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Diseases owing to defects of oxidative phosphorylation (OXPHOS) affect approximately 1 in 8000 individuals. Clinical
manifestations can be extremely variable and range from single-affected tissues to multisystemic syndromes. In general,
tissues with a high energy demand, like brain, heart and muscle, are affected. The OXPHOS system is under dual
genetic control, and mutations in both nuclear and mitochondrial genes can cause OXPHOS diseases. The expression
and segregation of mitochondrial DNA (mtDNA) mutations is different from nuclear gene defects. The mtDNA muta-
tions can be either homoplasmic or heteroplasmic and in the latter case disease becomes manifest when the mutation
exceeds a tissue-specific threshold. This mutation load can vary between tissues and often an exact correlation
between mutation load and phenotypic expression is lacking. The transmission of mtDNA mutations is exclusively
maternal, but the mutation load between embryos can vary tremendously because of a segregational bottleneck.
Diseases by nuclear gene mutations show a normal Mendelian inheritance pattern and often have a more constant
clinical manifestation. Given the prevalence and severity of OXPHOS disorders and the lack of adequate therapy,
existing and new methods for the prevention of transmission of OXPHOS disorders, like prenatal diagnosis (PND),
preimplantation genetic diagnosis (PGD), cytoplasmic transfer (CT) and nuclear transfer (NT), are technically and
ethically evaluated.
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Mitochondrial disorders

Mitochondrial disorders are a group of diseases and syndromes
commonly defined by lack of energy owing to defects in oxidative
phosphorylation (OXPHOS) (Zeviani and Di Donato, 2004). They
affect at least 1 in 8000 of the general population, making them
the most common inherited metabolic disease (Chinnery, 2004).
Energy in the form of ATP is produced by the OXPHOS system,
which consists of five multiprotein enzyme complexes that release
the energy stored in the form of a proton gradient across the inner
mitochondrial membrane (Saraste, 1999). Disease manifestations
because of OXPHOS defects usually involve tissues with a high
energy demand like brain, heart, liver and the renal and endocrine
systems (Wallace, 1999). Clinical manifestations of OXPHOS dis-
eases are extremely variable and range from a single-affected tis-
sue, like the loss of vision in Leber’s hereditary optic neuropathy
(LHON), to multisystemic syndromes like Leigh syndrome (subacute
necrotizing encephalomyelopathy, LS), mitochondrial encepha-
lopathy, lactic acidosis and stroke-like episodes (MELAS), neu-
ropathy, ataxia and retinitis pigmentosa (NARP) and myoclonic
epilepsy with ragged red fibres (MERRF). Table I lists several
syndromes and symptoms associated with OXPHOS disease.

Involvement of the central nervous system, skeletal muscle or both
is seen in many mitochondrial syndromes. A frequent symptom in
paediatric patients is developmental delay and failure to thrive.
Symptoms can present in just a single tissue or organ, but a multi-
organ involvement in a patient or affected relatives is more com-
mon. When at least two organ systems unexplained by other
diseases are involved in a single person or in affected (maternal)
relatives, then an OXPHOS disease should be considered. Clini-
cians should be aware that apparently unrelated symptoms might
have a common genetic cause.

Mitochondrial DNA

The first description of a circular DNA structure located in the
mitochondria dates from 40 years ago (Nass, 1966). Several
unique characteristics discriminate mitochondrial from nuclear
DNA.

(1) The mitochondrial DNA (mtDNA) is a multicopy genome.
A cell contains hundreds of mitochondria, and each mitochondrion
contains five to ten copies of mtDNA (Goto, 2001). Dependent on
the tissue and energy demand, each cell contains between 500 and
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10 000 mtDNA molecules, except for mature oocytes which con-
tain between 100 000 and 600 000 mtDNA molecules (Reynier
et al., 2001). Oocytes store mitochondria to deal with the lack of
mtDNA replication during the first cleavage stages of the embryo
(Schaefer et al., 2001).

(2) In a cell, all mtDNA molecules can be identical (homoplasmy),
or two types of mtDNA molecules, that differ in sequence, in the
same cell, tissue or even in the same organelle can coexist (hetero-
plasmy) (Holt et al., 1988; Lightowlers et al., 1997).

(3) The mtDNA is transmitted entirely through the maternal line.
(4) The mtDNA is a double-stranded circle (Figure 1) of 16 569

bp with a genetic code different from the nuclear DNA (Fernandez-
Silva et al., 2003). The mtDNA encodes 37 genes, of which 13
genes encode OXPHOS subunits [complex I (7), III (1), IV (3) and

V (2)] and 22 transfer RNA (tRNA) and 2 ribosomal RNA (rRNA)
genes required for mitochondrial translation (Clayton, 1991;
Wallace et al., 1995). Approximately 6% of the mtDNA is non-
coding, located predominantly in the D-loop and involved in the
replication and transcription of the mtDNA (Berdanier and Everts,
2001). The mtDNA is compact, it contains no introns, several over-
lapping genes and incomplete termination codons (Lightowlers
et al., 1997).

MtDNA molecules are packed in somatic cells as nucleoids in
which six to ten molecules form a group with several different
proteins (Jacobs et al., 2000; Iborra et al., 2004; Legros et al.,
2004). These nucleoids are not static entities, and mtDNA mole-
cules exchange between nucleoids. The nucleoids are attached to
the inner mitochondrial membrane near the OXPHOS system,

Table I. Common examples of oxidative phosphorylation (OXPHOS) syndromes

Syndrome Genetic cause Symptoms (clinical phenotype, age of onset)

Leber’s hereditary 
optic neuropathy (LHON)

Homoplasmic/heteroplasmic mitochondrial DNA 
(mtDNA) mutation (the most common are the 
G11778A, G3460A and T14484C mutations) Direct 
mutation analysis using restriction enzyme digestion

Subacute bilateral loss of vision, sometime accompanied 
by dystonia and cardiac pre-excitation syndromes

Mitochondrial encephalopathy, 
lactic acidosis and stroke like 
episodes (MELAS)

Heteroplasmic mtDNA mutation (the most 
commonly reported is the A3243G mutation)

Stroke like episodes with seizures and/or dementia and ragged red 
fibres (RRF) and/or lactic acidosis, often accompanied by diabetes 
mellitus, cardiomyopathy, external ophthalmoplegia, cortical 
blindness, cerebellar ataxia and pigmentary retinopathy
Age of onset is variable and ranges from neonatal to 40 years of age

Myoclonus epilepsy with 
RRF (MERRF)

Heteroplasmic mtDNA mutation (usually mutations 
in tRNAlys, most commonly the A8344G mutation)

Myclonic seizures, cerebellar ataxia and myopathy, often 
accompanied by spasticity, dementia, hearing loss, optic atrophy, 
short stature and cardiomyopathy
Age of onset is variable, usually in late childhood to adulthood

Neuropathy, ataxia and retinitis 
pigmentosa (NARP)

Heteroplasmic mtDNA mutation (the most 
commonly reported is the T8933G/C mutation)

Neurogenic muscle weakness, ataxia, retinitis pigmentosa, seizures 
and mental retardation, often accompanied by hearing loss, dementia 
and developmental delay
Onset is usually during infancy or early childhood

Leigh syndrome Leigh syndrome is caused by many mutations in 
mtDNA or nDNA genes (the most commonly 
reported mtDNA mutation is the T8933G/C 
mutation)

Recurrent attacks of psychomotor regression with seizures, dystonia 
and brainstem dysfunction, lactic acidosis and hypotonia, often 
accompanied by ataxia, respiratory disturbances, pigmentary 
retinopathy and spasticity. Typical ct or magnetic resonance imaging 
(MRI) abnormalities with bilateral symmetric signal alterations in 
the basal ganglia, thalamus, midbrain and brainstem
Age of onset between 3 months and 2 years

Progressive external 
ophthalmoplegia (PEO)

Heteroplasmic mtDNA rearrangements and nuclear 
gene mutations

External ophthalmoplegia and bilateral ptosis often accompanied by 
proximal muscle weakness and exercise intolerance
Age of onset is usually between 20 and 50 years

Kearns–Sayre syndrome 
(KSS)

Heteroplasmic mtDNA rearrangement PEO onset before age of 20 with pigmentary retinopathy often 
accompanied by ataxia, neuropathy, cardiac conduction block and 
raised CSF protein
Age of onset is before 20 years often during childhood

Pearson syndrome Heteroplasmic mtDNA rearrangement Sideroblastic anaemia with vacuolization of marrow precursors, 
pancytopenia and exocrine pancreatic failure often accompanied by 
ophthalmoplegia, lactic acidosis and RRF

Mitochondrial 
neurogastrointestinal 
encephalomyopathy (MNGIE)

Nuclear gene mutations in the thymidine 
phosphorylase gene or the polymerase γ gene

Ptosis, progressive external ophthalmoplegia, gastrointestinal 
dysmotility (often pseudoobstruction), diffuse leukoencephalopathy, 
thin body habitus, peripheral neuropathy and myopathy
Onset is usually in late childhood or adulthood

Mitochondrial depletion 
syndrome (MDS)

Nuclear gene mutations in genes coding for proteins 
involved in mtDNA integrity and maintenance

Individuals with the hepatocerebral form of mitochondrial DNA 
depletion syndrome have early progressive liver failure and 
neurologic abnormalities, hypoglycaemia and increased lactate in 
body fluids
Onset is within a few weeks after birth and patients die before 
9 months of age
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where reactive oxygen species (ROS) are produced (Richter et al.,
1988). Because of the lack of histones and other protective pro-
teins and an ineffective repair mechanism, the mtDNA mutates
10–16 times more frequently as the nuclear DNA, and because of
the lack of introns the mutations have a high probability of affect-
ing genes and being pathogenic (Larsson and Clayton, 1995;
Treem and Sokol, 1998).

