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Abstract

Inferring the impact of climate upon the transmission of SARS-CoV-2 has been
confounded by variability in testing, unknown disease introduction rates, and changing
weather. Here we present a data model that accounts for dynamic testing rates and
variations in disease introduction rates. We apply this model to data from Colombia,
whose varied and seasonless climate, central port of entry, and swift, centralized
response to the Covid-19 pandemic present an opportune environment for assessing the
impact of climate factors on the spread of Covid-19. We observe strong attenuation of
transmission in climates with sustained daily temperatures above 30 degrees Celsius and
simultaneous mean relative humidity below 78%, with outbreaks occurring at high
humidity even where the temperature is high. We hypothesize that temperature and
relative humidity comodulate the infectivity of SARS-CoV-2 within respiratory droplets.

Introduction 1

Coronaviruses are a class of large, enveloped, single-strand RNA viruses that are 2

widespread in animals and provoke respiratory illnesses in humans [1]. The novel 3

coronavirus SARS-CoV-2 was identified in January 2020 as the likely causative agent of 4

a cluster of pneumonia cases appearing in Wuhan, China throughout December 2019, 5

making it the seventh known coronavirus to cause pathology in humans [2]. 6

SARS-CoV-2 is associated with a respiratory illness, Covid-19, that ranges in severity 7

from an asymptomatic infection [3], to common-cold like symptoms, to viral pneumonia, 8

acute respiratory distress syndrome, and death [4]. While the mortality in SARS-CoV-2 9

appears to be lower than in SARS-CoV [4], this new virus has more effective 10

transmission characteristics [5], including an asymptomatic infective phase [6]. 11

From early January to March 2020, SARS-CoV-2 quickly spread around the world, 12

causing a global pandemic [7]. While global data will certainly play a role in elucidating 13

the epidemiology of Covid-19, we have identified three factors that confound global 14

data: asynchronous and varied responses by local and national governments [7, 8], 15

regional variations in disease awareness, testing protocols, and testing kit-availability 16

leading to disparate and dynamic disease detection rates [9] and unknown variations in 17

the rate at which infectious travelers carried the disease into local populations [10]. 18
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Fig 1. Testing rates in Colombia, March through early May. The number of
daily tests for SARS-CoV-2 increased by two orders of magnitude over two months. We
have identified dynamic testing rates as a key confounding factor in the analysis of
Covid-19 case data.

Varied responses by governments, from total quarantine to vague social distancing 19

suggestions, dynamic detection rates (Fig. 1) and varying rates at which the disease was 20

introduced into different regions each present unique challenges to the analysis of global 21

data. Changing seasons in the hemispheres during the spread of the pandemic further 22

confounds the analysis of weather factors. 23

In order to mitigate these factors, we we developed a data model and conducted a 24

by-city analysis of data from Colombia. Colombia is uniquely suited for the study of 25

weather factors on the transmission of SARS-CoV-2 for the following five reasons: 26

1. Climate variation. Colombia has five geographically distinct regions: The Pacific 27

coastal region, the Caribbean coastal region, the Andean mountain region, los llanos 28

(grassland plains), and the Amazon Rainforest region. The unique and seasonless 29

climate in each of these regions alleviates the confounding role of seasons on data from 30

the hemispheres [11]. 31

2. Central port of entry. The El Dorado International airport in Bogotá is by far the 32

largest transportation hub for international travel, with nearly seven times the number 33

of international travelers as the next largest airport in Colombia. 34

3. Conditions favorable to rapid spread. Colombian cities have high urban 35

population densities (Table 1), and public transportation is widely used in Colombia, 36

with only one fifth the number of registered cars per citizen compared to the USA. For 37

example, in Barranquilla, a coastal city in the Caribbean with hot temperatures, the 38

average weekday commute time on public transportation is 77 minutes. The heavy use 39

of crowded public transportation means that the measured lack of spread of the virus in 40

this city is not the result of social distancing among the populace. 41

4. Lack of air-conditioning. Indoor air-conditioning is rare in Colombia [12]. The 42

citizens live in the ambient conditions of temperature and humidity of their 43

environment. This eliminates individual specific variation in temperature and humidity 44

as a potential confounding factor. 45

5. Swift and coordinated national response. The first Covid-19 case was confirmed in 46

Colombia on March 6, 2020. Nineteen days later, the government implemented a 47

national quarantine, with tight cooperation at the local level and testing orchestrated 48

centrally through Bogotá [13]. This strong, centralized and swift action at the national 49

level greatly simplifies the analysis because the data cleanly separates into 50
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Table 1. Geographic and population data for the five largest cities in

Colombia.

population pop. density max. daily temp daily humidity

Bogotá 7,387,400 19,475 20.7 82
Medelĺın 2,382,399 20,681 26.0 83
Cali 2,172,527 16,247 27.0 81

Barranquilla 1,205,284 14,455 32.3 68
Cartagena 876,885 17,053 30.1 74

The temperature is the maximum daily temperature and the humidity is the mean daily
relative humidity. The values shown are averages taken over the month of March, 2020.
The population density is the urban population density.

pre-quarantine and post-quarantine periods. 51

The transmission rate, or the propensity of the disease to spread, must be 52

distinguished from both total disease prevalence and the number of confirmed cases in a 53

given population. As we show in the supplementary text, the the number confirmed 54

cases is confounded by the detection rate and the drip rate, or the rate at which 55

infectious travelers arrive in a city. Dynamic detection rates caused by increasing 56

disease awareness and testing introduce an additive factor into the exponent of the 57

apparent transmission rate (supporting information). Over the course of our study, the 58

daily testing rate in Colombia increased by over two orders of magnitude (Fig. 1). Our 59

data model accounts for variations in the drip rate and dynamic detection rates by 60

considering confirmed case dynamics instead of total confirmed case numbers, since 61

totals are confounded by public perception, varying testing rates, varying drip rates and 62

stochastic fluctuations (supporting information). 63

Models of seasonal, viral respiratory illness demonstrate airborne respiratory virus 64

transmissions exhibit a strong spatial decline (i.e. Gaussian) in the transmission rate 65

with the distance between the recipient and the diseased host, and strongly depend 66

upon local environmental factors such as air flow, temperature and humidity [14–18] . 67

The strong dependence of the probability of transmission on host-recipient distance 68

underscores the need to separate the data into pre-quarantine and post-quarantine 69

periods, because the degree of social distancing changed dramatically post-quarantine. 70

After quarantine, transmission rates decline in proportion to the strictness of the 71

quarantine measures and the degree of compliance with them. 72

The transmission of a respiratory virus can be divided into four basic steps [19]: (1) 73

a non-infected host interacts with the environment of an infected individual (2) the 74

infected individual transmits intact virions to the non-infected host and (3) the virus 75

infects the host (4) the virus replicates sufficiently for the host to become infectious. 76

