literatures on innovation open up a very complex picture of 
multiple factors influencing innovation and technical change. Innovation is char-
acterized by uncertainty in new discoveries, the need to consider new markets and 
the partly non-rival and non-excludable nature of knowledge about technologies. 
Market failures are pervasive. Increasing returns mean that there will be imperfect 
competition in technical change. These increasing returns can cause path depen-
dency, with the possibility of lock in to sub-optimal technologies. The uncertain 
returns to R&D may also result in socially sub-optimal expenditures. The public 
good character of spillovers means that, without policy intervention, private in-
dustry will under-invest in R&D compared with the socially optimal levels. The 
under-investment may be amplified in the global context by barriers to technology 
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diffusion through trade restrictions and limitations to FDI. Imperfect information 
and search costs of available knowledge may also impede technological diffusion, 
and addressing these market failures may generate large returns to society. There 
is heterogeneity in firms’ innovation behavior and in national systems of innova-
tion. This points to two market failures in particular that should be considered in 
climate economy models with ETC: environmental externalities and R&D market 
failures. This provides a considerable challenge for economic analysis of GHG 
mitigation. The positive externalities of spillovers and firms’ response to policy 
uncertainty mean that, without policy intervention, private industry can be ex-
pected to under-invest in R&D. 

3. ETC IN THE NEW CLIMATE ECONOMY MODELS 

This section considers how insights about endogenous technical change 
have been incorporated into the climate-economy literature and models, using 
the IMCP models as a representative cross section of the existing state of the art. 
The response has been dramatic: there has been a transition in climate energy 
modeling, such that ETC is now a feature of many leading models. However, the 
expansion of models into the inclusion of processes of technical change brings 
new, serious empirical challenges.

Several recent surveys reflect the increasing interest in this area. Azar 
and Dowlatabadi (1999) discuss technology diffusion, demand pull in technology 
development and experience curve models. They further emphasize the extent 
to which policy results and prescriptions are dependent on technical change as-
sumptions made in modeling work. Grübler, Nakićenović and Victor (1999a,b) 
describe the breakthrough made in the energy sector modeling literature in which 
experience curves were applied to energy and climate policy analysis. Buonanno 
et al. (2000) reported one of the first applications of ETC in an optimal growth 
model. Goulder (2004), Jaffe, Newell and Stavins (2000), Weyant and Olavson 
(1999) and Löschel (2002), Nordhaus (2002) and van der Zwaan et al. (2002) also 
review the application of ETC in the climate economy literature. Grubb, Köhler 
and Anderson (2002) include a survey of the approaches to modeling ETC in 
climate energy models and the policy implications of ETC. Manne and Richels 
(2004) consider the optimal timing of abatement with ETC. There are also various 
combinations of top-down and bottom-up models, as well as the incorporation of 
both macroeconomic and energy system models in climate policy integrated as-
sessment models (IAMs). Clarke and Weyant (2002) have an extensive discussion 
of the issues of induced technological change in the climate economy literature. 
Grubb, Köhler and Anderson (2002) show that ETC can give very different results 
compared to models with autonomous technical change. The overriding conclu-
sion from the literature is that the way in which technical change is represented 
matters. Positive spillovers may dominate leakage effects, costs of stabilization 
may be relatively small and early policy action can give higher overall welfare 
than delayed action.



Climate economy models have produced widely differing estimates of 
the economic implications of policies. The analysis by Barker, Köhler and Villena 
(2002) provide insight into the implications of the different underlying theoretical 
assumptions and structures of models to their outputs. One important contrast has 
been between the results of bottom-up energy system models and top-down mac-
roeconomic models. For years, an “energy efficiency gap” has been identified in 
the analysis of existing and potential technologies. In particular, there are heated 
discussions on low-cost or no-cost options and the role of energy-efficiency in 
reducing fossil energy.

The Stanford Energy Modeling Forum project on “Technology and Glob- Stanford Energy Modeling Forum project on “Technology and Glob- on “Technology and Glob-“Technology and Glob-
al Climate Change Policies” (overview provided by Weyant, 2004) marked the (overview provided by Weyant, 2004) marked the Weyant, 2004) marked the, 2004) marked the 2004) marked the marked the 
first comprehensive model comparison with specific focus on energy technologies. 
A range of climate-economy models were compared for the costs of stabiliza- range of climate-economy models were compared for the costs of stabiliza- were compared for the costs of stabiliza- costs of stabiliza-
tion at 550ppm CO

2
 and a range of carbon tax trajectories. Excluding models alsoExcluding models also 

participating in the IMCP, of the Stanford project, MARKAL, IMAGE andAMIGAMARKAL, IMAGE and AMIGA 
incorporate ETC. As in the IMCP, a wide range of baseline emissions trajectories 
technology pathways are projected when uniform stabilization targets are imposed are projected when uniform stabilization targets are imposedprojected when uniform stabilization targets are imposedwhen uniform stabilization targets are imposedstabilization targets are imposed targets are imposed 
across participating models. Weyant attributes these variations to the uncertainty. Weyant attributes these variations to the uncertaintyattributes these variations to the uncertaintythese variations to the uncertaintyvariations to the uncertainty the uncertainty 
in long term projections of energy systems. Central conclusions derived from theCentral conclusions derived from the 
comparative study can be summarized as follows: stabilization will require signifi-summarized as follows: stabilization will require signifi- as follows: stabilization will require signifi-tabilization will require signifi-
cant development and deployment of new energy technologies and implementation and implementation implementationimplementation 
implies considerable expenditures over many years. Costs can be moderated sig- considerable expenditures over many years. Costs can be moderated sig-over many years. Costs can be moderated sig- many years. Costs can be moderated sig-Costs can be moderated sig-osts can be moderated sig-
nificantly if options are pursued in parallel, and new technologies phased in gradu-and new technologies phased in gradu-new technologies phased in gradu-
ally, and if policies to induce changes start earlier rather than later., and if policies to induce changes start earlier rather than later. and if policies to induce changes start earlier rather than later.

One fundamental reason for the wide range of results is the wide range of 
modeling implementations of ETC. In principle, the approaches could be judged 
by their ability to reproduce empirical data, but there are significant weaknesses 
in the empirical grounding of the models, so it is not feasible to select between the 
different approaches. As has been shown in section 2 above, the experience curve 
literature has provided evidence for the parameterization of increasing returns to 
scale arising from capital investment. However, these estimates have weaknesses, 
because they aggregate several learning processes and do not enable a clear dis-
tinction between cause and effect. The empirical basis for the knowledge capital 
models is also heavily contested, a major difficulty being the lack of methods to 
measure knowledge and spillovers.

