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The transition to wavy Taylor vortices 
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The transition from steady axisymmetric Taylor vortices to time-dependent wavy 
vortices is examined. The critical Taylor number and frequency at the transition point 
are determined in the infinite-cylinder approximation for a wide range of parameters. 
The results are compared with long-aspect-ratio experiments. The variation with 
axial wavelength is examined, and is found to be important when the radius ratio 
r] < 0.75. A new spatially subharmonic mode is found to be the most unstable mode 
in some parameter regimes. This mode is identified with the jet mode recently 
discovered experimentally by Lorenzen, Pfister & Mullin and by Cole. 

1. Introduction 

The problem addressed in this paper is the transition to non-axisymmetric motion 
in the flow between rotating cylinders. There has been a considerable amount of 
experimental work done on Taylodouette flows in recent years, and the transition 
to three-dimensional motion has been considered by a number of authors. The 
experimental work to which the calculations described here are most relevant is 
reported in Cole (1981, 1983), Lorenzen, Pfister & Mullin (1982), Park (1984) and 
Park & Jeong (1984). Much of this new work has been directed to understanding 

the transition to three-dimensional time-dependent motion in wide-gap apparatus, 
which we define here as an apparatus having a radius ratio r] = Rinner/Router < 0.8. 

The transition from purely azimuthal Couette flow to axisymmetric motion was 
first discussed by Taylor (1923) and occurs at a value of the Reynolds number denoted 
by Re,. The next transition to wavy Taylor vortices, occurring at a Reynolds number 
Re,, was considered by Davey, DiPrima & Stuart (1968). These authors used weakly 
nonlinear theory, based on expansion in powers of the parameter (Re- Re,), which 
is assumed small. In  earlier papers (Jones 1981, 1982) fully nonlinear Taylor-vortex 
flows were calculated numerically using spectral methods, and the stability of these 
solutions to wavy modes was also examined by using spectral methods. This work 
indicated that below r] = 0.8 the stability boundary in the (Re, r])-plane occurs at a 
rapidly increasing Reynolds number. This rapid increase in Re when 0.75 < r] <0.8 
has been confirmed experimentally (e.g. Cole 1983). The experiments also indicate 
that a transition to wavy modes can exist even for radius ratios of order 0.5, but that 
the transition occurs at higher Reynolds numbers than it was pbssible to compute 
with the techniques used in Jones (1981). It was therefore decided to  develop new 
numerical methods capable of reaching higher Reynolds numbers in order to compare 
with the recent experiments: the numericil techniques used for this work are 
described in Jones (1984). Most of the work done in this paper is concerned with radius 
ratios in the range 0.5 < 7 < 0.8 and it is all based on the infinite-cylinder 
approximation ; that is, we impose periodic boundary conditions in the z-direction. 

Four aspects of the transition problem are considered here in detail. First, we 
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compare the theoretical ‘ infinite-cylinder ’ stability boundary with the experimen- 
tally determined finite-aspect-ratio results, and also compare the theoretical wave 
speeds with the actual ones. Secondly, we wish to investigate how this boundary 
varies with axial wavelength. Thirdly, we explore the new ‘jet mode ’ of instability, 
observed by both Lorenzen et al. (1982) and Cole (1982) ; finally, we explore the 
physical mechanisms responsible for the very complicated behaviour of the wavy- 
vortex transition in the range 0.5 < 7 < 0.8. 

The experiments of Cole (1976) indicate that the critical Reynolds number for the 
onset of waves is strongly affected by end effects. Even for an aspect ratio f = h/d 
(h being the height and d the gap in the apparatus) as great as 40 the onset of waves 
may occur at a Reynolds number measurably greater than that at  larger aspect ratios. 
Nevertheless, his evidence suggested that, although the approach to the limit r+ 00 

was deferred to large values o f f ,  such a limit exists. The experiments of Mullin & 
Benjamin (1980) and Lorenzen et al. (1982), working with aspect ratios generally lower 
than those of Cole, showed that in a wide-gap apparatus the critical value of Re can 
be an extremely sensitive function of aspect ratio, casting doubt even on the existence 
of a limit as f + co ; however, in their work the number of cells in the apparatus was 
kept constant as r was varied so that the size of the individual cells varied with f. 
In the infinite-cylinder theory, the wavelength is not determined, but is an input 
parameter. This makes it possible to explore the hypothesis that it is the variation 
in cell size which is responsible for the strong f sensitivity of the Mullin & Benjamin 
(1980) and Lorenzen et al. (1982) experiments. 

Both Cole and Lorenzen et al. noted that for radius ratios around 0.5 a mode of 
instability appears that is radically different from the usual wavy mode of instability. 
The mode occurs preferentially for axial wavelengths shorter than square-cell values, 
and it has adjacent outflow boundaries moving in antiphase, rather than in phase. 
This suggests that the disturbance is periodic with an axial wavelength which is twice 
that of the mean flow. This mode is also observed to have its maximum amplitude 
in the region of the outflow boundary, hence its name, the jet mode. We investigate 
this mode here by means of the stability analysis of the axisymmetric Taylor vortices. 

The physical mechanisms for the onset of wavy vortices are also considered in the 
light of the numerical calculations. Davey et al. (1968) took up a suggestion of Meyer 
(1966), that an important ingredient of the instability was the ‘ Orr-Sommerfeld ’ type 
of instability associated with the jet-like azimuthal flow in the neighbourhood of the 
inflow and outflow boundaries. We pursue this hypothesis in 54. 

The basic difference between the work reported here and the amplitude-expansion 
methods of Davey et al. (1968) is that here the axisymmetric Taylor vortices are 
computed numerically by a fully two-dimensional calculation, whereas the amplitude 
expansions are based about the first critical Reynolds number Re, and so involve 
only ordinary differential equations. The amplitude-expansion methods have been 
developed further, nqtably by Eagles (1971) and Di Prima, Eagles & Ng (1984). 
Although the predicted torque given by the amplitude expansions agrees rather well 
with both experiments and numerical calculations (Jones 1981) even at Reynolds 
numbers as high as 4Re,, the eigenvalue spectrum is not so faithfully represented. 
The turn-back of the m = 1 mode in the (Re, v)-plane is found, but the minimum value 
of 7 is near 0.6. (DiPrima et al. 1984), which is considerably lower than that observed 
experimentally. The region of the neutral curve where m = 3 is the most unstable 
mode is not found by amplitude-expansion methods; this is not surprising, of course, 
as the range of validity of these expansions is Re close to Re,. 
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2. Specification of the problem 

The formulation of the nonlinear Naviedtokes equations used in these calculations 
has been described in detail in Jones (1984). Here we summarize so that the notation 
used in subsequent sections is defined. Cylindrical polar coordinates ( r ,  6, z )  are used, 
and the inner and outer cylinders lie at r = R, and T = R, respectively. The inner 
cylinder rotates with angular velocity 52, and the outer cylinder is at rest. When we 
refer to counter-rotating cylinder calculations, p is the ratio of the outer to inner 
cylinder angular velocities. The radius ratio is 7 = RJR, and the gap between the 
cylinders is R,- R, = d. 