In the first step, interaction, it is not necessary that the recipient and donor are in 77

the infective environment simultaneously because, in a suitable environment, 78

virus-droplets can remain suspended in the air for hours. Eventually, viruses inactivate 79

due to the accumulation of environmental damage. This inactivation timescale governs 80

the second step, which is viral transmission. The probability of infection, the third step, 81

depends on the number of intact virions that deposit on the uninfected host and the 82

susceptibility of the host. Susceptibility to infection depends on many factors, such as 83

age, medical history, obesity and the internal humidity of the host, since a dry 84

respiratory tract is more infection prone [20]. In the fourth step, replication, both 85

demographic and environmental factors play a role. For example, temperature 86

correlates with viral titer (hotter temperatures producing less titer) [15]. 87

Consequently, the probabilities of these four steps are not independent. 88
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Environmental factors influence the frequency and conditions under which people 89

associate, they regulate virus decomposition rates, modulate host susceptibility and 90

severity of infection within the host. Droplet settling times, droplet evaporation times, 91

and viral stability times, all depend on environmental factors such as humidity, 92

temperature, wind etc. 93

Since all of these factors influence the transmission rate, they either must be included 94

in the modeling, which introduces additional parameters and more complexity, or one 95

can restrict the analysis to situations where the transmission occurs in environmental, 96

social and economic steady-state conditions. The pre-quarantine Colombian data meets 97

the steady-state conditions because of the lack of seasonality, the widespread daily use 98

of transportation in densely packed buses and subways, the high population density in 99

cities (table 1) and the suddenness and totality of the imposed quarantine. 100

Materials and methods 101

the drip model 102

A significant fraction of infective hosts of SARS-CoV-2 are asymptomatic [5, 6]. In 103

addition, SARS-CoV-2 has a long incubation period of up to ∼ 15 days [21]. During 104

this time, the disease host is infectious but asymptomatic. In Colombia, international 105

travel was banned three days after the imposition of national quarantine [13]. 106

Consequently, we approximate that the rate at which infectious travelers arrived in each 107

city was roughly constant over the pre-quarantine period. 108

We model the daily arrival of SARS-CoV-2 into each city as a Poisson process with 109

mean I. That is, we assume that each day prior to the quarantine, I[t] infected travelers 110

arrive into a city where they begin infecting locals. We assume that on average, an 111

infectious person infects r people each day, who in turn become infective (able to infect 112

others) in one day. That is, on day t there are I[t] new infectious arrivals, as well as the 113

N [t− 1] total infectious people from the day before, and the rN [t− 1] people they 114

infected (Eq 1). 115

N [t] = N [t− 1](1 + r) + I[t] (1)

This difference equation is easily solved. We find that the expected number of 116

infections on day t is: 117

N̄ [t] = I(1 + 1/r)(1 + r)t − I/r (2)

Eq 1 gives the expected number of infections in a given city on day t. In our 118

analysis, we allow both I, the drip rate, and r, the transmission rate, to vary by city. 119

While the disease is spreading, an infrastructure is being established to detect the 120

disease, which results in a dynamic disease detection rate. As a simple but useful case, 121

consider a logistic increase in the detection rate. We define the total probability of 122

detecting an arbitrary infectious disease host on day t as: 123

p[t] =
pf

1 + e−k(t−h)
(3)

The detection rate increases from a small value (p(0) = pf/(1 + ekh)) at rate k, to a 124

final detection capacity of pf with half capacity reached on day h. The probability of 125

detecting c cases of SARS-CoV-2 on day t is distributed as a Binomial distribution 126

B(N [t], p(t), c(t)). The average (expected) number of infections detected on day t is 127

then: 128

c̄[t] = N [t]p[t] (4)
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When r is small (which covers all cases of interest), the time-derivative of the log of 129

the expected number of confirmed cases (the expected case log-velocity) is: 130

d log c̄

dt
≈ r

1− e−rt
+

k

1 + ek(t−h)
(5)

Note that the drip rate (I) and the overall detection rate (pf ) have fallen out. Eq 5 131

is the basic equation that we use to fit the data. In the supporting information, we 132

extend the drip model to include both varying drip rates and death and recovery. 133

data 134

Covid-19 data for Colombia were downloaded from the web: 135

1. case data from the Instituto Nacional de Salud [22] 136

2. testing protocols from the Ministerio de salud [23]. 137

Weather and population data were downloaded from: 138

1. World Weather Online [24] 139

2. Population data from City Population dot de [25] 140

Transportation data were taken from the web: 141

1. Airport data from the Aeronáutica Civil de Colombia [26] 142

2. Public transportation data from Moovit [27] 143

data analysis 144

The complete data analysis procedure is as follows: 145

1. We began the analysis on March 10, 2020 four days after the confirmation of the 146

first case in Bogotá D.C.. We removed the first four days (which does not exclude 147

any additional cases) to account for a large drop in testing that occurred during 148

this time (Fig. 1). 149

2. In order to estimate the expected count number from the daily count number, we 150

smoothed the daily confirmed case counts with a seven day triangle function. We 151

include days past the quarantine cutoff in the smoothing to avoid edge effects 152

from the filter. The data were then trimmed to the interval March 10 through 153

April 3, 2020 for Bogotá D.C. and April 7 for the remainder of the cities. 154

3. We computed the count log-velocity (see supporting information) by first taking 155

the numerical derivative of the smoothed count data (via the Python routine 156

numpy.gradient) and then by dividing the gradient by the smoothed count data. 157

4. We fit the count log-velocity to the drip model according to the routine presented 158

in the supporting information (Fig. S2). 159

Since the data span was about 30 days, exponential growth will only be observable 160

for cities with transmission rates significantly greater than 1/30 ∼ 0.033. Consequently, 161

0.05 was considered to be the minimum threshold on the transmission rate to observe 162

exponential growth in a given city. We associate transmission rates above this threshold 163

with airborne transmission and transmission rates below this threshold with tourism 164

and direct transmission [28]. 165
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In order to deduce the cutoff date for the quarantine, we examined the case counts 166

in Bogotá (Fig. S1). Since we assume the transmission rate is constrained to be 167

constant, the reduction in the transmission rate induced by the quarantine shows up in 168

our model as a decrease in the detection rate (red vertical line). The vertical bar at 169

April 3, 2020 denotes a combination of the impact of the quarantine on the spread of 170

SARS-CoV-2 in Bogotá and a brief decline in the testing rate (Fig. 1). Since Bogotá 171

went into quarantine 4 days before the rest of the country, its pre-quarantine data ends 172

April 7, 2020. 173

Results 174

When we apply our model to the data, the data only shows clear exponential growth in 175

large cities with Relative Humidity (RH) over 80% and mean maximum daily 176

temperatures below 30 degrees Celsius (Bogotá, Cali, and Medelĺın - Fig. 2). The RH in 177

these cities is roughly the same (∼ 82 %), and they have similar total populations and 178

urban population densities (table 1). The transmission rate declines among these cities 179

with higher temperature. 180

We note that none of the smaller cities registered significant transmission rates in 181

the pre-quarantine data at all temperatures and humidities. For example, Soacha and 182

Bucaramanga compare to Bogotá and Medelĺın respectively. Soacha shares climate with 183

Bogotá but has one tenth the total population (Soacha and Bogotá are neighboring 184

cities and are connected by urban rail). Soacha has a higher urban population density 185

than Bogotá. Bucaramanga has nearly one-fifth the population of Medelĺın (at similar 186

temperature and humidity) and half the population density. Bogotá is more than 10 187

times larger than Soacha and Medelĺın more than twice as large as Bucaramanga. 188