The IMCP is a first attempt to systematically compare approaches to theto systematically compare approaches to theo systematically compare approaches to the systematically compare approaches to the approaches to thethe 
incorporation of ETC into climate-economy models. The Synthesis Report of this of ETC into climate-economy models. The Synthesis Report of thisThe Synthesis Report of this 
issue (Edenhofer et al, 2006a) gives an overview of the range of methodologies anda) gives an overview of the range of methodologies and) gives an overview of the range of methodologies andthe range of methodologies andologies and 
ideas in use. Their Table 1 provides a useful taxonomy and summarizes the features. Their Table 1 provides a useful taxonomy and summarizes the featuresTheir Table 1 provides a useful taxonomy and summarizes the featuresTable 1 provides a useful taxonomy and summarizes the featuresable 1 provides a useful taxonomy and summarizes the featuresprovides a useful taxonomy and summarizes the features the features 
of IMCP models. Individual modeling papers in this issue report for details of ETC. Individual modeling papers in this issue report for details of ETCIndividual modeling papers in this issue report for details of ETCndividual modeling papers in this issue report for details of ETC modeling papers in this issue report for details of ETCmodeling papers in this issue report for details of ETCpapers in this issue report for details of ETCfor details of ETC ETC 
features. As noted, two main approaches to ETC can be identified – knowledge cap-. As noted, two main approaches to ETC can be identified – knowledge cap- As noted, two main approaches to ETC can be identified – knowledge cap-approaches to ETC can be identified – knowledge cap- can be identified – knowledge cap-can be identified – knowledge cap- knowledge cap-
ital and experience curves – reflecting the endogenous growth and experience curve – reflecting the endogenous growth and experience curve reflecting the endogenous growth and experience curve 
literatures. A consequence of new literatures discussed above and represented in theA consequence of new literatures discussed above and represented in the new literatures discussed above and represented in the and represented in the 
range of ETC modeling techniques of the IMCP, the incorporation of increasing incorporation of increasing 
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returns to scale due to spillovers and learning is the major innovation in the climate 
economy literature; increasing returns and the implied imperfect competition allows; increasing returns and the implied imperfect competition allowsncreasing returns and the implied imperfect competition allowsand the implied imperfect competition allowsimplied imperfect competition allows allows 
the possibility of second best outcomes, even in dynamic optimizing models. Thepossibility of second best outcomes, even in dynamic optimizing models. Thesecond best outcomes, even in dynamic optimizing models. The best outcomes, even in dynamic optimizing models. TheThe 
long-term and global models selected for this study provide insights into climateprovide insights into climate 
policy and economics of climate stabilization. Models include specific representa-f climate stabilization. Models include specific representa- include specific representa-
tions of the energy sector, generation, end-use or both, with differing levels of details of the energy sector, generation, end-use or both, with differing levels of detail of the energy sector, generation, end-use or both, with differing levels of detail, end-use or both, with differing levels of detail end-use or both, with differing levels of detail-use or both, with differing levels of detailuse or both, with differing levels of detail 
and abstraction. Most models include one or more backstop or low carbon technolo-
gies. Some models also consider energy use in the transport sector e.g. IMACLIM-r e.g. IMACLIM-IMACLIM--
R (Crassous et al, 2006) and E3MG (Barker et al, 2006). Several models include all (Crassous et al, 2006) and E3MG (Barker et al, 2006). Several models include all 
the main GHGs. All models report results in terms of COAll models report results in terms of COCO

2
 emissions trajectories andtrajectories and 

Gross World Product or energy system costs..
The IMCP models cover the main theoretical approaches in the cli-

mate economy literature. DEMETER-1CCS (Gerlagh, 2006) is a dynamic gen-
eral equilibrium model, IMACLIM-R is a dynamic recursive growth model and 
FEEM-RICE (Bosetti et al. 2006), ENTICE-BR (Popp, 2006) and now AIM/Dy--BR (Popp, 2006) and now AIM/Dy- (Popp, 2006) and now AIM/Dy-
namic-Global (Masui et al., 2006) are endogenous growth IAMs. DNE21+ (Sano 
et al, 2006) and GET-LFL (Hedenus et al, 2006) are energy system models. There 
are several hybrid models, where features of macroeconomic models and energy 
system models are combined. These are MIND (Edenhofer et al, 2006b), MES-
SAGE-MACRO (Rao et al, 2006) and E3MG. 

3.1 Production Structures and Vintages

With the exception of FEEM-RICE and AIM/ Dynamic-Global models, Dynamic-Global models, models, 
the macroeconomic models and integrated assessment models have a number of 
different sectors for each region allowing for heterogeneity between sectors’ use of 
energy. Multi-sectoral models offer the possibility of distinguishing technological. Multi-sectoral models offer the possibility of distinguishing technological Multi-sectoral models offer the possibility of distinguishing technological-sectoral models offer the possibility of distinguishing technologicalsectoral models offer the possibility of distinguishing technological 
progress in different areas of the economy as well as across different geographicalacross different geographical 
regions. Technical change is then specified either through R&D expenditures de-. Technical change is then specified either through R&D expenditures de-
termining improvements in energy intensity or through experience curves.

The crucial distinction in approaches to sectoral representation is wheth-approaches to sectoral representation is wheth- to sectoral representation is wheth-ectoral representation is wheth-
er or not models allow for substitution between carbon and non-carbon supplies. 
This has qualitative consequences from both theoretical and applied standpoints.both theoretical and applied standpoints. theoretical and applied standpoints.and applied standpoints. applied standpoints.s.. 
Grubb and Ulph (2002) find that environmental constraints do not necessarily 
increase environmental innovation. This holds when the sector is represented as a 
single process that can be more or less emissions-intensive depending on the level 
of R&D. The impact of constraints on product sales on incentives to innovate is. The impact of constraints on product sales on incentives to innovate is The impact of constraints on product sales on incentives to innovate isThe impact of constraints on product sales on incentives to innovate ishe impact of constraints on product sales on incentives to innovate is impact of constraints on product sales on incentives to innovate isonstraints on product sales on incentives to innovate iss on product sales on incentives to innovate is on product sales on incentives to innovate isproduct sales on incentives to innovate issales on incentives to innovate is is 
ambiguous. However, if alternative production options exist, markets for goodsalternative production options exist, markets for goods, markets for goodss for goods for goodsgoods 
produced via lower-emitting processes grow in absolute terms. In such cases, thelower-emitting processes grow in absolute terms. In such cases, theIn such cases, thehe 
incentive to increase innovation is unambiguous and also opens the possibility of is unambiguous and also opens the possibility of unambiguous and also opens the possibility of the possibility of possibility of 
reorienting R&D from the higher to the lower emitting process within the sector. 
Obvious examples would include some reorientation of R&D from thermal to 
renewables technologies in power generation, or from heavy oils to biofuels tech-
nologies in the fuels sector. The modeling results in the IMCP appear to confirm 



the link between model specifications that allow for this possibility for reorienta-allow for this possibility for reorienta-
tion, and possibilities for large impacts of endogenous change. and possibilities for large impacts of endogenous change.large impacts of endogenous change..

Installed capital vintages vary among models with ETC, and indeed 
among models without ETC. Total factor productivity is generally exogenous in 
CGE models. Technological progress implies that a model with ETC (or, indeed, 
exogenous technological change) has different installed capital vintages. The 
common approach to this problem is to specify an average productivity and then 
specify how the average productivity improves with ETC. This gets around the re-
quirement for explicit representation of different vintages. Models with a produc-
tion function that allows substitution in all time periods have a putty-putty vintage 
structure. DEMETER-1CCS, IMACLIM-R and E3MG have explicit putty-clay 
vintage capital structures. In IMACLIM-R, vintages in electricity production and 
end use are modeled through changes in mean input-output coefficients deter-
mined by investment. MIND has a clay-clay vintage capital structure for renew-
ables and CCS technologies. The putty-clay and clay-clay vintage structures mean 
that substitution between factors, to account for changes in relative prices from 
e.g. carbon taxes or technical change can only occur through new investment, as 
opposed to changing the use of the current capital stock.

3.2 Methods of Incorporating ETC

Cross-cutting the top-down and bottom-up models discussed above, five top-down and bottom-up models discussed above, five and bottom-up models discussed above, fivebottom-up models discussed above, fivemodels discussed above, five 
distinct methods of incorporating ETC can be identified: ETC can be identified:can be identified: 

1. Explicit representation of some energy technology – renewables or 
a backstop, CCS, energy efficiency or some combination of these.

2. Increases in knowledge capital through R&D expenditure 
3. Experience curves
4. Spillovers, from knowledge capital or in experience curves
5. Crowding out

Energy Technologies and Backstops

In climate-economy models, it is necessary to distinguish between en- climate-economy models, it is necessary to distinguish between en-climate-economy models, it is necessary to distinguish between en-, it is necessary to distinguish between en- it is necessary to distinguish between en-it is necessary to distinguish between en-t is necessary to distinguish between en-
ergy related technical change and overall productivity increase. Many climate-
economy models have a specific representation of technical change in the en-
ergy sector, while keeping total factor productivity improvements exogenous. As 
explained by the Kaya identity (COthe Kaya identity (CO

2
 emissions = output * energy intensity of 

output * carbon intensity of energy), changes in emissions may take place through 
reduction of output, carbon intensity of energy production and/or energy intensity 
in general production.