The axisymmetric NavieG3tokes equations are 

(2.1) 

v-uo = 0, (2.2) 

1 

P 
uo'vuo = --vp+vv2uo, 

with the boundary conditions u: and u: = 0 on T = R, and R,, with u$ = 0 on r = R, 
and u$ = a, R, on r = R,. Also, uO is periodic in the z-direction. These equations are 
solved for Taylor-vortex solutions which bifurcate from the Couette-flow solution, 
which has uo = (0, u$, 0) at Tu = Ta,. The corresponding Reynolds number is Re,. 
The axial wavenumber a giving smallest Ta is nearly equal to x ,  so the corresponding 
cells are nearly square: the motion is assumed periodic in the axial direction with 
wavelength h = 2n/a. h is then approximately 2d, and corresponds to the length of 
a cell pair: we denote the cell size, ih ,  by 1. In experiments, the cylinders are 
of finite length, and so have an aspect ratio r = h/d ,  where h is the cylinder length. 
The theoretical results described here assume the limit T-+ 00, i.e. perfect spatial 
periodicity. 

The rotation rate is expressed in dimensionless terms either by 

Re = 52, R, dlv, 

where v is the kinematic viscosity, or by 

TU = 252;a472p(i+), 

so Ta = 2( 1 - 7) Re2/ (1 + 7). We denote the point of bifurcation from steady two- 
dimensional flow to time-dependent wavy flow by Taw or Re,. 

The numerical technique used to solve the nonlinear axisymmetric Taylor-vortex 
flow was a fully spectral method; the stream function $ is defined so that the velocity 
u has components [( - l/r) (a$/az), u;, (l /r) (a@/ar)] and is expanded as 

N M  

$ = E X $mn TZ(x) sinnaz, 
n-1 m-o 

where x = ( r -Rl ) / (R2-Rl)  and TZ is the mth Chebyshev polynomial defined on the 
interval [0,1]. Then u$ is similarly expanded as 

N M  

n-0 m-o 
u$ = uo(x) + X E vmn TZ(x) cosnaz, 

where uo(x) is the purely azimuthal Couette-flow solution of the Navier-Stokes 
equations. Although the series for $ and u$ are truncated, the coefficients $."" and 
vmn can be chosen so that the Naviedtokes equations are satisfied exactly at  a 
number of selected collocation points: this gives rise to a set of nonlinear algebraic 
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equations which can be solved for these coefficients. Details of the procedure are given 
in Jones (1984). 

Non-axisymmetric perturbations satisfy 

(2.5) 

v-u' = 0, (2.6) 

with boundary conditions u' = 0 at r = R, and r = R,. We take the time-dependence 
as exp[(cr-iw)t] and the q5 dependence as exp(imq5), so that m is the (integer) 
azimuthal wavenumber. We regard m as an input parameter and solve for the 
eigenvalue cr-iw. We usually work with the dimensionless wavespeed c = w/mQ0, 
which is the ratio of the angular velocity of the waves to the angular velocity of the 
inner cylinder, rather than with w itself. We assume that the perturbations have the 
same wavelength as the mean flow, but by a device described later we can 
accommodate perturbations whose wavelength h is an integer multiple of the mean- 

flow wavenumber. 
Only the out-of-phase wavy modes have been investigated: these modes have 

ui = u; = aui/az = 0 at the inflow and outflow boundaries where u: = 0. 
The essential advance extending the range of Taylor number beyond the 

Tu = 24000 limit in Jones (1981) has been achieved by using finite differences in one 
direction and a spectral expansion in the other. Details are given in Jones (1984). 

The methods used here extend the range of Ta within computational reach to about 
150000 or about SRe,. The Taylor-vortex calculations used up to 16 horizontal 
Chebyshev modes and up to 14 vertical Fourier modes; the perturbations used 
NX = 16 horizontal Chebyshev modes and up to NZ = 61 vertical mesh points. The 
calculations were done on an IBM 370/168 at Newcastle University. 

auf 1 
-+u"vu'+u"vu0 = --Vpf+vV2u', 
at P 

3. The stability boundary 

In figure 1 we show the boundary for the onset of waviness in the (Fa,?)-plane. 
The neutral curves are shown for m = 1,2 and 3; the neutral curves for higher m on 
this plane are omitted. Also shown is the neutral curve for the onset of arrisymrqetric 
Taylor vortices (Roberts 1965). This diagram extends the range of Taylor number 
covered in Jones (1981) by a factor of 5. The calculations for this diagram have used 
a = 3.13, corresponding to approximately square cells. The experiments are in 
general agreement with figure 1, but unless the value of a is controlled by some means 
there is considerable scatter in the results for the wavy onset. Also, although many 
of the experiments have used long aspect ratios (e.g. r generally greater than 40), 
there are considerable variations in the different experimental set-ups. Despite these 
differences, it is clear that there is agreement generally between the experiments and 
the calculations (e.g. Cole 1981, 1983; Park k Jeong 1984; Zarti & Mobbs 1979). 

Only the envelope of the calculated neutral curves can be compared directly with 
experiment, because at boundaries inside the envelope axisymmetric flows are 
unstable. Nevertheless, it is interesting to note that the lower-branch m = 2 mode 
and the m = 1 mode both become stable as Ta is increased. It is therefore not 
surprising that, in the experiments with narrow gaps, modes with increasing m are 
seen as the Taylor number is increased (Donnelly et a2. 1979). The experiments also 
indicate that eventually this trend reverses as the Taylor number is further increased, 
and the lower values of m become favoured. This is consistent with the calculations 
here showing a second destablization of the m = 2 mode at higher values of Tu. 
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FIGURE 1.  The m = 0 curve is the stability boundary for the onset of axisymmetric Taylor vortices. 
The curves m = 1,2 and 3 are curves of neutral stability for the bifurcation from Taylor vortices. 
Curves form greater than 3 are omitted. The axial wavenumber is a = 3.13. 

We also note that in a small range of 7 it is possible for waves with one wavenumber 
m to become unstable, then to restabilize, and then to become unstable again to an 
m = 3 mode as the Taylor number is increased. This unusual transition sequence has 
been observed recently by Park (1984) at 7 = 0.782. 