Replication, transcription and translation of the mtDNA

Replication of the mtDNA is termed ‘relaxed’, because it is not
connected to the cell cycle, and there is a constant degradation and
production of mtDNA (Chinnery and Samuels, 1999). Replication
of mtDNA takes place in post-mitotic terminally differentiated
cells. In most cell types, two possible mechanisms for the replica-
tion of the mtDNA exist (Bowmaker et al., 2003; Holt and Jacobs,
2003; Reyes et al., 2005). The strand displacement mechanism
involves unidirectional initiation from the origin of replication of
the ‘heavy’ H-strand (OH) located in the D-loop region of the
mtDNA molecule (Figure 1). The replication of this leading strand
initiates the synthesis of the lagging strand from the light L-strand
origin of replication (OL) (Shadel and Clayton, 1997; Bogenhagen
and Clayton, 2003). Alternatively, strand-coupled replication of
the mtDNA implies initiation of lagging strand synthesis at multi-
ple sites probably involving the synthesis of short Okazaki frag-
ments (Holt et al., 2000; Bogenhagen and Clayton, 2003). The
original strand displacement mechanism is probably the main rep-
lication method in cells which are in a steady-state level, whereas
the strand-coupled model seems to be predominant in cells

recovering after depletion and in cells in need of accelerating
mtDNA synthesis (Holt et al., 2000; Fish et al., 2004). The
mtDNA is synthesized by a mitochondrial-specific polymerase,
DNA polymerase gamma (POLG), which requires additional fac-
tors like Twinkle [a ring helicase (Spelbrink et al., 2001)] and
mitochondrial topoisomerases I and II responsible for the removal
and introduction of supercoils in the mtDNA, respectively
(Kosovsky and Soslau, 1993; Zhang et al., 2001). The mechanism
regulating mtDNA replication is still not completely understood.
Tfam, a limiting factor, and the size of the nucleoside pool are
known to play an important role in the regulation of the mtDNA
copy number (Ekstrand et al., 2004; Kanki et al., 2004; Kang and
Hamasaki, 2005), but other factors also exist (Kaukonen et al.,
2000; Brown and Clayton, 2002).

Transcription of the mtDNA requires mtRNA polymerase,
mitochondrial transcription factor A (Tfam) and B1 or B2
(TFB1M or TFB2M) and several other transacting factors
(Gaspari et al., 2004; Kang and Hamasaki, 2005). L-Strand tran-
scription is initiated at the L-strand promoter (LSP) and results in
a single polycistronic precursor RNA. The H-strand is transcribed
by two overlapping units starting at two different initiation sites
HSP1 and HSP2 (Fernandez-Silva et al., 2003). Transcription can
be regulated at the level of initiation, termination, by the mito-
chondrial transcription termination factor (mTERF) (Asin-Cayuela
et al., 2005) or both. Autonomous regulation of the mtDNA tran-
scription occurs as in isolated mitochondria, the transcription of
mtDNA continues for several hours (Enriquez et al., 1996). Exter-
nal signals, which play a role in the transcription regulation
include, e.g. ATP levels in the cells and thyroid hormones
(Enriquez et al., 1996; Weitzel et al., 2003).

In humans, mitochondrial translation occurs at the mitochon-
drial ribosomes (Sasarman et al., 2002), composed of a small
ribosomal subunit (the 12S rRNA subunit encoded by the mtDNA
and 29 nuclear encoded proteins) and a large ribosomal subunit
(the 16S rRNA subunit encoded by the mtDNA and 48 nuclear
encoded proteins) (Koc et al., 2001a,b). Additional factors are ini-
tiation factors [IF2 and IF3 (Ma and Spremulli, 1996; Koc and
Spremulli, 2002)], elongation factors [EFTu (Ling et al., 1997),
EFTs (Xin et al., 1995), EFG1 (Gao et al., 2001) and EFG2
(Lochmuller et al., 1999; Hammarsund et al., 2001)] and release
factors [RF1 (Zhang and Spremulli, 1998)].

Biochemical investigations in OXPHOS disease

In general, lactate (cell redox state, normal <20) and alanine levels
are increased. Histochemical studies of skeletal muscle with accu-
mulation of abnormal mitochondria under the sarcolemmal mem-
brane in muscle fibres (RRF) or cytochrome oxidase (COX)
negative fibres confirm mitochondrial dysfunction. Electron
microscopy may provide additional information. Biochemical
studies carried out in skeletal muscle or cultured skin fibroblasts
or in any other (preferably affected) available tissue can determine
enzyme deficiencies in one or more of the OXPHOS enzyme com-
plexes (van den Heuvel and Smeitink, 2001). Spectrophotometric
methods or blue native polyacrylamide gel electrophoresis com-
bined with histochemistry (BN–PAGE) can both be applied to
determine the activity of the individual OXPHOS complexes or
combinations of complexes (Munnich and Rustin, 2001; Van
Coster et al., 2001). These biochemical measurements are preferably

Figure 1. Map of the human mitochondrial DNA (mtDNA) presenting the
protein-coding genes for the seven subunits of complex I (ND1–ND6), the
three subunits of cytochrome c oxidase (COI–COIII), cytochrome b (cytb) and
the two subunits of ATP synthase (ATPase 6 and 8); the 12S and 16S ribos-
omal RNAs (rRNAs); and the 22 transfer RNAs (tRNAs) identified by the
three letter code for the corresponding amino acids. Furthermore, the location
of the origin of replication of both the H (OH) and L (OL) strands is indicated
as well as the location of the promoter site were transcription is initiated; HSP,
H-strand promoter; LSP, L-strand promoter.
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performed in fresh muscle specimens or other fresh tissues clini-
cally expressing the disease, as frozen muscle or cultured fibrob-
lasts do not always present the enzymatic deficiencies. Some
difficulties are associated with the biochemical analysis. Normal
variation in enzyme activity is high, and therefore the frequently
detected moderate decreases in activity remain inconclusive. Fur-
thermore, substantial variation exists in normal activity range as
determined by different centres, because of the use of different
protocols and the lack of widely accepted diagnostic criteria
(Thorburn et al., 2004). A classification scheme has been
developed by Bernier et al. (2002) including clinical features and
enzyme activities found in several groups of patients.

Genetic causes of OXPHOS disease

OXPHOS diseases can be caused by mutations in the nuclear and
mtDNA. Nuclear OXPHOS mutations can be classified as (i) gene
defects altering the stability of mtDNA, (ii) gene defects in struc-
tural components or assembly factors of the OXPHOS complexes,
(iii) defects in nonprotein components of the respiratory chain,
like CoQ10 or taffazzin and (iv) gene defects in proteins indirectly
related to OXPHOS (Chinnery, 2003; Zeviani and Di Donato,
2004). OXPHOS diseases caused by nuclear gene mutations usu-
ally follow a Mendelian inheritance pattern. Disease causing
mutations in the mtDNA can be large rearrangements or point
mutations or a reduced copy number (mtDNA depletion).

MtDNA rearrangements

Large-scale rearrangements are usually single deletions. Since
1988 (Holt et al., 1988), over 200 different mtDNA deletions have
been reported, associated with several, different OXPHOS dis-
eases. Three main clinical phenotypes are Kearns–Sayre syndrome
(KSS), chronic progressive external ophthalmoplegia (PEO) and
Pearson syndrome (Table I). The vast majority of deletions
reported are flanked by short-repeat sequences ranging from 3 to
14 bp in length (Mita et al., 1990; Ota et al., 1994). No minimal
area of overlap exists between the different deletions, but always
at least one tRNA is removed (Tang et al., 2000). The severity of

the disease and the age of onset are partly dependent on the
amount and tissue distribution of the mtDNA rearrangement and
the presence of deletion dimers or partially duplicated mtDNA
molecules (Poulton and Holt, 1994; Rotig et al., 1995; Jacobs
et al., 2004).