The role of backstop technologies in climate energy models is often cru-
cial. A backstop technology is a source of energy for which there is infinite supply 
above a given price level, such that the price of energy is capped at the backstop 
price; however, the backstop price may vary through technical change. Renewables; however, the backstop price may vary through technical change. Renewables backstop price may vary through technical change. Renewables. Renewablesenewables 
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(e.g. wind, solar, tidal and geothermal resources) serve as backstop technologieswind, solar, tidal and geothermal resources) serve as backstop technologies and geothermal resources) serve as backstop technologies geothermal resources) serve as backstop technologies as backstop technologiestechnologies 
whereas nuclear fission is generally do not, because it is potentially subject to limi-
tations in uranium supply and have different cost properties to renewables. While 
non-renewable fuels become increasingly subject to scarcity costs reflecting Hotel-become increasingly subject to scarcity costs reflecting Hotel-
ling’s principle, renewable energy sources face no such costs. No attempts have yet, renewable energy sources face no such costs. No attempts have yet. No attempts have yeto attempts have yet 
been made to specify property rights on these natural processes, in contrast to un-property rights on these natural processes, in contrast to un-
derground resources. Although renewable backstop technologies may face higherAlthough renewable backstop technologies may face higher 
costs than fossil fuel technologies at present, whether this remains the case in the fossil fuel technologies at present, whether this remains the case in the at present, whether this remains the case in the 
long term horizon depends on the relative rate of learning. If their learning rates for If their learning rates forfor 
renewables are higher and correct incentives are put into place for their investment,higher and correct incentives are put into place for their investment, and correct incentives are put into place for their investment,incentives are put into place for their investment,are put into place for their investment, their investment,their investment,investment,ment, 
then the switch to low-carbon technologies will eventually be permanent.switch to low-carbon technologies will eventually be permanent. to low-carbon technologies will eventually be permanent. will eventually be permanent.

All the IMCP models with a macroeconomic component allow for a re-
duction in energy intensity in production. The MIND model incorporates ’learningincorporates ’learning’learninglearning 
by doing‘ for both labor and energy productivity (with R&D and physical capital‘ for both labor and energy productivity (with R&D and physical capital (with R&D and physical capital(with R&D and physical capital 
investments as decision variables). The CGE and endogenous growth models, in-
cluding IMACLIM-R, allow for factor substitution through their production func-
tions, subject to relative prices of fossil fuel and other resources compared to, subject to relative prices of fossil fuel and other resources compared tosubject to relative prices of fossil fuel and other resources compared to to relative prices of fossil fuel and other resources compared to relative prices of fossil fuel and other resources compared to 
labor, capital and sometimes materials. This enables ITC to be modeled through 
policies to change relative factor prices, typically taxes on energy use (directly re-
lated to carbon emissions) or indirectly with GHG permit trading, if this increases 
the relative price of energy inputs to production. In the E3MG model, the sectoral, the sectoral the sectoral 
energy demand is a function of energy prices among other variables, allowing theis a function of energy prices among other variables, allowing the energy prices among other variables, allowing the among other variables, allowing the, allowing theallowing the 
possibility of climate policies such as carbon taxes and permit trading schemes tocarbon taxes and permit trading schemes to to 
be incorporated. It also includes indicators of technological progress in the formincorporated. It also includes indicators of technological progress in the form. It also includes indicators of technological progress in the formalso includes indicators of technological progress in the formincludes indicators of technological progress in the form 
of accumulated investment and R&D, such that extra investment in new tech-
nologies induces energy saving. Such model feature considerations are irrelevantSuch model feature considerations are irrelevant 
for energy sector models without a macroeconomic component do not includeenergy sector models without a macroeconomic component do not include 
general industrial production. Several models also include R&D in energy saving 
technologies as an endogenous decision variable. Some models use experience 
curves for energy efficiency technologies e.g. GET-LFL has a experience curve e.g. GET-LFL has a experience curve GET-LFL has a experience curve 
for energy conversion and FEEM-RICE has ETC in abatement. AIM/Dynamic-
Global, FEEM-RICE and ENTICE-BR all have some form of reduction in energy 
intensity through human capital and/or knowledge stocks, endogenized throughhuman capital and/or knowledge stocks, endogenized throughuman capital and/or knowledge stocks, endogenized throughcapital and/or knowledge stocks, endogenized throughapital and/or knowledge stocks, endogenized through and/or knowledge stocks, endogenized throughnowledge stocks, endogenized throughzed throughed through 
an R&D variable.

There is a wide range in the level of detail of energy technologies in the 
different models. Typical for energy systems models, the GET-LFL and MES-Typical for energy systems models, the GET-LFL and MES-ypical for energy systems models, the GET-LFL and MES-, the GET-LFL and MES- the GET-LFL and MES-the GET-LFL and MES-he GET-LFL and MES-
SAGE-MACRO models have considerable technological detail with learning ap-
plied to clusters covering all technologies. Although detailed to a lesser extent, theAlthough detailed to a lesser extent, thehe 
hybrid model E3MG also has technological detail with experience curves for eachalso has technological detail with experience curves for eachhas technological detail with experience curves for each technological detail with experience curves for each experience curves for each 
technology. In contrast, the DNE21+ energy system model has many technolo-
gies, but applies learning to three low carbon technologies to a limited degree.applies learning to three low carbon technologies to a limited degree. learning to three low carbon technologies to a limited degree.to three low carbon technologies to a limited degree. three low carbon technologies to a limited degree. to a limited degree..

In contrast to energy system models, technological representations in 
macroeconomic models are more aggregated. The FEEM-RICE and ENTICE-BRacroeconomic models are more aggregated. The FEEM-RICE and ENTICE-BR are more aggregated. The FEEM-RICE and ENTICE-BR. The FEEM-RICE and ENTICE-BR 
models have learning by searching applied to aggregate variables for technical 



progress in energy inputs. MIND includes fossil fuel availability, dependent on 
the ratio of current to initial resource extraction, as well as increasing marginal 
costs from resource scarcity. Carbon sequestration and storage (CCS) is included 
in the DEMETER-1CCS, DNE21+, GET-LFL, MIND, MESSAGE-MACRO and 
E3MG models. DEMETER-1CCS uses an effort variable for reductions in emis-
sions from CCS to determine investment and maintenance costs, combined with a 
knowledge stock for CCS technological progress. The knowledge stock is derived 
from cumulated emissions reductions. This approach is similar to FEEM-RICE,approach is similar to FEEM-RICE, similar to FEEM-RICE, 
which has a technological change index dependent on cumulated abatement. 
MIND has a detailed representation of CCS, with 6 steps and 4 different capital 
stocks for CCS, together with a choice of technologies for each step. Fossil fuel 
availability is subject to learning by doing in resource extraction, dependent on 
the ratio of current to initial resource extraction, as well as increasing marginal 
costs from resource scarcity. DEMETER-1CCS includes generic fossil and non-
fossil energy technologies, with CCS for fossil energy.

This variation in the level of technological detail has at least twovariation in the level of technological detail has at least two 
implications. Firstly, there are clear limitations to the direct comparison of results. Firstly, there are clear limitations to the direct comparison of results Firstly, there are clear limitations to the direct comparison of resultsFirstly, there are clear limitations to the direct comparison of resultsthere are clear limitations to the direct comparison of results 
derived from the wide ranging models, hence conclusions must be drawn with 
care particularly with respect to its implications to technology specific policies.technology specific policies.. 
Secondly, it illustrates that a consensus is yet to be reached in the climate econ-a consensus is yet to be reached in the climate econ- consensus is yet to be reached in the climate econ-is yet to be reached in the climate econ- the climate econ-
omy literature, about the features of energy technologies necessary in a model, about the features of energy technologies necessary in a model features of energy technologies necessary in a model in a model 
in order to draw conclusions about the economics of climate stabilization and draw conclusions about the economics of climate stabilization andof climate stabilization and climate stabilization andzation andation and and 
insights for policy making..