In figure 2 we show the stability boundary in the plane (7, RelRe,). This is the 
picture which can be compared most easily with experiment, as it is generally easier 
to determine the ratio of Re, to Rec than to find an absolute value (Cole 1983). 

The other information which comes out of the eigenvalue problem is the wavespeed 
of the neutrally stable waves at the stability boundary. Wavespeeds are generally 
straightforward to measure experimentally, but difficulties occur if the waves are very 
weak, as they naturally are near the stability boundaries. It is of course possible to 
compare the speeds of unstable waves with the speeds of nonlinear waves, and this 
was done by Jones (1981, 1982). These predictions have not been uniformly 
successful. When the outer cylinder is at rest, the predictions have generally been 
within 5 yo of the observed values (e.g. King et al. 1982; Ahlers, Cannell k Dominguez 
Lerma 1983). This error is much greater than experimental errors. The situation 
appears to be worse in the counter-rotating case, when ,u < 0 (Andereck, Liu k 
Swinney 1984). It is believed that the source of the error is the neglect of the non- 
linearities of the waves; to reach the high standard of accuracy set by the experiments 
some account must be taken of these nonlinearities. It seems more sensible to wait for 
the development of theories which include the nonlinearities of the waves them- 
selves before making detailed calculations. However, the agreement between theory 
and experiment for wavespeeds in the vicinity of the stability boundary is good even 
in the counter-rotating case (Andereck, Liu k Swinney 1984), and restricting our 
attention to this boundary still allows us to explore the dominant effects on wave- 
speeds. 
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FIGURE 2. As for figure 1, but the ordinate is now RelRe, instead of Ta. 

In  figure 3 we show the wavespeed c = w/mQ, as a function of radius ratio for the 
modes m = 1 ,2  and 3. The two branches of the m = 2 mode are labelled upper and 
lower according to their location in figure 1.  Also shown on figure 3, for comparison, 
are the wavespeeds of the m = 1 , 2  and 3 modes as they bifurcate from the Couette- 
flow solution. These bifurcations are never seen in practice when ,u = 0 because exi- 
symmetric Taylor vortices occur at lower Taylor number. Nevertheless, we shall 
refer to them in $4 when we discuss the physical mechanisms involved in forming 
wavy vortices. 

The general trends revealed in figure 3 are well known to experimentalists (e.g. Cole 

1983; Lorenzen et al. 1983; King et al. 1982). The wavespeed is approximately 0.5 
for narrow gaps at  low Taylor numbers, and falls to much lower values as 7 is reduced, 
and falls more gently as Ta is increased, as can be seen by comparing values of the 
wavespeed for the different branches of the neutral curves. 

The separate branches of the m = 2 curve raises the question of whether the two 
branches correspond to the same mode or two different modes. On the face of it, since 
the branches are not topologically connected it would seem they should be classified 
as distinct modes: however, a more careful analysis indicates that this is not 
appropriate. At fixed Ta, a, m and 7, there is an infinite number of different 
eigenvalues; the great majority of these are very stable, corresponding to motions 
strongly damped by viscosity. If we vary Ta and 7, keeping the other parameters 
fked, we can trace these eigenvalues as we move from one part of the (Ta, T)-plane 
to another. We can then imagine surfaces covering the (Tu, v)-plane whose height 
corresponds to the real part of these eigenvalues. The point is that it  is the same 
surface which is responsible for both the m = 2 neutral stability boundaries. In  the 
region between these boundaries where the m = 2 mode is stable, this surface dips 
just below zero. All the unstable wavy modes found in this work are thus connected 
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with the classical narrow-gap wavy mode investigated by Davey et al. (1968), except 
for the jet modes discussed below. 

Further evidence on the nature of the two branches of the m = 2 mode can be 
obtained by examining the eigenfunctions corresponding to points close to the neutral 
stability curve. In  figure 4 (a) we show the eigenfunctions associated with the m = 2 
mode at Tu = 48000, 7 = 0.84 and a = 3.13. This corresponds to a point in figure 1 
near the lower branch of the rn = 2 curve ; in figure 4 (b) the eigenfunctions are shown 
for a point near the upper branch, at Ta = 60000, 7 = 0.68 and a = 3.13. The 
eigenfunctions are not identical, of course, but they show a strong similarity 
indicating that no dramatic change in character has occurred in passing from one 
branch to the other. We should note, however, that the phase speeds for these two 
waves are rather different: in case (a) the phase speed is 0.330 but in case (b) it  is 
only 0.198. As we argue below, this substantial difference is due more to the change 
in the structure of the axisymmetric mean flow than to changes in the linearized 
eigenfunctions. 

Eigenfunction pictures such as figures 4 (a) and (b) must be interpreted with some 
care. To obtain the actually observed wavy flow pattern we have to add some small 
arbitrary multiple of these velocity flow patterns onto the basic axisymmetric flow. 
So in figures 4(c)  and (d) we show the axisymmetric flows corresponding to figures 
4 ( a )  and (b) respectively. Similar pictures for this flow at different parameter values 
can be found in Jones (1981) and Fasel & Booz (1984). The eigenfunctions have a 
q5 dependence, so that 

ui = U ; ( T , Z )  cosmq5+u;(r,z) sinmq5, 

FIGURE 3. The wavespeed c = w/mQ, is plotted against radius ratio 7, for a = 3.13. The dashed 
curves are values for the bifurcation from azimuthal Couette flow; the solid curves are values for 
the bifurcation from Taylor vortices. When the curves have several values of c for one value of 
7, the lower value of c is always associated with the higher value of Taw. 
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FIGURE 4 ( a ) .  For caption see page 145. 
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FIGURE 4(6). For caption see page 145. 
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FIQURE 4(c). For caption see facing page. 

and similarly for u: and ui.  An arbitrary phase factor is involved in where to choose 
4 = 0; the choice made here is for $ = 0 to coincide with the place where the wave 
has maximum amplitude near the outflow cell boundary, which is at z = 0 in these 
figures. The inflow cell boundary is then at  z = 1. To illustrate the difficulties of 
interpreting the eigenfunctions, we consider how the form of the wavy-outflow cell 
boundary would be found from figures 4(a)  and (c). The wavy cell boundary, as 
observed in experiments, corresponds to the point where u, = 0. At values of z just 
below z = 0 near the inner cylinder ( r  = RJ, the axisymmetric vortex velocity u! is 
positive (see figure 4 c  and recall that u! is antisymmetric about z = 0). Since the 
perturbation eigenfunction uf is negative near here, the sum u!+euf will be zero at 
some value of z just below z = 0. Near the outer cylinder (T = R2), the axisymmetric 
vortex velocity u! is negative just below z = 0. But here the eigenfunction uE is 
positive, so again the sum u! + a," is zero at  some value of z just below z = 0. Thus, 
although the perturbation uf is positive when z = 0 near the inner cylinder and 
negative at z = 0 near the outer cylinder, nevertheless the wavy-outflow boundary 
is below z = 0 for all values of r a t  $ = 0. Despite these difficulties, it is possible to 
work out the qualitative features of the wavy-vortex flow using these eigenfunctions. 