MtDNA point mutations

Point mutations in the mtDNA can be pathogenic or neutral. Neu-
tral polymorphisms are common and based on a combination of
specific polymorphisms; the mtDNA can be classified into haplo-
groups. Over 150 pathogenic point mutations in the mtDNA that
affect protein-coding genes or RNA genes have been reported
since 1988 (Wallace et al., 1988). Most pathogenic point muta-
tions are heteroplasmic, but homoplasmic disease causing point
mutations in the mtDNA have been described as well. The clinical
phenotype of homoplasmic mutations (Table II) is generally
restricted to a single tissue. Penetrance is often incomplete and
other factors like nuclear-encoded proteins, epigenetic factors,
environment or lifestyle [tobacco smoking (Tsao et al., 1999)] and
mtDNA haplogroups (Brown et al., 2002) are likely to be involved
(Guan et al., 2001).

Heteroplasmic point mutations in protein encoding and in RNA
genes are more often pathogenic (Table II). Many mutations are
infrequent or even private, presenting in a single family. All muta-
tions display clinical heterogeneity (Sparaco et al., 2003), but this
is most evident for the common m.3243A>G mutation (Table II).
This variable phenotypic expression cannot be explained by the
heteroplasmy level only, and so nuclear genes may be involved
(Dunbar et al., 1995; Jacobs and Holt, 2000; Torroni et al., 2003).
The threshold at which ATP production decreases is dependent on
the tissue and mutation analysed. It appears to be lower in those
tissues with a higher energy demand, such as brain and muscle
(Larsson and Clayton, 1995). The existence of such a threshold
implies that in the normal situation there is an overcapacity of the
OXPHOS system (Rossignol et al., 2003), required to deal with an
increased energy demand. This can also be considered a protective
mechanism against deleterious mutations, which inevitably will
accumulate during life.

Table II. The most common mitochondrial DNA (mtDNA) point mutations

Disease MtDNA mutation Homo/heteroplasmy Reference

Leber’s hereditary optic neuropathy (LHON) m.3460G>A Homoplasmic Huoponen et al. (1991)
m.11778G>A Homoplasmic Wallace et al. (1988)
m.14484T>C Homoplasmic Johns et al. (1992)

Hypertrophic cardiomyopathy m.4300A>C Homoplasmic Taylor et al. (2003)
Aminoglycoside induced hearing loss m.1555A>G Homoplasmic Usami et al. (2000)
Leigh syndrome m.1624C>T Homoplasmic McFarland et al. (2004)
Neuropathy, ataxia and retinitis pigmentosa (NARP)/Leigh syndrome m.8993T>G/C Heteroplasmic Holt et al. (1990)
Myoclonic epilepsy with ragged red fibres (MERRF) m.8344A>G Heteroplasmic Shoffner et al. (1990)
Mitochondrial encephalopathy, lactic acidosis and stroke like 
episodes (MELAS)

m.3243A>G Heteroplasmic Goto et al. (1990)

Maternally inherited diabetes and deafness (MIDD) m.3243A>G Heteroplasmic van den Ouweland et al. (1995); 
Akbari et al. (2004); Maassen et al. (2004)

Non-syndromic hearing loss (NSHL) m.3243A>G Heteroplasmic Mancuso et al. (2004)
Kearns–Sayre syndrome (KSS) and CPEO m.3243A>G Heteroplasmic Bosbach et al. (2003)
Renal failure m.3243A>G Heteroplasmic Jansen et al. (1997)
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Depletion and multiple mtDNA deletions

MtDNA depletion is a reduction in copy number of mtDNA mole-
cules, which can be the consequence of a nuclear gene defect.
MtDNA-depletion syndrome (MDS, Table I) with or without mul-
tiple mtDNA deletions is a severe autosomal recessive genetic dis-
ease caused by a mutation in one of the genes involved in mtDNA
synthesis or nucleotide metabolism. Other mutations are detected
in genes involved in mtDNA replication and the maintenance of
the mitochondrial dNTP pool. Defects in comparable genes
(ANT1, Twinkle, POLG1) are involved in multiple mtDNA dele-
tions, which can present with or without depletion. Especially,
mutations in the POLG gene have a clinically heterogeneous presen-
tation, and both autosomal dominant and autosomal recessive
families have been reported.

Acquired mtDNA mutations

Inherited mtDNA mutations are usually present in all or most of
the human tissues, but somatic mutations occur as well. Cyto-
chrome b mutations have been described in muscle of patients
only (Andreu et al., 1999). Age-related ROS damage is the most
common source of acquired somatic mtDNA mutations. Over 200
different deletions and several point mutations have been found in
the mtDNA that accumulate during ageing, especially in ageing
muscle (Cottrell and Turnbull, 2000; Wei and Lee, 2002), in
humans, but also in other species like monkeys (Lee et al., 1993;
Schwarze et al., 1995), mice (Tanhauser and Laipis, 1995; Khaidakov
et al., 2003) and nematodes (Melov et al., 1995). The mutant load
of these individual mutations usually does not exceed 1%; but the
total number of mtDNA mutations can be of such that the mito-
chondrial respiration and OXPHOS is significantly impaired
(Hayakawa et al., 1996; Liu et al., 1998). A direct relation
between acquired mtDNA mutations and ageing has been shown
in a mouse model with a deficient polymerase gamma leading to
deletions and point mutations in the mtDNA. These mtDNA-
mutator mice show a reduced lifespan and premature onset of age-
ing problems like hair loss, osteoporosis anaemia and reduced fer-
tility (Trifunovic et al., 2004). Depletion of the mtDNA can also
be acquired and, e.g. pharmacologically induced by antiviral nucl-
eoside analogues, as used in HIV therapy (Kakuda, 2000).

Treatment of OXPHOS disease

Despite extensive studies on use of various pharmacological
agents and vitamin supplements, there is still no cure for
OXPHOS disease. Pharmacological therapy mainly relies on the
administration of artificial electron acceptors, metabolites and
cofactors or oxygen radical scavengers (Dimauro et al., 2004).
The administration of these factors can have a beneficial effect in
some cases, but the effect is often transient. Novel strategies are
being developed, directed at manipulating the level of hetero-
plasmy in the cell (Chinnery and Turnbull, 2001; Chinnery, 2004).
These techniques aim at lowering the level of mutant mtDNA by
selectively inhibiting the replication of mutant mtDNA by
sequence-specific peptide nucleic acids (PNAs) or by the removal
of mutated mtDNA by means of restriction enzymes. Alternative
strategies attempt to treat the disease at the biochemical level by
supplying cells with the normal mitochondrial proteins. Both these
strategies encounter problems when executed in isolated organelle

models with respect to the specificity and delivery of the product
(Taylor et al., 2001). Another novel strategy is to redesign mito-
chondrial genes for expression from the nucleus and import nor-
mal copies of the redesigned gene from the cytosol into the
mitochondria. The same can be done with allotopic expression of
tRNAs. For the allotropic expression of both mitochondrial pro-
teins and tRNAs, the correctly engineered genes must be deliv-
ered, recombined into the nucleus and expressed in a large number
of cells to be a viable therapeutic approach (Smith et al., 2004).

Physical exercise can also be important to prevent disease man-
ifestations. Most patients with mitochondrial disease are inactive
because of exercise intolerance or fear for muscle damage, in spite
of the fact that aerobic training increases work and oxidation capa-
city in these patients (Taivassalo et al., 2001; Taivassalo and
Haller, 2004). Questions remain on the (long-term) effect of exer-
cise on the mutant load, which may rise during life (Chinnery,
2004). Until a definite cure is developed, patients can only be
given support and some limited therapy aimed at improving the
quality of life. Palliative therapy is directed at preventing, e.g., the
complications of diabetes mellitus and cardiomyopathy and surgical
correction of ptosis and cataracts (Dimauro et al., 2004).

