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ABSTRACT.  This paper is concerned with three aspects of the study of
topological versions of the translational hull of a topological semigroup.  These
include topological properties, applications to the general theory of topological
semigroups, and techniques for computing the translational hull. The central
result of this paper is that if S is a compact reductive topological semigroup and
its translational hull Sl(S) is given the topology of continuous convergence
(which coincides with the topology of pointwise convergence and the compact-
open topology in this case), then Sl(S) is again a compact topological semigroup.
Results pertaining to extensions of bitranslations are given, and applications of
these together with the central result to semigroup compactifications and divis-
ibility are presented.  Techniques for determining the translational hull of cer-
tain types of topological semigroups, along with numerous examples, are set forth
in the final section.

The algebraic theory of the translational hull of a semigroup has been pre-
sented extensively in [10] and [11] with earUer material appearing in [3]. Ref-
erences in these works indicate a Ust of contributors to the field.

Motivation for the study of the translational huU has primarily been its
appUcations to the theory of ideal extensions. For this reason, it appears to the
authors of this paper that any coherent theory of ideal extensions of topological
semigroups would be based on a topological version of the translational hull. Re-
sults of a brief effort in this direction appear in [2], where a topology is assigned
to the translational huU. A study of the special case of a compact semilattice is
presented in [1].

In this paper we expand the knowledge of topological versions of the trans-
lational huU of a topological semigroup in terms of topological properties, appli-
cations to the general theory of semigroups, and techniques for computing the
translational huU of a given topological semigroup. Whenever feasible, we present
results in the more general setting of semitopological semigroups.

Our prime objective in the first section of this paper is to find a reasonable
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topology for the translational hull and develop the basic properties. We propose
two candidates, which we believe to be suitable, and indicate that these coincide
for a large class of semigroups. The central result of this section is that the trans-
lational hull of a compact reductive semigroup is again a compact semigroup. In
route to this result, topological analogues of the algebraic notion of reductivity
are developed.

The second section is devoted to the study of sufficient conditions for a
continuous homomorphism from one topological semigroup to another to induce
one between their respective translational hulls.

In the third section we apply the results of the first two sections to the
study of semigroup compactifications. Of particular concern is the existence and
uniqueness of monomorphic compactifications. The translational hull provides a
unifying base from which to derive previously scattered results in [5], [6], and
[9] concerning semigroup compactifications.

As an application of the central result of the first section, we obtain a re-
sult in the fourth section which appears in [5] and which states that each com-
pact power-cancellative abelian semigroup S can be embedded in a compact
uniquely divisible abelian semigroup. The result offered here yields additional
information, since the compact uniquely divisible abelian semigroup is a sub-
semigroup of the translational hull of the original semigroup and the embedding
is canonical.

Having observed a deficiency of examples of translational hulls in the lit-
erature, we set out to investigate numerous examples and thereby discovered
some techniques for computing the translational hull for certain classes of semi-
groups. The fifth section of this paper is devoted to the presentation of these
techniques and examples.  Some of the examples reveal information pertaining
to the properties of the translational hull, e.g., the translational hull of a compact
connected reductive semigroup need not be connected.

The authors are indebted to the referee for several useful and clarifying
suggestions concerning continuous convergence, for Lemma 1.0, and for correc-
tions and simplifications in a number of proofs.

1. Topologizing the translational hull. If 5 is a semigroup, then a function
X: S —*■ S is called a left translation of S provided X(xy) = (Xx)y for each x, y
E S, and a function p: S —► S is called a right translation of S provided (xy)p =
xiyp) for each x, y ES. (Here we write xp for the image of x under p.) If X
and p are left and right translations of 5, respectively, such that x(Xy) = (xp)v
for each x, y ES, then we say that X and p are linked and the linked pair (X, p)
is called a bitranslation of S. If co = (X, p) is a bitranslation of S and a ES, then
we frequently denote coa = Xa and aco = ap. Observe that for x, y E S we have
co(xv) = (cjx)y, (xy)oj = x(yco), and x(uy) — (xco)y. For an element a ES we
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use \ [pa] to denote the left [right] translation x r->-ax [x r—*xa]. Notice
that Xa and pa are linked for each a e S, and hence coa = (Xa, pa) is a bitrans-
lation of S. For a eS, the translations Xa and pa are caUed inner left and inner
right translations, respectively, and coa is called an inner bitranslation.   If T is a
subsemigroup of 5 and co = (X, p) is a bitranslation of S, then co|r denotes the
pair (\\T, p\T) (restrictions). Observe that if a £ 5 and / is an ideal of S, then
coa|/ is a bitranslation of I.

In the case that a semigroup S is endowed with a topology and co = (X, p)
is a bitranslation of 5, we say that to is a continuous bitranslation provided X
and p are both continuous. We wiU use A(S) and P(S) to denote the set of aU
continuous left and right translations of S, respectively, and use £l(S) to denote
the set of aU continuous bitranslations of S. Observe that A(S) is a semigroup
under composition, P(S) is a semigroup under reverse composition, and £l(S) is
a subsemigroup of A(S) x P(S). The semigroup Í2(5) is caUed the translational
hull of S. Notice that the set ti(S) of aU inner bitranslations of S is a subsemi-
group of £l(S) and the function it: S —► it(S) defined by Tr(a) = coa is a homo-
morphism. The semigroup u(S) is called the inner translational hull of S and the
homomorphism it: S —► ir(S) is caUed the canonical homomorphism.  For the
purpose of topologizing Sl(S), we wiU use Ss to denote the set of aU continuous
functions from S into S.

If 5 is a semigroup endowed with a topology, then the topology of point-
wise convergence on Ss is defined by saying a net fa converges to / in Ss if
fa(x) converges to f(x) for each x E S.  We denote by Ap(S) and Pp(S), the
semigroups A(S) and P(S), respectively, endowed with the relative topology of
pointwise convergence on Ss, and by £lp(S) the semigroup fi(5) with the relative
product topology on A (S) x P (S).

An alternative description of the space £lp(S) may be given as foUows:
Form a product Ti{S x S]aes, one factor of S x S for each element of S, en-
dowed with the product topology. Define an injection of Sl(S) into II {S x S}ae5
by cj I—*■ (om, aco) in the ath coordinate for each aCS. When Sl(S) is identified
as a subset of U{S x S}aes in this fashion, then £2_(S) is £l(S) endowed with the
subspace topology.

It is frequently desirable to define a topology on a set from some notion
of convergence of nets in that set. (Formally, we would start with a set F and a
class C of pairs ({/a},/) with {/a} a net in F and /€ F, and say that a net {/a}
converges to / if ({fa}, f) is in C.) If the notion of convergence satisfies the prop-
erty that if a net converges to a point, then the net restricted to any cofinal sub-
set of the domain directed set converges to the same point, then a topology may
be defined in F by defining a set A C F to be closed if and only if whenever {fa}
is a net in A which converges to /, then fe A. If a net {/a} converges to /by
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definition, then it converges in the topology just defined, but the converse need
not necessarily hold. A treatment of these matters appears in [8].

1.0. Lemma Let F be a topological space and let C be a class of pairs
({/«}» /). where {fa} is a net in F and fEF, satisfying: For all A E F, A is
closed if

{fEF: there exists {fa} C A with ({/a}, f)EC}EA.

Let G be a space and leth: F —► G.  Then A is continuous if ({fa}, f)E C
implies {h(fa)} converges to h(f) in G.

Proof. Let 5 be a closed subset of G, and let A = h~l(B). If {/a} C A
and ({/J, /) G C , then (A(/a)} C B and {A(/a)} converges to hij). Since B is
closed, hif) E B. Hence /G A.  Thus by hypothesis, A is closed. Hence A is
continuous.

If X and y are topological spaces, let Yx denote the space of all continu-
ous functions from X into Y. We say that a net fa in Yx converges continuously
to / in Yx if the product net faiXß) converges to f(x) for each net Xß converg-
ing to x in X. The topology of continuous convergence on Yx is defined by
saying a set A is closed if and only if whenever a net fa in A converges continu-
ously to some /in Yx, then /G A.

Note that if Y is Hausdorff, then the topology of continuous convergence
on Yx is Hausdorff since (using 1.0) the identity function is continuous from
Yx with the topology of continuous convergence into Yx with the topology of
pointwise convergence. Observe also that if C = {({/„}. /): / converges contin-
uously to/}, then C determines the topology of continuous convergence on Yx.

In the terminology of R. Arens and J. Dugundji [0] a topology T on Yx
is

(a) proper if continuous convergence implies convergence relative to T, and
(b) admissible if convergence relative to T implies continuous convergence.
In this language, the topology of continuous convergence is proper and may

be characterized as the strongest (i.e., most open sets) proper topology on Yx.
However, it need not be admissible. If X is locally compact Hausdorff, then the
topology of continuous convergence is precisely the compact open topology and
is both proper and admissible (see [0] ).