Moreover, Bogotá and Medelĺın are regional transportation hubs. Thus we conclude 189

that the lack of transmission in Soacha and Bucaramanga is attributable to 190

transportation factors as governed by total population and regional importance. 191

Although our analysis is focused upon pre-quarantine dynamics, there were two 192

significant outbreaks post quarantine. The first was in Cartagena de Indias, a hot city 193

on the Caribbean coast. While the weather in Colombia is nearly constant, there are 194

minor temperature and humidity cycles associated with rainy and dry periods. The 195

transmission rate in Cartagena correlates remarkably with sustained humidity above 196

78% (Fig. 2). We conclude from this that the outbreaks in Cartagena were driven by 197

changes in RH, since temperature was nearly constant, and Cartagena had been under 198

quarantine, isolated from international travel and under tight local travel restrictions for 199

50 days prior to the outbreak. A second outbreak in a small town in the Amazon 200

Rainforest, Leticia, on the banks of the Amazon river, resulted in confirmed infections 201

in roughly 1 in 20 residents, the highest confirmed per-capita infection rate in Colombia. 202

This outbreak is remarkable because Leticia, as a small town, does not have an urban 203

city center or large buses or subways, and the mean daily RH is around 94%, the 204

highest RH for a city in this study. 205

Discussion 206

Comodulation of viral infectivity by temperature and by relative humidity has been 207

experimentally demonstrated in a variety of enveloped viruses [29] such as 208

SARS-CoV [30], influenza [16, 31–34] and SARS-CoV-2 [35] (for temperature only) and 209

other enveloped viruses [36] (Fig. 4). Three chief mechanisms have been proposed to 210

explain the role of temperature and humidity upon enveloped viruses: destabilization of 211

the virus within the droplet-matrix [31, 37], evaporation and settling of virus 212
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Fig 2. The transmission rate of SARS-CoV-2 with temperature and RH in

the five largest cities of Colombia (top) The dashed red line denotes a transmission
rate of r = 0.05, which is our model’s threshold for observing clear exponential behavior
and which we associate with airborne transmission. Note that these rates only apply to
the pre-quarantine period. (bottom) Outbreak in Cartagena de Indias. The solid black
line plots the average daily humidity in Cartagena (left axis). The solid red line plots
the number of new cases of Covid-19 diagnosed in Cartagena (right axis). The
horizontal dashed gray line plots a mean humidity level of 78%. The vertical dashed
gray bar on the left denotes the first day with mean humidity at 78% since the first case
of Covid-19 in Colombia. The first vertical dashed red line from the left, 8 days after
the humidity increase, a spike in Covid-19 cases was registered. The second vertical
dashed gray bar denotes the beginning of the second sustained period of humidity above
78% in Cartagena. A major outbreak began 9 days after the humidity rise.

droplets [18,37] and reduced viral titer produced by the host at higher temperatures [15]. 213

Reduced viral titer could account for some of the reduced transmission observed at 214

higher temperatures. For influenza, Halloran et al. [15] show a reduction in peak nasal 215

titer for influenza by an order of magnitude for temperatures between 5 and 30 degrees 216

Celsius in guinea pigs [15]. However, viral titer cannot explain the outbreak in 217

Cartagena which appears to be driven entirely by high RH, since the air within the 218

human respiratory system is saturated and unlikely to vary with small changes in 219

ambient RH [38]. 220

Although direct measurements at short timescales in conditions that mimic 221

respiratory droplets are unavailable [37], temperature driven destabilization in solution 222

apparently occurs on the timescale of minutes [31, 35,36]. Droplet settling timescales 223

vary from minutes to hours depending on droplet size [37]. Given the dense packing on 224
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Fig 3. Covid-19 and model fit in the five largest cities of Colombia. Each
row corresponds to a different city (left axis). The first column plots the cumulative
number of confirmed cases of Covid-19 over the pre-quarantine period (blue) as well as
the inferred detection capacity within the city (dashed red, right axis). The second
column plots the log-velocity (see supplementary material) of the data (black) and of
the model fit (dashed red), with the model for Bogotá D.C. shown for reference (dashed
gray). The third and fourth columns show cross-sections of the error function e(r, k, h)
between the model under parameters (r, k, h) (transmission rate, detection rate increase
rate, and detection rate half capacity date). The error bars are given in terms of percent
increase from the global minimum. Global minima are denoted by a black cross. The
dashed white line indicates the threshold r = 0.05 for observing clear exponential
growth in our model. The red contours denote an increase from the global minimum of
5% and the gray contours denote an increase from the global minimum by 10%.

public transportation in cities with attenuated transmission, we reason that the 225

mechanism behind this attenuation must act on the timescale of seconds [15,39] to be 226

responsible for low infectivity. This rules out droplet settling and temperature driven 227

viral destabilization as the cause of lower infection rates in these areas. 228

Airborne respiratory droplets evaporate down to half their size in about one 229

second [32, 37]. This evaporation is thought to influence viral stability through salt and 230

protein concentrations, pH gradients, and surface sheering [32, 37]. RH and temperature 231

both influence droplet evaporation, with temperature influencing the rate and RH 232

determining the final droplet size [15]. While the timescale of droplet shrinkage has 233

been studied, the timescale of viral inactivation within the shrunken and toxic 234

respiratory droplets is, to our knowledge, unknown [37]. Determining this timescale 235

could have important implications for policy surrounding the Covid-19 pandemic, since 236

fast destabilization at specific temperature and humidity intervals would have both 237

prevention and therapeutic implications. Additional experiments are necessary to 238

resolve the impact of temperature and humidity on the infectivity of SARS-CoV-2 239

within respiratory droplets. 240
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Fig 4. Phi6 infectivity with temperature and RH. Original data from Prussin et
al [36] on the relationship between temperature, RH and Phi6 infectivity. Phi6 is an
enveloped virus used as a model for influenza, coronavirus and other respiratory viruses.
The error bars are shown but too small to be visible in the figure.

Conclusion 241

Our observations suggest a decline in the spread of SARS-CoV-2 with temperature in 242

regions with moderate humidity. We predict an increased probability of outbreaks as 243

the relative humidity approaches and surpasses 80% even at high temperatures. Cities 244

near large bodies of water, such as Beijing, where the humidity rises to around 80% in 245

the summer, are at particular risk for outbreaks as the Prussin data suggests an 246

exponential rise in infectivity with humidity at warm temperatures (Fig. 4). Given the 247

crowded public transportation systems and high urban population densities of cities 248

with highly attenuated transmission, we hypothesize that the attenuation is caused by 249

rapid viral inactivation within the respiratory droplet matrix as mediated by 250

evaporation through temperature and RH, with direct temperature effects upon the 251

virus contributing. Experimental confirmation of this hypothesis could have significant 252

implications for policy surrounding the Covid-19 pandemic. For example, indoor climate 253

control (or lack thereof) might be considered as a means of mitigating the spread of 254

SARS-CoV-2. The same mechanisms of viral destabilization within evaporated 255

respiratory droplets could be considered as a means of directly combating the virus. 256