Knowledge Capital and R&D

Various climate-economy models use a knowledge variable to calcu-
late cost reductions and efficiency improvements in energy technologies. These and efficiency improvements in energy technologies. Theseefficiency improvements in energy technologies. These 
variables are usually calculated in the same way as capital stocks, but based on 
R&D expenditures in addition to investment. They are equivalent to an experience 
curve, because they parameterize productivity increases from R&D (learning byze productivity increases from R&D (learning bye productivity increases from R&D (learning by 
searching in a two factor experience curve) and investment in capital (learning 
by doing in a two factor experience curve). However, they do not necessarily use. However, they do not necessarily use However, they do not necessarily useHowever, they do not necessarily use do not necessarily use 
the same learning rate formulation. The treatment as a stock variable introduces 
the ‘learning rate’ implicitly through the parameterization of knowledge accu-zation of knowledge accu-ation of knowledge accu-
mulation and the use of the knowledge variable in reducing costs or improving 
efficiency. Such knowledge variables are often called ‘human capital’ in the en-
dogenous growth literature. This suggests incorporating considerations of factors 
such as health, education (discussed in Temple, 1999), although no attempt has(discussed in Temple, 1999), although no attempt hasTemple, 1999), although no attempt has, 1999), although no attempt has 1999), although no attempt has, although no attempt has 
been made to date..

Most top-down models have R&D variables and a knowledge capital 
stock. AIM/Dynamic-Global has energy saving capital. In FEEM-RICE, a stock of 
cumulated abatement is combined with a generalized stock of ‘energy knowledge’is combined with a generalized stock of ‘energy knowledge’combined with a generalized stock of ‘energy knowledge’d with a generalized stock of ‘energy knowledge’ with a generalized stock of ‘energy knowledge’zed stock of ‘energy knowledge’ed stock of ‘energy knowledge’ 
to generate an index of technical change, leading to increased carbon energy ef-

The Transition to Endogenous Technical Change  /  41



42  /  The Energy Journal

ficiency. R&D spending on energy adds to the energy knowledge stock. ENTICE-
BR has knowledge accumulation from R&D in energy efficiency and the backstop 
technology. In E3MG, the sectoral energy and export demand equations include 
indicators of technological progress in the form of accumulated investment and 
R&D. This illustrates again, the diversity of approaches in the current literature., the diversity of approaches in the current literature. the diversity of approaches in the current literature.

Experience Curves 

This is the most common approach to incorporating ETC. All the IMCP the most common approach to incorporating ETC. All the IMCP approach to incorporating ETC. All the IMCPETC. All the IMCP 
models have some form of cost reduction or productivity increase from cumu-
lated investment. Since experience curves are the most common feature of ETC 
in climate energy modeling, it is also useful to clarify its meaning. As indicated,clarify its meaning. As indicated,. As indicated, 
there is a difference between learning by searching or researching, and learning, and learning and learning 
by doing. Several energy sector models, including MESSAGE-MACRO, have 2 
factor experience curves where production costs reductions are dependent on boths reductions are dependent on both reductions are dependent on both 
R&D expenditures and physical capital or installation expenditures. There is a 
further distinction between learning from cumulated investment (stock) and learn-(stock) and learn-and learn-
ing by producing/using (flow). Similarly in the FEEM-RICE model, a stock of (flow). Similarly in the FEEM-RICE model, a stock of. Similarly in the FEEM-RICE model, a stock ofSimilarly in the FEEM-RICE model, a stock of FEEM-RICE model, a stock of, a stock of a stock of 
cumulated abatement is combined with a generalized stock of ‘energy knowledge’ is combined with a generalized stock of ‘energy knowledge’ combined with a generalized stock of ‘energy knowledge’d with a generalized stock of ‘energy knowledge’ with a generalized stock of ‘energy knowledge’zed stock of ‘energy knowledge’ed stock of ‘energy knowledge’ 
to generate an index of technical change that lead to increased energy efficiency. that lead to increased energy efficiency. lead to increased energy efficiency. to increased energy efficiency.to increased energy efficiency. 
R&D spending on energy adds to the energy knowledge stock.

As noted, an important assumption in an experience curve regards floorregards floor floor 
costs. The conventional experience curve is a declining exponential, hence in order, hence in order in order 
to prevent costs from tending to zero in the long run, many models have to specify a 
‘floor cost’ for each curve. In the long run, the process of switching to new technolo-
gies will tend to a set of stable values for technology shares. These relative shares isfor technology shares. These relative shares is technology shares. These relative shares isis 
determined by the relative floor price assumptions (as well as availability for non- the relative floor price assumptions (as well as availability for non-
backstop technologies), independent of learning rates. Thus, in the long run, a static, independent of learning rates. Thus, in the long run, a static. Thus, in the long run, a static 
equilibrium solution may emerge, even in these non-linear dynamic models.

Several limitations of experience curves can be readily identified, as 
discussed in Section 2 above. Because different components may display verySection 2 above. Because different components may display veryection 2 above. Because different components may display veryBecause different components may display veryecause different components may display veryonents may display verynents may display very 
different learning rates, there is a need to disaggregate experience curves into, there is a need to disaggregate experience curves into there is a need to disaggregate experience curves intothere is a need to disaggregate experience curves intois a need to disaggregate experience curves into disaggregate experience curves into experience curves into intointo 
engineering elements. For example for wind turbines, different blade size, gear-. For example for wind turbines, different blade size, gear- For example for wind turbines, different blade size, gear-For example for wind turbines, different blade size, gear-or example for wind turbines, different blade size, gear- example for wind turbines, different blade size, gear- wind turbines, different blade size, gear-, different blade size, gear- different blade size, gear-different blade size, gear-blade size, gear-
boxes, mast/installation, and connections to grid exhibit different learning rates.and connections to grid exhibit different learning rates.connections to grid exhibit different learning rates. exhibit different learning rates.. 
Of the IMCP models, this is only undertaken in GET-LFL and to a certain extent,, 
MESSAGE-MACRO. 

Spillovers

Whether explicit or implicit, all of the models include spillovers of someexplicit or implicit, all of the models include spillovers of some, all of the models include spillovers of some all of the models include spillovers of someall of the models include spillovers of somell of the models include spillovers of some 
form. With models incorporating experience curves, the curve may be dependentWith models incorporating experience curves, the curve may be dependentodels incorporating experience curves, the curve may be dependent, the curve may be dependent the curve may be dependentmay be dependent dependent 
on investment cumulated over different regions. Regional spillovers are then Regional spillovers are then 
likely to be included. Several models have ‘global’ learning, where the sum of Several models have ‘global’ learning, where the sum of 
all regions’ investments is incorporated in a single experience curve for a par-



ticular technology. The GET-LFL and MESSAGE-MACRO models have spill-
overs within clusters of technologies. If spillovers are included in the technical 
change specification, the positive externality will mean that ITC from policy has 
an increased aggregate impact. However, also implied is that the level of technicaln increased aggregate impact. However, also implied is that the level of technical. However, also implied is that the level of technicalalso implied is that the level of technical level of technical 
change induced will be sub-optimal (unless the government intervenes to correct 
market failures for knowledge).

Crowding Out

One important difference stemming from the assumptions by which 
learning is modeled is the importance of crowding out. Because R&D inputs areBecause R&D inputs are R&D inputs are 
specialized, their supply is inelastic (see, for example, Goolsbee, 1998). Moreover,zed, their supply is inelastic (see, for example, Goolsbee, 1998). Moreover,ed, their supply is inelastic (see, for example, Goolsbee, 1998). Moreover,, their supply is inelastic (see, for example, Goolsbee, 1998). Moreover,their supply is inelastic (see, for example, Goolsbee, 1998). Moreover, 
because investments in R&D in general have relatively high social rates of return investments in R&D in general have relatively high social rates of return R&D in general have relatively high social rates of returnhave relatively high social rates of return relatively high social rates of returnrelatively high social rates of returnhigh social rates of return 
(four times greater according to many empirical studies), the loss of R&D invest-, the loss of R&D invest-
ment is more detrimental to the economy compared with other types of invest-is more detrimental to the economy compared with other types of invest-detrimental to the economy compared with other types of invest- to the economy compared with other types of invest-the economy compared with other types of invest-compared with other types of invest- other types of invest-
ments of the same value. Popp (2004) argues assumptions about the magnitude ofs of the same value. Popp (2004) argues assumptions about the magnitude ofue. Popp (2004) argues assumptions about the magnitude ofe. Popp (2004) argues assumptions about the magnitude of. Popp (2004) argues assumptions about the magnitude ofargues assumptions about the magnitude of assumptions about the magnitude of 
crowding out have significant effects on the potential welfare gains from ITC. For 
example, because most learning by doing in models are single factor (do not con-in models are single factor (do not con-models are single factor (do not con-are single factor (do not con-do not con-
sider R&D), they do not consider crowding out. Hence R&D is an important topic,), they do not consider crowding out. Hence R&D is an important topic,, they do not consider crowding out. Hence R&D is an important topic, 
and it matters whether it is R&D or other types of investment that is crowded out.