We specialize now to the case that S is a semigroup endowed with a to-
pology. We define topologies on A(S),P(S), Sl(S), and il(S) x Sl(S) by first de-
fining convergence of nets. A net Xa (pa) of continuous left (right) translations
converges continuously to X (p) if they converge continuously as functions. A
net ua = (Xa, pa) of continuous bitranslations converges continuously to cj —
(X, p) if Xa converges continuously to X and pa converges continuously to p,
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and a net (Ta, coa) of ordered pairs of continuous bitranslations converges con-
tinuously to (t, to) if Ta converges continuously to t and toa converges contin-
uously to to. The topology of continuous convergence is defined in A(S), P(S),
Í2(S), and Sl(S) x to(S), respectively, by declaring a set closed if and only if
whenever a net in the set converges continuously to some point, then the point
is also in the set. These semigroups endowed with the topology of continuous
convergence are denoted AC(S), PC(S), Slc(S), and Slc(S) xc £lc(S), respectively.
Note that Slc(S) is not necessarily the topology that £2(S) inherits as a subset of
AC(S) x PC(S) nor is &C(S) xc Slc(S) necessarily the product topology, but that
both of these properties hold if the topologies of AC(S) and PC(S) are admissible
(in particular, if S is locaUy compact Hausdorff). If Í2C(5) is admissible, then
£lc(S) xc ilc(S) is the product topology.

1.1. Proposition. Let S be a semigroup on a topological space. Then
multiplication on &p(S) is separately continuous and multiplication on Í2C(S)
is continuous from &C(S) xc ilc(S) into Slc(S). Hence if the topology of con-
tinuous convergence on Í2C(5) is admissible, then multiplication on Í2C(S) is
jointly continuous.

Proof. Suppose that <oa is a net in £ip(S) converging to oo and let t 6
£lp(S). Then for each x e S, we have that toax converges to tox, and since t
is continuous, toJqX converges to rtox. Now, since coa converges pointwise to
co, o)a(Tx) converges to co(tx) for aU x e S, and hence toar converges to tor.
Similar arguments on the right complete the proof that multiplication on £2 (S)
is separately continuous.

To show multiplication is continuous from Sle(S) xc Í2c(s) to Slc(S), we
apply Lemma 1.0. Let (toa, Ta) converge continuously to (to, t). Then ua con-
verges continuously to to and Ta converges continuously to t. Hence if x. con-
verges to x in S, then t^ converges to tx, and hence wa(T'ax^) converges to
to(Tx) = (tor)x. A similar argument holds on the right. Hence toara converges
continuously to tor, and hence converges in the topology of continuous con-
vergence, Í2C(5).

A semigroup on a Hausdorff space is called a semitopological semigroup
provided multipUcation is separately continuous and a topological semigroup if
multipUcation is jointly continuous.

1.2. Proposition.   Let S be a topological [semitopological] semigroup.
Then the canonical homomorphism it: S —»• Í2C(5) [Í2p(S)] is continuous.

Proof. Suppose that S is a topological semigroup and suppose aa is a net
in S converging to a. Then for each net x0 converging to x in S, we have coa xß =
a^ß converging to ax = coax and similarly on the right. It foUows that ittß^
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converges to 7r(a) in the topology of £lc(S), and hence it: S —► £\.(S) is contin-
uous.

A similar argument applies for the semitopological case.
Various notions of reductivity have played an important role in the study

of translational hulls. A semigroup S is said to be left [right] reductive if xa =
xb [ax = bx] for all x G S implies a —b, and reductive if S is both left and
right reductive. We say that a semigroup S is weakly reductive if xa = xb and
ax = bx for all x G S implies a = b.

For the topological setting we need appropriate topological notions of re-
ductivity. We use the notation aa —> a to mean that the net aa converges to a.

A semitopological semigroup S is said to be left [right] net reductive if xaa
—* xa [a^x —► ax] for all x G S implies that aa —► a, and S is said to be net
reductive if S is both left and right net reductive. We say that S is weakly net
reductive if xaa —► xa and a^ —► ax for all x G S implies that aa —► a.

A semitopological semigroup S is said to be weakly bi-net reductive if for
a net aa in S and a ES, the condition that x^aa —► xa and aaXß —► ax for each
Xß —*■ x in S implies that aa —► a. The notions of right bi-net reductive, left
bi-net reductive, and bi-net reductive are defined analogously.

1.3. Proposition.  In a semitopological semigroup S net reductivity implies
bi-net reductivity which in turn implies reductivity. Analogous statements hold
for right, left, and weak reductivity.

Proof.  We give a proof for the case of left reductivity.
Suppose that S is left net reductive.  Let {aa} be a net in S and a G S such

that XßOa —► xa for each Xß —* x in S. Then, in particular, for the constant net
Xß = x, we have xaa —► xa.  In view of the fact that S is left net reductive, we
see that aa —► a, and hence S is left bi-net reductive.

Assume now that S is left bi-net reductive and suppose that xa = xb for
all x ES. We show that the constant net consisting of a converges to b (yielding
that a = b, since S is Hausdorff). If Xß —► x, then x^a —^ xa = xb by separate
continuity of multiplication. Since S is left bi-net reductive, the constant net
consisting of a converges to b.

It is well known in the algebraic case that the canonical homomorphism
■n: S —► Í2(5) is an isomorphism into if and only if S is weakly reductive [3].
The next proposition is a topological analogue of this result.

1.4. Proposition.  Let S be a semitopological [topological] semigroup.
Then the canonical homomorphism n: S —► £lp(S) [í2c(S)] is both an isomorphism
and homeomorphism into if and only if S is weakly net [bi-net] reductive.

Proof. The proof in the topological semigroup case is essentially in [2].
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Suppose that 5 is a semitopological semigroup which is weakly net reductive.
By 1.2, we have that n: S —► £2_(S) is a continuous homomorphism. From 1.3,
we have that S is weakly reductive, and hence it is a monomorphism. Suppose
now that cja   is a net in np(S) (n(S) with the relative topology of i2p(S)) con-
verging to coa. Then for each x G 5, we have coa x = aax converges to coax =
ax and similarly xaa converges to xa.  By weak net reductivity aa converges to
a. It follows that 7r- ' : n(S) —► S is continuous and tt is a homeomorphism
into np(S).

Conversely suppose that n: S —► £2_(S) is a homeomorphism into.  Suppose
that a ES and aa is a net in S such that xaa —► xa and a^ —* ax for all x G
S. By definition of the topology of £2p(S), we have ua   —► coa in £lp(S). Since
77 is a homeomorphism, we have that aa —► a.

Before proceeding to our next proposition, let us make an observation
that will be used throughout this and other sections without further reference.
If 5 is a reductive abelian semigroup, then

A(S) = P(S)   and   £2(5) = A(A(S) x P(S)) = A

is an abelian semigroup (see [11]).

1.5. Proposition.  Let S be a reductive abelian semigroup endowed with
a topology.  Then first projection of Slc(S) [£lp(S)] is an isomorphism and a
homeomorphism onto AC(S) [Ap(S)], and second projection of Í2C(5) [Í2p(5)]
is an isomorphism and a homeomorphism onto PC(S) [Pp(S)].

Proof. The fact that these projections are isomorphisms is proved in [10].
The fact that 7rf is a homeomorphism (i = 1, 2) follows from the above remarks,
1.0, and the diagram:

A(S)     *    > A-—»■ A(S) (= P(S)) -J£—* A
I_Í

!A(5)

where $X) = (X, X). We have that y is a continuous inverse for t¡. This com-
pletes the proof of the proposition.

The parallel development given for semitopological and topological semi-
groups ends at this point. For the remainder of this section we treat peculi-
arities of each situation.

1.6. Proposition. Each bitranslation of a net reductive semitopological
semigroup S is continuous, i.e., Sl(S) = £2(5^), where Sd is S endowed with the
discrete topology.
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Proof. Let to be a bitranslation of S and let ya be a net in S converging
to y. Then for each x G S, we have x(ooya) = (xto)ya —* (xoS)y = x(coy).
Since 5 is net reductive, coya —» toy and similarly yaco —*yco. It foUows that
to is continuous.

1.7. Proposition.   Let S be a net reductive topological semigroup. If
coa is a net in Í2(5) and to G Í2(S), then coa converges pointwise to to if and
only ifcoa converges continuously to to. Hence, in this case, £lp(S) = í2c(S),
the topology of continuous convergence is admissible, and S2C(S) is a topolog-
ical semigroup.

Proof. The identity function on Sl(S) is continuous from Clc(S) to
Slp(S) in view of 1.0.

Suppose coa —► to in Í2 (S), and let xß —► x in S. Then for each y es,
Xwa*P = (yua)xß -*• (yoS)x =y(wx).

Since S is net reductive, we have to^x» —► tox; similarly, Xgtoa —► xto, so that
toa converges continuously to to. Hence Slp(S) = Slc(S).

If toa converges to to in £lc(S), then by the preceding toa converges point-
wise to oo, and hence toa converges continuously to to. Thus Slc(S) is admis-
sible. By 1.1, £lc(S) is a topological semigroup, and the proof of the proposi-
tion is complete.