Establishing the timescale of viral destabilization within respiratory droplets, resolved 257

on the shortest timescale possible, may then provide important information about the 258

biology and transmission mechanisms of SARS-CoV-2. 259

Supporting information 260

As described in the main text, it is essential to distinguish the transmission rate, or the 261

propensity of the disease to spread, from both the total disease prevalence and the 262

number of confirmed cases in a given population. Here we clarify the notions of 263

detection rate, testing rate, and drip rate and quantify their impact upon the scaling of 264

the confirmed case number and the apparent transmission rate. 265

The detection rate describes the total probability of detecting a case of SARS-CoV-2 266

in a given population. This rate undoubtedly increased over the period covered by our 267

analysis since the testing rate increased by over two orders of magnitude during that 268

time (Fig. 1). In section detection rate scaling, we show that the detection rate 269
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introduces an additive factor into the exponent of the expected number of confirmed 270

cases. 271

In section drip rate scaling, we show that the drip rate, or the rate at which infected 272

travelers arrive into a city, introduces a multiplicative constant into the total number of 273

infectious hosts in a given city which translates to a multiplicative constant in the 274

expected number of confirmed cases. 275

In section testing is driven by perception, we demonstrate that the testing rate is not 276

equivalent to the detection rate, since the testing rate is driven by human decisions 277

about going to the hospital, ordering tests, and testing protocols, whereas the detection 278

rate describes the final probability of detecting a case of Covid-19. As an example, we 279

show that panic can drive a wave of non-infected people to receive tests, driving up the 280

testing rate, without changing the overall detection rate (subsection panic in a disease 281

free population). 282

We make a distinction between the testing rate and the detection rate, because we 283

use the observed exponential growth in the testing rate as motivation for including the 284

detection rate in our data model, but do not introduce the testing data into our data 285

analysis as a constraint, because our algorithm deduces the detection rate from the data 286

without the need for constraints. Furthermore, our analysis shows that we should not 287

expect the testing rate and the detection rate to have more than qualitative agreement. 288

In section count log-velocity, we show that the log-velocity, or the time-derivative of 289

the log of the expected number of confirmed cases, is a useful measure of disease spread 290

because it is independent of the drip rate and the overall detection rate. Since the 291

log-velocity still depends on the detection rate dynamics, we include a logistic model for 292

detection (section drip model). 293

detection rate scaling 294

Consider a population with a constant number N cases of Covid-19 with the total 295

probability of detecting a case of Covid-19 written as p[t]. Since the probability of 296

detecting c cases of Covid-19 is a binomial in the N cases, the expected number of 297

confirmed cases on day t is: 298

c̄[t] = Np[t] (6)

When the detection probability is small, p << 1, the fluctuations in the observed 299

case number are of order: 300

σ[t] =
√

p[t](1− p[t])/N ≈
√

p[t]/N (7)

Note that both the expected number of cases, c̄[t], and the fluctuation in the number 301

of cases, σ[t], are increasing functions of the detection rate p[t]. That is, both the 302

measurement mean and the measurement variance depend on the detection rate. We 303

assume that the function p[t] can be well approximated by a logistic function. Hence, 304

p[t] = pf/(1 + e−k(t−h)) (8)

Here the detection rate converges to a final rate pf with rate k and reaches half the 305

final rate on day h. In the early stage of the pandemic, while the detection capacity is a 306

small fraction of its later capacity, we have t < h and exp {−k(t− h)} >> 1. Then, to 307

first order: 308

p[t] ≈ pfe
k(t−h) (9)

The log of the expected number of cases on day t is then: 309
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log c̄[t] = kt+ log(Npfe
−kh) (10)

Eq 10 shows that the log of expected number of counts increases linearly with rate k. 310

Thus, at the beginning of testing ramp-up, constant infections with logistic growth in the 311

detection rate is indistinguishable from exponential growth in the number of infections 312

with a constant detection rate. To see this, simply substitute N = Nert for the number 313

of infections and substitute p(t) = pf for the detection rate. Then 314

log c̄[t] = rt+ log(Npf ) (11)

Since pf is initially unknown, the observed case dynamics will appear equivalent 315

when the number of infections is constant and the detection rate grows logistically versus 316

when the number of infections grows exponentially and the detection rate is constant. 317

drip rate scaling 318

In the previous section we illustrated that the local detection rate introduces an 319

additive factor into the apparent transmission rate of the disease. In this subsection, we 320

demonstrate that the drip rate introduces a multiplicative factor into the total number 321

of infections in a given location under very general assumptions. We only assume that 322

in the early stage of the disease, the disease hosts are weakly-interacting. 323

Under the weakly-interacting disease host assumption, the infected disease travelers 324

who arrive in a given city create new pockets of infection. Since we assume that the 325

disease hosts are weakly-interacting, a city with twice the drip rate will have twice the 326

number of pockets in which the disease grows. As long as the weakly-interacting 327

assumption is true, these pockets grow independently at the same rate, with no overlap. 328

The total number of infections will then be the sum of infections over each of these 329

disease pockets. In this way, the drip rate introduces a multiplicative factor into the 330

expected number of infections regardless of the details of how the disease spreads. 331

We quantify this intuition in the following way. Let each person in a given location 332

(i.e. city) be assigned a unique number 1, 2, . . . N for N total people. Let T [t] be the set 333

of diseased travelers (τ) that arrive in this location on day t with I[t] = |T [t]|. Then 334

T [1] = {τ11, τ12, . . . , τ1I[1]} and T [2] = {τ21, τ22, . . . , t2I[2]}. On average, each of the I[t] 335

travelers that arrive on day t infect r << 1 people per day. That is, on average every 336

1/r days, each traveler will infect one new person, and every subsequent 1/r days this 337

new infectee will go on to infect another person, and so on. Consider the function 338

λτjt′
[t] that returns the unique identifier(s) of the person(s) infected by traveler τjt′ on 339

day t (i.e. the j-th traveler to arrive on day t′). Note we are only counting people who 340

live in the location to be infectees and are not counting other travelers that the traveler 341

infects. Then the function Λτjt′
[t] =

⋃t

s=t′ λτjt′
[s] denotes all people that the infected 342

traveler τjt′ has directly infected until day t. 343

Since we are considering the beginning stages of the disease and are neglecting 344

re-infection, Λτjt′
[t] must be disjoint for each of the travelers. That is, without 345

reinfection, a person can only be infected by one traveler. Next, we consider the pool of 346

people with whom each infectee interacts. Denote by c0[n] all the people whom person 347

n, not a traveler, can potentially infect by direct interaction. These are people who are 348

susceptible to the disease and who come into contact with the infectee (n). Now denote 349

by c1[n] all of the people whom person n can potentially directly infect. That is, c1[n] is 350

the union of c0[n] with each c0[n
′] for each of the people n′ in c0[n]. In this way, we can 351

consider c2[n], c3[n] and so on, each of these sets becoming larger and larger as the pool 352

of potential infectees becomes larger and larger. We refer to each stage of disease 353

transmission as a generation. That is, the people in the set Λτjt′
, each infected by 354
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traveler τjt′ between day t′ and t, are the first generation of infectees. Then the people 355

that these infectees infect are the second generation, and so on. 356

For the early stages of the disease, we need not consider very many generations. The 357

generation timescale is 1/r and so the time for the disease to progress to the k-th 358

generation is 1/rk. For r << 1, this time quickly becomes very large. 359

Thus, our assumption of weakly interacting hosts amounts to the assumption that 360