The endogenous growth IAMs make explicit assumptions about crowding 
out of R&D in the general economy from R&D in the energy sector. MIND mod-
els the tradeoff between two types of R&D, by including a second type of R&D., by including a second type of R&D.by including a second type of R&D. 
ENTICE-BR uses variations in the cost of R&D to capture the effect of crowding 
out, but does not explicitly model changes among types of R&D. FEEM-RICE 
uses the ENTICE-BR assumptions, where new energy R&D crowds out 50% of 
other R&D. More generally, macroeconomic models with investment decisions 
between different sectors will generate crowding out effects, although these will 
not be as strong as crowding out effects from lost R&D. Given ETC in the invest-
ment sectors, this will have an ongoing impact, generating path dependency in the 
economy, as is described in Crassous et al. (2006) for IMACLIM-R.

What Remains Exogenous? 

The CGEs and the dynamic GE models include general technical change 
through improvements in total factor productivity (TPF), assumed as an exog- (TPF), assumed as an exog-, assumed as an exog-
enous improvement rate. MIND, however, has a fixed TFP. In energy system mod-
els, energy demand and GDP are exogenous (while including technical change, energy demand and GDP are exogenous (while including technical change energy demand and GDP are exogenous (while including technical change 
in energy efficiency and end use technologies). Some models have an AEEI for forfor 
various energy technologies – AIM/Dynamic-Global, DNE21+. MIND and MES-
SAGE-MACRO are the only models to include a resource extraction sector with 
technological change. Some models combine ETC in some energy technologies 
with an exogenous element of technical progress e.g. ENTICE-BR, AIM/ Dy-
namic-Global. Finally, a critical behavioral variable – discount rates or the pure 

The Transition to Endogenous Technical Change  /  43



44  /  The Energy Journal

rate of time preference are exogenous; rates vary widely, from 0 in E3MG (but 7% 
for investment decisions for energy capital), 1% in MIND, to 5% in GET-LFL.

Summary

Crosscutting IMCP is a common theme: technical change, progress and IMCP is a common theme: technical change, progress andis a common theme: technical change, progress and a common theme: technical change, progress and 
diffusion is driven by the development of knowledge capital and its particular 
economic characteristics of being partly non-rival and partly non-excludable. This 
leads to increasing returns from spillovers, with market failures due to oligopo-
listic competition and R&D expenditures less than the social optimum. There areThere are 
two main formulations modelers use to capture this common idea: experiencewo main formulations modelers use to capture this common idea: experiences use to capture this common idea: experience common idea: experience: experience experience 
curves and knowledge capital. A two factor experience curve has cost reductionstwo factor experience curve has cost reductions factor experience curve has cost reductions 
from R&D (learning by searching) and cost reductions from installed capacity 
(learning by doing). The knowledge capital formulations are equivalent to learning 
curves, because they describe productivity increases from R&D expenditures or 
capital investment. There is a tendency in the top-down models towards becoming 
hybrid models, because in order to incorporate ETC, they have to represent some 
detail in the relevant sectors, usually energy but also transport in some models. 
The top down literature is diverse in its theoretical treatment; the IMCP top down 
models have various representations of knowledge increase and also conventional 
learning curves. The bottom-up literature is quite cohesive – it has adopted one – it has adopted one it has adopted oneone 
factor learning curves and is now moving to two factor learning curves. now moving to two factor learning curves. moving to two factor learning curves.two factor learning curves. factor learning curves.

4. SUCCESSES AND WEAKNESSES OF THE NEW MODELS

This section assesses the strengths and weaknesses of the various ap-
proaches when applied to ETC in climate mitigation economics. Have the models 
been able to incorporate the theoretical features of ETC and what is their empirical 
base? There are other important considerations that apply particularly to all mod-
els in a model comparison project. To make the results comparable, a common 
policy target and a common specification of the baseline should be adopted as far 
as possible. Another significant area of variation is the assumed decision making 
process. The baseline and representation of decision processes are discussed in 
the Synthesis paper. There is also the question of calibration/estimation of model 
parameters. To what extent is there an empirical basis for the key parameters that 
govern the extent of ETC; do the models use common data – for example, the rate 
of return to given R&D investments, or the extent of spillovers in a given industry, 
or the rate of learning by doing and ? These issues are discussed below.

Success!

The recent literatures surveyed above are reflected thoroughly by the scopehe recent literatures surveyed above are reflected thoroughly by the scope surveyed above are reflected thoroughly by the scope 
of models of the IMCP; they all incorporate a learning process that has increasing; they all incorporate a learning process that has increasing 
returns and falling long run costs. Spillovers are taken into account, usually throughSpillovers are taken into account, usually throughpillovers are taken into account, usually through are taken into account, usually through, usually through 



assumptions of common learning across the different regions. However, there is a 
wide range of implementations: whilst some models have broadly specified ETC: whilst some models have broadly specified ETC whilst some models have broadly specified ETCwhilst some models have broadly specified ETC some models have broadly specified ETCe broadly specified ETC broadly specified ETC 
that is fundamental to the model structure, others have very restricted applications., others have very restricted applications. others have very restricted applications.e very restricted applications. very restricted applications. 
We consider IMCP models, grouped by model types, then turn to some ‘practical’ models, grouped by model types, then turn to some ‘practical’ then turn to some ‘practical’ 
modeling issues that illuminated by this comparative analysis.this comparative analysis..

Optimal Growth Models

The strength of optimal growth lies in its incorporation of knowledge strength of optimal growth lies in its incorporation of knowledgestrength of optimal growth lies in its incorporation of knowledge of optimal growth lies in its incorporation of knowledge optimal growth lies in its incorporation of knowledgelies in its incorporation of knowledge incorporation of knowledgeion of knowledge knowledge 
capital, this group of models adopt theoretical structures used in the endogenousthis group of models adopt theoretical structures used in the endogenous adopt theoretical structures used in the endogenous 
growth literature. Issues surrounding imperfect competition and increasing re-surrounding imperfect competition and increasing re- imperfect competition and increasing re-
turns to scale is discussed extensively in the literature, and are addressed by theis discussed extensively in the literature, and are addressed by the extensively in the literature, and are addressed by theare addressed by thethe 
IMCP models. The major weakness of optimal growth models lies in their em-The major weakness of optimal growth models lies in their em-s in their em- in their em- em-
pirical base. Models are all calibrated to data, but their functional forms and pa-Models are all calibrated to data, but their functional forms and pa-odels are all calibrated to data, but their functional forms and pa-ir functional forms and pa- functional forms and pa-
rameterizations do not have a strong econometric evidence base, partly stemmingzations do not have a strong econometric evidence base, partly stemmingations do not have a strong econometric evidence base, partly stemming, partly stemming 
from limitations identified in the more general literature relating to problems ofimitations identified in the more general literature relating to problems ofidentified in the more general literature relating to problems ofin the more general literature relating to problems ofrelating to problems of problems of 
measurement of knowledge, as discussed above in Section 2. These issues areese issues are issues ares are are 
discussed further below. The resulting variation in functional implementations below. The resulting variation in functional implementationsbelow. The resulting variation in functional implementationsThe resulting variation in functional implementations functional implementations 
and modeling outcomes are both an asset and limitation to the comparison project. are both an asset and limitation to the comparison project. 
In addition, energy sector specifications included in models cover a wide range energy sector specifications included in models cover a wide rangespecifications included in models cover a wide rangeincluded in models cover a wide range in models cover a wide rangecover a wide range range 
– models start from an aggregated model then expand detail in some aspects of models start from an aggregated model then expand detail in some aspects of 
the energy sector with respect to level and method of including learning curves as with respect to level and method of including learning curves as learning curves as 
well as knowledge and human capital.