We turn now to the case that wiU occupy most of our attention in the
remainder of this paper, the compact case, and develop the basic results for
that case. The next proposition is a partial converse to 1.3.

1.8. Proposition. Let S be a compact semitopological semigroup and
let T be a dense subsemigroup ofS. If S is reductive, then T is net reductive.
Analogous statements hold for right, left, and weak reductivity.

Proof. We prove only the case for left reductivity since the others are
similar. Let ya be a net in T and y G T such that xya —» xy for aU x G T.
Let z be a cluster point of the net ya in 5. Then for each x G T, the net xya
clusters to xz in 5 and converges to xy. Hence for aU x G T, we have xz = xy.
Since T is dense in S and multipUcation is separately continuous, we have xz =
xy for aU x G S. Since S is left reductive, we have z = y, so that ya —► y.

1.9. Remark. It is useful to observe that if 5 is a reductive semigroup
and / and g are a linked pair of functions from S into S, then (f, g) is a bitrans-
lation of S (see [10] ). To see that / is a left translation let x, y G S. Then for
each tes,we have t[(fx)y] = [t(fx)]y = [(tg)x]y = (tg^xy) = tf(xy). Using
left reductivity, we see that (fx)y = f(xy), and /is a left translation. A similar
argument works to show that g is a right translation of 5, and hence (/, g) is a
bitranslation of S.
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1.10. Proposition.  Let S be a compact reductive semitopological semi-
group.  Then £2p(5) is a compact semitopological semigroup.

Proof. Embed £2(5) in II {5 x S}aBS by co r—► (coa, aco) in the ath co-
ordinate for each a G S. We show that £2(5) embedded in this way is a closed
subset of n{5 x 5}aes.

Let coa be a net in £2(5) converging to an element co of Il{5 x S}aBS.
We may consider co to be a bifunction by defining cox to be the first entry in
the xth coordinate of co and xco the second. To see that co is a linked pair, let
x,yES. Then x(co^) = x(lim co^y) = lim x(coay) = lim(xcoa)v = (hm xo>a)y
= (xco)y. In view of 1.9 and the fact that 5 is reductive, we have that co is a
bitranslation of 5. In view of 1.6 and 1.8, we see that co is continuous and thus
£2(5) is closed in Il{5 x 5}aes. Since £2(5) with the subspace topology is just
£2 (5), we have that £2 (5) is a closed subset of a compact space and hence
compact. By 1.1 multiplication on £2 (5) is separately continuous.

Combining some of the results of this section we obtain the following:

1.11. Corollary.  Let S be a compact reductive topological semigroup.
Then £2p(5) = £2C(5) consists of all bitranslations of S and is a compact topol-
ogical semigroup. Furthermore, the canonical homomorphism it: S —► £2C(5)
tí a topological isomorphism onto the ideal of inner bitranslations. If, in addi-
tion, S is abelian, then £2C(5) = £2p(5), AC(S) = Ap(5), and PC(S) = Pp(S) are
all topologically isomorphic compact abelian topological semigroups.

We close this section with a few historical comments. T. Bowman [1]
anticipated some of the central results of this section by showing that any left
translation on a compact topological semilattice is continuous, and that the set
of all left translations formed a compact topological semilattice with the com-
pact-open topology (= the topology of continuous convergence for locally com-
pact semigroups). Notice that semilattices are reductive, and hence Bowman's
result follows from 1.11.

F. Christoph [2] suggested topologizing £2(5) with the topology of contin-
uous convergence and introduced the first notions of net reductivity.  One-half
of 1.4 is his result.

Our starting point for this paper was the central result of 1.11 that the
translational hull of a compact reductive semigroup is again a compact semigroup
with the compact-open topology, and was motivated by the technique introduced
by M. Friedberg in [4].

2. Extending bitranslations. Unfortunately the assignment of £2(5) to 5
is not functorial, i.e., if/: 5 —> T is a homomorphism there is in general no
natural way to define £2(/): £2(5) —> £2(7) to commute with the canonical
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homomorphisms of S and T. This section is devoted to pointing out some spe-
cial situations where this is possible.

If T is a subsemigroup of a semigroup S and to is a bitranslation of T, then
a bitranslation to' of S is called an extension of to to 5 provided to'|F = to.

2.1. Proposition. Let S be a compact reductive semitopological semi-
group and let T be a dense subsemigroup of S. Then each bitranslation of T
can be extended to a unique continuous bitranslation of S.

Proof.  Let to = (X, p) be a bitranslation of T. We identify X with its
graph, so that X C T x T C S x S. Let X* be the closure of X in S x S. We
show that X* is a function. Suppose that (x,yx) and (x, y2) are in X*. Then
there exist nets xa and x& in T converging to x such that Xxa —► yx and Xx^
—♦ y2. For each t G T, we have tyx = ¿"(lim Xxa) = Urn tQaa) = Um(fp)xa =
(íp)üm xa = (tp)x. Similarly, ty2 = (tp)x, and so tyx = ty2. By reductivity,
it foUows that yx —y2, and X* is a function. Since X* is compact, we have
that 7r,(X*) is compact, where itx: S x S —* S is first projection.  Since tTj(X*)
contains T and T is dense in S, we obtain that rr,(X*) = S and S = domain X*.
Finally, X* is continuous, since S is compact and X* has closed graph.

We similarly define p* to be the closure of p in S x S, and define to* =
(X*, p*). Then to* is a continuous bifunction whose restriction to T is the bi-
translation to. It is straightforward to verify that if a continuous bifunction
restricted to a dense subsemigroup is a bitranslation, then it is itself a bitrans-
lation.

We turn now to a result (2.3) which will be useful in later sections.

22. Lemma Let S be a semigroup, T a reductive semigroup, /: S —*■ T
a surmorphism, and to a bitranslation of S. Then there exists a unique bitrans-
lation to' of T such that to'/(x) = /(cox) and /(x)co' = /(xco) for each x G S.

Proof.  For y G T, we define to'y = /(cox), where y = fix).  To see that
toy is weU defined suppose that y = f(x) = f(x). Then for t G T, we have
/ = f(z) for some z G S, so that tf(cox) = /(z)/(cox) = /(z(cox)) = /((zcopr) =
/(zco)/(x) = /(zco)/(x') = filzoSyx') = /(z(cox')) = /(z)/(cox') = r/(cox'). Since
T is reductive, we have that /(cox) = /(cox'). We also define .yco' = /(xco),
where y = f(x), and employ a similar argument to show that yu' is weU defined.

To see that co' is a bitranslation of T, we need only demonstrate the Unk-
ing property by virtue of 1.9. Let a, b G T and a' and b' elements of S such
that a = f(a) and b = f(b'). Then a(co'ft) = /(a')(co'/(A')) = /(a')/(coô') =
fia'(o>b')) = f((a'o>yb')=f(a'oS)f(b') = (f(a')co')b = (aco>.

If 5 and T are semitopological semigroups, we say that a function f: S —►
T is dense provided f(S) is dense in T.
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Combining 2.1 and 2.2, we obtain:

2.3. Proposition.   Let S be a semitopological semigroup, T a compact
reductive semitopological semigroup, /: 5 —> Ta dense continuous homomorphism,
and co a bitranslation of 5.   Then there exists a unique continuous bitranslation
co' of T such that co'/(x) = /(cox) and /(x)co' = /(xco) for all x ES.

2.4. Proposition.   Let S be a semitopological semigroup, Ta compact
reductive semitopological semigroup, and f: S —► Ta dense continuous homo-
morphism.  Then there exists a unique continuous homomorphism £2(/): £2 (5)
—► £2_(T) such that the following diagrams commute:

ÍU5) m -np(D

Tf     and co

■*T

pcrx«)

for each co G £2(5).

Proof.  For co G £2(5), we define £2(/)(co) to be the unique bitranslation
co' guaranteed by 2.3 which makes the second diagram commute. To see that
the first diagram commutes, observe that for x G 5, we have £2(/)(coJC) = <¿f(xy

For the purpose of demonstrating that £2(/) is continuous, let coa —»-co
in £2 (5). Then for each x G 5, we have co^ —► cox, and hence /(co^) —►
/(cox). If co; = £2(/)(coa) and co' = £2(/)(co), then u'a(f(x)) -* co'(/(x)) for
all x G 5, and similarly if(x))u'a —► (/(x))co' for all x G 5.

From 1.10, £2 (T) is compact and so {co^} clusters to some t G £2 (7).
For each x ES, the net {(¿'a(f(x))} clusters to t(/(x)), and hence t(/(x)) =
co'(/(x)).  Since /is dense, rt = co'f for each t ET. Similarly, rr = fco' for each
t ET, so that t = co'. It follows that {co^} —► co', and £2(/) is continuous.

That £2(/) is a homomorphism follows immediately from 2.3 and the com-
mutative diagram:

—> S-*T<-

co,co2

CO.

CO,

■+T

«(TXwi)

£2(/)(co2)

-*■ T-

£2(7X00, )£2(T)(co2)

This concludes the proof of the proposition.
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3. Semigroup compactifications. In this section we give a further devel-
opment of the relation between a semigroup and its translational huU with an
eye toward appUcations to semigroup compactifications.