the number of generations is small and the social circles of the early generations of 361

infectees from each traveler are approximately disjoint. Recall that the first generation 362

of people infected by traveler τjt′ until day t is Λτjt′
[t]. Then the total set of people who 363

are susceptible to a second generation infection is c0[t, τjt′ ] =
⋃

n∈Λτ
jt′

[t] c0[n] and the 364

total set of people who are susceptible to a third generation infection from traveler τjt′ 365

is c1[t, τjt′ ] =
⋃

n∈Λτ
jt′

[t] c1[n] and so on. 366

Eventually, |cm[n]| = N and the extended social circle of an arbitrary person 367

includes the entire city. But for m small, we assume that the social circles are 368

approximately disjoint, meaning that the presence of more infectious travelers does not 369

restrict the dynamics of the generations of infections that stem from each traveler. Let 370

m be the maximum number of generations to which the disease spreads during the early 371

stages. We assume that |cm[t, τjt′ ]
⋂

cm[t, τkt′′ ]| ≈ 0: the set of potential infectees 372

descendant from each traveler, over the relevant number of generations, is 373

approximately non-overlapping. 374

Under this assumption, the presence of more infectious travelers does not restrict the 375

spread of the disease. Thus, at any given time, a city with twice the drip rate will have 376

roughly twice the total number of infections as a city with the same transmission rate 377

and half the drip rate. This is what we mean by the statement that the drip rate 378

introduces a multiplicative constant into the total number of infections. We can express 379

this symbolically as follows. Denote by N0[t] the average disease dynamics subsequent 380

to the infection of one local resident (N0[0] = 1) and denote by n̄[t] the number of 381

infections that the average traveler spreads per day. Then the total number of infections 382

on day t is roughly: 383

N [t] =
∑

t′

n̄[t− t′]N0[t− t′]I[t′] (12)

The expected value of this this quantity is easily seen to be: 384

N̄ [t] = I
∑

t′

n̄[t− t′]N0[t− t′] = In[t− t0] (13)

Here we see that a multiplicative constant has been introduced. Note that we have 385

not introduced a specific model for how the disease spreads. We have only assumed that 386

the disease spreads independently. 387

From this we conclude that the total number of cases in a given city does not 388

necessarily inform us about the propensity of the disease to spread in the environment 389

of the city, especially for short timescales and in cities where the transmission rate is 390

low. As we will show in the next section, the dynamics of the count numbers tell us 391

more about the transmission rate than the absolute scale of the number of infections at 392

any time. 393

count log-velocity 394

So far we have only considered (k), the rate at which the disease detection probability 395

increases, and the drip rate (I), the rate at which the disease is introduced into a city. 396

We have not yet considered the total probability of detecting a given case of Covid-19 at 397

a given moment in time. 398
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Consider two cities, city 1 and city 2, that are alike in all respects except for the 399

overall detection rate pf . Also assume that the disease transmits in both cities at the 400

same rate (r = r1 = r2), the disease is introduced into the two cities at the same rate 401

(I = I1 = I2), and the disease detection infrastructure grows at the same rate 402

(k = k1 = k2). 403

It is not necessary to specify the model of the disease dynamics, as long as the 404

assumption that the disease spreads independently from each infected person is true. 405

There may be other parameters of the model that we do not specify here. Whatever 406

these may be, they are assumed to be equal for the two cities. Likewise, we do not 407

specify a model of the detection rate increase in the two cities, we only assume that it is 408

some function f(t, k) such that 409

p[t] = pf,jf(t, k) (14)

There are no restrictions on f other than it depend upon some rate k parameter 410

that governs the rate of change of p[t]. The function f(t, k) could depend upon other 411

parameters which we have not specified but which are assumed equal between the two 412

cities. 413

The probability of detecting c cases of Covid-19 in either city is a binomial and thus 414

the expected number of counts is (from Eq 15): 415

c̄[t] = pf,jIn[t− t0]f(t, k) (15)

Eq 15 explains why static count numbers convey little information about the 416

transmission rate. Depending upon the total detection probability pf and the drip rate, 417

I, the total count number between two otherwise identical cities could vary 418

(hypothetically) by an order of magnitude or more. Note that both pf,j and I fall out of 419

the time derivative of the log of the expected number of cases : 420

d

dt
log c̄[t] =

ṅ

n
+

ḟ

f
(16)

testing is driven by perception 421

In Colombia, From February to April 2020, detection was conducted at hospitals on 422

symptomatic patients. In order for a patient to be diagnosed as Covid-positive, three 423

steps were required: (1) a symptomatic disease host must go to the hospital, (2) the 424

attending physician must order a test and (3) the test must result positive. 425

These three steps are not independent. For example, a severely symptomatic host is 426

more likely to go to the hospital and request attention than a weakly symptomatic host 427

or an asymptomatic host. Likewise, a severely symptomatic host is more likely to have a 428

doctor order a test and more likely to test positive for Covid-19 than a moderately 429

symptomatic patient. 430

Consider the following simple model for testing. The expected number of unique 431

tests conducted on day t, NT [t], as the product of the number of people in the city 432

times the probability of being tested. Since being tested requires going to the hospital, 433

we separate the probabilities by the product rule: 434

NT [t] = Np(H | t)p(T | H, t) (17)

This division is essential because it divides the dynamics into two distinct 435

populations: the general population and the hospital population. The general 436

population dynamics p(H | t) are driven by self-perception of symptoms, whereas the 437

hospital dynamics p(T | H, t) are driven by physician perception of symptoms and 438

hospital protocol. 439
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Table S1. Symptoms grades for testing model.

symptoms grade description symptoms

0 asymptomatic none
1 mild common-cold like symptoms
2 severe pneumonia-like symptoms, respiratory distress

Note that the number of tests conducted on a given day is not, in general, equal to 440

the number of unique tests conducted on a given day. This is because most countries 441

implement protocols that call for duplicate testing. For now, we will not consider 442

duplicate testing since we are only interested in the basic formulation and scaling of the 443

testing dynamics. 444

Here p(H | t) denotes the probability of going to the hospital with Covid-related 445

symptoms, which for now, are assumed to be the only requirements for a symptomatic 446

person to be tested. We expand the probability of going to the hospital in terms of 447

those who are infected (i) and those who are not infected (̄i) with SARS-CoV-2: those 448

who are not infected include those who have other infections, e.g. influenza. 449

p(H | t) = p(H | i, t)p(i | t) + p(H | ī, t)p(̄i | t) (18)

Note that many people who are not infected with SARS-CoV-2 will have symptoms 450

consistent with Covid-19. These symptoms may result from (1) other respiratory viruses 451

(2) other health problems and (3) mass psychogenic illness. It is well documented in 452

psychology literature that the suggestion of symptoms provokes symptoms in a large 453

percentage of the population, particularly when group consensus is involved [40]. 454

We further expand each of the hospital terms in Eq 18 in terms of the severity of the 455

symptoms. We use a three-grade ranking of symptoms: asymptomatic (0), mildly 456

symptomatic (1) and severely symptomatic (2) (see table S1). We assume that only 457

symptomatic patients show up at the hospital as Covid-19 testing candidates, and that 458

the general population dynamics is driven by self-assessed symptoms (such as difficulty 459

breathing and fatigue). 460

p(H | i, t) ≈ h1[t]p(1 | i, t) + h2[t]p(2 | i, t) (19)