MtDNA segregation and transmission

The mtDNA is transmitted through the maternal line via the mito-
chondria contained in the ooplasm. Maternal transmission is also a
hallmark of mtDNA-related diseases. Mature human oocytes con-
tain between 100 000 and 600 000 mitochondria and mtDNA cop-
ies (Reynier et al., 2001; Poulton and Marchington, 2002). This is
in contrast to sperm cells which have been reported to contain
between 10 and 700 copies mtDNA (Hecht et al., 1984; Shitara et al.,
2000; Diez-Sanchez et al., 2003; May-Panloup et al., 2003). The
mtDNA content of the spermatozoon decreases five- to six-fold
during the spermatogenesis, probably because of a down-regulation
of the mitochondrial Tfam (Larsson et al., 1997; Rantanen and
Larsson, 2000; Diez-Sanchez et al., 2003). During spermatid
development, ubiquitin binds to the mitochondria, which makes
the sperm mitochondria prone to proteolysis (Sutovsky, 2003),
resulting in the loss of paternal mtDNA molecules (Shitara et al.,
1998; Sutovsky et al., 2003). In another study, t-tpis, a testis-
specific translocator, belonging to the translocator of mitochon-
drial outer membrane (TOM) complex, has been identified as a
sperm mitochondria-specific factor, which incorporates an elimina-
tion factor present in the oocyte. The elimination factor is not yet
identified, but it probably activates an endonuclease system. The
ubiquination process is thought to follow the selective digestion of
sperm mtDNA by endonucleases. Elimination of sperm mitochon-
dria in the mouse can be inhibited by treatment with anti-tpis and
(Hayashida et al., 2005). Recently, transmission of paternal mtDNA
was detected in skeletal muscle of a patient (Schwartz and Vissing,
2002), but this is an infrequent phenomenon (Filosto et al., 2003;
Johns, 2003; Schwartz and Vissing, 2003; Taylor et al., 2003;
Schwartz and Vissing, 2004). Paternal transmission has also been
studied in ICSI and IVF embryos and offspring. In these cases, low
amounts of paternal mtDNA were detected in 16 of the 32 abnormal
polyploid embryos (St John et al., 2000) but not in offspring normal
embryos (Danan et al., 1999; Marchington et al., 2002).

Correct functioning and intactness of the mitochondria is vital
for sperm motility. OXPHOS inhibitors decrease sperm motility
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(Ruiz-Pesini et al., 2000; St John et al., 2005), which suggests that
mutations affecting mitochondrial functioning could affect sperm
motility. The m.3243A>G mtDNA mutation shows a higher muta-
tion level in semen fraction with a lower motility (Spiropoulos
et al., 2002), and analysis of semen from men with lower semen
quality revealed a higher incidence of homoplasmic base changes
in the mtDNA especially at two locations, nt 9055 and nt 11719
(Holyoake et al., 2001). Kao et al. (1998) observed a higher inci-
dence of especially the 4977 bp ‘common’ mtDNA deletion, in
semen with a lower motility, but this was not confirmed by others
(Cummins et al., 1998; St John et al., 2001). Multiple mtDNA
deletions have been observed in both normozoospermic and oligo-
zoospermic men, but as the semen quality diminishes the number
of multiple deletions accumulates. A deviant number of CAG
repeats (normally 10) in the polymerase gamma gene has been
associated with unexplained male infertility (Rovio et al., 2001;
Jensen et al., 2004). This association was not confirmed by others
(Krausz et al., 2004; Aknin-Seifer et al., 2005). Pathogenic POLG
mutations have however been associated with hypofertility in both
males and females (Ferrari et al., 2005), and premature menopause
has been found in many females suffering from CPEO caused by
POLG mutations (Luoma et al., 2004), probably because of a link
with steroid hormone genesis (Bose et al., 2002). These data are
confirmed by the mutator mice, carrying a proofreading-deficient
polymerase gamma, which show reduced fertility of both male and
female mice (Trifunovic et al., 2004).

Mitotic segregation of mtDNA

During cell division, mitochondria are randomly divided (Rotig
and Munnich, 2003), and in heteroplasmic cells this can lead to a
shift in the proportion of mutant mtDNA in the daughter cells. A
loss of mutations is observed in fast-dividing tissues, probably
because of a selection against cells containing high mutation
loads. An example is the average decrease of 1% per year of the
m.3243A>G mutation in blood of patients (Rahman et al., 2001).
Increased ROS production is a critical factor triggering mtDNA
replication, but also increasing mtDNA damage, eventually lead-
ing to apoptosis. In post-mitotic tissues, accumulation of mtDNA
deletions and point mutations has been observed (Larsson et al.,
1990; Weber et al., 1997). This proliferation only takes place in
cells containing high amounts of mutant mtDNA, and because of
this heteroplasmy percentage in tissues as a whole increases and
variation in mutation load between muscle fibres develops (Chinnery
et al., 2002). In case of deletions, the replicative advantage of the
smaller molecule also adds to the accumulation of the mutated
mtDNA in tissues and cells (Diaz et al., 2002).

Polymorphism and mutations in oocytes

Mutations in oocytes have been described as part of the transmis-
sion of pathogenic familial mutations and as de novo events. The
first group is important for the recurrence risk of mtDNA disease
in families and carriers (see next paragraph), the second could
potentially explain the occurrence of new disease cases. Deletions
in the mtDNA have been reported in 40–60% of unfertilized
oocytes or oocytes that failed to develop into mature metaphase II
oocytes, although usually in very low mutation percentages (Chen
et al., 1995; Keefe et al., 1995; Brenner et al., 1998; Reynier et al.,
1998; Barritt et al., 1999; Hsieh et al., 2002). Because none of the

donating couples showed symptoms of mtDNA deletion syn-
dromes, these mutations probably arose in the oocyte. Recently,
we screened the entire mtDNA in oocytes for predominantly het-
eroplasmic point mutations and found that over 25% of the
oocytes contained point mutations. The mutation percentages
varied from very low levels (<1%) to high levels (>50%) with
most oocytes containing low level mutation percentages (<30%)
(Jacobs et al., in preparation). Under the assumption that at least
10% of the point mutations in the mtDNA will be pathogenic,
this would mean that more than 5% of the oocytes harbour a pos-
sible pathogenic mutation in the mtDNA. Mostly, these muta-
tions are present in very low levels. Some percentages can be
above the threshold of expression, and these de novo mutations
can have a direct phenotypic effect (De Coo et al., 1996; Degoul
et al., 1997; Maassen et al., 2002; Thorburn, 2004). The low
level mutations can get lost by cell division, but also fixed dur-
ing life by random genetic drift, which has been observed in rap-
idly dividing colonic crypt cells (Taylor et al., 2003) and cancer
cells (Carew and Huang, 2002). This also means that a very low
level of mtDNA mutations in the oocyte can, because of relaxed
replication, accumulate during life and might predispose for dis-
eases, like Alzheimer and Parkinson’s disease, which are associ-
ated with mtDNA mutations (Chinnery et al., 2002; Coskun
et al., 2004).

It is unlikely that mutations in the oocyte in general influence
the fertilizability as carriers of mtDNA mutation do not present
with fertility problems, and children with a high mutation load are
born (Moilanen and Majamaa, 2001). However, oocytes can
accumulate mutations in an age-dependant manner. The
m.414T>G point mutation is present in 40% of the oocytes of
women aged ≥37 years in contrast to 4% of the oocytes of women
aged <37 years, which could be associated with reproductive
senescing (Barritt et al., 2000). Reynier et al. (2001) have shown
a lowered number of mitochondria in oocytes from patients with
fertilization failure owing to unknown causes, and a lower
number of mitochondria is found in ageing oocytes (de Bruin
et al., 2004). This means that the number of mitochondria in itself
is important and not necessarily the ATP production by the
OXPHOS system during embryo development. Therefore,
acquired mtDNA mutations affecting mtDNA replication might
affect the fertility.

Segregation of mtDNA diseases in families

The segregation of mtDNA disease in families is not straightfor-
ward and is highly dependent on the nature and amount of the
mtDNA mutation. A woman carrying an mtDNA mutation will
transmit a variable amount of this mutation to her offspring. The
percentage heteroplasmy of point mutations in the offspring is
related to the mutation percentage in the mother (Chinnery et al.,
1998), although extreme shifts in mutation percentages occur
(White et al., 1999; Carelli et al., 2002). Only a few studies report
on the inheritance of heteroplasmic mtDNA mutations (Chinnery
et al., 2000; Wong et al., 2002), and it appears that mutations, like
the m.8363G>A, m.3460G>A and m.8993T>C, are in general ran-
domly transmitted to offspring, although in some cases skewing in
favour of the mutation can be observed (Larsson et al., 1992;
Chinnery et al., 2000; Hurvitz et al., 2002; Wong et al., 2002).
Transmission of the m.8344A>G, the m.3243A>G and
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m.8993T>G mutations is possibly not completely random, when
comparing blood levels in mother and child (Chinnery et al.,
2000). The mutation percentage of the m.8344A>G mutation is
lower in the offspring and of the m.3243A>G and m.8993T>G
mutations higher than expected by random transmission only
(White et al., 1999a,b; Chinnery et al., 2000; Wong et al., 2002).
However, the number of reported transmissions is small, a selec-
tion bias is likely, because analysis is performed after discovery of
an offspring with clinical symptoms, and the age of sampling
differs between mother and child.