A compactification of a semitopological semigroup S is a pair (T, f) where
T is a compact semitopological semigroup and / is a continuous dense homo-
morphism from S into T. By a sUght abuse of notation we sometimes refer to
T as the compactification. The next proposition introduces the type of semi-
group we wiU be concerned with in this section.

3.1. Proposition.  Let S be a semitopological semigroup. If S is the
union of compact left ideals and also the union of compact right ideals, then
for any compactification (T, f) ofS, f(S) is an ideal in T. On the other hand,
if S is topologically isomorphic to an ideal of a compact semitopological semi-
group, then Sis a union of compact right ideals and a union of compact left
ideals.

Proof.  Suppose S is the union of compact left ideals, S = \J{L: L G L}.
For each Lei, f(L) is compact, hence closed. For x G S, there exists L G L
such that x CL. We have

T ■ f(x) = f(S)* ■ f(x) C (f(S) ■ f(x))* = f(Sx)* C f(L)* = f(L) C f(S).

Hence f(S) is a left ideal. Similarly f(S) is a right ideal, and thus an ideal.
Suppose now that S is (topologically isomorphic to) an ideal of a compact

semitopological semigroup T. Then S = U{7x U {x}: x G S], and hence is the
union of compact left ideals. Similarly S is the union of compact right ideals.

The first problem we consider is that of finding sufficient conditions for
a semigroup S to have a compactification (T, f) where /is a monomorphism. To
this end we prove a variant of Proposition 1.10.

3.2. Proposition.  Let S be a semitopological semigroup which is globally
idempotent (S2 = S), reductive, weakly net reductive, the union of compact
left ideals, and the union of compact right ideals.  Then Slp(S) is compact.

Before proving this proposition, we need the foUowing lemma.

3.3. Lemma   Let S be a semitopological semigroup which is reductive,
weakly net reductive, the union of compact left ideals, and the union of compact
right ideals.  Then S is net reductive.

Proof. We first show S is left net reductive. Let x G S and let xa be a
net in S such that for aU y G S, yxa converges to yx.   Since S is weakly net
reductive, to show xa converges to x it suffices to show that xay converges to
xy for all y G S.
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Fix v G 5, and let z be a cluster point of xay. Then for any tES, ¿(x^)
clusters to tz. Also (txa)y converges to (tx)y = t(xy). Hence tz = t(xy) for
aU tES; by reductivity z = xy. Since xay is a net in the compact space (Sy)*
having only the cluster point xy, we have that xay converges to xy. Hence 5
is left net reductive. Similarly 5 is right net reductive.

Proof of Proposition 32.   Let s ES. We show {cos: co G £2(5)}* is
compact. Let p, q ES such that s = pq. For any co G £2(5), cos = co(pcj) =
(cop)a C (5<ï)*, and (Sq)* is compact since 5 is the union of compact left ideals.
Similarly {sco: co G £2(5)}* is compact.

Now, as in the proof of 1.10, £2 (5) is closed in 5s x 5s and contained
in the compact set U{AS: s G5} x n^: s ES], whereyl4 = {cos: co G £2(5)}*
and .ßj = {seo: co G £2(5)}*, and it follows that £2 (5) is compact.

3.4. Corollary. Let S be a topological semigroup which is globally
idempotent, reductive, weakly net reductive, the union of compact left ideals,
and the union of compact right ideals.  Then every bitranslation on S is con-
tinuous, £2C(5) = £2p(5) is a compact topological semigroup and tr. 5 —► £2C(5)
is a homeomorphism onto 7r(5).

Proof. This follows immediately from Lemma 33 and Propositions 3.2,
1.4,1.6,1.7.

3.5. Corollary.   Let S be a semitopological [topological] semigroup
which is globally idempotent, reductive, the union of compact left ideals, and
the union of compact right ideals.  Then there exists a weakly reductive com-
pactification (T, f) such that fis a monomorphism [and Tisa topological semi-
group] .

Proof.  By 1.2 it: S —► it(S) is continuous, and 7r is an isomorphism
since 5 is reductive.

We show that 7t(5) with the subspace topology from £2p(5) is weakly net
reductive. Let cox G tr(S) and let co^   be a net in tt(5) such that for all ioy in
7r(5), covcov   converges to covco„ and co„ co„ converges to covcov. Fix tES.
Then there exist p, q G 5 such that t =pq. Then o>x (t) = cox (pq) =
(JXaO)p(q) which converges to coxcop(cj) = Oix(pq) = co^f). Similarly, tux
converges to fco^. Thus cox   converges to co^ in £2 (5).

If 5 is a topological semigroup, we show n(S) is a topological semigroup
with the subspace topology from £2p(5). Let co^   —* cox and co    —*• co^.
Let s G 5 and let I be a compact left ideal containing s. Then for all a, ß we
have 03Xa03y s = xav^s EL. Let p be a cluster point of the product net x^y^s.
Then for all q E S qx^ßS clusters to qp and qx^ßS = (qo)x X^y,,1) converges
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to (qcox)(o}ys) = qxys. Hence qp = qxys and by reductivity p = xys. Since the
only cluster point of the net xay0s in the compact set L is xys, ojx co   s con-
verges to co^co s. Using this fact and its right analogue, we have to^ co     con-
verges to ooxtOy in Slp(S).

By Propositions 3.2 and 1.4 (and 3.4), the natural mapping from it(S) into
its translational huU will be a topological embedding into a compact semitopo-
logical (or topological in the case that S was a topological semigroup) semigroup.
Let T be the closure of the image of it(S) in its translational hull. The composi-
tion / of it with the mapping from n(S) into T gives a monomorphic compacti-
fication (T, f).

AU that remains is to show that Tis weakly reductive. Suppose cop co2
G T such that coxco = co2co and coco, = coto2 for all co G T. Let x G it(S).
There exist y, z G it(S) such that x = yz. Then

co,x = cojiyz) = (cojco^ = (oj2ojy)z = co2(yz) = cojx;

similary, xcoj = xco2 for any x G it(S). Hence cot = co2.
It is interesting to note that one of the ingredients in the proof of 3.5 is

that if 5 is a globaUy idempotent semigroup and T is a subsemigroup of Sl(S)
containing it(S), then Tis weakly reductive.

Corollary 3.5 gives sufficient conditions for the existence of monomorphic
compactifications. We now consider the problem of uniqueness of such com-
pactifications.

An ideal / in a semigroup S is algebraically dense if the identity relation
is the only congruence on S which when restricted to / is the identity relation
on /. Generally / is caUed simply a dense ideal, but we employ that terminology
for topological denseness.

3.6. Proposition. /// is a dense ideal of a weakly reductive semitopo-
logical semigroup S, then I is algebraically dense.

Proof.  Let p be a congruence on 5, and suppose there exists (y, z)Cp
such that y =h z. Since S is weakly reductive, there exists x G S such that xy ¥=
xz or yx =£ zx; assume the former. There exist open sets U and V such that
xy G U, xz e V, and U n V = 0. Choose an open set W such that x G W, Wy
C U, and Wz C V. Since / is dense, there exists bCW CM. Then (by, bz) G p
and by i=bz. Hence / is algebraically dense.

3.7. Proposition.  If I is an ideal of a semitopological semigroup S, then
the mapping o: S —► Œ (/) wA/cA sends s to the inner bitranslation cos restricted
to I is a continuous homomorphism making the following diagram commute:
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apQ)

Ie->s

Proof. Since multiplication is separately continuous in 5, o is continu-
ous. It is well known from the algebraic theory that a is a homomorphism
making the diagram commute [10, p. 296].

3.8. Proposition. If I is a dense ideal of a compact weakly reductive
semitopological semigroup 5, then S is topologically isomorphic to the closure
ofnU)innpa).

Proof.  Consider the diagram

TT

Proposition 1.4 and 1.8 imply that 7r is a topological isomorphism into.  Since
the diagram commutes and by 3.6,7 is algebraically dense, it must be the case
that o is one-to-one. By 3.7, o is continuous; hence o is a topological iso-
morphism into. Now o(S) = o(I*) = a(I)* = tt(7)* and the proof is complete.

3.9. Proposition. 7/5 is a semitopological semigroup which is the union
of compact right ideals and the union of compact left ideals, then S has at most
one weakly reductive monomorphic compactification.

We again have need of an additional lemma before we prove this proposi-
tion.

3.10. Lemma   Let S be a semitopological semigroup, L a family of left
ideals such that 5 = U L and R a family of right ideals such that 5 = U R. Let
j: S —* T be an algebraic isomorphism onto a weakly net reductive semitopo-
logical semigroup T which when restricted to each LE L and RERis contin-
uous.  Then j is continuous.