The term h1[t] = p(H | 1, t) (h2[t] = p(H | 2, t)) denotes the probability of going to 461

the hospital given grade one or grade two symptoms. Here p(H | 1, i, t) = p(H | 1, t). 462

This is because the probability of going to the hospital cannot depend on the true 463

disease status as the decision to go to the hospital is subjective: the individual is not 464

certain of his/her actual disease status. 465

p(H | ī, t) ≈ h1[t]p(1 | ī) + h2[t]p(2 | ī) (20)

Combining and re-arranging terms: 466

p(H | t) = pi[t]{h1[t]∆p1[t] + h2[t]∆p2[t]}+ h1[t]p(1 | ī) + h2[t]p(2 | ī) (21)

Here ∆p1[t] = p(1 | i)− p(1 | ī) is the difference in the probability of exhibiting grade 467

one symptoms in the infected population (i) and the remainder of the general 468

population (̄i); ∆p2[t] has an equivalent definition for grade two symptoms and pi[t] 469

denotes the disease prevalence among the population. 470

Eq 21 shows that the general population dynamics is driven by two terms: an 471

infected sub-population term and an uninfected sub-population term. Interestingly, the 472

infected sub-population term is driven by the fraction of people infected in the total 473

population, pi[t], and the difference in symptom rate between those who are infected i 474

and those who are not infected ī. That is, if the rate of moderate and severe symptoms 475
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between those who are infected and those who are not infected were the same, the 476

number of people who show up at the hospital would not change as the disease spread. 477

Whereas patient perception drives general population dynamics, physician 478

perception drives hospital dynamics. We now expand the probability of being tested in 479

terms of the severity of symptoms under the assumption that the physician does not 480

administer tests to asymptomatic patients and always administers tests to severely 481

symptomatic patients: 482

p(T | H, t) = f2[t] + f1[t]T1[t] (22)

with f2[t] = p(2 | H, t), f1[t] = p(1|H, t) and T1[t] = p(T | 1, H, t). In other words, f2 483

is the fraction of people at the hospital that the physician diagnoses as having grade two 484

symptoms, f1 is the fraction of people at the hospital that the physician diagnoses as 485

having grade one symptoms and T1[t] is the probability of administering a test to a 486

grade one symptom patient (as diagnosed by the physician). 487

Note that we are suppressing an important condition here for the sake of compact 488

notation. Here p(2 | H, t), for example, denotes the fraction of people at the hospital 489

with grade two symptoms according to the physician’s perception. We might denote this 490

with a P for emphasis - e.g. p(2 | H, t) = p(2 | H, t, P ). We emphasize this distinction 491

because it is tempting to apply Bayes’ theorem to simplify these expressions, but doing 492

so requires care and keeping track of the conditions that we have largely suppressed in 493

this brief presentation. 494

We note two interesting cases. 495

panic in a disease free population 496

When there is no disease within the population, then pi[t] = 0 for all times considered. 497

In that case, the probability of going to the hospital among the general population is 498

(from Eq 21): 499

p(H | t) = h1[t]p(1 | ī) + h2[t]p(2 | ī) (23)

A rough upper bound order of magnitude estimate for the probabilities p(1 | ī, t) and 500

p(2 | ī, t) is about 1% and 0.1% respectively. Consider that during a typical flu season, 501

over 50 million Americans contract the flu. For a population of 350 million, that is one 502

in seven. Given that peak flu season spans about three months, then order 0.1% of the 503

population is infected per day (new infections) during the flu season. If we make the 504

approximation that all infections are symptomatic and the symptoms last for five days, 505

then about 0.5% of the population will have symptoms only from influenza consistent 506

with Covid-19 on a given day of peak flu season. Further note that roughly 10% of the 507

population goes to the hospital per year, or about 0.02% per day assuming a uniform 508

distribution. Thus, if we have h1 ∼ 0.01 and h2 ∼ 0.1 we obtain the right order of 509

magnitude for people going to the hospital. 510

The small order of these numbers is important because a jump in h1[t] or h2[t] or in 511

the probability of perceiving symptoms (p(1 | ī, t) and p(2 | ī, t)) can provoke a hospital 512

rush. Recall that h1[t] is the probability of going to the hospital with moderate 513

symptoms. As a crude but simplifying assumption, we make the approximation that in 514

a panic, all people with moderate or severe symptoms will go to the hospital: h1 and h2 515

will both be of O(1). 516

This, in the panic caused by the introduction of a new disease, the fraction of people 517

in the general population who experience moderate symptoms will make a large jump. 518

In numerous studies in the literature, mass psychogenic illness (MPI) has been shown to 519

arise and give rise to real, measurable symptoms, even when there is no underlying 520

disease. This phenomenon is more prevalent in women than men (particularly young 521
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women). There were several instances of young women spreading panic on social media 522

in the USA when they did not have the disease (see, for example, [41]). 523

As a model of MPI, we introduce the following form for the spread of psychogenic 524

symptoms: 525

p(1 | ī, t) = pGe
kt + p0 (24)

Here pG ∼ 1/N << p0 since the psychogenic symptoms usually begin with a single 526

case. This model is consistent with numerous case studies that show a rapid spread of 527

symptoms among peer-connected groups. In some cases, an entire factory or an entire 528

military base is crippled overnight by the spread of spurious symptoms. Indeed, the 529

only factor slowing down the spread of psychogenic symptoms is (1) the delay in the 530

transmission of information among susceptibles and (2) the number of people in social 531

groups, as proximity of a symptomatic appears to be a key factor in triggering 532

psychogenic symptoms. 533

For simplicity, we are limiting psychogenic symptoms to moderate symptoms. We 534

assume that for all times considered, including t = 0, p(1 | ī, t) >> p(2 | ī, t), or that 535

cases with moderate symptoms greatly outnumber cases with severe symptoms. Then to 536

first order, the probability of going to the hospital is: 537

p(H | t) ≈ pGe
kt + p0 (25)

The total number of unique tests on day t is then: 538

NT [t] ≈ (ekt +NT [0]){f2[t] + f1[t]T1[t]} (26)

Recall that T1[t] is the probability of a test being administered to a person with 539

moderate symptoms. We assume that under a panic, T1[t] → 1. In such a situation, the 540

testing rate becomes 541

NT [t] ≈ (ekt +NT [0])F [t] (27)

where F [t] is the total fraction of the hospital patients that the attending physicians 542

perceive as having symptoms (moderate or severe) consistent with Covid-19. In the 543

early stages of a panic, F [t] must be rapidly increasing, or perhaps constant if the 544

medical staff is particularly stoic. In any event, F [t] is non-decreasing. Thus, MPI can 545

cause an exponential rise in the testing rate, even when there is no disease in the 546

population. In such a situation, for any significant false positive rate, the number of 547

positive test results will also exhibit exponential growth. 548

ignorance among a diseased population 549

Now consider the opposite case: a disease spreads rapidly throughout a population who 550

fail to recognize the outbreak. Assume exponential growth of the disease prevalence in 551

the population pi[t] = p0e
rt and assume that people with moderate symptoms do not go 552

to the hospital h1[t] = 0. Since there is no awareness of disease spread, h2[t] = h2 is a 553

constant. Then the probability of going to the hospital is: 554

p(H | t) = h2{p0ert∆p2[t] + p(2 | ī)} (28)