Energy Sector Models

In contrast to the growth models, there is a common approach in the 
bottom up models. The learning curve literature comes from microeconomic ob-
servation, so the empirical work to estimate learning rates for the energy sector 
is a direct extension of this literature. The strength of energy sector models is the extension of this literature. The strength of energy sector models is thethis literature. The strength of energy sector models is the literature. The strength of energy sector models is theenergy sector models is themodels is thethe 
extensive technological detail. This enables the wealth of empirical information 
to be represented in the model structure. However, problems arise because models 
usually calculate a dynamic optimum – i.e. the minimum total cost of the energy – i.e. the minimum total cost of the energy the minimum total cost of the energy 
sector over the time frame of the model – using linear programming methods. – using linear programming methods. using linear programming methods. 
The non-convexities of knowledge spillovers and learning curves can lead to local 
maxima and potentially multiple global equilibria. However, if firms face non-
decreasing marginal costs at a constant level of technology, there appears to be no 
problem of multiple equilibria.

The most sophisticated method used to solve such problems in this litera-sophisticated method used to solve such problems in this litera-
ture is the Mixed Integer Programming method adopted for the MESSAGE-MAC-
RO model. In the MERGE-ETL model (Bahn and Kypreos, 2003), the boundary 
conditions are carefully chosen to restrict the model to a stable parameter space. 
The terminal conditions are defined in such a way as to avoid local optima. The 
DNE21+ model addresses the problem of multiple optima by limiting the imple- of multiple optima by limiting the imple- by limiting the imple-
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mentation of learning. It has learning by doing for three specific technologies 
only, while having eight energy sources and four energy carriers in 77 world re-, while having eight energy sources and four energy carriers in 77 world re-eight energy sources and four energy carriers in 77 world re- energy sources and four energy carriers in 77 world re-four energy carriers in 77 world re- energy carriers in 77 world re-
gions. Therefore, the impact of the new technologies on the overall energy system 
is restricted with significant impact on costs reductions. DNE21+ solves the opti- restricted with significant impact on costs reductions. DNE21+ solves the opti-with significant impact on costs reductions. DNE21+ solves the opti-significant impact on costs reductions. DNE21+ solves the opti- reductions. DNE21+ solves the opti-. DNE21+ solves the opti-
mization problem iteratively. Initial estimates are used for the learning variableszation problem iteratively. Initial estimates are used for the learning variablesation problem iteratively. Initial estimates are used for the learning variablesInitial estimates are used for the learning variablesnitial estimates are used for the learning variabless are used for the learning variables are used for the learning variablesare used for the learning variables used for the learning variables 
and time series values. These are then input into the next iteration until differences time series values. These are then input into the next iteration until differences. These are then input into the next iteration until differences These are then input into the next iteration until differencesThese are then input into the next iteration until differenceshese are then input into the next iteration until differencesinput into the next iteration until differences into the next iteration until differences 
between subsequent runs become small. This method is less computationally in-become small. This method is less computationally in- small. This method is less computationally in-
tensive than MIP used in MESSAGE-MACRO. This issue is discussed further in 
the context of CGEs below. 

Computable General Equilibrium Models

The experience of the IMCP has shown that CGEs face considerable dif-CGEs face considerable dif- considerable dif-
ficulties in incorporating ETC. Linear programming methods, as frequently used. Linear programming methods, as frequently used Linear programming methods, as frequently used 
in CGE models, are best suited to solving problems with a single maximum. ThisThishis 
is usually guaranteed by the adoption of constant or decreasing returns to scale in usually guaranteed by the adoption of constant or decreasing returns to scale in guaranteed by the adoption of constant or decreasing returns to scale in 
production functions. The introduction of increasing returns to scale for a part of 
the model may generate local minima and maxima and has been found in some 
cases to destabilize the model, such that finding a solution depends critically onze the model, such that finding a solution depends critically one the model, such that finding a solution depends critically on 
the parameter values used. If the model is “tuned” to give plausible results, then 
the question of how these values relate to data becomes crucial. Another typicalcrucial. Another typical. Another typical 
impact of increasing returns to scale is to generate instability, as the maximum 
may be a corner solution. If there are multiple corner solutions, then the model 
may flip between these solutions, generating implausible major changes between 
successive iterations or time periods.

One response is to limit the implementation of increasing returns. Of the 
recursive dynamic CGEs in the general literature, the WIAGEM model (Kemfert, 
2005) uses a restricted implementation. The AIM/ Dynamic-Global model has 
been modified in the IMCP from a CGE to an optimal growth model and in-modified in the IMCP from a CGE to an optimal growth model and in- from a CGE to an optimal growth model and in-
corporates only energy efficiency i.e. productivity improving capital, along withonly energy efficiency i.e. productivity improving capital, along withenergy efficiency i.e. productivity improving capital, along with 
an AEEI. The model optimizes allowing for (previously exogenous) productivityzes allowing for (previously exogenous) productivityes allowing for (previously exogenous) productivity 
improvements over time, but the theoretical structure is not changed to include, but the theoretical structure is not changed to includetheoretical structure is not changed to includeis not changed to includeto include 
detailed dynamic functions. DEMETER-1CCS and IMACLIM-R take the lattertake the latterthe lattere latter 
approach, which involves considerable theoretical development.

Dynamic Simulation Models

The E3MG macroeconometric model represents the non-optimizing dy-zing dy-ing dy-
namic simulation approach. Since it is based on time series estimations, it has theSince it is based on time series estimations, it has thebased on time series estimations, it has thes, it has the it has theit has the has thethe 
advantage of having strong connection to historical data. At the same time, this strong connection to historical data. At the same time, thisAt the same time, this 
historic bias is a limitation given the long timescales of climate economy modelslimitation given the long timescales of climate economy models given the long timescales of climate economy modelstimescales of climate economy models 
that anticipate considerable changes in future production structures. Such changes anticipate considerable changes in future production structures. Such changes considerable changes in future production structures. Such changesfuture production structures. Such changesproduction structures. Such changes 
are incorporated, but cannot be estimated. Also, the econometric methodology 
implies backward looking investment functions as dependent on previous demand 



and investment trends. This is inconsistent with forward looking, cost minimizingis inconsistent with forward looking, cost minimizing forward looking, cost minimizingzinging 
decision implemented for energy generation. As with other top down models, the 
model is implemented as a hybrid model, where the treatment of the energy sectoris implemented as a hybrid model, where the treatment of the energy sector implemented as a hybrid model, where the treatment of the energy sector 
is expanded compared to the other sectors.

Calibration/Estimation of Model Parameters

The calibration of long term dynamic models presents particular problems. 
Most CGE and endogenous growth models are calibrated on the most recent data, 
generating the dynamics from the model structure. An alternative school of thought 
uses time series econometrics. Both approaches encounter problems from the longencounter problems from the longproblems from the longfrom the longlong 
run perspective, where economic structures are expected to change significantly. perspective, where economic structures are expected to change significantly., where economic structures are expected to change significantly.are expected to change significantly. expected to change significantly.significantly.. 
Therefore, as well as calibration/estimation using historical data, climate-economy 
models have to make explicit assumptions about future changes in structure. The 
calibration of learning curves often has the same problem. Econometric estimation 
of learning curves is not possible for new technologies where no historical data 
exists. Engineering estimates of performance of new technologies help to a limited. Engineering estimates of performance of new technologies help to a limitedEngineering estimates of performance of new technologies help to a limitedngineering estimates of performance of new technologies help to a limitedhelp to a limited 
degree (Anderson and Winne, 2004). As discussed in Section 2, there is still a lim-(Anderson and Winne, 2004). As discussed in Section 2, there is still a lim-. As discussed in Section 2, there is still a lim- As discussed in Section 2, there is still a lim-Section 2, there is still a lim-ection 2, there is still a lim-
ited empirical basis for the key parameters that govern the extent of ETC. Returns 
to R&D, the extent of spillovers, and knowledge (human) capital variables pose (human) capital variables posehuman) capital variables pose) capital variables pose capital variables pose pose 
significant problems of estimation. Knowledge capital, like utility, is an abstract of estimation. Knowledge capital, like utility, is an abstractestimation. Knowledge capital, like utility, is an abstract. Knowledge capital, like utility, is an abstract 
concept that has to be inferred through proxy variables – usually R&D expenditures 
and patent applications numbers in the technology and economics literatures. The 
limitations of these approaches also mean that the extent of spillovers in different 
industries is has not been clearly identified. The methods used for estimating rates 
of learning by doing mean that the estimates are not robust and the most important 
features of different technologies in determining learning rates are not clear.