Analysis of 82 oocytes collected from a woman carrying the
m.3243A>G mutation with a mutation load of 18% in muscle and
7% in leukocytes revealed a binomial distribution pattern. The
mutation percentage in the oocytes ranged from 0 to 45% (mean
12.6%), which was a random segregation pattern (Brown et al.,
2001). Oocytes from a carrier of the m.8993T>G mutation demon-
strated an extremely skewed segregation pattern in seven oocytes
of a woman with a mutant load of 50% in blood. Six of the seven
oocytes contained a mutant load >95%, and the remaining oocyte
showed no evidence of the mutation (Blok et al., 1997). It is
unclear whether this is a good representation of the entire pool of
her oocytes and of other women carrying this mutation.

For most mutations, a relation exists between maternal mutation
load and the mutation load in offspring and, therefore, the chance
of being affected. This has been extensively studied for the
m.8344A>G, m.3243A>G and m.8993T>G/C mutation (Chinnery
et al., 1998). Carriers of the m.8344A>G mutation are at risk of
affected offspring, if the mutation load in blood is >40%. This risk
ranges from 12 (mutation load 40–59%) to 78% (mutation load
>80%). For the m.3243A>G mutation, the chance of affected off-
spring ranges from 25 (mutation load <20% in blood) to 57%
(mutation load 40–60%). The risk of affected offspring is there-
fore substantial even at low mutation levels in the carrier. Finally,
for the m.8993T>G/C mutations, the risk of affected offspring
rises from 0 (mutation load <20%) to >75% (mutation load 61–80%)
(White et al., 1999).

The segregation of large single deletions is different, and these
deletions are in general de novo. Chinnery et al. (2004) collected
data on 226 families in which a single mtDNA deletion was identi-
fied in the proband. Possible other mtDNA rearrangements like
mtDNA duplications and deletion dimers, which may affect the
transmission (Rotig et al., 1992; Poulton et al., 1993; Ballinger
et al., 1994; Shanske et al., 2002), were not taken into account.
The overall recurrence risk for disease caused by single mtDNA
deletions was estimated at 4.11% (Chinnery et al., 2004). Trans-
mission of mtDNA deletions in the form of duplications has also
been observed in mouse strains containing a pathogenic 4696 bp
deletion in the mtDNA. After introduction of the deletion, par-
tially duplicated molecules were formed which were transmitted
to offspring and caused deletion symptoms (Nakada et al., 2001).
MtDNA-deletion disorders can also be caused by nuclear gene
mutations, and usually multiple deletions are observed which are
transmitted in a Mendelian way (Kaukonen et al., 2000; Spelbrink
et al., 2001; Van Goethem et al., 2001).

Bottleneck location and size

In the 1980s, a study on the segregation of mtDNA in Holstein
cows revealed a rapid shift in the mtDNA genotype within two

generational transitions (Hauswirth and Laipis, 1982). This shift
has been confirmed several times in these cows (Ashley et al.,
1989; Koehler et al., 1991), in other species like mice [heteroplas-
mic New Zealand Black/BINJ progeny (Meirelles and Smith,
1997)] and in humans for the homopolymeric tract heteroplasmy
located between nt 303 and 315 of the mtDNA (Lutz et al., 2000).
This has lead to the identification of the ‘mtDNA bottleneck’
(Figure 2), which is a restriction in the number of mtDNA mole-
cules to be transmitted followed by an amplification of these
founder molecules (Howell et al., 1992). The exclusive maternal
transmission of mtDNA, the high mutation rate and the lack of a
good repair mechanism and recombination would lead to decay of
the mtDNA [Muller’s ratchet (Muller, 1964; Hoekstra, 2000)].
The stringent bottleneck has an evolutionary advantage as a sort of
reset and acts to maintain a healthy mtDNA by filtering out muta-
tions and minimizing heteroplasmy (Cummins, 1998, 2001).
Because this filtering happens very early during the development,
the chance to preserve age-related mutations in the early oocyte is
small, although the low amount of mtDNA copies per mitochon-
dria in the early developmental stages of the oocytes renders these
oocytes vulnerable for mutational events (Keefe et al., 1995).

When the mitochondrial bottleneck exactly occurs during
oocyte or embryo development and what the size is, is not yet
clear (Poulton et al., 1998). Early during the first developmental
stages of oocytes, the number of mitochondria and mtDNA mole-
cules is reduced, and the lowest number of mitochondria (<10) is
found in the early primordial germ cells (PGCs) of a 3-week-old
embryo. The number of mitochondria is estimated from published
electron micrographs of PGCs (Jansen and de Boer, 1998). It can-
not be excluded that in the embryonic germ cell line, a week ear-
lier, an even lower number of mitochondria is present (Jansen,
2000). The mtDNA copy number is unknown in PGCs, but in
oocytes usually only one mtDNA molecule per mitochondrion is

Figure 2. Schematic drawing of the possible location and effect of the bottle-
neck on the transmission of a mitochondrial DNA (mtDNA) mutation. The
light coloured mitochondria represent the normal mtDNA, and the darker col-
oured mitochondria represent the mutated mtDNA. PGC, primordial germ cell.
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observed (Michaels et al., 1982; Chen et al., 1995). In mice and
frogs, there is no mtDNA synthesis during embryogenesis until the
stage of gastrulation (Larsson et al., 1998; Jansen, 2000) except
for a small period during the one- to two-cell stage of mouse pre-
implantation development were there is some mtDNA turnover.
The mtDNA content of the embryo does, however, not increase
during this time (McConnell and Petrie, 2004; Thundathil et al.,
2005). In humans, no mtDNA synthesis, measured by BrdU incor-
poration, is observed until the late morulae and blastocyst stage
(McConnell, personal communication). This suggests that in
humans most mitochondria remain haploid during the first devel-
opmental stages (Jansen and de Boer, 1998). The mean number of
mitochondria and mtDNA molecules increases from 10 in the
PGC to about 200 in the oogonium and eventually to 100 000–
600 000 in the mature oocyte (Jansen, 2000). Segregation of the
mtDNA during embryogenesis has been studied in mouse models
by Jenuth et al. (1996), in which BALB/c cytoplasm was intro-
duced in NZB/BINJ oocytes. The mtDNA variants remain evenly
distributed in the developing fetal tissues, and no evidence is
found for an additional bottleneck during embryogenesis (Jenuth
et al., 1996; Meirelles and Smith, 1997), although events during
embryonal development still can influence the final heteroplasmy
percentage (Meirelles et al., 2001). From these studies, it appears
that the major component of the bottleneck occurs between the
PGC and the primary oocyte stage.

The bottleneck has considerable implications for a carrier of
mtDNA mutations, and the mutation load can vary largely in both
ways among her oocytes. The exact size of the bottleneck is hard
to determine and may vary among individuals (Brown, 1997).
Several studies have attempted to calculate the number of mtDNA
units inherited through the bottleneck in cows, humans and mice
(Howell et al., 1992; Bendall et al., 1996; Blok et al., 1997; Jenuth
et al., 1997; Marchington et al., 1998; Brown et al., 2001). A
repeated selection model, which attempts to take the number of
cell divisions of oogenesis into account, and a single-selection
model which proposes the bottleneck as a one time sampling of
mtDNA molecules from a large pool have been applied (Poulton
et al., 1998). The repeated selection model appears to represent the
physiology more closely but assumes an identical sampling of
mtDNA molecules every cell division, approximately 15, during
oogenesis. The single-selection model assumes that the bottleneck
occurs only once, that replication is equal from all templates and that
the levels of heteroplasmy relate to the proportions in oocytes
(Bendall et al., 1996). It has become clear that one common bottle-
neck size does not exist and that it will vary between meioses within
and between different women. The bottleneck size using the single-
selection model is calculated to be 1–30 segregating units (one unit
could represent one mtDNA molecule, one nucleoid or one mito-
chondrion) in contrast to 20–200 units when using a repeated-
selection model (Bendall et al., 1996; Poulton et al., 1998).