Figures 1 ,2  and 3 were all obtained for nearly square cells with a = 3.13. We have 
also investigated how the wavy onset varies with a. The experiments of Mullin & 
Benjamin (1980), Lorenzen, Pfister & Mullin (1982), and Cole (1981, 1983) indicated 
that variations in aspect ratio strongly affected the onset of wavy vortices. From the 
work of Cole (1976) it was known that the onset of waviness is generally delayed by 
decreasing the aspect ratio and that the aspect ratio must be at least about 40 before 
this damping by the boundaries becomes small. The more recent observations 
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FIGURE 4(a), ( b )  Eigenfunctions of the classical wavy mode at rn = 2 and a = 3.13. Real and 
imaginary parts of the 3 velocity components are shown. The absolute amplitude is arbitrary, but 
for the relative amplitudes of the velocity components all velocities have been scaled on the viscous 
timescale: (a) Ta = 48000,~ = 0.84; (b) Ta = 6 0 0 0 0 , ~  = 0.68. (c), (d )  Contours of the axisymmetric 
Taylor vortex flow at a = 3.13. Contours of the radial, axial and azimuthal velocity are shown. 
Radial and axial velocities are given in units of v ld ,  but the azimuthal velocity is given in units 
of Q,R,: (c) Ta = 48000, 7 = 0.84; (d) Ta = 60000, = 0.68. 

indicated, however, that quite small variations in aspect ratio could produce dramatic 
effects on wavy-vortex onset. Since these variations were produced by maintaining 
the number of cells in the apparatus fixed while the aspect ratio is adjusted (see e.g. 
Lorenzen et al. 1982) there are two possible reasons for this surprising result. 

Firstly, it could be that the damping produced by the ends affects some modes very 
much more than others, or, secondly, it  could be that the variations in cell size are 
responsible for the rapid variations in wavy critical Taylor number. If it is the second 
mechanism that is responsible, then the effect can be explained on the basis of infinite- 
cylinder calculations of the type done here : without some modelling of the endwalls 
we can do little about the first mechanism. The results of the calculations performed 
here indicate positively that it is the second mechanism which is dominant in 
producing the strong variations in Taw observed by Mullin & Benjamin (1980) and 
Lorenzen et al. (1982). Their striking results can therefore be understood (or at least 
reproduced by numerical calculations !) on the basis of the infinite-cylinder theory, 
by varying the parameter a. We can make no attempt to predict a theoretically: 
indeed, since it is well known experimentally that a wide range of different stable 
a-values can exist at the same value of the external parameters, such a theoretical 
prediction is clearly fraught with difficulty. The best that can be hoped for in the 
near future is to Bive bounds for the range of stable modes. 
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When the wavy-vortex boundary occurs at Taylor numbers close to critical, i.e. 
for narrow gaps, the dependence of Taw on a is similar to the dependence of Ta, 
on a; a flat minimum when the cells are almost square, rising as a is either increased 
or decreased from 3.13. However, when the stability boundary occurs at values of 
Ta substantially above Ta,, the behaviour is more interesting. The minimum critical 
Ta moves to values of a substantially less than 3.13, i.e. waves occur more easily in 
cells whose axial length is longer than d, their radial extent. 

This behaviour is illustrated in figure 5 (a). Here r ]  = 0.75 and ,u = 0 and we plot 
Re/Re, against cell size lid. The solid curve is the numerically obtained stability 
boundary and the plotted points are the experimentally determined boundary given 
by Cole (1983). The agreement is quite remarkable, and deserves comment: first, the 
experiments are done with a very large aspect ratio of 65, so that damping by the 
end effects is small: secondly, there is some evidence that damping by the ends is 
more significant for the m = 1 mode and less significant for the higher-m modes such 
as m = 3: thirdly, the cell size in the experiments has been measured explicitly and 
the same value used in the calculations : fourthly, in order to get such good agreement 
the resolution in the numerical method has to be very high - 16 Chebyshev 
polynomials in the radial direction and 14 Fourier modes in the vertical direction were 
required for the axisymmetric Taylor-vortex solution and 16 radial modes with 41 
vertical mesh points were needed in the perturbation calculation : see Jones (1984) 

for details. 
The displacement of the point of minimum Taw to values of l / d  well above 1 means 

that aTa/aa is now quite significant near square-cell values with l / d  x 1 ; experiments 
on the location of the Taylor-vortex boundary using approximately square cells will 
not be consistent unless l / d  is carefully maintained at  a constant value by some 
method. The experimental point near T,I = 0.86 has not been checked computationally 
because the cost of each run increases very rapidly as the Taylor number incremes; 
this means it is not practical to follow the curve up to high values of the Reynolds 
number. However, the behaviour at  lower Ta is consistent with the wavy-vortex 
boundary moving very rapidly upwards near r ]  = 0.86. 

The corresponding figure for the wave speeds is given in figure 5 (b). The agreement 
with Cole’s experiments is also quite good here, although the experimental scatter 
is greater, owing to the difficulty of measuring the speeds of very weak waves. 