What is Still Missing?

The innovation literature discussed in Section 2 above identifies the following theo-Section 2 above identifies the following theo-ection 2 above identifies the following theo-
retical features of technical change (see also Clarke and Weyant, 2002):
•	 Economic mechanisms by which technical change and technology diffusion 

takes place.
•	 Spillovers – public/private, inter-sectoral, inter-regional and the difference 

between private and social returns to R&D activity.
•	 Technological heterogeneity.
•	 Uncertainties in outcomes of innovation activity and decision processes 

in innovation, taking into account the risks and long timescales of many 
investments.

For climate economy models, there are two further important features:
•	 Following the Kaya identity, decarbonization of economic activity vs. 

decarbonization of energy production.
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•	 Inertia and path dependence in technological systems such as energy, 
transportation, buildings.

What issues are yet to be addressed in climate modeling and ETC?hat issues are yet to be addressed in climate modeling and ETC?issues are yet to be addressed in climate modeling and ETC?? 
Although the progress in modeling techniques has been impressive, some importantsome important 
limitations can be noted: the lack of uncertainty analysis; the limited representation: the lack of uncertainty analysis; the limited representation the lack of uncertainty analysis; the limited representation; the limited representation the limited representation 
of the diffusion of technology; the homogeneous nature of agents in the models.; the homogeneous nature of agents in the models. the homogeneous nature of agents in the models.

Uncertainty

The models compared in the IMCP are all deterministic. This is a criti-
cal limitation, because non-linear, dynamic systems with heterogeneous agents 
where responses are essentially stochastic have fundamentally different properties 
to models that take aggregate averages or expected values. For example, the adop-
tion of new technologies may initially happen in a niche market. The expansion of 
such a niche is known to be one way in which the diffusion process starts, but can-
not be represented in a model with aggregate markets and a representative firm. A 
critical variation is firms’ attitude to uncertainty in R&D outcomes and risky inno-
vation. This is a major determinant of R&D and investment decisions, which also 
cannot be considered in a deterministic model. The differing optimal responses of 
society and private firms to uncertainty also cannot be considered. There is little in 
the literature that attempts to address this issue. Grübler, Nakićenović and Victor 
(1999b) is one of the few stochastic analyses using an energy sector model, while 
Bosetti and Douet (2005) is one of the first stochastic analyses with an optimal 
growth model. The only stochastic IAM in the literature is the PAGE2002 model, 
which has not yet fully incorporated ETC in its structure (Hope, forthcoming). 
Although the models report sensitivity analyses, these are very limited in com-
parison to the overall parameter spaces that these models occupy, given the large 
numbers of variables. The use of multiple scenarios to explore the overall range 
of possibilities generated by such models is also very limited, given the very wide 
ranges of futures that all these models can generate. Incorporating uncertainty 
will be a major challenge for the current generation of climate-economy models. 
Grübler, Nakićenović and Victor (1999b) and also Bosetti and Douet (2005) have 
demonstrated its feasibility with both bottom-up and top-down models incorporat- its feasibility with both bottom-up and top-down models incorporat-its feasibility with both bottom-up and top-down models incorporat-feasibility with both bottom-up and top-down models incorporat-ility with both bottom-up and top-down models incorporat- with both bottom-up and top-down models incorporat-
ing ETC in the energy sector, but it will require fundamental changes in direction fundamental changes in direction changes in directions in direction in direction 
for most climate economy models. As discussed in Section 2, Aghion and HowittSection 2, Aghion and Howittection 2, Aghion and Howitt 
(1998) provide an example using an endogenous growth model of Schumpeterian 
technical change. 

Technology Diffusion

Technical change is a process of diffusion: from initial discoveries, inven-
tions, new technologies usually develop in niche markets where there is a demand 
for a specific performance improvement, even with the higher costs of the new 



technology. If the technology is to be widely adopted, there is a gradual process of 
diffusion as new products and new markets are created and the price of the technol-
ogy drops through learning processes. Thus models that differentiate between al-
ternative technologies assume that new technologies are adopted on a small scale, 
even though they are more expensive. This opens the possibility of increasing mar-
ket shares, given policy support. There is, however, little treatment of the barriers to 
the adoption and diffusion of new energy technologies observed in practice.

The models are also limited in their representation of inter-regional spill-
overs and imperfect global markets. As Keller (2004) demonstrates, technology 
transfer is a significant and complex aspect of technical change. Interregional spill-
overs are a critical part of the process: trade and FDI are an increasingly important 
part of the climate policy debate. A limitation of all the IMCP models is that they 
have restricted representations of the processes of knowledge transfer. Typically,Typically, 
models assume some spillovers, through the application of common learning spillovers, through the application of common learning 
(through R&D) to more than one region, but incorporate limited detail on the scope, but incorporate limited detail on the scope detail on the scopedetail on the scope on the scopeon the scope the scopethe scope 
of spillover (e.g. how it relates with trade/FDI or capacity, education/academictrade/FDI or capacity, education/academic/FDI or capacity, education/academicFDI or capacity, education/academic, education/academic education/academic 
activity, local R&D of receiving countries). Therefore, it is not possible for these). Therefore, it is not possible for these. Therefore, it is not possible for these 
models to examine questions of under what conditions knowledge development and 
transfer will take place, or what factors enable successful technology diffusion. 

Heterogeneous Agents 

R&D activities are introduced using aggregate data. Hence, the insights introduced using aggregate data. Hence, the insightsintroduced using aggregate data. Hence, the insights 
given by allowing for heterogeneous agents e.g. firms choosing to specialize in 
niche markets, or consumers who are technology leaders are not captured. This 
is, of course, partly inevitable in any large scale long-term modeling including in any large scale long-term modeling including any large scale long-term modeling includingany large scale long-term modeling includinglarge scale long-term modeling including long-term modeling including 
climate change models. However, the problem is that this heterogeneity, when. However, the problem is that this heterogeneity, whenHowever, the problem is that this heterogeneity, when problem is that this heterogeneity, when 
combined with non-linear dynamics, can give rise to very different model behav-
iors compared to a representative agent CGE with decreasing returns to scale. 

Summary

The IMCP models provide a representative cross-section of the state ofhe IMCP models provide a representative cross-section of the state of 
the art in climate economy modeling. They have adopted the two main approach-
es to modeling technical change in the broader literature – knowledge capital 
in endogenous growth models and learning curves. The degree to which climate 
economy models have managed to incorporate increasing returns and imperfecte increasing returns and imperfect increasing returns and imperfect 
competition through knowledge spillovers is mixed. Recursive CGE models based 
on linear programming solutions face particular difficulties, because they may be-
come unstable when they incorporate increasing returns. Dynamic CGEs with a 
changed theoretical structure have incorporated ETC, consistent with the bottom-
up literature. The optimal growth models are able to incorporate widely accepted 
formulations of knowledge capital, because they adopt the theory of the new en-
dogenous growth literature. Dynamic simulation models that already incorporate 
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increasing returns and do not optimize are able to incorporate learning curves andze are able to incorporate learning curves ande are able to incorporate learning curves andare able to incorporate learning curves and able to incorporate learning curves and 
increases in productivity from R&D. The bottom-up models, which are based on 
cost minimization, face similar problems to CGEs in including increasing returns,zation, face similar problems to CGEs in including increasing returns,ation, face similar problems to CGEs in including increasing returns, 
but have found various ways of overcoming the difficulties.