Mouse models for OXPHOS disease

Animal models are essential for understanding the pathophysio-
logical mechanisms of OXPHOS disease and for testing therapeu-
tic interventions, but only few natural models exist [hearing loss in
mice (Johnson et al., 2001)]. Over the last decade, several mouse
models have been developed for OXPHOS disease for both nuc-
lear and mtDNA mutations. Only two mouse models with mtDNA

mutations exist, the CAP-resistant (CAPR) mice with the
m.2433T>C mutation in the 16SrRNA and the mtDNA-deletion
mice with a 4.696 bp deletion (Sligh et al., 2000; Wallace, 2001).
Disease symptoms were related to the human OXPHOS disease,
but for the mtDNA deletions most mice died of renal failure which
is uncommon in human deletion patients (Inoue et al., 2000; Sligh
et al., 2000; Wallace, 2001). Both these transgenic animal lines
demonstrated transmission of the mutated mtDNA to successive
generations and can be used to study the inheritance and segrega-
tion of pathogenic mtDNA mutations. The CAPR mice transmitted
the heteroplasmic mtDNA mutation to some of there progeny in
homoplasmic or heteroplasmic state. Progeny, born alive, exhib-
ited growth retardation, myopathy and dilated cardiomyopathy.
Most animals died either in utero or within the first day after birth,
one animal survived 11 days (Sligh et al., 2000). The mtDNA-
deletion mice transmitted the rearranged mtDNA through three
successive generations with a tendency to increasing heteroplasmy
percentage to a maximum of 90% in muscle of some animals,
most likely because of the replication advantage of the smaller
mtDNA molecule. A percentage above 90% has not been found
and may cause lethality in oocytes or embryos. Severe disease and
COX-negative fibres were only found in mice with predominantly
(>60%) deleted mtDNA (Inoue et al., 2000).

Several mouse models showing an OXPHOS disease phenotype
caused by nuclear mutations have been developed (Wallace, 2001;
Zeviani, 2001; Biousse et al., 2002). Mutations were introduced in
genes associated with the OXPHOS system, including protein
complex genes, radical scavenger genes (Sod2 mutant mouse),
transcription factors (Tfam-deficient mouse) and adenine nucle-
otide translocator genes (Ant1-deficient mouse) (Li et al., 1995;
Lebovitz et al., 1996; Graham et al., 1997; Larsson et al., 1998;
Wang et al., 1999). These mouse models show different
OXPHOS-related symptoms, but fertility is usually normal. This
in contrast to the earlier mentioned mutator mice with a proofread-
ing-deficient polymerase gamma. These mice show a premature
onset of ageing and a reduced fertility, both males and females.
Female reproductivity was nil after the age of 20 weeks, and male
fertility was severely reduced probably because of low sperm
count and smaller testes size (Trifunovic et al., 2004).

How to prevent transmission of mitochondrial disease

A definitive diagnosis of mitochondrial disease is needed for prog-
nosis and genetic counselling of patients and their families (Thor-
burn and Dahl, 2001). As these disorders cannot be cured,
counselling is important to judge the recurrence risk of mitochon-
drial disease and the options to prevent the transmission of this
disease. Refraining from children or adoption is the safest and
most reliable method, but this is usually not the first choice. IVF
enables prospective parents to opt for using donor oocytes. In
some cases, prenatal diagnosis (PND) or preimplantation genetic
diagnosis (PGD) is possible, but other, more experimentally,
methods are being developed as well (Figure 3). The ethical
aspects concerned with these techniques are discussed separately.

PND

PND of OXPHOS disease can be performed at the level of the
enzyme or at the DNA level. Although the latter is preferable, the
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genetic defect is often not known for patients with OXPHOS dis-
ease, and the recurrence risk for these patients is hard to determine
and based on family information only. If an enzyme deficiency is
detectable in fibroblasts, then biochemical analysis of amniocytes
might be an option, as fibroblasts, chorionic cells and amniocytes
have the same embryonic origin (Graff et al., 2002). Biochemical
analysis of fetal samples is feasible, although the methods used
must be sufficiently sensitive given the low amount of fetal cells
that can be obtained (Table III). Another limitation is that only
50% of the patients express the enzymatic defect in fibroblasts and
that knowledge on complex assembly and activity during embry-
onic development is lacking. OXPHOS diseases caused by nuclear
gene mutations show a Mendelian mode of inheritance. For known
DNA mutations, PND can be offered by direct mutation analysis
of a chorionic villus sampling (CVS) and/or amniotic cells. Where
only the causing gene and location are known, but not the exact
mutation, intragenic or closely linked polymorphic markers are
used. DNA diagnostics is more reliable than enzymatic analysis
and should be used whenever possible.

PND for heteroplasmic point mutations in the mtDNA has its
own complexity. Genotype–phenotype correlations are less
straightforward and (time-dependent) differences may occur
between the tested fetal tissue and the actual embryo. For point
mutations in the mtDNA, three criteria have been proposed to
allow reliable PND (Poulton and Marchington, 2000; Poulton and
Turnbull, 2000). (i) A close correlation between the mutant load

and disease severity. (ii) A uniform distribution of mutant mtDNA
in all tissues. (iii) No change in mutant load over time. Sufficient
data are available for only three mutations (m.8993T>G/C,
m.8344A>G and m.3243A>G) to judge these criteria properly.
For the m.8993T>G/C and m.8344A>G mutations, PND can be
reliably performed, although for each of these a grey zone of
inconclusive results exists. For example, a mutant load of <20%
for the m.8993T>G would predict healthy offspring, whereas a
mutant load of 60% would give a 25% chance of disease (White
et al., 1990). The number of data used to calculate these risks for
the m.8993T>C mutation is so low that statistically even a mutant
load of 0% does not preserve from a severe outcome. The amount
of data required to reduce the confidence intervals of these per-
centages is for most mutations not available. For private mutations
or mutations, which have only been reported a few times, PND
should be carefully evaluated, based on genotype–phenotype cor-
relations, available number of data and additional experiments
(Jacobs et al., 2005). Until now nine prenatal tests were reported,
for the m.8993T>G and m.8993T>C, the m.3243A>G and the
m.9176T>C mutations (Table III). Also PND for mtDNA rear-
rangements is becoming an issue, as the recurrence risk for
mtDNA-deletion disorders appears to be around 4% (Chinnery
et al., 2004), and two PND have been performed (Table II). MDSs
are usually caused by nuclear gene defects, but if the causing
mutation is not known PND remains a possibility. Amniocytes of
children suffering from a mtDNA-depletion disorder have been

Figure 3. Scheme presenting the possible causes of oxidative phosphorylation (OXPHOS) disease and options for the prevention of transmission of these diseases.
PGD, preimplantation genetic diagnosis; PND, prenatal diagnosis. *, criteria developed by the European NeuroMuscular Consortium concerning prenatal options
for carriers of mitochondrial DNA (mtDNA) mutations.
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Table III. Prenatal diagnosis (PND) of different oxidative phosphorylation (OXPHOS) diseases using biochemical or genetic methods

*The nuclear gene defects will be a small subset of what has been performed in clinical practice.

Disease Mutation Method Result Reference

Pyruvate carboxylase 
(PC) deficiency

Unknown Direct measurement of PC 
activity in chorionic villus sampling (CVS)

One elective termination 
and one healthy baby

Van Coster et al. 
(1998)

Cytochrome c oxidase 
deficiency (Leigh syndrome)

Unknown Measurement of the substrate-stimulated 
ATP production and two-dimensional [blue 
native/sodium dodecyl sulphate (SDS)] 
polyacrylamide gel electrophoresis (PAGE) 
to analyse activity and composition of the 
OXPHOS complexes

An enzymatic defect was ruled 
out and two (twin) healthy 
children were born

Houstek et al. 
(1999)

NADH: ubiquinone 
oxidoreductase 
(complex I) deficiency

Unknown Biochemical assays of complex I in fetal 
tissues (native and cultured CVS)

Twenty-three pregnancies analysed. 
Fifteen healthy babies born, three 
known to be affected children born 
and five provoked or spontaneous 
abortions

Niers et al. 
(2001)

Carnitine 
palmitoyltransferase 2 
(CPT2) deficiency

983A>G (D328G) Direct measurement of CPT2 activity in 
CVS and molecular analysis of the mutation

One known to be affected baby 
born and one pregnancy termination

Vekemans et al. 
(2003)

Complex I deficiency E214K/IVS8+4A>C 
NDUFV1 gene

Sequence analysis* Elective termination of affected 
fetus

Amiel et al. 
(2001)

A432P/ΔTC (989–990) 
NDUFV1 gene

Fetus was heterozygous, 
pregnancy continued

A524V/M1L SDH-Fp 
gene

Fetus was homozygous 
normal, spontaneous abortion

P174L/ΔGA (363–364) 
SCO1 gene

Fetus was heterozygous, 
pregnancy continued

G180E/IVS6–1G>C 
SURF1 gene

Fetus was homozygous 
normal, pregnancy continued

Neuropathy, ataxia and 
retinitis pigmentosa (NARP)

m.8993T>G Direct mutation analysis using restriction 
enzyme digestion

Two pregnancies analysed both 
revealed high heteroplasmy percent-
ages (>80%) and were terminated

Harding et al. 
(1992)

NARP m.8993T>G Direct mutation analysis using restriction 
enzyme digestion in amniocytes

Mutation percentages were between 
64% and 68%. Pregnancy was 
continued and the baby is healthy at 
4 months.