In  figure 6 we have another comparison between the computations and Cole’s 
experiments, this time at r ]  = 0.56. Here the solid line is the best fit to the 
experimental data, and the crosses, circles and triangles are the computed points. The 
computations follow the trends of the experiments, but the computed values for the 
wavy-vortex mode at the large4 end of the figure, marked as triangles, are 
systematically lower than the experimental values. There seems to be little doubt that 
this is due to the damping of the wavea by the endwalls; the aspect ratio for these 
experiments was 36, significantly less than for the m = 3 experiments noted earlier. 
The m = 2 mode was also examined in the vicinity of figure 6, but this is more stable 
than the m = 1 mode, in agreement with the observed preference for m = 1 at these 
values of r ] .  In figure 7 we compare the experimental results of Lorenzen et al. (1982) 
with the computed values. Again the form of numerical and experimental curve is 
in general agreement, but here the stabilizing effect of the endwalls is even more 

marked, as the aspect ratio is lower than in Cole’s apparatus. 
The points computed with l / d  < 1 correspond to eigenfunctions of a completely 

different character from the cases where l / d  > 1. The branch found for l / d  > 1 is the 
usual wavy mode, in the sense that it is topologically connected to the wavy mode 
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FIQURE 5. (a) Neutral stability cufve in the plane (RelRe,, l / d ) ,  where l / d  is the ratio of axial cell 
size to gap width, and ( b )  wavespeed c = o/mfi, at onset plotted against lid. m = 3;  q = 0.75; -, 
the values from the computations; x . experimental points of Cole (1983). 
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FIQURE 6. Neutral stability curves for m = 1 at 7 = 0.56, in the (Re/Re,, Z/d)-plane: -, best fit 
through Cole's data; V, computed points for the classical wavy mode; 0, computed points for 
the harmonic jet mode; x , computed points for the subharmonic jet mode. Points with l / d  less 
than 1 refer to the jet modes: points with l/d greater than 1 refer to the usual wavy mode. 
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FIGURE 7. As for figure 6, but with 7 = 0.507, m = 1 : -, best fits through the low-aspect-ratio 
experiments of Lorenzen et aZ. and the computed points are labelled as in figure 6. 
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found theoretically by Davey et al. and found experimentally in narrow-gap 
apparatus. The wavespeed of this mode has dropped to only about 0.1 times the inner- 
cylinder speed when 7 has a value in the range 0.5-0.55. The modes occurring for 
Z/d < 1 can be divided into two classes : both have greatest amplitude near the outflow 
cell boundary so we call them both jet modes, following the term coined by Lorenzen 
et al. (1982). One class of mode is subharmonic, with the axial wavelength of the 
perturbations twice the wavelength of the Taylor vortices. This mode is marked by 
crosses in figures 6 and 7. There can be little doubt that this computed mode 
corresponds to the jet mode found by Lorenzen et al. (1982) and by Cole (1983). They 
noted that, in the jet mode, adjacent outflow boundaries move in antiphase, which 
would be expected for a subharmonic mode of this type. Also, the wavespeeds of the 
subharmonic modes are consistent with the values given by Lorenzen et aZ. (1982) 
and are much greater than those found for the usual wavy modes. The wavespeeds 
of the computed points in figures 6 and 7 are given in table 1. 

The circles in figures 7 and 8 correspond to a different mode, which we call the 
harmonic jet mode. Both the phase speed and stability boundary of the harmonic 
jet mode lie close to the values taken by the subharmonic jet mode, but the onset 
of the subharmonic jet mode is a little earlier than the harmonic jet mode, which 
presumably accounts for the subharmonic mode being the one seen in experiments. 
At the same value of Ta the harmonic jet mode has a phase speed slightly greater 
than that of the corresponding subharmonic jet mode. 

In figure 8(a) we show the eigenfunctions corresponding to the subharmonic jet 
mode at Ta = 80000, 7 = 0.56, and Z/d = 0.8. In figure 8 ( b )  we give the eigen- 
functions corresponding to the harmonic jet mode at the same parameter values. In  
order to help understand these pictures we also give the mean axisymmetric flow in 
figure 8 (c). As noted in the discussion of figure 4, the interpretation of eigenfunctions 
requires some care. Two cells of the mean flow are shown, which accounts for the 
figures 8 having a length 1.6 times their width, although the cell length is only 0.8 
of the cell width. Comparison of figures 8(a) and 8 ( b )  sheds some light on the 
relationship between the subharmonic and harmonic jet modes. In  both modes the 
amplitude in the vicinity of the inflow boundary is very small, and the behaviour 
of the subharmonic mode near z = 21/d is approximately that of the harmonic mode, 
but with the signs reversed. Experimentally we would therefore expect the 
subharmonic and harmonic jet modes to look very similar, but in the subharmonic 
case adjacent outflow boundaries are moving in antiphase, whereas in the harmonic 
case they move in phase. To obtain the subharmonic mode we have to make a slight 
modification of the usual procedure to take into account its subharmonic character. 
We first find the axisymmetric vortices corresponding to the wavelength l / d  < 1 by 
the usual procedure, so that we have 

We then convert this into a double-roll solution with wavelength 41 by the 
transformations A + (2n - 1 ) in the + equation and n -+ 2n in the v equation. We then 
use the usual procedure to fmd the eigenvalues of disturbances with period 21. In  order 
to keep the resolution in the z-direction approximately constant, more mesh points 
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1 

0.507 
0.507 
0.507 
0.507 
0.507 
0.507 
0.507 
0.507 
0.56 
0.56 
0.56 
0.56 
0.56 
0.56 
0.56 
0.56 

Re 

332 
387 
353 
442 
38 1 

350 
322 
285 
365 
406 
374 
455 
46 1 
399 
323 
27 1 

l l d  wlms2, Type of mode 

0.8 0.513 Subharmonic jet 
0.85 0.497 Subharmonic jet 
0.8 0.525 Harmonic jet 

0.85 0.503 Harmonic jet 
1.1  0.093 Classical wavy 
1.15 0.098 Classical wavy 
1.2 0.103 Classical wavy 
1.3 0.112 Classical wavy 
0.8 0.605 Subharmonic jet 
0.85 0.592 Subharmonic jet 
0.8 0.613 Harmonic jet 
0.85 0.592 Harmonic jet 
1.05 0.107 Classical wavy 
1.1 0.116 Classical wavy 
1.2 0.126 Classical wavy 
1.3 0.136 Classical wavy 

All modes here have rn = 1 .  

TABLE 1.  The phase speeds and critical Reynolds numbers are 
tabulated for the points computed for figures 6 and 7 

are needed than for the standard wavy-mode calculations. NZ = 81 was used in the 
calculations here. Because of the numerical method used, CPU time increases only 
linearly with NZ (Jones 1984). 

Lorenzen et al. also noted a mode in which the predominant motion is in the inflow 
boundary: this area has not yet been explored computationally. It may be seen from 
figures 6 and 7 that, whereas the wavy-mode computations all lie below the 
experimental curve, as we should expect if the endwalls are damping, for the jet, or 
subharmonic, mode the computations lie slightly above the experimental points. It 
is harder to  resolve computationally the structure of the subharmonic mode as 
accurately as the wavy mode, so the results may not be as accurate for this mode 
as for the wavy mode: it is not yet clear whether this very small discrepancy is 
significant. 