While the Synthesis Report considers the IMCP results in depth, weReport considers the IMCP results in depth, we considers the IMCP results in depth, wewe 
comment briefly here. Whereas the wide range of results from top-down models Whereas the wide range of results from top-down modelsWhereas the wide range of results from top-down models wide range of results from top-down models-down modelsdown models 
and the limited model specification detail poses limits to drawing clear-cut conclu-model specification detail poses limits to drawing clear-cut conclu-detail poses limits to drawing clear-cut conclu- poses limits to drawing clear-cut conclu- drawing clear-cut conclu-ing clear-cut conclu- clear-cut conclu--cut conclu-conclu-
sions from these macroeconomic models, the bottom-up studies, in contrast, havethese macroeconomic models, the bottom-up studies, in contrast, havemacroeconomic models, the bottom-up studies, in contrast, have models, the bottom-up studies, in contrast, have, the bottom-up studies, in contrast, have the bottom-up studies, in contrast, havebottom-up studies, in contrast, have 
some common findings, which are applicable to learning by doing in general. Allare applicable to learning by doing in general. All learning by doing in general. All in general. All. All 
of these models include learning curves as a mechanism for technical progress, so 
that the energy technology portfolio changes in favor of those technologies with 
the highest learning rates. Abatement costs estimates decline significantly with the. Abatement costs estimates decline significantly with the Abatement costs estimates decline significantly with theAbatement costs estimates decline significantly with thebatement costs estimates decline significantly with theestimates decline significantly with thedecline significantly with the 
incorporation of ITC. The IMCP analysis has clarified some points about the impact 
of ETC and ITC. In some models ITC makes a relatively small difference, but in 
the context of costs that are already relatively modest. In these cases, ITC does not 
necessarily lower costs much if major technological advances are already projectedalready projectedprojected 
for the base case. In other models, ITC makes a large difference. In general, this ap-base case. In other models, ITC makes a large difference. In general, this ap-
pears to be associated with models that have enough technological detail necessary necessarynecessary 
to allow for substitution of higher by lower carbon options in supply; responsivenessfor substitution of higher by lower carbon options in supply; responsivenesssubstitution of higher by lower carbon options in supply; responsiveness; responsiveness responsiveness 
to the economic signals that enables the lower carbon supplies to “break through” 
in markets at large scale; outcomes with structurally different energy systems with; outcomes with structurally different energy systems with outcomes with structurally different energy systems withoutcomes with structurally different energy systems withstructurally different energy systems with 
various economies of scale applied to low carbon systems. Without accounting forapplied to low carbon systems. Without accounting forto low carbon systems. Without accounting forWithout accounting forithout accounting foraccounting for 
these processes, ETC has limited impact on lowering stabilization costs.ETC has limited impact on lowering stabilization costs.stabilization costs.zation costs.ation costs.. 

5. METHODOLOGICAL ADVANCES: AN OVERALL EVALUATION 

Following the new endogenous growth literature and the application of 
learning curves to the energy sector, there has been a transition in the climate 
energy literature, such that endogenous technical change is now a feature of 
most leading models, through representations of knowledge capital and learning 
curves. There is a common intuition underlying these models: technical change, 
both technical progress and the diffusion of new technologies, is driven by the 
development of knowledge capital and its particular economic characteristics of 
being partly non-rival and partly non-excludable. The models represent a secondsecond 
best world with imperfect competition from knowledge spillovers, opening the 
possibility of improved economic performance from well designed climate policy. 
This means that there are two market failures that should be considered in climate 
economy models with ETC: environmental externalities and R&D market fail-
ures. The new models with ETC have sometimes led to very different conclusions, 
compared to climate economy models with exogenous technical change. Overall 
costs of mitigation may be lower and given the market failures in technological 
development, it has shed renewed light on technology policies to initiate a transi-it has shed renewed light on technology policies to initiate a transi- renewed light on technology policies to initiate a transi-renewed light on technology policies to initiate a transi- light on technology policies to initiate a transi-light on technology policies to initiate a transi-on technology policies to initiate a transi-ies to initiate a transi- to initiate a transi-
tion to low carbon economies, although the optimal design of such policies and 
conditions for their success are still unclear.



There is a wide range of detailed implementations, with some models 
having broadly specified ETC that is fundamental to the model structure and oth-
ers having very restricted applications. Recursive CGE models face particular 
difficulties and the IMCP was not able to report ETC results from a ‘typical’ 
recursive CGE. Dynamic CGEs with a changed theoretical structure have been 
more successful in incorporating the insights of the technical change literatures. 
The optimal growth models are able to incorporate ETC, because they adopt the 
theory of the new endogenous growth literature. Dynamic simulation models that 
already incorporate increasing returns and do not optimize are also successful, in 
that they can easily incorporate knowledge capital and learning curves. The bot-
tom-up models which are based on cost minimization face similar problems to 
CGEs in including increasing returns, but have found various ways of overcoming 
the difficulties.

The main limitations of current models are: the lack of uncertainty analy-
sis; the limited representation of the diffusion of technology; the homogeneous; the limited representation of the diffusion of technology; the homogeneous the limited representation of the diffusion of technology; the homogeneous; the homogeneousthe homogeneous 
nature of agents in the models, including the lack of representation of institutional 
structures in the innovation process. Several possibilities for further work can be 
identified. There is a pressing need to disaggregate learning curves into engineer-pressing need to disaggregate learning curves into engineer- disaggregate learning curves into engineer-
ing elements, tackle the problems of causality and the explanations for the learn-
ing curve phenomenon. Technology diffusion, within and across sectors, together 
with the role of FDI and trade is still poorly represented in the climate economy 
literature. As emphasized by work in the Schumpeterian tradition of disruptive new 
technologies, whether and how to incorporate uncertainty, as well as addressing, as well as addressing 
heterogeneous agents are issues requiring further conceptual and empirical work.

With the wide ranging models (hence lack of consensus in climate change models (hence lack of consensus in climate change (hence lack of consensus in climate change 
modeling), there is significant scope for comparative exercises so far led by the), there is significant scope for comparative exercises so far led by the, there is significant scope for comparative exercises so far led by the there is significant scope for comparative exercises so far led by the comparative exercises so far led by theso far led by thethe 
Stanford EMF and now the IMCP. Agreeing common assumptions such as dis- and now the IMCP. Agreeing common assumptions such as dis-Agreeing common assumptions such as dis-
count rates, learning rates or stabilization targets would help reduce variability inwould help reduce variability inreduce variability in 
the results, and inform discussions about the model structures. Comparative exer-, and inform discussions about the model structures. Comparative exer- and inform discussions about the model structures. Comparative exer-inform discussions about the model structures. Comparative exer-discussions about the model structures. Comparative exer- structures. Comparative exer-. Comparative exer-
cises also help policy analysis by mapping out the range of possible outcomes from help policy analysis by mapping out the range of possible outcomes fromthe range of possible outcomes from 
the models that also relate to variations in economic and institutional processes. that also relate to variations in economic and institutional processes. economic and institutional processes..

Finally, what can the climate economy literature contribute to the rest of 
the literatures on technical change and growth? It has been pointed out that theIt has been pointed out that the that the 
endogenous growth models do not consider changes in the structure of demand,,2 
yet, reduction in energy demand through efficiency measures is a common feature, reduction in energy demand through efficiency measures is a common feature 
of the energy literature and is represented in several of the IMCP models. While 
endogenous growth models assume Say’s Law holds in the long-run, the dynam- in the long-run, the dynam-, the dynam-
ics of a transition to a low carbon economy is central to climate policy analysis i.e. is central to climate policy analysis i.e. 
it is the transition pathways and policies to induce these pathways rather than the the transition pathways and policies to induce these pathways rather than the 
very long term equilibrium that matters. Demand led models such as the E3MG that matters. Demand led models such as the E3MG. Demand led models such as the E3MG 
model are designed around such analyses, but all models have room to incorporatehave room to incorporate 
demand-side responses to efficiency measures (or productivity improvements) as efficiency measures (or productivity improvements) as 

2.  We thank Jean-Charles Hourcade for this idea.
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a consequence of ETC and ITC relating to energy end uses and associated dynam-
ics such as rebound effects. More generally, the wide range of representations of, the wide range of representations of the wide range of representations of 
technical change in the wider theoretical and empirical literatures raises a chal-
lenge: how do the many insights into processes of technical change relate to oneone 
another? Might it be fruitful to adopt the hybrid – combined top-down/bottom-up? Might it be fruitful to adopt the hybrid – combined top-down/bottom-up 
– models that are becoming more common in the climate economy literature?
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