Bartley et al. 
(1996)

Leigh syndrome m.8993T>G Direct mutation analysis using restriction 
enzyme digestion

A near homoplasmic level was 
found in fetus (both CVS and fetal 
cells), and the pregnancy was 
terminated

Ferlin et al. 
(1997)

NARP and Leigh syndrome m.8993T>G Direct mutation analysis using restriction 
enzyme digestion

Two pregnancies analysed both did 
not contain the mtDNA mutation 
and were continued. Two healthy 
babies are born

White et al. 
(1999)

Leigh syndrome m.8993T>C Direct mutation analysis using restriction 
enzyme digestion

Both CVS and amniocytes were 
analysed and revealed no signs of 
the mutation. A healthy child was 
delivered at term

Leshinsky-Silver 
et al. (2003)

Mitochondrial 
encephalopathy, lactic 
acidosis and stroke like 
episodes (MELAS)

m.3243A>G Direct mutation analysis using restriction 
enzyme digestion

Amniotic fluid cells revealed a high 
mutation percentage comparable 
with that of the affected mother and 
sibling, but at the age of 4 no signs 
of MELAS syndrome were detected

Chou et al. 
(2004)

Leigh syndrome m.9176T>C Direct mutation analysis using restriction 
enzyme digestion

CVS and amniotic fluid cells 
revealed a mutation percentage at 
risk. The pregnancy was however 
continued, and an apparently 
healthy child was born

Jacobs et al. 
(2005)

Progressive external 
ophthalmoplegia (PEO)

5 kb mtDNA deletion 
(nt 9986–nt 15042)

Southern blot analysis of the entire mtDNA No ΔmtDNA was detected in CVS, 
and an apparently healthy baby was 
born

Graff et al. 
(2000)

Kearns–Sayre syndrome 
(KSS)

ΔmtDNA Southern blot analysis of the entire mtDNA No ΔmtDNA was detected in CVS, 
and an apparently healthy baby was 
born

Thorburn 
and Dahl (2001)
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studied and were found to express the mtDNA depletion (Blake
et al., 1999). The exact timing of onset of mtDNA depletion dur-
ing fetal development is still unknown. A second report describes
two cases of mtDNA depletion presenting prenatally with skin
oedema and diminished fetal movements at 36 weeks of pregnancy
(Arnon et al., 2002).

PGD/polar body analysis

PGD is an alternative to PND. Oocytes are fertilized in vitro, and
cells from the usually eight-cellular embryo are dissected and
tested for the presence of a genetic defect. Unaffected embryos are
transferred into the uterus (Handyside et al., 1990). PGD avoids
the dilemmatic choice of a pregnancy termination, which is an
advantage compared with PND. PGD can be performed by sam-
pling either polar bodies (Rechitsky et al., 1999; Briggs et al.,
2000) or blastomeres (Holding and Monk, 1989; Handyside et al.,
1990). PGD is an option for mitochondrial disease because of nuc-
lear gene defects, but it may also be a solution for mtDNA disease.
The high copy number of mtDNA makes the analysis less prone to
artefacts like amplification failure and allelic dropout (Thorburn,
2004). PGD for mtDNA mutations is, however, not straightfor-
ward with respect to the interpretation of the data. In a heteroplas-
mic mouse model, the distribution of both genotypes was identical
between the ooplasm and polar body of a mature oocyte and
between the blastomeres of two-, four-, and six- to eight-cell
embryos (Molnar and Shoubridge, 1999; Dean et al., 2003). Both,
polar bodies and blastomeres can be analysed, but the efficiency in
diagnosing blastomeres is higher (Dean et al., 2003). Analysis of
polar bodies might be preferred by consenting couples with a
strong reservation against embryo testing, but the lower amount of
mtDNA molecules in polar bodies may make the analysis suscep-
tible to allelic dropout and preferential amplification. The criteria
for reliable PND also apply for PGD. PGD is especially suited for
women with a high mutation load and a high risk of affected off-
spring (Poulton and Turnbull, 2000). Embryos transferred to the
uterus should have a mutant load, which would guarantee a
healthy outcome. For some women, this could mean that they
might need multiple PGD cycles before a suitable embryo can be
identified. A disadvantage of PGD is the need of an IVF procedure
as only 20–25% of the IVF cycles results in a pregnancy (Broekmans
and Klinkert, 2004). If the IVF/PGD procedure is unsuccessful, the
analysis of the embryos could still give valuable information for
subsequent PGD cycles or other reproductive choices (Thorburn
and Dahl, 2001).

Donor oocytes

The use of donor oocytes with sperm of the partner is a reliable
method to prevent the transmission of OXPHOS disease caused by
mtDNA mutations. The use of donor oocytes of maternal relatives
is not advisable, because these may carry the same mtDNA mutations
even though the mutation is undetectable in blood of the possible
donor.

Cytoplasmic transfer

Cytoplasmic transfer (CT), an adaption of the ICSI technique
(Cohen et al., 1997, 1998), has been tested on women experienc-
ing repeated embryonic development failure, thought to be caused
by depleted ATP levels in these oocytes (Van Blerkom et al.,

1995, 2001). This resulted in 13 clinical pregnancies from which
one was spontaneously aborted and one selectively aborted in a
twin pair, both because of Turner’s syndrome. With this tech-
nique, 16 children have been born from which one developed per-
vasive development syndrome at the age of 18 months (Barritt
et al., 2001). This relatively high number of chromosomal abnor-
malities and birth defects when using CT may be caused by the
disruption of the cytoskeleton with the introduction of the
ooplasm. CT has been considered to dilute the mtDNA level to
below the critical threshold for disease by the transfer of healthy
mtDNA (Kagawa-Hayashi, 1997) and reports on the transmission
of donor mtDNA in offspring after using CT exist (Brenner et al.,
2000; Barritt et al., 2001). In these cases, only small amounts
(5–15%) of donor cytoplasm were transferred to the recipient’s
oocyte. Donor mtDNA was demonstrated in about 50% of the
embryos and placentas after CT. When analysing the mtDNA in 1-
year-old children born after CT, donor mtDNA was demonstrated
in blood of only 2 of 15 children (Brenner et al., 2000; Barritt et
al., 2001). To prevent the transmission of mitochondrial disease, a
larger amount of donor cytoplasm needs to be used, up to 50% (Thor-
burn and Dahl, 2001) or purified mitochondria should be intro-
duced. It still needs to be determined whether it is possible to
introduce such a large amount of cytoplasm into the oocyte or to
replace a large amount of the oocyte’s cytoplasm. These questions
make CT for the moment an inappropriate method to prevent the
transmission of mitochondrial disease.

Nuclear transfer

The nuclear transfer (NT) technique involves the fusion of the
nucleus of a somatic donor cell with an enucleated recipient
oocyte (cloning), which is subsequently activated electrically or
biochemically. NT is being tested in animal models. Offspring are
often liable to serious defects (Cibelli et al., 2002), like e.g. pla-
cental oedema, respiratory problems and kidney/brain/liver mal-
formations. In case of mtDNA mutations, two strategies could be
used. First, the nucleus of the mother’s unfertilized oocyte is trans-
ferred into an enucleated donor oocyte which subsequently is ferti-
lized using the partner’s sperm (Roberts, 1999). Second, the
nucleus of a blastomere cell is transferred into the enucleated
donor oocyte. With both methods, a small amount of cytoplasm
and mitochondria is transferred with the nucleus, which means
that some mutant mtDNA may be present in the embryo. These
perinuclear mitochondria might have a replicative advantage over
mitochondria further from the nucleus (Shadel and Clayton,
1997), although recent studies in mouse oocytes have demon-
strated that these karyoplast mitochondria are homogeneously dis-
tributed throughout the entire cytoplasm before the oocyte has
completed its maturation (Fulka, 2004).

One of the major setbacks with NT is the need for donor
oocytes. Also, there are several questions concerning the tech-
nique, the compatibility between recipient oocyte and donor
nucleus, the reaction of the nucleus and recipient oocyte as a con-
sequence of the transfer, the disruption of the cytoskeleton
because of the transfer and the defects seen in animal offspring
after using this technique. Another possible problem is associated
with possible imprinting problems because of the transfer of an
embryo nucleus. This has been proven in animal models after
somatic cell NT (Jaenisch, 2004) and could affect the embryo cell
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NT although these effects are probably minor because the major part
of the imprinting takes place later during embryonic development.