Proof.  Let xa —► x in 5. Since T is weakly net reductive, it suffices
to show yj(xa) -* yj(x) and j(xa)y -*j(x)y for each y ET. For this purpose,
let y E T and let z G 5 such that j(z) = y. Let R E R such that zER. Then
zxa —► zx in 5 and hence in R. Since j\R is continuous, yj(xa) = j(z)j(xa) =
j(zxv) -* j(zx) - j(z)j(x) = yj(x). Similarly, j(xa)y -#> j(x)y.
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Proof of Proposition 39.   Let (7*,, /,) and (T2, f2) be two mono-
morphic weakly reductive semigroup compactifications of S. Consider the dia-
gram

l-\s—!->/!($) er,
By 3.8 and 3.1, Tx is topologicaUy isomorphic to the closure of itxfx(S) in
£2 (fx(S)). Similarly T2 is topologicaUy isomorphic to the closure of it2f2(S)
in n2(f2(Sf).

Now let} = f2 ° fx l : fx(S) —* f2(S). Then / is an algebraic isomorphism
which is continuous when restricted to fx (L) or fx (R) for any compact left
ideal L or compact right ideal R of S. By 1.8,/2(5) is weakly net reductive.
Hence by Lemma 3.10,/is continuous. Similarly f~* is continuous. Thus fx(S)
and f2(S) are topologicaUy isomorphic. Hence Slp(fx(S)) is topologicaUy iso-
morphic to Slp(f2(S)), and thus the closure of itxfx(S) in &p(fx(S)) is topo-
logicaUy isomorphic to the closure of it2f2(S) in Í2p(f2(S)).

As an immediate coroUary of Propositions 3.5 and 3.9 we have

3.11. Corollary.   If S is a reductive globally idempotent semitopo-
logical semigroup which is the union of compact left ideals and the union of
compact right ideals, then S has precisely one monomorphic weakly reductive
compactification.

3.12. Corollary. Let I be a dense ideal of a compact topological
semigroup S where S = ESE (E denotes the set of idempotents). Then S is the
only topological semigroup which is a monomorphic compactification of I.

Proof.  Since S = ESE, S is weakly reductive (see e.g. [6, p. 89]). Let
(T, /) be a monomorphic compactification of /. Then IC S = ESE impUes
/ = EIE, so that f(I) = f(E)f(I)f(E) C Ef(I)E, which implies T « /(/)* C
(Ef(iyE)* C Ef(I)*E = ETE. Hence T = ETE, T is weakly reductive (as above),
and the result foUows from 3.9.

3.13. Corollary.  Let I be a dense ideal of a compact semitopological
semigroup S where S has a right (or left) identity.  Then S is the only mono-
morphic compactification of I.

Proof. It is straightforward to verify that any compactification of / must
have a right identity, and hence be weakly reductive. The coroUary then foUows
from Proposition 3.9.
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3.14. Corollary.  Let I be a dense ideal of a compact reductive semi-
topological semigroup S. If multiplication restricted to I x I is jointly continuous,
then S is a topological semigroup.

Proof.  By 1.8,7 is net reductive. Hence by 1.7 and 1.1, multiplication
in £2 (7) is jointly continuous. It follows from 3.8 that multiplication in 5 is
jointly continuous.

We close this section with some isomorphism theorems.

3.15. Proposition.   Let I be a dense ideal in a compact reductive semi-
topological semigroup S such that SI = I = IS.  Then £2p(5) is topologically iso-
morphic to £2p(7).

Proof. By 2.4 we have the following commutative diagram

iU/)—^—>nD(S)

->5
/

where j: I —► 5 is the inclusion mapping. For co G £2 (5), we show that co7 U
lu El. Let x G 7. Then there exist y ES,z El such that x =yz. We have
cox = co(yz) = (wy)z G 7. Similarly xco G I.

Hence there exists a mapping r: £2 (5) —► £2 (7) which restricts a bitrans-
lation to I (that r is continuous is immediate from the definition of the topology
of pointwise convergence). Since £2(/) is the unique extension of a bitranslation
to 5 and r is the restriction, the two homomorphisms are inverses for each other,
and hence each is a topological isomorphism.

3.16. Corollary.  Let I be a dense ideal of a compact semitopological
monoid 5.   Then S is topologically isomorphic to £2 (7).

Proof.  By 3.15, £2p(5) â £2p(7). But since 5 has an identity £2p(5) =■ 5.
Many of the results of this section had been derived previously by other

techniques. The translational hull provides a unifying and more natural approach
to these results.

Corollary 3.5 is a generalization of Theorem 2 of [5] to the nonabelian
case.

Analogues of 3.9, 3.11, 3.12, and 3.13 are found in [5]. The interested
reader may refer to that paper for other similar corollaries which we could have
also derived in this context. Corollary 3.14 appears as Proposition 7.5 in [9].

4. An application to divisibility. A semigroup 5 is said to be power-can-
cellative if a, b ES and a" = bn for some positive integer n implies that a = b.
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Observe that a power-canceUative abelian semigroup S is reductive. To see
this, let a, b eS and suppose that ta = tb for all t e S. Then for t = a we have •
a2 = aô and fort = b we have ba = b2, and so a2 = ab = ba = b2. Since 5 is
power-canceUative, we obtain that a = A, and hence 5 is reductive.

4.1. Lemma Let S be a power-cancellative abelian semigroup. Then £2(5)
is a power-cancellative abelian semigroup.

Proof.  Since S is power-cancellative, we have that S is reductive, and
hence £2(5) is abelian (see [11]). To see that £2(5) is power-cancellative, let
oox, co2 G £2(5) and suppose that co" = co2 for some positive integer n. Using
induction and the fact that cox = xco for each co G £2(5) and x G 5, we obtain
that (cox)" = co"x" for each xCS. Let x G 5. Then (co,x)" = u"x" = co^x"
= (co2x)", and since 5 is power-canceUative, we have that cOjX = co2x.   It follows
that C0j = co2 and £2(5) is power-cancellative.

4.2. Lemma  Let S be a topological semigroup, I a closed ideal of S, and
r = {co G £2p(5): co/ U /co C /}.   77ie« 7~ is a closed subsemigroup of £2p(5)
containing it(S).

Proof. That it(S) C f and that f is a subsemigroup of £2p(5) are trans-
parent. To see that f is closed, let coa —* co. Then for each x G /, we have
coax —► cox, coax G / for each a, and since / is closed, cox G /, and similarly
xco G /.  It follows that co G f and I~~ is closed.

A semigroup 5 is said to be [uniquely] divisible if for each x G 5 and each
positive integer n, there exists a [unique] element y G 5 such that yn = x. Ob-
serve that a divisible subsemigroup of a power-cancellative semigroup is uniquely
divisible.

4.3. Theorem.   Let S be a compact power-cancellative abelian topological
semigroup such that Sn = {xn : x G 5} is an ideal of S for each positive integer
n.  Then there exists a compact uniquely divisible abelian subsemigroup T of the
compact topological semigroup £2 (5) s«cA that it is an embedding of S into T,
where it: S —* £2p(5) is the canonical embedding.

Proof.  Let N denote the set of positive integers and let T = l\{S~:n eN}.
In view of 4.2 and 1.11, we see that F is a compact subsemigroup of £2p(5) con-
taining it(S), and 5 is topologically isomorphic to it(S). To complete the proof,
we wiU show that T is uniquely divisible. Notice that it is sufficient to show
that Fis divisible, since £2 (5) is, by virtue of 4.1, power-cancellative.

Let co G T and n eN. Now for each x G 5, we have that cox" G Sn, since
co G 5~, so that there exists a unique (since 5 is power-canceUative) x0 G 5 such
that Xq = cox". Define rx = x0 (and xr = x0) for each x e S.
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To demonstrate that t is a bitranslation of 5, we need only show that r
has the linking property (see 1.9). For this purpose, let a.bES. Then [a(rb)]n
= a"(Tby = anbn0 = a"(co6n) = (anu)bn = a^b" = (a0b)n = [(ar)b]n. Since
5 is power-cancellative, we have that a(rb) = (ar)b, and t is a bitranslation of 5.
From 1.11, we see that r E £2p(5).

For the purpose of showing that t" = co, let x G 5 and observe that [i"x]n
= (cox)" by employing induction and the definition of t. Again, since 5 is power-
cancellative, we have t"x = cox, and hence t" = co.

Finally, to see that t E T, let k EN and x E 5. We will show that rxk E
Sk. Now [Txk]n = (xky¿ = cox*" = ukn for some uES, since co G 7C 5^„.
We obtain that [rxfc]" = [uk]", and by power-cancellativity, we have TXk =
ukESk.

5. Computational techniques and examples. In this section we present
numerous examples of translational hulls along with some results which give a
method of performing this computation for certain classes of semigroups.

Although our results do not rely on the minimality condition of this notion,
it is sometimes convenient to locate a minimal subset of a semigroup 5 which
determines the bitranslations of 5. This leads to the concept of a basis.

If 5 is a semitopological semigroup, then a subset B of 5 is called a bitrans-
lational determination subset of 5 (or simply a determination subset of 5) pro-
vided that whenever co and co' are continuous bitranslations of 5 such that coö =
co'A and Aco = Aco' for each b G B, then co = co'. A minimal determination sub-
set of 5 is called a bitranslational basis for 5 (or simply a basis for 5).