4. Physical mechanisms that make vortices wavy 

The aim of this section is to present simple arguments that  enable us to understand 
the shape of the neutral stability curves for the onset of wavy vortices. Since these 
neutral curves have a great deal of fine structure we clearly cannot expect more than 
the broad outlines of the behaviour from general arguments ; detailed comparison 
with experiment requires accurate numerical calculation. Furthermore, the mechan- 
isms we discuss here are based on consideration of the numerical work that has been 
done; there may well be new mechanisms at work in regions of the parameter space 
that are still unexplored, so the predictive power of the results in this section is likely 
to be quite limited. Nevertheless, provided they are used with great caution simple 
pictures can be useful. 

We begin by formulating the energy integral for the perturbations to  axisymmetric 
Taylor-vortex flow. We take the scalar product of the perturbation equation (2.5) 

with u’; the viscous term can be rewritten using 

~ v d * V 2 u ’ d v  = jvV.(y’ A o’)dv- (4.1) 
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z=L, 

Z =  

z =  2, 

FIGURE S(a). For caption see page 153. 

where the divergence integral vanishes because of the boundary conditions. Then on 
substituting the form of the perturbations, 

u; = +(&(r, 2 )  eim6 e(c-im) 1 + uf*(r, 2 )  e-im6 e(c+io) t 1 7  (4 .2)  

and similarly for the q5 and z components, we can divide the resulting energy integral 
into 5 component parts, each of which has a simple interpretation: 

d , + E , + E , + E ,  = Es, ( 4 . 3 ~ )  

(4.3c) 
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(b) . .  

uf 

FIGURE 8 ( b ) .  For caption see facing page. 

au; 
+u;ui*-]dw, az (4.3e) 

Here * denotes complex conjugate, and E,  represents the kinetic energy of the 
disturbance : it grows when v is positive and decays when it is negative. The neutral 
curve is therefore determined by the condition E2 + E, + E4 = Es. E5 represents 
viscous dissipation and is positive definite. In all the cases considered E5 is the term 
of largest magnitude in the vicinity of a neutral mode. E,, E, and E4 represent the 
rate of working of the Reynolds stresses on the various shears which are present in 
the Taylor vortices. E, represents work done by the axial shear of the azimuthal 
velocity and E4 represents work done by shears of the flow in the axial plane. This 
axial flow is considerably smaller than the azimuthal flow, so E4 is neglected in the 
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FIQURE 8. (a) Eigenfunctions for the subharmonic jet mode at Tu = 80000, 7 = 0.56, l / d  = 0.8. 
Contours of the real and imaginary parts of the radial, axial and azimuthal velocity perturbations 
are shown. The components are scaled as in figure 4. (a) As in (a) but for the harmonic jet mode. 
(c) Contours of velocity of the axisymmetric Taylor-vortex flow at the parameter values of (a). Two 
cells of the flow are shown. Velocity components are scaled aa in figure 4(c). 

following discussion. We stress that this result is based on the numerical experience, 
which is limited to the regions of the parameter space we have investigated. E, is 
the rate of working of the radial shear of the azimuthal flow together with a 
centrifugal term. There seems to be no advantage in separating these two 
contributions. 

If the mean flow is purely Couette flow, then E,  and E4 are zero so that the neutral 
stability curve is determined by the balance of EB and E5. For narrow gaps Couette 
flow becomes unstable to non-axisymmetric disturbances for values of Ta only 
slightly greater than Ta,. This can be seen in figure 9, where the neutral curves for 
the non-axisymmetric modes are shown in the (7, Ta)-plane for a fixed at 3.13. So, 
in the vicinity of Ta,, E, = E5. As pointed out by Meyer (1966, 1969) and Davey et 
al. (1968), the effect of the nonlinear Taylor vortices is to give u$(z)  the profile of a 
jet in the neighbourhood of the inflow and outflow regions of the axial flow. In 
figure 10 we show contour plots for the azimuthal velocity uo for a number of cases. 
In  all the plots, contours of u$ are equally spaced with u$/boR, = 1 at r = R, and 
ui = 0 at r = R,. Cases (a), ( c )  and (e) are all for 7 = 0.95 (narrow gap) and have 
Ta = 4000, 60000 and 60000 respectively. The case ( c )  is for nearly square cells 
(a = 3.13), but case (e) has a = 2.417 (1 = 1.3d). Cases (b), ( d )  and (f) have the same 
Ta and a values as the figures opposite but are for 7 = 0.5 (wide gap). In figure 11 

we show the azimuthal velocity profiles at the value r = $(R,+R,).  The diagrams 
in figure 11 show a full period of profile containing two cells. Various trends are 
apparent in figures 10 and 11. In cases (a) and (b), which are for low Taylor number, 
angular momentum is advected out in a broad region centred on the outflow cell 
boundary, and angular momentum is reduced in the neighbourhood of the inflow 
boundary. The profile of u$ in figure 11 is therefore roughly sinusoidal; but it is 
noticeable even at low Ta that the mean value of u$ in figure 11 (b) is well below 
0.5Q0R,. As the Taylor number is increased, the broad outflow and inflow regions 
are concentrated into internal boundary layers and the u$ profile is flat except for 
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F’IQURE 9. Neutral stability curves for the bifurcation from azimuthal Couette flow. 

strong jets at the inflow and outflow cell boundaries. In the narrow-gap cases (c) and 
(e) the jets are fairly symmetrical, but in the wide-gap case there is a strong 
asymmetry; the outflow jet is concentrated into a narrow region, but the inflow jet 

is broader. It is also apparent that the mean azimuthal velocity for wide gaps 
and large Ta is well below 0.50, R,; a value nearer 0.2Q0 R, is indicated for the 
parameters of cases ( d )  and (f). It is important to distinguish these jets in the 
azimuthal direction from the jets in the axial plane : although the azimuthal jets are 
created by the axial ones, the actual flow velocity in the axial plane is smaller than 
the azimuthal flow, which is why the E3 term is more important than the E4 term. 
It is the azimuthal jets which destabilize the axisymmetric flow; since there is already 
a near balance between E, and E, for narrow gaps, very little is required from E3 
to make the vortices wavy. In  consequence, the onset of wavy vortices occurs close 
to the onset of axisymmetric vortices for narrow gaps. From figure 9 we can see that 
the near balance between E, and E, for non-axisymmetric modes near Ta, no longer 
holds for wide gaps. The onset of Couette flow to non-axisymmetric modes occurs 
at  much higher Tu than instability to the m = 0 mode. This is not surprising; in the 
narrow:gap case an m = 1 mode corresponds to an azimuthal wavelength of about 
x(R, +R,), which is much greater than 2d, the approximate wavelength in the axial 
and radial directions. So for narrow gaps the viscous dissipation, which is propor- 
tional to (k: + k$ + hi ) ,  is approximately proportional to (k: + kz). But for wide gaps 
the ratio 2 d / ( R ,  + R,) is no longer small, so the viscous dissipation is increased. In  
consequence, the E,  term has to do much more in the wide-gap case than in the 
narrow-gap case to make up the difference between E, and E,. So the onset of 
waviness is delayed to higher Taylor numbers. 