We assume that p0 << p(2 | ī) so that at t = 0 the vast majority of people with 555

severe symptoms do not have the disease. Then we can consider two times, t << T and 556

t >> T with T = r−1 ln(p(2 | ī)/p0). In the first case, t << T , the fraction of people 557

going to the hospital is constant at ∼ h2p(2 | ī). Then for times t >> T , the fraction of 558

people going to the hospital grows exponentially ∼ h2p0∆p2[t]e
r(t−T ). 559
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Since there is no change in disease awareness, the fraction of the people showing up 560

at the hospital getting tested is a constant. That is p(T | H, t) = F0. Then for times 561

t << T the fraction of the population tested is: 562

f [t] ≈ h2p(2 | ī)F0 (29)

We have now shown that, at least for some period of time, the testing rate can be 563

constant in a region of exponential disease growth and that, conversely, the testing rate 564

(and potentially the number of disease diagnoses) can grow exponentially in a region 565

where there is no disease presence. On this basis we assert that disease testing rates are 566

driven by perception. Likewise note that the disease testing rate cannot be considered 567

proportional to the disease prevalence rate pi[t]. 568

The model in this section is simple. The main purpose of this section is to show that 569

(1) testing represents a complex and dynamic social phenomenon and (2) testing cannot 570

be considered to be proportional to disease prevalence and (3) testing is not 571

proportional to the probability of detecting a disease host in a given population. 572

continuing the drip model 573

In (S4 fig), we plot simulations for the drip model presented above in Materials and 574

methods. We estimate the standard deviation in the count number as: 575

σ[t] =

√
I

r
[(1 + a)(1 + r)t − a] (30)

Here a ∼ 0.15 is a numerical parameter. Eq 30 shows that the fluctuations in the 576

count number vary exponentially with time. This is another reason to distrust absolute 577

count numbers without dynamics: stochastic fluctuations alone can produce exponential 578

variations in count number. 579

varying drip rate 580

The dynamics can be expressed purely in terms of the drip rate as follows: 581

N [t] =

t
∑

j=0

(1 + r)jI[t− j] (31)

From Eq 31 we see that (1) the early drip rate drives the dynamics since these have 582

the largest weighting and (2) the number of infections is linear in the drip rate. 583

recovery and death 584

We now extend the drip model presented above to include recovery and death. We refer 585

to this as “removal” of the infectious host or “resolution” of the infection. As of the 586

time of writing, the distribution of recovery times for SARS-CoV-2 is not precisely 587

known, but it varies between one week and one month and depends upon various factors 588

such as host immune response. We model removal by subtracting a removal fraction 589

from the number of infections on day t: 590

N [t] = N [t− 1](1 + r − c) + I[t] (32)

Here c is the fraction of people in the pool of infectious hosts who recovered or died. 591

This fraction c depends upon (1) time (2) the transmission rate r and (3) the 592

distribution of removal times. We will clarify each of these points in what follows. 593
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According to the drip model, the number of new infections added to the population 594

on day t is: 595

n[t] = rN [t− 1] + I[t] (33)

The number of people that are removed from the pool of infectious hosts (i.e. the 596

number of people who recover or die) on day t follows some unknown distribution of 597

removal probabilities. Let q[t] be the number of people removed on day t. Then: 598

q[t] =

TM
∑

t′=2

p[t′]n[t− t′] (34)

Here p[0] = p[1] = 0 since we only count infections that are infectious for at least one 599

full day and TM is the maximum infection duration. Note also that we are assuming 600

that the travelers are recently infected. From Eq 32, we see that the fraction c on day t 601

is defined as the ratio of the number of people removed on day t to the total number of 602

infections on day t− 1. That is 603

c(r, t) =
q[t]

N [t− 1]
=

∑TM

t′=2 p[t
′]n[t− t′]

N [t− 1]
(35)

From Eq 35 we observe the dependence of c upon the transmission rate r, the time t, 604

and the distribution of removal times p[t′]. 605

We estimate the initial order of c as follows. First, we approximate the distribution 606

p in Eq 34 by a delta function. That is, we suppose that p[T ] = 1 (i.e. all infections are 607

resolved on day T ). Then on day t = T , the first removals leave the infectious pool. The 608

fraction of people that leave can be approximated as the ratio of the expected number 609

of removals on day t = T to the expected number of infectious hosts on day N [T − 1]: 610

c[t = T ] ≈ En[t− T ]

EN [t− 1]
=

r

erT − 1
(36)

This equation is only valid at t = T . If c << r, then this estimate will remain valid 611

for future times. Using estimates on the transmission characteristics of SARS-CoV-2 by 612

one of our coauthors, we obtain an estimate for T = 15.5 days [42]. With this long 613

infectious period, the impact of including recovery dynamics on the early spread within 614

Colombia is not significant (S5 Fig.). 615
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S1 Fig. Covid-19 and testing in Bogotá D.C. In the right panel, the national
testing rate (dashed red, log base 10) and inferred detection capacity for Bogotá D.C.
only (black). Note we have plotted the smoothed national testing rate in dashed red;
this plot is on a log10 scale and only serves to show qualitative agreement between the
inferred detection rate and the daily testing rate. The national testing rate includes
testing for all cities in Colombia.

.

S3 Fig. Daily testing data from New York. Figure from the official website of
the city of New York [43].

.
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S4 Fig. Drip model simulation. Here I = 10 and r = 0.15. In the top row we plot
(left panel) the trajectories (red) with the mean trajectory in black (computed from
equation 2, (center panel) the mean-subtracted trajectories, (right panel) the standard
deviation as computed numerically (black dashed line) and by equation 30 (red dashed
line). In the bottom row, with plot the distribution of trajectories at day 10 (left), 20
(center) and 30 (right). The Gaussian fit in bold red in each of the plots in the bottom
row is obtained by applying the mean from equation 2 and the standard deviation from
Eq 30.

.
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S5 Fig. Drip model simulation with removal. We compare the dynamics for the
drip model with and without removal. (upper left). The case counts for the two drip
models with r = 0.15, I = 20 and T = 15. (upper right) The log-velocity of the two case
counts considering removal (green) and without removal (black). (bottom left) The
removal fraction (equation 36 computed numerically with the analytic estimate plotted
in dashed black.) (bottom right) The removal probability used in the simulation: a
discretized Gamma distribution with a mean of T = 15 days and a spread of 3 days.
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Aeropuertos; 2019 [cited 2020 May 10] Database [Internet]
http://www.aerocivil.gov.co/atencion/

estadisticas-de-las-actividades-aeronauticas/_layouts/15/WopiFrame.

aspx?sourcedoc=/atencion/

estadisticas-de-las-actividades-aeronauticas/Estadsticas%

20operacionales/Estadisticas%20Trafico%20de%20Aeropuertos%20Enero%

202019.xls&action=default.