A trivial example of a basis is {1} in a semitopological semigroup 5 with
identity 1.

If 5 is a semitopological semigroup containing a cancellative element x such
that Sx = xS, then {x} is a basis for 5. To see this, suppose that co and co' are
bitranslations of 5 such that cox = cox and xco = xco', and let a ES. Then,
since Sx = x5, we have that ax = xc for some c ES, and (coa)x = co(ax) =
co(xc) = (cox)c = (co'x)c = co'(xc) = co'(ax) = (co'a)x. Since x is cancellative,
we have coa = coa, and similarly aco = aco'. It follows that co = co' and {x} is
a basis for 5.

Observe that for any semitopological semigroup 5 that 5 itself is a deter-
mination subset of 5. We defer our discussion on the existence of a basis to the
end of this section, and introduce at this point an important related concept.

If 5 is a semigroup and B is a subset of 5, then B is called a separating sub-
set of 5 if for each distinct pair x and y of elements of 5, there exist a, b G B
such that ax ¥=ay and xb ¥=yb.

Note that a semigroup with a separating subset is reductive.  In this context
we have the following:
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5.1. Proposition. Let S be a reductive abelian semitopological semigroup
and let B be a subset of S.  Then B is a separating subset of S if and only ifB
is a determination subset ofS. In particular, B is a minimal separating subset of
S if and only ifB is a basis for 5.

Proof.  Suppose that F is a determination subset of 5, and let x ¥=y in
5. Now if ax = ay for aU a G B, then we would have aco^ = aco^, for all a G B,
so that co„ = co„ and hence x = y, since 5 is reductive. It foUows that bx + by
for some b G B, and that F is a separating subset of 5.

To estabUsh the converse, suppose that B is a separating subset of 5, and
let co and co' be bitranslations of 5 such that coA = co'A for each A G 5. Assume
(for the purpose of contradiction) that cox ¥= co x for some x G 5. Then (cox)«
¥= (oj'x)u for some u G B, since F is a separating subset of 5. On the other hand,
we have (cox)« = to(xw) = co(«x) = (co«)x = (co'«)x = co'(ux) = co'(x«) =
(co'x)«. This contradiction yields that cox = cox for aU x G 5, co = co', and B
is a determination subset of 5.

Observe that a separating subset of a semitopological semigroup is always a
determination subset without any additional hypothesis on the semigroup.

Proposition 5.1 wiU be employed in a later result in this section. We begin
now our Ust of examples with the simplest kind of example.

5.2. Example.   Let 5 be a Hausdorff space with zero multiplication, i.e.,
pick 0 G 5 and define xy = 0 for aU x, y G 5. Then 5 is a topological semi-
group, and the left (and right) translations of 5 are precisely those functions
/: 5 —*■ S with /(0) = 0 and each left translation is Unked with each right trans-
lation. It foUows that A(5) = P(S) = {feSs: /(0) = 0} and £2(5) = A(5) x
P(S). Thus, in particular, if 5 = [0, 1] with the usual topology and zero multi-
pUcation, then £2p(5) is not compact and 5 does not have a basis.

To obtain a compact right reductive topological semigroup 5 such that
£2p(5) is not compact consider the following:

5.3. Example. Let 5 be any Hausdorff space with left trivial multiplica-
tion, i.e., xy = x for all x,yeS. Then 5 is a topological semigroup which is
right reductive. Let X: 5 —*■ 5 be any function, and let x.yCS. Then we have
Mxy) — Xx = (Xx)y, so that X is a left translation of 5. Suppose that p is a
right translation of 5. Then, for x.yeS, we have xp = (xy)p = x(yp) = x,
and hence p = ls (the identity translation). We obtain that A(5) = 5s, P(S) =
{ls}, and £2(5) - A(5) x P(S) = {(X, 1^): X G 5s}. In particular, if 5 = [0,1]
with left trivial multipUcation, then £2 (5) is homeomorphic to 5s with the to-
pology of pointwise convergence, and hence £2 (5) is not compact. Moreover, 5
has no basis.

There is an obvious dual example to 5.3.
To estabUsh our first computational algorithm (5.5), we wiU employ the

foUowing:
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5.4. Proposition.   Let S be a compact semitopological semigroup with
identity 1, and let x be a right cancellative element of S such that Sx E xS.
Then AJSx) is topologically isomorphic to S.

Proof. Define 6: S —* Ap(Sx) by 6(a) = Xa\Sx. Then 0 is clearly a con-
tinuous homomorphism.

Suppose that a.bES and 6(a) = 6(b). Then ax = Xax = Xftx = Ax, and
a = b, since x is right cancellative. It follows that 6 is injective.

For the purpose of showing that 6 is surjective, let X G Ap(5x) and let a E
S such that Xx = ax. We will demonstrate that 6(a) = X. Let v G Sx. Then y
= tx = xt' for some t, t'E S, since Sx C xS. We obtain that (Xypc = X(yx) =
X(xf'x) = (Xx)f'x = (ax)(r'x) = a(xt')x = ayx = (Xay)x, so that Xy = X^, since
x is right cancellative. It follows that X = Xa|5x = 0(a), and 6 is surjective.

The conclusion now follows from the fact that 5 is compact and Ap(5x)
is Hausdorff.

There is an obvious dual to 5.4. We also remark that the proof of the
algebraic analogue of 5.4 is contained in the proof of 5.4. The same is true of
the following:

5.5. Theorem.   Let S be a compact semitopological semigroup with 1 and
let x be a cancellative element of S such that Sx — xS.  Then £2p(5x) is topo-
logically isomorphic to 5.

Proof.  Let 6: S —*■ Ap(Sx) and y: S —► Pp(Sx) be the topological iso-
morphism of 5.4 and its dual, respectively, and let itx : £2p(5x) —► A (Sx) and
7T2 : £2p(Sx) —*> Pp(Sx) be projections. Define </>: 5 —► £2p(Sx) by <p(a) = coJSx.
Then y> is a continuous homomorphism and the diagram:

\(Sx) PD(Sx)

£2p(Sx)

commutes. It is clear from this diagram that <p is injective.
To see that </> is surjective, let co = (X, p) G £2p(5x). Then X = jt,co =

Xa|5x for some a ES, since 0 is an isomorphism, and similarly p = 7r2co = pft|5x
for some A G 5. We have that xax = x(ax) = x(Xx) = (xp)x = (xb)x = xbx,
and a — b, since x is cancellative. It follows that co = coa|Sx = ip(a), <p is sur-
jective, and hence ip is a topological isomorphism.
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Observe in 5.5 that if 5 is a topological semigroup, then Sx is a compact
reductive topological semigroup, so that £2 (Sx) = £2e(5x) by virtue of 1.11.
However, we hasten to point out that the joint continuity of the multiplication
in 5 would yield the continuity of the map y in the diagram in the proof of 5.5
if "p" were replaced by "c"; thus providing an alternative proof of this fact.

Our next three examples are applications of 5.5.
5.6. Example. Let 5 = [0, 1] with the usual multiplication and topology

and let x = 1/2. Then Sx = [0, 1/2], and by 5.5, we have that £2p(5x) is topo-
logicaUy isomorphic to 5.

5.7. Example. Let 5 = [0, 1/2] U {1} with the usual multipUcation and
topology and let x = 1/2. Then Sx = [0, 1/4] U {1/2} and £2p(5x) is topolog-
ically isomorphic to 5.

5.8. Example.   Let R denote the real Une, T = {(x, y) G R x R: 0 < x
< 1 and 1 < x + y}, with multiplication (x, y)(c, d) = (xc, xd + y), and let 5
be the one-point compactification of T with the ideal point acting as a zero for
5. Then the element a = (1/2, 1/2) is canceUative and Sa = aS, so that £2 (Sa)
is topologically isomorphic to 5. The semigroup T and Ta are pictured in the
following iUustration:

+\r"  t t

(0,1)

0,0)
r

We turn now to our second computational algorithm. The following nota-
tion wiU be used: N denotes the set of aU positive integers, and for a subset A
of a semigroup 5, let D(A) = [x G 5: x" G A for some n G A/}.

5.9. Theorem.  Let S be a compact uniquely divisible abelian topological
semigroup and let I be an ideal of S such that D(I) is dense in 5.   Then £2 (I)
is topologically isomorphic to £2 (5).

Proof. Note that 5 is power-cancellative and hence reductive and that
S = ES [6,3.1]. It follows that D(I) = ED(1) and from this that D(I) = SD(I).
Since D(I) is a dense ideal of 5, we have from 3.15 (and its proof) that £20:
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£2 (£>(/)) —* £2p(5) is a topological isomorphism, where /: D(I) —* S is inclusion.
Let 4/ = £2(7) and note from 2.4 that the diagram:

commutes for each co G £2p(D(I)).
Since S = ES [6, 3.1], we have that for each co G £2p(5), co|7 is a bitrans-

lation of I. For if x G 7, then there exists e EE with ex = x, so that cox =
co(ex) = (coe)x G I. Thus there is a continuous homomorphism <p: £2 (5) —►
£2 (7) given by <¿í(co) = co|7.  Note that «¿> is injective, since if co, co' G £2p(5),
and co and co' agree on 7, then they must agree on D(I) and hence on 5.