The above argument, although i t  does explain the major feature of the delay in 
onset of waviness at wide gaps, leaves many questions unanswered. Why is the rise 
so sudden at  = 0.75 ‘? Why does the m = 2 curve have two branches? Why is m = 1 
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FIQURE 10. Contour plots of the azimuthal velocity of axisymmetric Taylor-vortex flow are shown. 
The contours are equally spaced. (a) q = 0.95, Ta = 4O00, a = 3.13. (b)  0.5, 4000, 3.13. (c) 0.95, 

60O00, 3.13. (d) 0.5, 60O00, 3.13. (e) 0.95, 60O00, 2.417. (f) 0.5, 60000, 2.417. 



156 

z = 2  

z =  

z = 21 

z = l  

z = 21 

z = l  

C. A.  Jones 

z = 21 

Z = l  

(e) 

FIGURE 11.  Velocity profiles u$(z)  at I = f(R,+R,).  The parameter 
values correspond to those in figure 10. 

seen at 7 < 0.6 and 7 > 0.8 but not in between? Finally, why does the wavespeed 
fall so rapidly as the gap becomes wider? To answer these questions we need to 
examine the behaviour of the energy integrals as Ta and rj are varied. 

We illustrate typical behaviour in figures 12 ( a )  and (b)  ; here we show E,/E,  and 
EJE,  as functions of Ta for 7 = 0.8 (case a )  and 7 = 0.95 (case b), with m = 2, both 
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m = 2, 1 = 0.8, a = 3.13. (a) 7 = 0.8, (b)  0.95. 
FIGURE 12. E,/E,, EJE, and (EI + E,)/E, are plotted against Re for 

with a = 3.13. EJE,  is less than 1 % throughout the range of figure 12, so we ignore 
it. The sum (E,+ E3)/Es can be seen to hover near 1 in case (a), sometimes falling 
below, giving stability, and sometimes rising above, giving instability. This compen- 
sation effect is why the rise in Taw is so rapid in the neighbourhood of 7 = 0.77; 
since (E, + E3)/E5 is very insensitive to T a ,  stability depends primarily on the 7-value. 
Thus, in the narrow-gap case (b), the sum (E,+E3) /Es  is also very flat, but here the 
value it hovers near is 1.00, safely into the unstable regime. 

6-2 
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The decline in E,/E,  as Ta is increased seems odd at first sight : as Ta is increased, 
the inner-cylinder speed increases as Tai relative to the viscous decay time, so the 
radial shear also increases. This increase is, however, more than compensated for by 
the concentration of the radial gradient of velocity into boundary layers. Batchelor 
(1960) gives an asymptotic argument that the boundary-layer thickness at  the inner 
and outer cylinder walls is 13 - Ta-t. Although we are not strictly in the large-Ta 
asymptotic regime, this resdt nevertheless does give some insight into figure 12 : since 
the term ra(u$/r)/& is only ldrge in the boundary layers, where it is O ( S 3 ) ,  the 
integral is small because (u’ u’* + ui* ui) is small there. In fact, if we assume that the 
shape of the eigenfunctions is unchanged with increasing Ta, (ui u; + ui* u;) will be 
O(a3), and so the contribution to E, will be only O(6).  If we assume the fdrm of the 
eigenfunctions can be changed as Ta increases, it  is then possible, by choosing 
eigenfunctions which peak in the boundary layer, to make E,/E,  - Ta-! : such modes 
would become unstable a t  large Ta, and may be connected with the ‘herring bone’ 
modes discussed by Barcilon et al. (1979). This happens at much higher Ta than is 
discussed here. 

This concentration of the mean-velocity gradient into boundary layers is due to 

the nonlinear development of the Taylor vortices. This is the mechanism by which 
the Taylor vortices suppress competing modes and hence retain their coherent 
character far beyond Ta,. Similar behaviour occurs in the BQnard convection 
problem. 

We now consider the variation of E, with Ta and 7. E, is zero at the onset of Taylor 
vortices, and increases monotonically as Ta is raised. However, it does flatten dut 
at higher Ta. 

For more detailed behaviour of E,, we briefly consider the stability of an inviscid 
jet corresponding to the axial shear of the azimuthal flow, as recommended in Davey 
et al. (1968). Since viscosity is important in the real flow, results must be interpreted 
with great care. We consider two simple models of jets: model A has a mean flow 
u(z) in the 2-direction given by 

r .  + 

u(z) = 0, z < -a,  

a 
u(z) = uo(z+a),  -a < 2 < 0, 

u(2) = uo(a - 2) , O < z < a ,  
a 

u(z) = 0, z > a ,  

(4.4) 

and models the azimuthal velocity profile in the neighbourhood of an inflow or outflow 
boundary. Model B has a periodic mean flow given by 

(4.5) 

for all integer n. 

(Rayleigh 1880) 

In either case, the disturbance stream function satisfies Rayleigh’s equation 

(u-c) (02-I?) $-$- d2u = 0, 

dz2 

with @ and (u-cC)d$/dz-@du/dz continuous across the jumps in duldz. The 
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wavespeed is the real part of c, c,, and the growth rate u = kci where ci is the 
imaginary part of c. Then, in model A, 

, 
uo[2ak - 1 - exp ( - 2ak)l 

ak 
uo{ 16 exp ( - 2ak) - [2ak - 3 - exp ( - 2ak)I2}i 

4a 

c, = 

cT= 

(4.7) 

When the term inside the square root is negative, the corresponding disturbance is 
stable: this must always be the case for k sufficiently large; in this case 

k,, = 1.8327/a. Maximum growth rate occurs for k somewhat less than this value, 
k = 1.2258/a. The small-k expansions are 

so the growth rate is non-zero, but tends to zero for long waves. 
The corresponding results in model B are 

c, = 0, u =5 uo{2ak coth 2ak- 1 -aak2}k (4.9) 

Again, when the term inside the square root is negative, we have stability. In  this 
case the large-k cut-off is at k,, = 1.1997/a; and maximum growth rate is when 
k = 0.8031/a. The small-k expansion is 

(4.10) 