Ethical considerations

Most of the methods to prevent the transmission of OXPHOS dis-
ease are relatively new or in a developmental phase and have con-
siderable ethical implications. PND and PGD are controversial in
themselves, mainly because of the inherent selection of fetuses/
embryos. Ethical questions imply concern to the moral status of
the embryo and the so-called ‘disability rights’. There is a strong
consensus that selective abortion and selective transfer can be
morally justified to prevent the birth of seriously affected children.
The criticism that PND and PGD are at odds with the interests of
handicapped people in our society, is not convincing, as these
techniques do not deny the dignity and equal rights of handi-
capped citizens nor necessarily undermine societal support for
handicapped people and their families (Buchanan, 2000). Apart
from these general ethical questions, some (more or less) specific
moral issues may arise in the context of PND/PGD to prevent the
transmission of OXPHOS disorders. A distinction exists between
the optimal situation, when the disease is caused by a known nuc-
lear gene mutation, and the test result is reliable, and the subopti-
mal situation, when the causing mutation is unknown or located in
the mtDNA, and the test result can be somewhat unreliable. The
risks of false negative, false positive and inconclusive results need
to be analysed, and it should be determined whether or not the pre-
natal test can be performed accurately. From an ethical (and legal)
perspective, it is crucial that prospective parents are adequately
informed and counselled on the uncertainties and limitations of the
various tests before the analysis is performed, to enable them to
make a well-considered decision.

Most uncertainties are associated with PND and PGD for
mtDNA mutations. If the criteria proposed to allow reliable PND
are fulfilled, PND and/or PGD of the mtDNA mutation should be
possible. For the so-called private mutations (representing in only
one family) and mutations which have only been reported a few
times, PND and PGD should be carefully evaluated. It is important
to determine a safe margin for the mutation load and to discuss
this margin and the possible implication of an inconclusive muta-
tion percentage or a mutation percentage above the determined
threshold for disease with the parents. A question for further
debate is to whether the criteria to evaluate the possibility for PND
or PGD for mtDNA (Poulton and Turnbull, 2000) mutations are
flexible guidelines or strict rules. If a well-informed couple, with a
private or less suitable mutation, after adequate counselling
decides to opt for PND or PGD to lower the risk of conceiving a
severely affected child, knowing that the technique cannot give an
absolute guarantee that the child will be healthy, should this be
considered an option? Who determines which mutations are suit-
able? The possible use of PGD raises some additional issues (de
Wert, 2002). There may arise a dilemma between the required
mutant load and embryo quality (by viability). Can the transfer of
embryos which are more viable, but at higher genetic risk be mor-
ally justified? Who makes the final decision in case of conflicts:
the reproductive physician or the prospective parents, especially
the woman?

Obviously, prospective parents may consider the use of donor
oocytes as an alternative option. The ethical concerns associated

with the use of donor oocytes in the current context are the same
as for the use of donor oocytes for other medical indications
(Cohen and National Advisory Board on Ethics in Reproduction,
1996). The donation of oocytes is prohibited in some countries, for
instance, to prevent misuse of oocytes for women having reached
the menopausal age, to protect the child from possible negative
influences because of its conception by donor oocytes and because
of possible large-scale commercialization of donor oocytes
(Robertson, 2004). Relevant ethical concerns are especially
related to the welfare of the donor and the offspring. The repro-
ductive physician might be inclined to primarily focus on what is
best for the recipient and to overlook the interests and needs of the
donor (Kalfoglou and Geller, 2000; Kalfoglou, 2001). Guidelines
should protect the autonomy, privacy and health of candidate
oocyte donors. The major controversy with regard to the offspring
conceived by use of donor gametes concerns their ‘right to know’,
including both their right to be informed about the way they were
conceived and the right to know to whom they are genetically
related (Ethics Committee of the American Society for Reproduc-
tive Medicine, 2004). A growing number of countries acknowl-
edge the moral and legal right of these children ‘to know their
origins’. A major practical problem exists regarding the shortage
of oocyte donors. The pros and cons of financial compensation for
the donor need further debate (Steinbock, 2004).

Oocyte donation might also be used as a vehicle for other future
reproductive options for carriers of mtDNA mutations and
unknown OXPHOS disease causing mutations, namely CT and
NT. These methods raise additional conceptual and ethical issues.
A first conceptual issue, concerning both procedures, is whether or
not they constitute a germ-line intervention. The answer probably
should be affirmative, insofar as the germ line of resulting children
is modified, as shown for heteroplasmic mouse lines (Meirelles
and Smith, 1997). Germ-line interventions are often considered as
unjustified and are prohibited in most countries. But why should
such interventions be categorically wrong if the purpose is thera-
peutic—and the procedure would be safe? In view of the therapeutic
character of these techniques, one could well argue that these pro-
tect, instead of damage, the interests of the offspring (Robertson,
1999). With CT and NT, the genetic change only involves the
mtDNA. Would it, therefore, be justified to ethically differentiate
this therapy from possible therapeutic germ-line interventions
involving (the insertion or modification of) nuclear genes?

A second conceptual issue, relevant for NT only, is whether this
procedure amounts to human cloning. It is important to discern the
various possible sources of the nucleus to be transferred (de Wert,
2002). If the nucleus of an unfertilized oocyte is transferred, the
procedure would definitely not involve cloning. If however the
nucleus or nuclei of one or more blastomeres are transferred to an
enucleated egg, this would involve embryo cloning—even if one
were to create only a single additional embryo. The fact that the
newly created embryo would have its own mtDNA would not make
things different, as clones are usually defined as organisms having
the same nuclear DNA. The transfer of identical embryos might res-
ult in the birth of genetically identical children—and might, there-
fore, constitute human reproductive embryo cloning. NT using a
human embryonic source can be considered unjustified because the
rest of the embryo would be destroyed. In fact, however, all avail-
able blastomeres of the embryo could be used, thereby avoiding any
embryo loss. The question, then, becomes which is to be preferred
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from an ethical point of view: the loss of (the rest of) an embryo or
the avoidance of reproductive embryo cloning?

Another ethical issue (regarding both CT and NT) concerns the
splitting of the female genetic contribution to offspring into two
parts, namely the (major) nuclear genetic source and the (minor)
mtDNA source (Robertson, 1999). As a result, the child would
have two genetic mothers. Some people may object that this is
unnatural. How to ethically evaluate the possible adverse social,
psychological, and/or legal consequences, especially if a major
part or all of the oocyte’s mtDNA is replaced by donor mtDNA.
Can we safely assume that the impact will be minimal, as the
donor of the mtDNA has only a minimal genetic role, whereas the
major genetic part, the nucleus, is provided by the woman who
will be both the gestational and rearing mother? and last, but not
the least: how to weigh up the health risks of these experimental
techniques for future children. As a general rule, experimental
reproductive technologies should only be introduced in the clinic
after adequate preclinical safety studies have been performed.
Clearly, the criteria to be used for defining adequate preclinical
studies need further debate. No doubt, however, the clinical
application of both CT and NT to prevent the transmission of
OXPHOS disease is, for the time being, premature and, therefore,
unjustified. Human embryo research may contribute to the clarifi-
cation of (some of) the possible risks of these technologies. The
ethics of this research is beyond the scope of this article.

In view of the severe impact of mitochondrial disorders,
research into the development of new preventive strategies is
important. At the same time, this review illustrates that the pos-
sible strategies to prevent the transmission of mitochondrial disor-
ders raise lots of ethical issues, general and specific, conceptual
and normative, and at the level of both clinical ethics and social
ethics. Further proactive ethical analysis and interdisciplinary
debate should contribute to the development of adequate guidance.

In conclusion, transmission of OXPHOS diseases is complex,
owing to the different and often unknown genetic causes. Reliable
prenatal or preimplantation genetic diagnosis is largely limited to the
group of patients with characterized mutations in nuclear genes,
although certain mtDNA mutations are suitable as well. These meth-
ods are therefore neither sufficient nor satisfactory for most mtDNA
mutation carriers, and new approaches are being developed. Mouse
models for mtDNA mutation will be very helpful to study the mech-
anism of the transmission and segregation of mtDNA mutations and
the possibility of paternal mtDNA transmission. These and other ani-
mal models can be used to test for safety and consistency of new
methods. When safe and ethically acceptable, these will provide car-
riers the chance of preventing the transmission of OXPHOS disease
to their children and will reduce the number of people affected by it.
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