To see that v? is surjective, it suffices to show that <p ° i// is surjective. Note
that for each co G £2p(7J)(7)), we have that <¿> o i//(co) = co[7 by commutativity of
the diagram above. Thus, it is sufficient to show that each bitranslation of 7 can
be extended to a continuous bitranslation of D(I).

Let co G £2p(7). For x G DO), define xco' = cox = (co"x")1/n, where x"
G 7. To see that co' is well defined, suppose that m and « are positive integers
with xm, x" G 7.  We obtain that (co"x")m = co"mx"m = (comxm)"> so
(co"x")1/M = (comxm)1/m. Thus co' is well defined. To see that co' is a bitrans-
lation of 7, it is sufficient to demonstrate that co' has the Unking property. For
x, y E DO), with x", ym E I, we have [(xco>]m" = (xco')mV"" =
(xm"com")/"" = xmn(<Jnnymn) = xm"(co»m" = [x(u'y)]mn. Thus (xco>

= x(co'y) and co' is a bitranslation extending co.  Since co' is continuous by 2.3,
we have that co' G £2p(D(7)) and (¿> ° t//(co') = co, so ip is onto. Since £2 (5) is
compact by 1.11 and £2p(7) is Hausdorff, we conclude that <p is a topological
isomorphism.

As an application of 5.9, we have the following:
5.10. Example.   Let [0, 1] denote the usual multiplicative real interval,

and let S = [0, 1] x [0, 1]. Let 7 = {(x, y) G S: x + y < 1}. Then by 5.9, we
have that £2p(7) is topologically isomorphic to 5. In fact, any ideal of S con-
taining a neighborhood of (0, 0) has 5 as its translational hull.

We proceed to our third computational algorithm.

5.11. Theorem.  Let S be a compact reductive abelian semitopological
semigroup and let B be a separating subset of S consisting of idempotents.  Define
(¿>: £2p(S) —► fl{Se}eGB so that it^io) = coe, where ne is projection onto Se.
Then ip is an embedding.
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Proof. Now £2 (5) is a compact abeUan semitopological semigroup and
xco = cox for each co G £2p(5) and each x G 5. Clearly ¡p is continuous, since
its composition with each projection is continuous, and the injectivity of </> fol-
lows from 5.1. To complete the proof we need to show that y is a homomorphism.
For this purpose, let to, to' G £2 (5) and e G B. Then jt^coco') = coco'e =
cofeco') = co(eeco') = to(e(eco')) = (coe)(eco') = (coeXco't?) = ite<p(o})ite<p(oo'), and
hence <p is a homomorphism.

As an appUcation of 5.11, we have the following:
5.12. Example.   Let / = [0, 1] with the usual topology and addition de-

fined by a + b = min{l, a © A}, where a © A is the usual sum of a and A, i.e.,
/ is the additive nilpotent interval. Let F = / x / and 5 = {(x, 1): x G /} U
Í0. y)'- y G J) u i(x, 1 - x): x G /}. Then 5 is a compact abeUan reductive
subsemigroup of P. Observe that 5 is a semigroup on the 1-sphere. It is pictured
in the following iUustration:

e = (0>1) 0,1)

0.0)=/
Observe that e = (0, 1) and/= (1, 0) is a minimal separating subset of 5, since
addition by e and/are projections. It foUows from 5.11, that co I—»- (coe, co/)
is an embedding of £2p(5) into Se x 5/= P, so that £2 (5) is a subsemigroup of
F under this identification. We will show that £2p(5) = {(a, A) G F: a + A > 1}
u {(0, 0)}, which is ülustrated below:

e = (0,1) 0,0

/=0,0)

To verify this we show that only these elements of F send 5 into itself.
Let (a, A) G F with a + A < 1 and suppose that (a, A) + 5 Ç 5.   Let c =

(A + 1 - a)/2. Then 1 - c = (a + 1 - A)/2 and (c, 1 - c) G 5. We obtain
that (a, A) + (c, 1 - c) = ((a + A + l)/2, (a + b + l)/2), so that either a + b
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4-1 = 2 or «4-04-1 = 1. The first condition is not possible, so that a + b =
0 and a = A = 0.

Suppose that (a, A) EP and 1 <« 4- A. Then for 0 < x < 1, (a, A) 4-
(x, 1 - x) = (a 4- x, A 4- 1 - x). Suppose that a 4- x < 1. Then Ka + b<
A 4- 1 — x, and so in any case (a, A) 4- (x, 1 — x) G S. Clearly, (a, A) 4- (x, 1)
and (a, A) 4- (1, x) are in S, and the desired conclusion is obtained.

In our next algorithm we will modify the hypothesis of 5.12 and obtain a
useful characterization of the translational hull of such a semigroup.

5.13. Theorem.  Let S be a compact abelian semitopological semigroup
and let B be a separating subset of S consisting of idempotents such that S =
U{Se}eeñ. Let K = {xE fl{Se}eeB : ire(x)f = irf(x)e for each e.fEB}. Then
K is a compact semitopological subsemigroup of n{Se}eGB and K is topologically
isomorphic to £2p(S).

Proof. Observe that S = ES, so that Sis reductive. A straightforward
argument yields that K is a closed subsemigroup of n{Se}ees and hence is com-
pact. We will demonstrate that K is the image of £2p(5) under the embedding
ip of 5.11.

To see that K C <p(£2p(S)), let xEK. We will define a bitranslation co of
5 such that ip(cj) = x. Let tES, with t E Se and define coi = ico = ite(x)t. To
show that co is well defined, suppose also that t E Sf. Then ite(x)t = 7re(x)(f/)
= ire(x)ft = iif(x)et = irf(x)t, and co is well defined. To see that co is a bitrans-
lation of S, we need only demonstrate the linking property, since S is reductive.
For this purpose, let a, b ES, with aESu and b ESv for u, vEB. Then (aco)A
= K(x)a]A = K(x)A]a = (itu(x)ob)a = (nu(x)ub)a = (nv(x)bXua) = (coA> =
a(coA), and hence co is a bitranslation of 5. In view of the reductivity of 5 and
1.11, we see that co G £2 (S). Now let gEB. Then rr <p(co) = ug = it (x)g =
itg(x), and hence yj(co) = x. We obtain that K C </>(£2p(S)).

To see that </>(£2p(S)) C K, let co G £2p(S), and let e.fEB. Then
ire(if(co))f = (coe)/ = co(e/) = co(/<?) = (co/> = ny(vj(co))e. It follows that
</<co) G K and tfßp(S)) E K.

If S is as in 5.13 and B = {e,f}, then £2p(S) defines a pull-back for the
continuous homomorphisms 6X: Se —>■ Se/with 0x(xe) = xe/, and 02: Sf—*-
Se/with 02(x/) = xe/. To see this, define ox : £2p(S) —> Se by ff^co) = coe,
and o2: £2p(S) —* 5/by a2(co) = co/. Then the diagram:

ÍUS)->Se

a2\ 0 i
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commutes.  Suppose that F is a compact abelian topological semigroup with 1,
and 7j : T—*■ Se and y2: T—> 5/ such that 0xyx = 0272. Define y: T —>
£2p(5) by y(t)x = yx (t)x if x G Se, and y(t)x = y2(t)x if x G 5/ Then 7 is
the morphism required to show that the above is a pull-back diagram.

As an application of 5.13, we construct a compact connected semilattice
whose translational hull is not connected.

5.14. Example.   Let M = [0, 1] with the usual topology and min multi-
plication, i.e., xy = min{x, y], and let F = M x M. Let 5 = {(0, A): A G M} U
{(a, 0): a G M} U {(a, 1): a < 1/2} U {(1, A): A < 1/2} U {(a, A) G F: a < 1/2,
A < 1/2}, and let e = (1/2, 1) and/= (1, 1/2). Then 5 is a compact connected
subsemilattice of F with {e, /} as a basis and 5 = Se U 5/. We visualize 5 in
the foUowing iUustration:

(0.0)

Let S1 = 5 U {(1, 1)} and let K = {(a, A) G Se x 5/: a/= Ae}. Then according
to 5.13, £2p(5) is topologically isomorphic to K. Define t^: S1 —*■ K by \K0 =
(re, I/) for each t G S1. A straightforward argument yields that i|/ is a topolog-
ical isomorphism, and we conclude that £2 (5) is topologically isomorphic to S1.

As a second application of 5.13, we present a more complicated version
of the example of 5.14 which is a compact connected semilattice whose trans-
lational hull contains a denumerable set of isolated points.