In the circular geometry of Couette flow, k & 2m/(R,+R,) = 2(1 -q)m/d( l  + 7). 
For square cells, the axial period is 2d, so we let a = $I! in model B. The maximum 
growth rate is then when ( 1 - 7 ) ~ ~  x 0.8(1+p); for 7 = 0.875 this gives m = 12, 
whereas for q = 0.6 this gives m N 3. In  practice, the observed wavenumbers are lower 
than this, probably owing to viscosity damping out higher-m modes more strongly 
than lower m modes. We are therefore operating in the long-wavelength region of 
the shear instability mechanism where (4.8) and (4.10) are relevant. In  this region, 
u - mi and m in models A and B respectively. The shear-flow mechanism would like 
to move to higher azimuthal wavenumber: in regions where viscosity damps out 
higher wavenumbers strongly, such as p N 0.6 or lower (see figure 9) the tendency 
is suppressed, but at 0.7 < p < 0.8 this tendency emerges, and m = 2 and m = 3 are 
preferred to m = 1. For narrow gaps this tendency manifests itself in the dominance 
of larger-m modes at moderate Taylor numbers; but the onset of waves in narrow 
gaps is so close to Tu, that the shear flow component is dominated by E,, and m = 1 

is preferred at onset. 
These models also indicate why wavelengths longer than 2d are preferred by the 

wavy-mode instability at q < 0.8. The jet is then quite narrow, since Taw is then 
much larger than Tu,, so model A is preferred to model B. In model A u increases 
with a, so longer axial wavelengths are preferred. 
W e  now turn to the problem of the reduced wavespeeds as p decreases. From 

figure 3 we can see that the wavespeeds fall as p decreases, even in the neighbour- 
hood of the bifurcation from Couette flow. This can be explained simply in geo- 
metrical terms; because the radius of the outer cylinder is larger there is more slow- 
moving fluid than fast-moving fluid; the azimuthal velocity averaged over the fluid 
is less than &lo. However, this effect is small compared to the drop in wavespeed 
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occurring as the waves bifurcate from the Taylor vortices. When r ] = O . 5 ,  the 
wavespeeds can be as low as 0.1 times the inner-cylinder angular speed. For values 
of 7 as low as this, there is a strong asymmetry between the jets at the outflow and 
inflow boundaries (see figures l l d  andn.  From these pictures it is clear that the jet 
near the outflow boundary is much narrower than that at the inflow boundary (see 
also Fasel t Booz 1984). Also, the mean azimuthal velocity is well below 0.552,R1; 
for the cases here a value of near 0.252,R1 is indicated. However, even this effect 
does not seem sufficient to reduce wavespeeds to the very low values found. We might 
naively expect that since the outflow-jet region has higher velocity gradients than 
the inflow jet it would do the bulk of the driving. However, the result in (4.8) 
indicates the exact opposite. The growth rate increases as a increases, despite the fact 
that the shear falls as a increases. We also note that increasing a brings the wavespeed 
c nearer to the velocity in the centre of the jet. We therefore suggest that the bulk 
of the driving comes from the inflow jet, and that the wavespeed is dominated by 
the fluid speed in the neighbourhood of the inflow jet, which is much lower than the 
‘mean’ azimuthal velocity. We should not forget, perhaps, that, even for the m = 1 
mode at r] = 0.56, nearly half the driving comes from the E, terms, so that, whereas 
the above arguments may indicate the reasons behind the trends, they cannot give 
the whole picture. 

5. Conclusions 

The main conclusion we draw from these calculations is that the infinite-cylinder 
model is capable of describing the complex behaviour of the transition to wavy 
vortices reasonably well. All the major features of the model, and even some of the 
rather detailed predictions, have been seen experimentally. Thus the bend in the 
(Re, q)-plane (figure 2) in the neighbourhood of 7 = 0.78 implies that the waves should 
die out as the Reynolds number is increased, and then reappear as an m = 3 wave 
at higher values of the Reynolds number : this unusual transition sequence has been 
observed by Park (1984) at 7 = 0.782. The major features are the move to smaller 
values of m as the preferred mode as r] is reduced below 0.8 and the emergence of 
strong dependence on the cell wavelength, the move to very low wavespeeda for the 
wavy mode as r ]  is reduced down to 0.5, and the appearance of the jet modes; these 
features have all been seen in a variety of different experiments. The only jet mode 
reported so far is the subharmonic mode ; it will be of interest to see if the harmonic 
jet mode can be detected experimentally. 

The effects of the ends on the transition to wavy vortices enter in two ways: f ist ,  
they control the axial wavelength, although not uniquely in a long-aspect-ratio 
apparatus; secondly, the ends provide some damping, delaying the onset of waves to 
higher values of the Reynolds number. 

The first effect, that on axial wavelength, can be treated in the infinite-cylinder 
approximation by regarding axial wavelength as an external parameter which is not 
determined theoretically but must be measured by experiment. Since it is the 
variation in axial wavelength that produces most of the interesting effects observed 
by Lorenzen et al. (1982), it  follows that these phenomena can be treated with the 
infinite-cylinder theory. In  some apparatus, such as that of King t Swinney (1983), 
fluid can be added or removed while the cylinders are running, allowing the axial 
wavelength to be directly controlled. In  a more conventional apparatus, though, the 
axial wavelength selected depends on the route taken to achieve the state, and is 
subject to certain quantization conditions (Park t Donnelly 1981) depending on how 
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many cells are to be fitted in. The experiments indicate that many different states 
are possible at the same value of parameters such as the Reynolds number (e.g. Mullin 
& Benjamin 1980). If the route taken to a particular value of Re is that of slow 
ramping from a low-Re state, then the final axial wavenumber may be generally 
unique (Park & Crawford 1983). All this information is gathered from experiments, 
however; all we can do from theoretical considerations is to impose rather broad 
limits on the values of the axial wavelength that are linearly stable (Kogelman & 
DiPrima 1970). . 

The second effect of the ends is to provide a damping on the wavy mode. This effect 
cannot be discussed in the infinite-cylinder approximation, and can only be estimated 
by examining the departures of experimental results from the theomtical values given 
here. The damping of the wavy mode is considerable if the aspect ratio is less than 
about 30, as can be seen from figures 6 and 7. The evidence suggests, however, that, 
if the aspect ratio is greater than 50, the agreement between theory and experiment 
becomes good, indicating that the theoretical infinite-cylinder values are approached 
as the aspect ratio becomes large. The subharmonic jet mode appears to be much 
less affected by the ends than the classical wavy mode. For the wavy mode, simple 
models of the type proposed by Walgraef, Borckmans & Dewel (1983) may be 
adequate to obtain the correction terms for long, but finite, cylinders. 

I am grateful to Dr Alan Cole and to Professor K. Park for access to unpublished 
experimental results, and also for many helpful conversations. 
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