June 17, 2020 23/25

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 18, 2020. ; https://doi.org/10.1101/2020.05.23.20111278doi: medRxiv preprint 

https://www.ins.gov.co/Paginas/Boletines-casos-COVID-19-Colombia.aspx
https://www.ins.gov.co/Paginas/Boletines-casos-COVID-19-Colombia.aspx
https://www.minsalud.gov.co/Ministerio/Institucional/Procesos%20y%20procedimientos/GIPS21.pdf
https://www.minsalud.gov.co/Ministerio/Institucional/Procesos%20y%20procedimientos/GIPS21.pdf
https://www.worldweatheronline.com/
https://citypopulation.de/
http://www.aerocivil.gov.co/atencion/estadisticas-de-las-actividades-aeronauticas/_layouts/15/WopiFrame.aspx?sourcedoc=/atencion/estadisticas-de-las-actividades-aeronauticas/Estadsticas%20operacionales/Estadisticas%20Trafico%20de%20Aeropuertos%20Enero%202019.xls&action=default
http://www.aerocivil.gov.co/atencion/estadisticas-de-las-actividades-aeronauticas/_layouts/15/WopiFrame.aspx?sourcedoc=/atencion/estadisticas-de-las-actividades-aeronauticas/Estadsticas%20operacionales/Estadisticas%20Trafico%20de%20Aeropuertos%20Enero%202019.xls&action=default
http://www.aerocivil.gov.co/atencion/estadisticas-de-las-actividades-aeronauticas/_layouts/15/WopiFrame.aspx?sourcedoc=/atencion/estadisticas-de-las-actividades-aeronauticas/Estadsticas%20operacionales/Estadisticas%20Trafico%20de%20Aeropuertos%20Enero%202019.xls&action=default
http://www.aerocivil.gov.co/atencion/estadisticas-de-las-actividades-aeronauticas/_layouts/15/WopiFrame.aspx?sourcedoc=/atencion/estadisticas-de-las-actividades-aeronauticas/Estadsticas%20operacionales/Estadisticas%20Trafico%20de%20Aeropuertos%20Enero%202019.xls&action=default
http://www.aerocivil.gov.co/atencion/estadisticas-de-las-actividades-aeronauticas/_layouts/15/WopiFrame.aspx?sourcedoc=/atencion/estadisticas-de-las-actividades-aeronauticas/Estadsticas%20operacionales/Estadisticas%20Trafico%20de%20Aeropuertos%20Enero%202019.xls&action=default
http://www.aerocivil.gov.co/atencion/estadisticas-de-las-actividades-aeronauticas/_layouts/15/WopiFrame.aspx?sourcedoc=/atencion/estadisticas-de-las-actividades-aeronauticas/Estadsticas%20operacionales/Estadisticas%20Trafico%20de%20Aeropuertos%20Enero%202019.xls&action=default
https://doi.org/10.1101/2020.05.23.20111278
http://creativecommons.org/licenses/by-nd/4.0/


27. Moovit. Public Transit Index; 2020 [cited 2020 May 10] Database [Internet]
https://moovitapp.com/insights/en/Moovit_Insights_Public_Transit_

Index-countries.

28. Lowen A, Palese P. Transmission of influenza virus in temperate zones is
predominantly by aerosol, in the tropics by contact: a hypothesis. PLoS currents.
2009;1.

29. Tang JW. The effect of environmental parameters on the survival of airborne
infectious agents. Journal of the Royal Society Interface.
2009;6(suppl 6):S737–S746.

30. Chan K, Peiris J, Lam S, Poon L, Yuen K, Seto W. The effects of temperature
and relative humidity on the viability of the SARS coronavirus. Advances in
virology. 2011;2011.

31. Hemmes J, Winkler K, Kool S. Virus survival as a seasonal factor in influenza
and poliomyelitis. Nature. 1960;188(4748):430–431.

32. Yang W, Elankumaran S, Marr LC. Relationship between humidity and influenza
A viability in droplets and implications for influenza’s seasonality. PloS one.
2012;7(10).

33. Polozov IV, Bezrukov L, Gawrisch K, Zimmerberg J. Progressive ordering with
decreasing temperature of the phospholipids of influenza virus. Nature chemical
biology. 2008;4:248.

34. Brown JD, Goekjian G, Poulson R, Valeika S, Stallknecht DE. Avian influenza
virus in water: infectivity is dependent on pH, salinity and temperature.
Veterinary microbiology. 2009;136(1-2):20–26.

35. Chin AW, Chu JT, Perera MR, Hui KP, Yen HL, Chan MC, et al. Stability of
SARS-CoV-2 in different environmental conditions. The Lancet Microbe.
2020;1(1):e10.

36. Prussin AJ, Schwake DO, Lin K, Gallagher DL, Buttling L, Marr LC. Survival of
the enveloped virus Phi6 in droplets as a function of relative humidity, absolute
humidity, and temperature. Appl Environ Microbiol. 2018;84(12):e00551–18.

37. Marr LC, Tang JW, Van Mullekom J, Lakdawala SS. Mechanistic insights into
the effect of humidity on airborne influenza virus survival, transmission and
incidence. Journal of the Royal Society Interface. 2019;16(150):20180298.

38. Walker JE, Wells RE. Heat and water exchange in the respiratory tract. The
American journal of medicine. 1961;30(2):259–267.

39. Zhang L, Li Y. Dispersion of coughed droplets in a fully-occupied high-speed rail
cabin. Building and Environment. 2012;47:58–66.

40. Page LA, Keshishian C, Leonardi G, Murray V, Rubin GJ, Wessely S. Frequency
and predictors of mass psychogenic illness. Epidemiology. 2010;21(5):744–747.

41. Zaveri M. Sheriff Told Teen to Take Down Posts About Coronavirus, Family’s
Lawsuit Says. The New York Times; April 21, 2020 [cited 2020 May 10].
Available from : https://www.nytimes.com/2020/04/21/us/
marquette-county-sheriff-instagram-lawsuit.html

June 17, 2020 24/25

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 18, 2020. ; https://doi.org/10.1101/2020.05.23.20111278doi: medRxiv preprint 

https://moovitapp.com/insights/en/Moovit_Insights_Public_Transit_Index-countries
https://moovitapp.com/insights/en/Moovit_Insights_Public_Transit_Index-countries
https://www.nytimes.com/2020/04/21/us/marquette-county-sheriff-instagram-lawsuit.html
https://www.nytimes.com/2020/04/21/us/marquette-county-sheriff-instagram-lawsuit.html
https://doi.org/10.1101/2020.05.23.20111278
http://creativecommons.org/licenses/by-nd/4.0/


42. Bhanot G, DeLisi C. Predictions for Europe for the Covid-19 pandemic from a
SIR model. medRxiv. 10.1101/2020.05.26.20114058 [Preprint] 2020 [cited June 1
2020]. Available from https://doi.org/10.1101/2020.05.26.20114058

43. COVID-19: Data; The Official Website of the City of New York [Internet]
https://www1.nyc.gov/site/doh/covid/covid-19-data.page.

June 17, 2020 25/25

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 18, 2020. ; https://doi.org/10.1101/2020.05.23.20111278doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.26.20114058
https://www1.nyc.gov/site/doh/covid/covid-19-data.page
https://doi.org/10.1101/2020.05.23.20111278
http://creativecommons.org/licenses/by-nd/4.0/