5.15. Example.   Let P and 5 be as in 5.14, and let N denote the set of
aU positive integers. For each neN, let An = {(a, A) G F: a = 1/2 + 1/2"
and 0 < A < 1/2} and let Bn = {(a, b) G F: 0 < a < 1/2 and A = 1/2 + 1/2"}.
Let F = 5 U U{^4„}„eAr U U{F„}„eAr. Then F is a compact connected sub-
semilattice of F such that T = Te U Tf, and is iUustrated as foUows:

(0. i/:i

(0.0)
(1/2.0)
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Observe, as in 5.14, that {e, /} is a basis for T and T = Te U Tf. Let T0 = T
U {(1/2 + 1/2", 1/2 + l/2m): m,neN), and let K = {(a, A) G Te x 7/: a/ =
A«?}. Then F0 is a compact subsemüattice of F, and according to 5.13, £2p(F)
is topologicaUy isomorphic to K. As in 5.14, define \j/: T0—*Kby \j/(t) =
(te, tf) for each t G T0. Although somewhat tedious, it is straightforward to
verify that ^ is a topological isomorphism, and we conclude that £2p(F) is topo-
logicaUy isomorphic to T0.

We turn now to the discussion of the existence of a basis for a topological
semigroup.

As we have seen in 5.2 and 5.3, not every compact semigroup has a basis.
However, we also note that the semigroups of 5.2 and 53 are not reductive. The
question then arises as to whether each compact reductive semigroup has a basis.
We wiU answer this in the negative by presenting an example of a compact semi-
lattice having no basis. Let us first proceed to demonstrate why one cannot ex-
pect the standard Zorn's lemma argument to work.

If 5 is a semigroup, and « is a positive integer, let 5" = {x eS: x =axa2
• ■ • an for ax, a2.a„ G 5}. Note that 5" is an ideal of 5, and if 5 is a
compact topological semigroup, then 5" is closed and hence compact. We re-
mark also that if 5 is [left] right reductive, then 5" is [left] right reductive. To
see this for the left reductive case, suppose that 5 is left reductive and a =£ A in
5". Then there exists tn G 5 such that tna =£ tnb, and hence there exists ?„_,
G5 such that tn_xtna + t„_xtnb. Continuing recursively, we obtain tx, t2,
. . . , tn G 5 such that for t — txt2 • • • tn, we have ta i=- tb. Since t G 5", we
conclude that 5" is left reductive.  It foUows triviaUy that if 5 is reductive, then
5" is reductive. An additional observation which we wiU employ is that if co is
a bitranslation of 5, then co|5" is a bitranslation of 5". To see that cox G 5"
for x eSn, write x = XjX2 • • • xn, where xv x2,. . ., xn € S. Then cox =
co(XjX2 • • • xn) = (coXj)x2 • • • xn which is in 5".

5.16. Proposition. Let S be a reductive semigroup and let n be a posi-
tive integer.  Then 5" is a determination subset ofS.

Proof.  Let co and to' be bitranslations of 5 such that co|5" = co'|5"
and let x G 5.  Then for each r2,.. . , tn G 5, we have (cox)f2 • • • tn =
co(xt2 ■ • ■ tn) = oj'(xt2 ■ ■ • tn) = (oj'x)t2 ■ ■ • tn. With n - 1 appUcations
of right reductivity, we obtain that cox = cox, and similarly xco = xco' using
left reductivity. It foUows that co = co'.

Although the following proposition is not pertinent to our discussion of
the existence of a basis, we present it here as a computational algorithm and
note that it provides an alternate method of deaUng with the example of 5.12.

5.17. Proposition.   Let S be a compact reductive topological semigroup
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and let n be a positive integer.  Then u r-* co|5" is an embedding of £2p(5)
into £2p(S").

Proof. It is straightforward to verify that co t-+ co|S" is a continuous
homomorphism of £2p(S) into £2p(S"). The injectivity follows from 5.16, and
the conclusion from the fact that £2p(S) is compact and £2p(S") is Hausdorff.

We demonstrate that the intersection of determination subsets of a com-
pact reductive topological semigroup need not be a determination subset in the
following simple example:

5.18. Example.  Let S = [0,1/2] with the usual multiplication and
topology, and let N denote the set of all positive integers. Then S is a compact
reductive semigroup, and 5" is a determination subset of S for each nEN.
Observe however, that C\{Sn}n^N = {0}, and {0} is not a determination subset
of 5, since coO = Oco = 0 for each co G £2p(5).

We now present our example of a compact semilattice with no basis.
5.19. Example. Let M = [0,1] with min multiplication, T = {(«, A) G

M x M: a 4- A < 1} with coordinate multiplication, I = {(a, A) G T: a = 0 or
b = 0}, S = T/I, and t?: T —*■ S the natural homomorphism. Let e = (0,1)
and / = (1, 0) in T. We visualize T and S in the following illustration:

Let P denote the subsemilattice 7V of T.
We first show that a subset D of P is a separating subset of P if and only

if D contains sequences {en} —► e and {/„}—►/ (in T).
For the necessity, let D be a subset of P containing no sequence which

converges to e. Let U be an open subset of T of the form

such that U C\D = 0. Fix distinct points x and y in U O P which he on the
same vertical line. Then, as only points of T which separate x from v lie in U,
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no point of D separates x and y, and hence D is not a separating subset of P.
Similarly, if D contains no sequence converging to /(in 7"), then D is not a
separating subset of P.

For the sufficiency, let D contain sequences {e„} —► e and {/„} —»-/and
fix x ¥= y in P. Then {e„x} —*■ ex, {e„y} —* ey, {fnx} -* fx, and {fny} -+fy.
Since {e, /} is a separating subset of T, either ex # ey or /x =£ /y. It follows
that either enx =£ eny or fnx +fny for some positive integer «, so that £> is a
separating subset.

Now, it is trivial to see that P has no minimal separating subset.
If B were a basis for 5, then, according to 5.1, B would be a minimal

separating subset of S, and D = r¡~l(B) would be a minimal separating subset
of P, since clearly tj(7) = 0 £ B. We conclude that 5 has no basis.

The absence of a basis for S does not prevent our discovering the structure
of its translational hull. We shall use the next algorithm to perform that com-
putation.

A Brouwerian lattice can be defined to be a complete lattice (5, V, A)
such that for each A ES and each / G 5, we have t A sup A = sup(t A A).

5.20. Proposition. Let (5, V, A) Ae a Brouwerian lattice and let I be
an A-ideal of the semilattice (S, A). Then £2(7, A) is isomorphic to (5 A A, A),
wAere A = sup 7.

Proof. Define a: S A A —* £2(7, A) by a(x) = cox|7 for each x G 5 A A,
and define (3: £2(7, A) —»■ S A A by 0(co) = sup co7. From [10, p. 296], we have
that a is a homomorphism. We will show that ß » a is the identity map on
S A A, and that a ° ß is the identity map on £2(7, A).

To see that ß o a is the identity map on S A A, let a G S A A. Then
ßa(a) = 0(coa|7) = sup coa7 = sup(a A7) = «Asup/ = «AA=«, so that ßa
is the identity map on S A A.

To establish that aß is the identity map on £2(7, A), let co G £2(7, A). Then
ctf3(co) = a(sup coT) = co^,, w/|7 = co, since for t E 7, we have (co^ w/|7)f =
supco7 A t = sup(co7 Af) = sup co(7 Aí)= sup(7 A coi) = sup7 A coi = cof.

5.21. Corollary.   Let (S, A) Ae a compact topological semilattice
which is algebraically a distributive lattice and let I be a closed A-ideal ofS.
Then £2p(7, A) is topologically isomorphic to (S A A, A), wAere A = sup I.

Proof. The isomorphism a: S A A —► £2p(7, A) defined by a(x) =
ojx\I (as in the proof of 5.20) is continuous and closed, and hence is a topo-
logical isomorphism.

In reference to 5.19, note that the compact semilattice Tis a A-ideal of
the compact lattice M x M and that sup T is the identity ofMxM, so that
£2 (T) is topologically isomorphic toM x M. Similarly, the compact semi-
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lattice 5 is an ideal of the compact lattice (M x M)/I and sup 5 is the identity
of (M x M)/I, so that from 521, we conclude that £2 (5) is topologically iso-
morphic to (M x M)/I.

The process of determining the continuous bitranslations of a given semi-
topological semigroup 5 is frequently complicated by restrictions on the images
of elements of 5 under bitranslations.  For example, if e is an idempotent of 5
and co is a bitranslation of 5, then coe G Se. Thus unlike vector space theory,
one cannot generaUy assign images to basis elements and expect to determine a
bitranslation. However, one can approach the problem by elimination of those
image assignments which do not give bitranslations. We hasten to add that this
technique is not always feasible, but also point out that it is feasible for some
examples that have no basis to consider certain distinguished elements. For ex-
ample, it is usually fruitful to consider the possible images of the generator of
a compact monothetic semigroup or of a principal ideal of a compact solenoidal
semigroup.

We close this section with some remarks pertaining to the algebraic an-
alogues of some of the results in this section. Observe that if 5 is a reductive
semigroup, which admits the structure of a compact semi topological semigroup,
then as each bitranslation of 5 is continuous, the algebraic translational hull is
algebraicaUy the same as £2 (5). This gives us obvious algebraic analogues of
5.1, 5.4, 5.5, 5.11, 5.13, 5.16, and 5.17.
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